JP6641469B2 - 近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法 - Google Patents

近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法 Download PDF

Info

Publication number
JP6641469B2
JP6641469B2 JP2018518117A JP2018518117A JP6641469B2 JP 6641469 B2 JP6641469 B2 JP 6641469B2 JP 2018518117 A JP2018518117 A JP 2018518117A JP 2018518117 A JP2018518117 A JP 2018518117A JP 6641469 B2 JP6641469 B2 JP 6641469B2
Authority
JP
Japan
Prior art keywords
calibration
value
offset value
light
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018518117A
Other languages
English (en)
Other versions
JPWO2017199550A1 (ja
Inventor
濱口 弘治
弘治 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2017199550A1 publication Critical patent/JPWO2017199550A1/ja
Application granted granted Critical
Publication of JP6641469B2 publication Critical patent/JP6641469B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/9401Calibration techniques
    • H03K2217/94026Automatic threshold calibration; e.g. threshold automatically adapts to ambient conditions or follows variation of input
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/941Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector
    • H03K2217/94102Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation
    • H03K2217/94108Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated using an optical detector characterised by the type of activation making use of reflection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Electronic Switches (AREA)

Description

本発明は、検知物の近接を検知する近接センサ、近接照度センサに関する。
近年、携帯電話、スマートフォン、メディアプレーヤーなどに代表される、タッチパネル付きの画面(例えば液晶画面)を備えるモバイル機器(電子機器、より具体的にはポータブル電子機器)が、幅広く利用されている。多機能化、小型化または薄型化が進む上記モバイル機器に、近接する物体の有無を検出(検知)する近接センサを搭載したものが登場している。
従来の近接センサ、およびそのキャリブレーション方法について図8〜図11を用いて説明する。図8は、従来の近接センサ900の動作原理を説明するための図である。図9は近接センサ900の問題を説明するための図である。図10は近接センサ900の概略構成を示す機能ブロック図である。図11は、近接センサ900のキャリブレーションの処理の流れの一例を示すフローチャートである。なお、図9のLED発光Pは、発光部901を発光させるためのパルス信号を示す。
従来の近接センサ900には様々な方式があるが、携帯電話やメディアプレーヤー等の小型の携帯端末では、光検知方式の近接センサ900が多く利用されている。光検知方式の近接センサ900は、図8に示すように、近接センサ900内の発光部901から出射された出射光L1を物体OBに反射させ、反射光L2を近接センサ900内の受光部902で受光することにより、物体が近接していることを判断する。
このような光検知方式の近接センサ900では、図9および図10に示すように、携帯電話950の筐体960内部に組み込まれて利用されることがある。この場合、発光部901から出射された出射光L1が筐体960に反射され、筺体960からの反射光L3を受光部902が受光することがある。
ここで、発光部901から出射された出射光L1が筐体960に反射されたことによる、反射光L3の反射光量は、携帯電話の個体毎および使用環境で変化する。したがって、筺体960からの反射光L3を受光部902が受光すると、個体毎による反射光L3の反射光量の違いにより検出距離の誤差や誤動作を招く可能性がある。
このような経緯から、様々な実装条件において同等の特性を有する近接センサ(物体検出装置)の実現が強く求められている。なお、上記特性を示す指標として、検出距離(被検出対象が近接したと判断される際の、被検出対象と近接センサとの間の距離)や誤動作の発生確率が挙げられる。
なお、反射光L3の反射光量が、携帯電話950の個体毎および使用環境で変化する原因として以下のことが考えられる。すなわち、携帯電話950の工場出荷時の製造起因、携帯端末950の経年劣化による汚れや内部構造の変化、近接センサ900の携帯電話950における搭載位置、近接センサ900を搭載後の携帯電話950の筐体表面における形状等の条件(近接センサの実装条件)等、がメーカー毎や機種毎に様々であるためである。この理由として、携帯電話950(電子機器)のデザイン面や設計上の制約が挙げられる。
従来、筺体960からの反射光L3による誤動作を防ぐための対策として、近接センサのキャリブレーション手法があり、例えば、特許文献1に記載されている。
特許文献1に記載されているキャリブレーション手法と同様のキャリブレーション手法の概要について、図10および図11に基づき説明する。
具体的には、携帯電話950は、近接センサ900、携帯制御部951、および表示部952を備えている。近接センサ900は、発光部901、受光部902、AD変換部903、記憶部904、およびセンサ制御部910を備えている。
発光部901は、センサ制御部910からの電流の供給を受けて赤外線を発光する赤外LED(Light Emitting Diode)である。受光部902は、発光部901から出射され物体OBによって反射された赤外線(反射光L2)を受光し、光電変換により受光した光の量に応じた電流を発生させる。発生した電流はAD変換部903に出力される。
記憶部904には、予め所定の閾値が記憶されており、記憶された閾値がセンサ制御部910に読み出される一方、センサ制御部910によって、記憶された閾値が更新される。
AD変換部903は、受光部902から出力された電流をAD変換(アナログ−デジタル変換)し、デジタル信号で表された値をセンサ制御部910に出力する。
センサ制御部910は、携帯電話950からの発信または携帯電話950への着信を示す発着信情報が携帯制御部951から入力されるたびに、発光部901に電流を供給して発光部901を発光させる。このとき、センサ制御部910は、AD変換部903から出力された電流値に応じて、新たな閾値を生成して、閾値記憶部904に記憶させる閾値更新を行う。この一連の処理をキャリブレーションという。
キャリブレーションを行ったセンサ制御部910は、発光部901を発光させ、AD変換部903から出力された電流値と、記憶部904から読み出した閾値(閾値が更新されていれば、その閾値)との大小比較を行い、比較結果に基づいて、ユーザの近接を検知する。ユーザの近接を検知した場合には、センサ制御部910は検知情報を携帯制御部951に出力する。
すなわち、近接センサ900は、携帯電話950の発信および着信のたびにフロアノイズを測定し、キャリブレーションを行ってから、物体(ユーザ)の近接を検知し、近接を示す検知情報を携帯電話950の携帯制御部951に出力する。制御部951は、近接センサ900からユーザの近接を示す検知情報が入力された場合、例えば、タッチパネルの機能をオフし、表示部952の表示をオフにするよう制御する。
次に、近接センサ900のキャリブレーションの処理の流れの一例を、図11を用いて説明する。
まず、センサ制御部910は、携帯電話950の携帯制御部951から発着信情報を取得したか否かを判定する(S1001)。発着信情報を取得した場合(S1001でYES)、センサ制御部910は、発光部901に電流を供給して発光させ(S1002)、AD変換部903から出力された電流値に応じて新たな閾値を生成し、記憶部904に記憶している閾値を更新する(S1003)。S1001〜S1003は、携帯電話950の発着信があった場合、すなわち、近接センサ900を起動する際、近接センサ900で行われるキャリブレーション処理を示している。なお、発着信情報を取得していない場合(S1001でNO)、発着信情報を取得判定S1001に戻る。
次に、センサ制御部910は発光部901に電流を供給して発光させ(S1004)、AD変換部903から出力された電流値と、記憶部904から読み出した閾値との大小比較を行い、電流値が閾値以上か否かを判定する(S1005)。電流値が閾値以上である場合(S1005でYES)、センサ制御部910は検知対象物の近接を検知したと判断し(S1006)、検知情報を携帯制御部951に出力する。電流値が閾値未満である場合(S1005でNO)、センサ制御部910は、検知対象物の近接なしと判断し(S1007)、処理を終了する。
これにより、携帯電話950の発着信があった場合に近接センサ900のキャリブレーションを行うことにより、例えば、工場出荷前の調整工程での様々な外的要因、内部構造の経年変化などによってフロアノイズが変化した場合でも、ユーザの近接を正確に検知することができる。
日本国公開特許公報「特開2013−118565号公報(2013年6月13日公開)」
しかしながら、上述のような従来技術には、以下のような問題点がある。すなわち、携帯電話の使用例として発着信時に携帯電話前面に必ずしも検知対象物の近接がないとは限らない。例えば、ユーザが携帯電話を操作中、ポケットや鞄等に入れている状態、または、カバー付きのケースを使用している等において発着信があった場合、検知対象物の近接がある状態でキャリブレーション処理を行ってしまう。その結果、記憶部904に記憶される閾値が大きくなり、その後検知対象物の近接があっても近接を検知できず、例えば、タッチパネルの機能をオフできず携帯電話を顔に当てた際に、タッチパネルが反応し携帯電話が誤動作してしまうという問題点がある。
本発明は、前記の問題点に鑑みてなされたものであり、その目的は、キャリブレーションを最適に実行することで近接を正確に検知することができる近接センサを実現することにある。
上記の課題を解決するために、本発明の一態様に係る近接センサは、光を出射する発光部と、前記発光部から出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光部と、前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行部と、を備えることを特徴とする。
上記の課題を解決するために、本発明の一態様に係る近接センサのキャリブレーション方法は、光を出射する発光ステップと、前記発光ステップにおいて出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光ステップと、前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行ステップと、を含むことを特徴とする。
本発明の一態様によれば、キャリブレーションを最適に実行することで近接を正確に検知することができる近接センサを実現することができる。
本発明の実施形態1に係る近接センサの概略構成を示す機能ブロック図である。 上記近接センサの動作原理を説明するための図である。 上記近接センサの初期キャリブレーションの処理の流れの一例を示すフローチャートである。 上記近接センサの常時キャリブレーションの処理の流れの一例を示すフローチャートである。 本発明の実施形態2に係る近接照度センサの概略構成を示す機能ブロック図である。 本発明の実施形態3に係る電子機器の一例を示す斜視図である。 上記電子機器の他の例を示す背面図である。 従来の近接センサの動作原理を説明するための図である。 上記近接センサの問題を説明するための図である。 上記近接センサの概略構成を示す機能ブロック図である。 上記近接センサのキャリブレーションの処理の流れの一例を示すフローチャートである。
〔実施形態1〕
本発明の実施形態1について、図1〜図4を参照して説明する。図1は本発明の実施形態1に係る近接センサ100の概略構成を示す機能ブロック図である。図2は近接センサ100の動作原理を説明するための図である。なお、図2のLED発光Pは、発光部101を発光させるためのパルス信号を示す。
(近接センサの構成)
近接センサ100は、図1および図2に示すように、発光部101、受光部102、近接センサAD変換部103、記憶部104、カバー105、および近接センサ制御部110を備えている。
発光部101は、光を出射する。具体的には、発光部101は、後述する発光指示部111からの電流の供給を受けて光を出射する。発光部101は、例えば、赤外線を発光する赤外LEDを用いることができる。
受光部102は、発光部101から出射され検知対象物体(物体OB)によって反射された反射光の受光量に応じた検知対象物体反射光電流(以降、物体反射光電流と称する)と、上記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する。
具体的には、例えば、発光部101より射出された出射光L1は、図2に示すように、近接センサ100の外部に出力される。物体OBが、近接センサ100の近くにあった場合、出射光L1は物体OBにより反射される。物体OBにより反射された反射光L2は近接センサ100に入射され、受光部102で受光される。
受光部102はフォトダイオード等で構成されており、光を検知することで測定電流を発生させる。測定電流は、発光部101から出射され物体OBによって反射された反射光Lの受光量に応じた物体反射光電流と、反射光L以外の光(例えば、筐体11により反射された反射光L3)の受光量に応じた否検知対象物体反射光電流と、を含む。受光部102で発生した測定電流は近接センサAD変換部103に出力される。
近接センサAD変換部103は、受光部102から出力された電流をAD変換(アナログ−デジタル変換)し、デジタル信号で表された値を後述する測定電流値取得部112に出力する。近接センサAD変換部103は積分回路およびコンパレータ回路等で構成されており、電流により流入される電荷を蓄積し、その電荷量を検出することでデジタル信号に変換することが可能である。近接センサAD変換部103で変換されたデジタル信号は検知物体OBとの距離に相関のあるデジタル値となり、測定電流値取得部112に出力される。
記憶部104には、オフセット値が記憶されている。オフセット値は、否検知対象物体反射光電流の電流値に応じた値である。言い換えると、オフセット値は、物体OBがない状態で近接センサ100からの出力値を一定にするために用いられる値である。
また、記憶部104には、初期キャリブレーションのフラグが記憶されている。初期キャリブレーションフラグは初期キャリブレーションにおいてオフセット値を更新したか否かを記録するためのものである。例えば、初期キャリブレーションにおいてオフセット値を更新するとフラグが「1」と設定される。起動やリセット直後等、初期キャリブレーションが未実行の場合はフラグが「0」と設定されるようにしておく。また、キャリブレーションの異常状態等が発生し、強制的に外部から初期キャリブレーションを行う際に、外部からフラグを「0」に設定できるようにしておくことが望ましい。なお、フラグの数値は、それぞれの状態での値が反転しても問題はない。
カバー105は、出射光L1を透過させると共に、近接センサ100内部に異物が侵入するのを防ぐ。カバー105は出射光および反射光を透過させる樹脂またはガラス等で構成される。
(近接センサ制御部の詳細)
近接センサ制御部110は、近接センサの起動時および通常の動作時において常にキャリブレーションの実行(オフセット値の更新)の有無を判定する。
近接センサ制御部110は、現在の近接センサ100の状態を判定し、キャリブレーションが不要であると判定した場合、オフセット値を更新しない。近接センサ制御部110は、オフセット値を更新しない場合、近接センサAD変換部103から入力されたデジタル値から記憶部104に記憶されているオフセット値を減算する。そして、その算出値を近接検知結果のデジタル値として、近接センサ100の外部に出力する。
また、近接センサ制御部110は、キャリブレーションが必要と判定した場合、初期キャリブレーションおよび常時キャリブレーションのいずれか、または両方を実行し、オフセット値を更新する。そして、近接センサ制御部110は、近接センサAD変換部103から入力されたデジタル値から記憶部104に記憶されているオフセット値を減算し、その算出値を近接検知結果のデジタル値として、近接センサ100の外部に出力する。
本実施形態において、初期キャリブレーションとは、近接センサ100起動時に始めに実行されるキャリブレーションであり、オフセット値設定時におけるフロアノイズ等による大きな誤差を補正するためのものである。本実施形態において、常時キャリブレーションとは、平均化処理を用いたキャリブレーション手法であり、外部環境の変化に対して俊敏に追従するのではなく、徐々に追従してオフセット値を補正するためのものである。
近接センサ制御部110について以下に詳しく説明する。また、以下の説明において、初期キャリブレーション実行判定において、近接センサAD変換部103により取得した測定電流値を初期測定電流値と称し、それ以外で近接センサAD変換部103により取得した電流値を測定電流値と称する。
近接センサ制御部110は、近接センサ100内の各種構成を統括的に制御するものであり、CPU(Central Processing Unit)などのプロセッサを備える構成である。近接センサ制御部110は、発光指示部111、測定電流値取得部112、初期キャリブレーション実行部120、および常時キャリブレーション実行部130を備えている。
発光指示部111は、初期キャリブレーション実行部120、および常時キャリブレーション実行部130からの指示に基づき、発光部101に電流を供給する。
測定電流値取得部112は、近接センサAD変換部103から出力された電流値を取得し、初期測定電流値または測定電流値として、初期キャリブレーション実行部120または常時キャリブレーション実行部130に出力する。
(初期キャリブレーション実行部)
初期キャリブレーション実行部120(第1実行部)は、測定電流の電流値が初期閾値以下である場合に否検知対象物体反射光電流の電流値に応じたオフセット値を測定電流の電流値に基づき更新し、測定電流の電流値が前記初期閾値より大きい場合にオフセット値を更新しない初期キャリブレーション(第1キャリブレーション)を実行する。
また、初期キャリブレーション実行部120は、初期キャリブレーションにおいてオフセット値が更新されたか否かを判定するフラグ判定部121(オフセット値更新判定部)を備え、初期キャリブレーション実行部120は、フラグ判定部121より、初期キャリブレーションにおいてオフセット値が更新されていないと判定された場合に初期キャリブレーションにおいてオフセット値を更新する。
具体的には、初期キャリブレーション実行部120は、フラグ判定部121、およびオフセット値演算部122を備えている。
フラグ判定部121は、初期キャリブレーションのフラグが「0」であるか否かを判定することで、初期キャリブレーションにおいてオフセット値が更新されたか否かを判定する。言い換えると、オフセット値が初期キャリブレーションにおいて更新されたものであるか否かを判定する。
フラグ判定部121は、(1)近接センサ100が起動、(2)補正測定値が下限閾値以下であることを示す信号を下限閾値判定部133から受信、(3)外部環境光の変化を検知したこと示す信号を外光判定部134から受信、した場合、記憶部104に記憶されている初期キャリブレーションフラグを読み出す。フラグ判定部121は、フラグが「0」であれば初期キャリブレーションにおいてオフセット値が更新されておらず、「1」であれば初期キャリブレーションにおいてオフセット値が更新されたものと判定する。なお、近接センサ100が起動した直後では初期キャリブレーションフラグは「0」である。
フラグ判定部121は、初期キャリブレーションによりオフセット値が更新されているか否かの判定結果をオフセット値演算部122に送信する。
オフセット値演算部122は、初期キャリブレーションによりオフセット値が更新されていない(初期キャリブレーションフラグが「0」である)との判定結果をフラグ判定部121から受信すると、発光部101に電流を供給するように、発光指示部111に指示する。
オフセット値演算部122は、近接センサAD変換部103から出力される初期測定電流値が、初期閾値以下であるか否かを判定する。オフセット値演算部122は、初期測定電流値が、初期閾値以下である判定した場合、初期測定電流値に基づいて新たなオフセット値を演算する。
初期閾値は、内部反射等による反射光L3(図2参照)により発生すると考えられる電流値と近接があると判定するために用いられる近接検出用閾値とを含む値とすることができる。具体的には、例えば、反射光L3により近接センサAD変換部103から出力される否検知対象物体反射光電流の電流値が約1000、物体反射光電流の電流値において近接があると判定するために用いられる近接検出用閾値が500であった場合、初期閾値は1500と設定しておくとよい。
ここで、例えば、携帯電話ごとの筐体11の反射光L3による否検知対象物体反射光電流の電流値のバラつきが大きい場合、この初期閾値が小さいと初期キャリブレーションにおいてオフセット値の更新ができない問題が発生する可能性があるが、その際には、初期閾値をより大きく設定することで、その問題を回避することが可能となる。そのため、初期閾値は外部から設定できるようにしておくことが望ましい。
初期キャリブレーションにおける新たなオフセット値の演算とは、例えば、「新たなオフセット値=初期測定電流値」とすることができるが、「初期測定電流値−オフセット値」が近接検知結果の下限値(例えば0)とならないようにオフセット値の演算を規定することが望ましい。これは、実行された初期キャリブレーションが誤キャリブレーションであったか否かを判定できるようにするためである。以下にその理由について説明する。
近接検知結果として近接センサ100から出力されるのは「測定電流値−オフセット値」(補正測定値)である。キャリブレーションとして初期キャリブレーションのみを行う場合、初期キャリブレーションで「新たなオフセット値=初期測定電流値」とすると、近接検知結果として、まず、初期補正測定値(初期測定電流値−オフセット値)「0」が外部に出力される。
ここで、物体OBがある状態で初期測定電流値が取得されたものである場合、その後、物体OBがなくなると、本来であるとその後の近接検出結果は低下する。しかし、近接検知結果の下限値が0であった場合、物体OBがなくなっても、近接検知結果は0より小さくはならない。その結果、近接検知結果が実際よりも大きい「0」のまま出力され、近接検知結果に基づき算出される近接センサ100から物体OBまでの距離が、実際の距離よりも短くなり、近接の判断を正確に行えなくなる。
この問題を回避するために、初期測定電流値からオフセット値を減算した値(初期補正測定値)が、下限値を超える(ここでは0を超える)ように初期キャリブレーション後のオフセット値を設定する。これにより、実行された初期キャリブレーションが誤キャリブレーションであるか否かを初期キャリブレーション後に判定することが可能である。
例えば、初期キャリブレーション後の初期補正測定値が100となるようにする。物体OBのない状態で初期キャリブレーションが実行された場合であれば、その後に物体OBを近接センサ100に近づけることで補正測定値は増加し、再び遠ざけることで補正測定値は低下していくが、補正測定値が100以下になることはない。
しかし、初期測定電流値が初期閾値以下になるような位置に物体OBが存在する状態で初期キャリブレーションを実行すると、初期補正測定値が100となるが、その後物体OBを取り除くと、補正測定値は100以下となる。したがって、初期補正測定値が100以下であるか否を判定することで、実行した初期キャリブレーションが誤キャリブレーションであったか否かを判定することが可能となる。以上の理由により、初期キャリブレーションで更新する新たなオフセット値は、初期補正測定値が下限値とならないようにしておくことが望ましい。
本実施形態では、初期キャリブレーションが誤キャリブレーションであったか否かを判断するための上述した判定は、後述する常時キャリブレーション時における下限閾値判定部133により行われる。
オフセット値演算部122は、新たなオフセット値を演算すると、記憶部104に記憶されているオフセット値を更新する。オフセット値演算部122は、記憶部104に記憶されているオフセット値を更新すると、記憶部104の初期キャリブレーションのフラグを「1」とし、常時キャリブレーションの開始を指示する信号を常時キャリブレーション実行部130の補正測定値算出部131に送信する。
オフセット値演算部122は、オフセット値が更新された(初期キャリブレーションフラグが「0」ではない)との判定結果がフラグ判定部121から入力されると、オフセット値を更新せず、常時キャリブレーションの開始を指示する信号を常時キャリブレーション実行部130の補正測定値算出部131に送信する。
また、オフセット値演算部122は、初期測定電流値が、初期閾値よりも大きいと判定した場合、オフセット値を更新せずに初期キャリブレーション処理を終了し、常時キャリブレーションの開始を指示する信号を常時キャリブレーション実行部130の補正測定値算出部131に送信する。このとき、オフセット値の更新をしていないため、初期キャリブレーションフラグの書き込みは行わず、「0」を維持したままとする。
例えば、携帯電話の起動時に物体OBが近接センサ100の近くにあった場合や、携帯電話のタッチパネルを操作中に通話の着信があった場合に取得される初期測定電流値は、オフセット値の算出には適さない。そこで、近接センサAD変換部103から出力される初期測定電流値が、初期閾値以下の場合にオフセット値の更新し、初期閾値よりも大きい場合にオフセット値の更新しないことにより、常に適正なオフセット値を近接の算出に用いることができる。言い換えると、初期キャリブレーション実行部120により、フロアノイズを考慮したキャリブレーションを適切に実行することができ、近接を正確に検知することができる。
(常時キャリブレーション実行部)
常時キャリブレーション実行部130(第2実行部)は、初期キャリブレーションを実行した後のオフセット値である第1オフセット値を、初期キャリブレーションを実行した後に受光部102から発生した測定電流の電流値と第1オフセット値とを平均化処理した値に更新する常時キャリブレーション(第2キャリブレーション)を実行する。
また、常時キャリブレーション実行部130は、常時キャリブレーションにおいて、初期キャリブレーションを実行した後に受光部102から発生した測定電流の電流値から第1オフセット値を減算した補正測定値が常時閾値以下の場合に、第1オフセット値を更新する。
また、常時キャリブレーション実行部130は、初期キャリブレーションと常時キャリブレーションとは交互に実行し、常時キャリブレーションにおいて、補正測定値が下限閾値以下の場合には、第1オフセット値は更新されず、初期キャリブレーション処理に移行する。
また、常時キャリブレーション実行部130は、常時キャリブレーションでは、前記補正測定値が、上記下限閾値より大きく、常時閾値以下であり、かつ、外光の変化を検知した場合には、第1オフセット値は更新されず、第1キャリブレーションが実行される。
常時キャリブレーション実行部130は、補正測定値算出部131、常時閾値判定部132、下限閾値判定部133、外光判定部134、および平均オフセット値演算部135を備えている。
補正測定値算出部131は、初期キャリブレーション実行部120から常時キャリブレーションの開始を指示する信号を受信すると、発光部101に電流を供給するように、発光指示部111に指示する。また、補正測定値算出部131は、近接センサAD変換部103から取得する測定電流値、および記憶部104に記憶されているオフセット値により補正測定値を算出する。具体的には、補正測定値は、近接センサAD変換部103から出力される測定電流値から、そのとき記憶部104に記憶されているオフセット値を減算することで算出される。補正測定値が算出されると、補正測定値算出部131は、補正測定値を常時閾値判定部132に出力する。
常時閾値判定部132は、補正測定値算出部131から補正測定値が入力されると、補正測定値が常時閾値以下か否かを判定する。常時閾値は、例えば、近接があると判定するために用いられる近接検出用閾値とすることができる。また、常時閾値は、後述する下限閾値よりも大きいものとする。
補正測定値が常時閾値よりも大きい場合、物体OBが近接している状態であると考えられる。そのため、常時閾値判定部132は、常時キャリブレーションの処理は行わず、常時キャリブレーションの処理は終了する。補正測定値が常時閾値以下であった場合、常時閾値判定部132は、補正測定値が常時閾値以下であったことを示す信号を、下限閾値判定部133に送信する。
下限閾値判定部133は、初期キャリブレーション実行後、測定電流値から記憶部104に記憶されているオフセット値を減算した算出値(補正測定値)が下限閾値以下の場合に、常時キャリブレーションにおけるオフセット値の更新を行わず、初期キャリブレーションを実行する。言い換えると、下限閾値判定部133は、補正測定値が常時閾値以下であったことを示す信号を常時閾値判定部132から受信すると、初期キャリブレーションに異常がないか判定し、初期キャリブレーションに異常がある場合、常時キャリブレーションにおけるオフセット値の更新を行わず、再度初期キャリブレーションを実行する。
初期キャリブレーションに異常があった場合、すなわち、初期キャリブレーションで算出され、記憶部104に記憶されたオフセット値に異常がある場合、近接センサ100は誤った補正測定値を外部に出力し、その結果、携帯電話等の誤動作を招く可能性がある。そのため、初期キャリブレーションが明らかに異常であると判定された場合、記憶部104に記憶されているオフセット値を消去して再度初期キャリブレーションを実行する必要がある。
下限閾値判定部133は、補正測定値が下限閾値以下であれば初期キャリブレーション異常と判定する。また、このとき、下限閾値判定部133は、初期キャリブレーションのフラグを0とし、初期キャリブレーションが行われていない状態に設定してから、常時キャリブレーションを終了する。これにより、常時キャリブレーションにおけるオフセット値の更新を行わず、再度初期キャリブレーションが実行される。
ここで、下限閾値は、初期キャリブレーションにおける、初期測定電流値からオフセット値を減算した値(初期補正測定値)以下にすることが望ましい。初期キャリブレーション後の初期補正測定値が100となるように設定しているような状態で、例えば、初期キャリブレーション後に受光部102から発生された測定電流値からそのとき記憶部104に記憶されているオフセット値を減算した値(補正測定値)が0になったとする。これは物体OBがある状態で初期キャリブレーションを誤って実行していまい、その後、物体OBを遠ざけた、あるいは取り除いた場合に相当する。したがって、下限閾値を初期補正測定値以下と設定することで、補正測定値が下限閾値以下であれば初期キャリブレーションの状態が異常であると判定することができる。
また、補正測定値が下限閾値以下であれば、下限閾値判定部133は、初期キャリブレーションフラグを「0」とし、初期キャリブレーションにおけるオフセット値の更新が行われていない状態に設定してから、常時キャリブレーションを終了する。これにより、常時キャリブレーションにおけるオフセット値の更新は行われず、再度初期キャリブレーションが実行される。また、下限閾値判定部133は、補正測定値が下限閾値以下であることを示す信号をフラグ判定部121に送信する。
下限閾値判定部133は、補正測定値が下限閾値よりも大きければ、補正測定値が下限閾値よりも大きいことを示す信号を外光判定部134に送信する。
外光判定部134は、補正測定値が下限閾値よりも大きいことを示す信号を下限閾値判定部133から受信すると、初期キャリブレーション実行後、外光(外部環境光)の変化を検知したか否かを判定する。外光判定部134は、外部環境光の変化を検知した場合、常時キャリブレーションにおけるオフセット値の更新は行われず、初期キャリブレーションを実行する。
赤外光を射出する発光部101を用いた近接センサ100では、太陽光、白熱灯、ハロゲン光等の赤外光を多く含む光源の環境下と、白色蛍光灯、白色LED等の赤外光をほとんど含まない光源の環境下とでは、受光部102で受光する光の特性が大きく変化する場合がある。
具体的には、ユーザが屋外から屋内、および屋内から屋外に移動するなどして、(1)赤外光を多く含む光源の環境下で近接センサ100を起動し、赤外光を含まない光源の環境下に移動した場合、または逆に、(2)赤外光を含まない光源の環境下で近接センサ100を起動し、赤外光を含む光源の環境下に移動した場合、急激に外部環境光の特性に変化が起こり、近接センサ100は誤った近接検知結果を出力する可能性がある。
例えば、ハンズフリーモードのように携帯電話を耳に当てずに通話を行う場合、通話中でも近接なしと判断している。この状態で、例えば屋内から屋外へ、または逆に屋外から屋内へ移動した場合において、周囲の温度環境の変化や光源の変化において近接センサ100の特性が変化してしまう可能性がある。そのような状況から通常の通話モードに戻して携帯電話を耳に当てるような物体OBを近づける行動を行った際に、物体OBを近づけても物体OBを正常に検知できない可能性がある。
そこで、外部環境光の状態を検知保持しておき当該状態が変化した場合、外光判定部134は、初期キャリブレーションフラグを「0」とし、初期キャリブレーションにおけるオフセット値の更新が行われていない状態に設定してから、常時キャリブレーションを終了する。これにより、常時キャリブレーションにおけるオフセット値の更新が行われず、再度初期キャリブレーションが実行される。
外部環境光の状態変化の検知手法であるが、例えば以下のような方法ある。すなわち、発光部101を駆動せず、発光部101から赤外光を出射しない状態で受光部102において発生する電流を検知することで外部から入射している赤外光を検出することができる。これにより、外部環境光の状態を検知することが可能である。外光判定部134は、上記方法により取得した起動時の外部環境光の状態と常時キャリブレーション時の外部環境光の状態とを比較し、所定値以上の変化がある場合、外部環境光の変化を検知したと判断してもよい。
または、近接センサ機能と周囲環境光の照度を検知する照度センサ機能をあわせ持つ近接照度センサ400(実施形態2参照)においては、照度センサ機能により外部可視光および赤外光の照度をそれぞれ検知することが可能である。外光判定部134は、起動時の外部環境光の可視光と赤外光との比率と、常時キャリブレーション時の可視光と赤外光の比率とを比較し、所定値以上の変化がある場合、外部環境光の変化を検知したと判断してもよい。
外光判定部134は、外部環境光の変化を検知しなかった場合に、外部環境光の変化を検知しなかったことを示す信号を平均オフセット値演算部135に送信する。
外光判定部134は、外部環境光の変化を検知した場合に、外部環境光の変化を検知したことを示す信号をフラグ判定部121に送信する。
(平均オフセット値演算部135)
平均オフセット値演算部135は、記憶部104に記憶されているオフセット値(初期キャリブレーション後に記憶部104に記憶されているオフセット値:第1オフセット値)を、電流値(初期キャリブレーション後に受光部102から発生する測定電流の電流値)とオフセット値(第1オフセット値)とを平均化した値に更新する。
具体的には、平均オフセット値演算部135は、外部環境光の変化を検知しなかったこと示す信号を外光判定部134から受信すると、平均化処理により算出したオフセット値により、記憶部104に記憶されているオフセット値を更新する。
すなわち、常時キャリブレーションにおけるオフセット値の更新が可能であった場合、平均オフセット値演算部135で平均化処理による常時キャリブレーションにおけるオフセット値の更新が行われる。その平均化処理は、例えば次式で実行される。
y(n)=α・y(n−1)+(1−α)・x(n)
=y(n−1)+(1−α)・{x(n)−y(n−1)}・・・式(1)
式(1)においてy(n)は新たに算出される常時キャリブレーション結果、y(n−1)は、その算出前のキャリブレーション結果(初期キャリブレーション後に記憶部104に記憶されているオフセット値)であり、x(n)は、初期キャリブレーション後、近接センサAD変換部103から出力されたデジタル信号(補正測定値算出部131で取得された測定電流値)である。x(n)とy(n―1)との差分が近接センサ100から近接検知結果として外部に出力される。すなわち、補正測定値算出部131で取得した測定電流値から、平均化処理により更新される前のオフセット値を減算した値が近接検知結果として外部に出力される。また、αは平均化の係数であり、αの値を大きくすることで常時キャリブレーションによるオフセット値更新時の変化量が小さくなり、逆にαの値を小さくすることで常時キャリブレーションによるオフセット値更新時の変化量を大きくすることが可能である。
また、平均オフセット値演算部135は、常時キャリブレーション結果である平均オフセット値演算部135で算出されたy(n)を常時キャリブレーションにおける新たなオフセット値として、記憶部104に記憶されているオフセット値を更新する。
オフセット値更新後、平均オフセット値演算部135は、常時キャリブレーション処理を終了させ、常時キャリブレーションが終了したこと示す信号を、フラグ判定部121に送信する。
(初期キャリブレーション処理)
図3は、近接センサ100の初期キャリブレーションの処理の流れの一例を示すフローチャートである。図3に示すように、まず、近接センサ100の電源を投入、または起動信号や起動命令コマンド等により近接センサ100を起動する。これは携帯電話の電源投入時や通話の着信時に相当する。
次に、近接センサ100の初期設定を行う(S101)。これは、近接センサ100が設定レジスタ等を保有しており外部から設定変更が可能な場合、携帯電話の制御部等から行われてもよい。近接センサ100の初期設定が不可能もしくは不要であった場合、S101の処理は不要である。
次に、S102からS104により初期キャリブレーションの実行判定が行われる。まず、フラグ判定部121が、初期キャリブレーションフラグが「0」であるか否かを判定する(S102:オフセット値更新判定ステップ)。初期キャリブレーションフラグが「0」であるとき(S102でYES)、オフセット値演算部122は、発光部101に電流を供給することで発光部101を発光させて、受光部102で発生した初期測定電流値を取得し(S103:発光ステップ、および受光ステップ)、初期測定電流値が初期閾値以下か否かを判定する(S104)。初期測定電流値が初期閾値以下である場合(S104でYES)、オフセット値演算部122は、オフセット値を更新する(S105:第1実行ステップ)。具体的には、オフセット値演算部122は、新たなオフセット値を演算し、記憶部104に記憶されているオフセット値を更新する。その後、オフセット値演算部122は、記憶部104の初期キャリブレーションフラグを「1」とし(S106)、初期キャリブレーションを終了し(S107)、常時キャリブレーション処理に移行する(S108)。
S102において、初期キャリブレーションフラグが「1」であるとき(S102でNO)、オフセット値演算部122は、初期キャリブレーションを終了し(S107)、常時キャリブレーション処理に移行する(S108)。
S104において、初期測定電流値が初期閾値よりも大きい場合(S104でNO)、オフセット値演算部122は、初期キャリブレーションを終了し(S107)、常時キャリブレーション処理に移行する(S108)。
(常時キャリブレーション処理)
図4は、近接センサ100の常時キャリブレーションの処理の流れの一例を示すフローチャートである。なお、図3の初期キャリブレーションの処理と図4の常時キャリブレーションの処理とは連続して行われる。
図4に示すように、まず、補正測定値算出部131は、発光部101に電流を供給することで測定電流値を取得し、測定電流値および記憶部104に記憶されているオフセット値により補正測定値を算出する(S201)。次に、常時閾値判定部132は、補正測定値が常時閾値以下か否かを判定する(S202)。補正測定値が常時閾値以下の場合(S202でYES)、下限閾値判定部133は、補正測定値が下限閾値以下か否かを判定する(S203)。
補正測定値が下限閾値よりも大きい場合(S203でNO)、外光判定部134は、外部環境光が変化したか否かを判定する(S204)。外部環境光が変化していない場合(S204でNO)、平均オフセット値演算部135は、オフセット値を更新する(S205:第2実行ステップ)。具体的には、平均化処理により算出したオフセット値により、記憶部104に記憶されているオフセット値を更新する。その後、平均オフセット値演算部135は、常時キャリブレーションを終了し(S207)、初期キャリブレーション処理に移行する(S208)。
S202において、補正測定値が常時閾値より大きい場合(S202でNO)、常時閾値判定部132は、常時キャリブレーションを終了し(S207)、初期キャリブレーション処理に移行する(S208)。
S203において、補正測定値が下限閾値以下の場合(S203でYES)、下限閾値判定部133は、記憶部104の初期キャリブレーションフラグを「0」とし(S206)、常時キャリブレーションを終了し(S207)、初期キャリブレーション処理に移行する(S208)。
S204において、外部環境光が変化した場合(S204でYES)、外光判定部134は、記憶部104の初期キャリブレーションフラグを「0」とし(S206)、常時キャリブレーションを終了し(S207)、初期キャリブレーション処理に移行する(S208)。
なお、ここに示すS202からS204の判定順序は一例であり本実施形態通りにする必要はなく、入れ替わっていてもキャリブレーションの結果には影響しない。
〔実施形態2〕
本発明の実施例の近接照度センサ400について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図5は、本発明の実施形態2に係る近接照度センサ400の概略構成を示す機能ブロック図である。近接照度センサ400は近接センサ100に外部環境光の照度を検知する照度センサ機能を備えたものである。
図5で示す近接照度センサ400は、検知物が近接しているか否かを検出する近接センサ機能と外部環境光の照度を測定する照度センサ機能とをあわせ持っており、発光部401、受光部402、近接センサAD変換部403、記憶部404、照度センサAD変換部405、および、近接照度センサ制御部410で構成されている。
発光部401、受光部402、近接センサAD変換部403、および記憶部404は、図1で示す、発光部101、受光部102、近接センサAD変換部103、および記憶部104とほぼ同じ機能を有する。
また、近接照度センサ制御部410の各構成(発光指示部411、測定電流値取得部412、初期キャリブレーション実行部420、フラグ判定部421、オフセット値演算部422、常時キャリブレーション実行部430、補正測定値算出部431、常時閾値判定部432、下限閾値判定部433、外光判定部434、および平均オフセット値演算部435)は、近接センサ制御部110の各構成(発光指示部111、測定電流値取得部112、初期キャリブレーション実行部120、フラグ判定部121、オフセット値演算部122、常時キャリブレーション実行部130、補正測定値算出部131、常時閾値判定部132、下限閾値判定部133、外光判定部134、および平均オフセット値演算部135)と同様の機能を有する。
つまり、図5に示す近接照度センサ400は、図1に示す近接センサ100と比べて、照度センサAD変換部405がさらに設けられている点が異なり、その他の構成は同様である。
近接照度センサ400は、受光部402が、外光(外部環境光)を受光し、受光した光量に応じた電流を照度センサAD変換部405において発生することで、外部環境光の照度を検知することができる。近接照度センサ制御部410の動作の概要について以下に説明する。
近接センサ動作時は、近接照度センサ制御部410は、発光部401より赤外光を出射し、物体OBで反射した上記赤外光を受光部402で受光する。受光部402で発生した電流は近接センサAD変換部403に入力される。近接センサAD変換部403は積分回路およびコンパレータ回路等で構成されており、電流により流入される電荷を蓄積し、その電荷量を検出することでデジタル信号に変換することが可能である。このデジタル信号は、近接照度センサ制御部410を介して近接照度センサ400から外部に出力される。
この際、出力されるデジタル信号は初期キャリブレーション実行部420および常時キャリブレーション実行部430で処理され、記憶部404に記憶されているオフセット値を用いて補正され、近接照度センサ400より出力される。
ここでキャリブレーション(初期キャリブレーションおよび常時キャリブレーション)の動作および手法に関しては図3および図4と同じものであるので説明は割愛する。なお、近接照度センサ400における近接センサ動作時において照度センサAD変換部405は近接照度センサ制御部410によりオフされている。
一方、照度センサ動作時は、近接照度センサ制御部410は発光部401と近接センサAD変換部403をオフさせて、照度センサAD変換部405を動作させる。
受光部402は外部環境光を受光し、受光した光量に応じた電流を発生させる。その電流が照度センサAD変換部405に入力され、近接センサAD変換部403と同様にデジタル信号に変換される。このデジタル信号は近接照度センサ制御部410を介して近接照度センサ400から外部に出力される。
この際、出力されるデジタル信号は初期キャリブレーション実行部420および常時キャリブレーション実行部430で処理され、記憶部404に記憶されているオフセット値を用いて補正され、近接照度センサ400より出力される。
近接照度センサ400を用いて本発明のキャリブレーションを実施した場合、図4におけるS204において外部環境光の変化の検知が容易であり、近接照度センサ400のキャリブレーションの精度を向上させることが可能である。
〔実施形態3〕
本発明の実施形態3について、図6および図7に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
(近接センサの用途)
近接センサ100の用途の一例について説明する。まず、一例として、電子機器として携帯電話およびメディアプレーヤーを用いた場合について説明する。
携帯電話に着信があると、ユーザは携帯電話を耳に当てる動作を行う。そのとき、タッチパネル付の画面の表示がONであるとともに、タッチパネル機能がアクティブ状態であると、携帯電話を耳に当てることで画面に人肌が当たると、携帯電話が誤動作する可能性がある。このような誤動作を防止するために、近接センサ100が用いられる。
具体的には、画面の表示がONであるとともにタッチパネル機能がアクティブ状態で着信があったときに、携帯電話が耳に当てられ近接センサ100が近接する人肌を検出すると、近接センサ100の検出結果に応じて、携帯電話が備える制御部は、以下の制御を行う。
すなわち、画面の表示がONであるとともにタッチパネル機能がアクティブである状態で着信があり、近接センサ100が近接する人肌を検出すると、上記制御部は画面の表示をOFFするとともに、タッチパネル機能をアクティブから非アクティブへ切り替える。そして、通話が終了して携帯電話が人肌から離れることにより、人肌と携帯電話とが近接状態から非近接状態へ遷移したことを近接センサ100が検出すると、上記制御部は画面の表示を再びONするとともに、タッチパネル機能を再びアクティブに切り替える。
次に、モバイル機器であるメディアプレーヤーに近接センサ100を用いる場合の例を説明する。
まず、近接センサ100を搭載していないメディアプレーヤーについて述べる。近接センサ100を搭載していないメディアプレーヤーにおいて、ユーザが、メディアプレーヤーが備えるタッチパネル付の画面の電源をOFFするためには、通常、ボタンを押す。画面の電源は、例えば、メディアプレーヤーをポケットに入れるときにOFFされる。
それに対して、近接センサ100を搭載しているメディアプレーヤーが備える制御部は、近接センサ100の検出結果に応じて、以下の制御を行う。
すなわち、画面の表示がONであるとともにタッチパネル機能がアクティブである状態で、近接センサ100を搭載したメディアプレーヤーがポケットに入れられると、メディアプレーヤーと服の生地(またはポケットの生地)とが近接していることが近接センサ100により検出される。この場合、上記制御部は、画面の表示をOFFするとともに、タッチパネル機能を非アクティブに切り替える。
また、メディアプレーヤーがポケットから出されて、メディアプレーヤーと服の生地(またはポケットの生地)とが近接センサ100により非近接であることが検出された場合、上記制御部は画面の表示を再びONするとともに、タッチパネルの機能を再びアクティブに切り替える。
以上のような制御を行うことにより、ユーザが意図していない期間にタッチパネル機能がアクティブであることによってメディアプレーヤー等のモバイル機器が誤動作することを防止することができる。また、画面の表示をOFFすることで、消費電力の低減を実現することが可能となる。
次に、近接センサ100を備える電子機器の具体的な例について、図6および図7に基づき説明する。図6および図7は、それぞれ、本実施形態に係る電子機器の例を示している。図6は、本実施形態に係る電子機器の一例を示す斜視図である。図6に示す電子機器は携帯電話500である。図7は本実施形態に係る電子機器の他の例を示す背面図である。図7に示す電子機器はデジタルカメラ600ある。
図6に示すように、携帯電話500は、近接センサ501として、上述した近接センサ100または近接照度センサ400のいずれか1つを表示部502の上部に備えている。携帯電話500は、物体OB(図2参照)の近接状態・非近接状態に応じて、表示部502の表示のオン・オフの切り替えと、タッチパネル操作のオン・オフの切り替えを行う。
近接センサ501として、近接センサ100または近接照度センサ400を備えることで、従来のセンサと比較して、キャリブレーション精度を向上させることが可能となり、結果として携帯電話500の誤動作を低減さることが可能となる。特に通話時にハンズフリーモード等非近接状態において近接センサ501が動作を続けている状態で、外部温度や外部環境光等の変化により近接センサ501の特性が変化してしまう場合でも、キャリブレーションを続けることで近接センサ501の出力値を安定させることができるので、結果、携帯電話500の誤動作を低減することが可能となる。
図7に示すように、デジタルカメラ600は、近接センサ601として、上述した近接センサ100または近接照度センサ400のいずれか1つを表示部602の上部に備えている。デジタルカメラ600は、物体OBの近接状態・非近接状態に応じて、表示部602の表示のオン・オフの切り替えを行う。例えば、デジタルカメラ600の使用者が表示部602を確認しながら被写体を撮影しデジタルカメラ600で撮影を行う場合は、デジタルカメラ600が備える制御部により非近接状態と判定され表示部602はオンされる。それに対して、使用者がデジタルカメラ600のファインダー内を覗いて被写体を撮影する場合は、上記制御部により近接状態と判定され表示部602はオフされる。
その結果、デジタルカメラ600の消費電力を低減することができる。さらに表示部602にタッチパネル機能が備えられている場合、近接状態でタッチパネル機能がオフされることで使用者の顔が表示部602に触れてしまった時の誤動作を防ぐことが可能である。
近接センサ601として、近接センサ100または近接照度センサ400を備えることで従来のセンサと比較して、キャリブレーション精度を向上させることが可能となり、結果、デジタルカメラ600の誤動作を低減さることが可能となる。特に使用者がファインダーを覗いていない状態等、非近接状態で近接センサ601が動作を続けている状態において外部温度や外部環境光等の変化により近接センサ601の特性が変化してしまう場合でも、キャリブレーションを続けることで近接センサ601の出力値を安定させて、結果誤動作を低減することが可能である。
〔ソフトウェアによる実現例〕
近接センサ100の制御ブロックは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
後者の場合、近接センサ100は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
〔まとめ〕
本発明の態様1に係る近接センサ(100)は、光を出射する発光部(101)と、前記発光部から出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光部(102)と、前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行部(初期キャリブレーション実行部120)と、を備えることを特徴とする。
上記構成によれば、検知対象物体によって反射された光以外の受光量に応じて受光部が発生する否検知対象物体反射光電流に応じたオフセット値は、測定電流値が初期閾値以下の場合に第1キャリブレーションにより更新され、上記測定電流値が上記初期閾値よりも大きい場合には更新されない。
これにより、例えば、初期閾値を、近接があると判定するために用いられる近接検出用閾値と内部反射により発生すると考えられる電流値とを含む値とした場合、受光部で発生した測定電流値が初期閾値よりも大きい場合は、当該測定電流は近接している検知対象物体が存在している時に発生したものと考えられる。そのため、オフセット値の更新に用いることには適さない。したがって、測定電流値が初期閾値よりも大きい場合には、第1キャリブレーションにおいてオフセット値を更新しないようにすることで、常に適正なオフセット値を設定しておくことができる。言い換えると、上記構成により、フロアノイズを考慮したキャリブレーションを適切に実行することができる。その結果、近接の判定を、適正なオフセット値を用いて行うことができるので、近接を正確に検知することができる。
本発明の態様2に係る近接センサ(100)は、上記態様1において、前記第1キャリブレーションを実行した後のオフセット値である第1オフセット値を、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値と前記第1オフセット値とを平均化処理した値に更新する第2キャリブレーションを実行する第2実行部(常時キャリブレーション実行部130)を備えていることが好ましい。
上記構成によれば、第2キャリブレーションにより、第1キャリブレーションを実行した後のオフセット値である第1オフセット値が、測定電流値と第1オフセット値とを平均化した値に更新されるので、例えば、オフセット値をフロアノイズや外部の変化に対して徐々に追従した値にすることができる。これにより精度の高いオフセット値を設定することができる。
本発明の態様3に係る近接センサ(100)は、上記態様2において、前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が常時閾値以下の場合に、前記第1オフセット値が更新されることが好ましい。
上記構成によれば、例えば、常時閾値を近接があると判定するために用いられる近接検出用閾値とした場合、近接している検知対象物体があるときに第2キャリブレーションにおける第1オフセット値の更新を行わないことができる。これにより、第2キャリブレーションを適切に実行することができる。
本発明の態様4に係る近接センサ(100)は、上記態様2において、前記第1キャリブレーションと前記第2キャリブレーションとは交互に実行され、前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が下限閾値以下の場合には、前記第1オフセット値は更新されないことが好ましい。
上記構成によれば、例えば、下限閾値を第1キャリブレーション実行時の測定電流値(初期測定電流値)からオフセット値を減算した値とすると、第1キャリブレーションが誤キャリブレーションであると判定できる場合に、第2キャリブレーションにおける第1オフセット値の更新を行わず第1キャリブレーションを再度行うことができる。これにより、出力の値に誤キャリブレーションによるオフセット値を用いることを排除できるので、キャリブレーションの精度がより高くなる。
本発明の態様5に係る近接センサ(100)は、上記態様2において、前記第2キャリブレーションでは、外光の変化を検知した場合には、前記第1オフセット値は更新されないことが好ましい。
上記構成によれば、外光の変化があった場合に、第2キャリブレーションにおける第1オフセット値の更新を行わず第1キャリブレーションを再度行うことができる。これにより、外光の変化を考慮して改めて第1キャリブレーションを実施することができる。
本発明の態様6に係る近接センサ(100)は、上記態様1から5のいずれかにおいて、前記第1キャリブレーションにおいて前記オフセット値が更新されたか否かを判定するオフセット値更新判定部(フラグ判定部121)を備え、前記第1実行部は、前記オフセット値更新判定部により、前記第1キャリブレーションにおいて前記オフセット値が更新されていないと判定された場合に前記第1キャリブレーションにおいて前記オフセット値を更新することが好ましい。
上記構成によれば、第1キャリブレーションにおいてオフセット値が更新されていないと判定される場合に第1キャリブレーションが実行されるので、第1キャリブレーションと第2キャリブレーションとを交互に実行することができる。
本発明の態様7に係る近接センサ(100)のキャリブレーション方法は、光を出射する発光ステップと、前記発光ステップにおいて出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光ステップと、前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行ステップと、を含む。
上記構成によれば、態様1と同様の効果を奏する。
本発明の態様8に係る近接センサ(100)のキャリブレーション方法は、上記態様7において、前記第1キャリブレーションを実行した後のオフセット値である第1オフセット値を、前記第1キャリブレーションを実行した後に前記受光ステップにおいて発生した測定電流の電流値と前記第1オフセット値とを平均化処理した値に更新する第2キャリブレーションを実行する第2実行ステップを含むことが好ましい。
上記構成によれば、態様2と同様の効果を奏する。
本発明の態様9に係る近接センサ(100)のキャリブレーション方法は、上記態様8において、前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光ステップから発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が常時閾値以下の場合に、前記第1オフセット値が更新されることが好ましい。
上記構成によれば、態様3と同様の効果を奏する。
本発明の態様10に係る近接センサ(100)のキャリブレーション方法は、上記態様8において、前記第1キャリブレーションと前記第2キャリブレーションとは交互に実行され、前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光ステップから発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が下限閾値以下の場合には、前記第1オフセット値は更新されないことが好ましい。
上記構成によれば、態様4と同様の効果を奏する。
本発明の態様11に係る近接センサ(100)のキャリブレーション方法は、上記態様8において、前記第2キャリブレーションでは、外光の変化を検知した場合には、前記第1オフセット値は更新されないことが好ましい。
上記構成によれば、態様5と同様の効果を奏する。
本発明の態様12に係る近接センサ(100)のキャリブレーション方法は、上記態様7から11のいずれかにおいて、前記第1キャリブレーションにおいて前記オフセット値が更新されたか否かを判定するオフセット値更新判定ステップを備え、前記第1実行ステップは、前記オフセット値更新判定ステップにおいて、前記第1キャリブレーションにおいて前記オフセット値が更新されていないと判定された場合に前記第1キャリブレーションにおいて前記オフセット値を更新することが好ましい。
上記構成によれば、態様6と同様の効果を奏する。
本発明の態様13に係る近接照度センサ(400)は、態様1から6のいずれかに記載の近接センサ(100)において、前記受光部(402)は、外光を受光し、受光した光量に応じた電流を発生することで、前記外光の照度を検知することが好ましい。
上記構成によれば、態様1と同様の効果を奏する近接照度センサを実現することができる。
本発明の態様14に係る電子機器(携帯電話500、デジタルカメラ600)は、態様1から6のいずれかに記載の近接センサ(100)、または態様13に記載の近接照度センサ(400)を備えていることが好ましい。
上記構成によれば、態様1と同様の効果を奏する電子機器を実現することができる。
本発明の各態様に係る近接センサは、コンピュータによって実現してもよく、この場合には、コンピュータを上記近接センサが備える各部(ソフトウェア要素)として動作させることにより上記近接センサをコンピュータにて実現させる近接センサの制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
100 近接センサ
101・401 発光部
102・402 受光部
120・420 初期キャリブレーション実行部(第1実行部)
121 フラグ判定部(オフセット値更新判定部)
130・430 常時キャリブレーション実行部(第2実行部)
400 近接照度センサ
500 携帯電話(電子機器)
600 デジタルカメラ(電子機器)

Claims (15)

  1. 光を出射する発光部と、
    前記発光部から出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光部と、
    前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行部と、
    を備えることを特徴とする近接センサ。
  2. 前記第1キャリブレーションを実行した後のオフセット値である第1オフセット値を、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値と前記第1オフセット値とを平均化処理した値に更新する第2キャリブレーションを実行する第2実行部を備えていることを特徴とする請求項1に記載の近接センサ。
  3. 前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が常時閾値以下の場合に、前記第1オフセット値が更新されることを特徴とする請求項2に記載の近接センサ。
  4. 前記第1キャリブレーションと前記第2キャリブレーションとは交互に実行され、
    前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光部から発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が下限閾値以下の場合には、前記第1オフセット値は更新されないことを特徴とする請求項2に記載の近接センサ。
  5. 前記第2キャリブレーションでは、外光の変化を検知した場合には、前記第1オフセット値は更新されないことを特徴とする請求項2に記載の近接センサ。
  6. 前記第1キャリブレーションにおいて前記オフセット値が更新されたか否かを判定するオフセット値更新判定部を備え、
    前記第1実行部は、前記オフセット値更新判定部により、前記第1キャリブレーションにおいて前記オフセット値が更新されていないと判定された場合に前記第1キャリブレーションにおいて前記オフセット値を更新することを特徴とする請求項1から5のいずれか1項に記載の近接センサ。
  7. 光を出射する発光ステップと、
    前記発光ステップにおいて出射され検知対象物体によって反射された反射光の受光量に応じた物体反射光電流と、前記反射光以外の光の受光量に応じた否検知対象物体反射光電流と、を含む測定電流を発生する受光ステップと、
    前記測定電流の電流値が初期閾値以下である場合に前記否検知対象物体反射光電流の電流値に応じたオフセット値を前記測定電流の電流値に基づき更新し、前記測定電流の電流値が前記初期閾値より大きい場合に前記オフセット値を更新しない第1キャリブレーションを実行する第1実行ステップと、
    を含むことを特徴とする近接センサのキャリブレーション方法。
  8. 前記第1キャリブレーションを実行した後のオフセット値である第1オフセット値を、前記第1キャリブレーションを実行した後に前記受光ステップにおいて発生した測定電流の電流値と前記第1オフセット値とを平均化処理した値に更新する第2キャリブレーションを実行する第2実行ステップを含むことを特徴とする請求項7に記載の近接センサのキャリブレーション方法。
  9. 前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光ステップから発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が常時閾値以下の場合に、前記第1オフセット値が更新されることを特徴とする請求項8に記載の近接センサのキャリブレーション方法。
  10. 前記第1キャリブレーションと前記第2キャリブレーションとは交互に実行され、
    前記第2キャリブレーションでは、前記第1キャリブレーションを実行した後に前記受光ステップから発生した測定電流の電流値から前記第1オフセット値を減算した補正測定値が下限閾値以下の場合には、前記第1オフセット値は更新されないことを特徴とする請求項8に記載の近接センサのキャリブレーション方法。
  11. 前記第2キャリブレーションでは、外光の変化を検知した場合には、前記第1オフセット値は更新されないことを特徴とする請求項8に記載の近接センサのキャリブレーション方法。
  12. 前記第1キャリブレーションにおいて前記オフセット値が更新されたか否かを判定するオフセット値更新判定ステップを備え、
    前記第1実行ステップは、前記オフセット値更新判定ステップにおいて、前記第1キャリブレーションにおいて前記オフセット値が更新されていないと判定された場合に前記第1キャリブレーションにおいて前記オフセット値を更新することを特徴とする請求項7から11のいずれか1項に記載の近接センサのキャリブレーション方法。
  13. 請求項1から6のいずれか1項に記載の近接センサにおいて、
    前記受光部は、外光を受光し、受光した光量に応じた電流を発生することで、前記外光の照度を検知することを特徴とする近接照度センサ。
  14. 請求項1から6のいずれか1項に記載の近接センサ、または請求項13に記載の近接照度センサを備えていることを特徴とする電子機器。
  15. 請求項7から12のいずれか1項に記載の近接センサのキャリブレーション方法をコンピュータに実行させるためのプログラム。
JP2018518117A 2016-05-17 2017-03-09 近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法 Active JP6641469B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016099006 2016-05-17
JP2016099006 2016-05-17
PCT/JP2017/009401 WO2017199550A1 (ja) 2016-05-17 2017-03-09 近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法

Publications (2)

Publication Number Publication Date
JPWO2017199550A1 JPWO2017199550A1 (ja) 2019-02-28
JP6641469B2 true JP6641469B2 (ja) 2020-02-05

Family

ID=60325116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018518117A Active JP6641469B2 (ja) 2016-05-17 2017-03-09 近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法

Country Status (4)

Country Link
US (1) US10514448B2 (ja)
JP (1) JP6641469B2 (ja)
CN (1) CN109155628B (ja)
WO (1) WO2017199550A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488531B2 (en) 2020-06-22 2022-11-01 Sharp Semiconductor Innovation Corporation Proximity sensor and electronic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108513654A (zh) * 2017-03-31 2018-09-07 深圳市柔宇科技有限公司 一种显示屏的控制方法及装置
CN108923865B (zh) * 2018-07-06 2021-06-11 Oppo(重庆)智能科技有限公司 红外距离传感器的校准方法、装置、移动终端及存储介质
CN109632266B (zh) * 2019-01-28 2021-04-16 上海科世达-华阳汽车电器有限公司 一种靠近接近开关的检测方法及相关装置
WO2020166185A1 (ja) * 2019-02-15 2020-08-20 株式会社村田製作所 触覚及び近接センサ
CN111239750B (zh) * 2020-01-03 2023-03-03 歌尔光学科技有限公司 接近传感器的测试方法及接近传感器的测试系统
JP2021150671A (ja) * 2020-03-16 2021-09-27 ローム株式会社 受光ic、近接センサ、および電子機器
CN111736139B (zh) * 2020-06-22 2023-05-23 歌尔科技有限公司 一种红外校准方法、距离检测方法、装置及介质
CN114061505B (zh) * 2020-07-31 2024-08-23 青岛海信移动通信技术有限公司 一种距离传感器的底噪参数校准方法、装置、终端及介质
KR102379373B1 (ko) * 2020-08-24 2022-03-28 곽병관 비접촉식 조작이 가능한 스위치
CN113155240B (zh) * 2020-12-31 2023-03-07 重庆川仪自动化股份有限公司 一种用于雷达物位计标定装置的全自动控制方法
JP2022112163A (ja) * 2021-01-21 2022-08-02 日本電気株式会社 ウェアラブルデバイス、ウェアラブルデバイスの制御方法、およびウェアラブルデバイスの制御プログラム
CN117665958B (zh) * 2024-01-31 2024-05-24 荣耀终端有限公司 接近光传感器的校准方法及电子设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080896A (ja) * 2004-09-09 2006-03-23 Keyence Corp 検出スイッチ、光電スイッチ及び検出方法
JP2007309917A (ja) * 2006-04-19 2007-11-29 Sick Optex Kk 自動感度補正付き光電センサ
US7486386B1 (en) * 2007-09-21 2009-02-03 Silison Laboratories Inc. Optical reflectance proximity sensor
JP5037366B2 (ja) * 2008-01-11 2012-09-26 株式会社 エニイワイヤ 光電センサシステム
WO2010047807A1 (en) * 2008-10-22 2010-04-29 Tom Chang Light detection circuit for ambient light and proximity sensor
US20100245289A1 (en) * 2009-03-31 2010-09-30 Miroslav Svajda Apparatus and method for optical proximity sensing and touch input control
JP5356123B2 (ja) * 2009-06-19 2013-12-04 シャープ株式会社 物体検出装置および電子機器
JP5535607B2 (ja) * 2009-12-18 2014-07-02 シャープ株式会社 物体検出装置及びその製造方法、並びに電子機器
WO2011150887A2 (zh) * 2011-06-24 2011-12-08 华为终端有限公司 一种调整红外接近传感器的感知阈值的方法和装置
JP2013118565A (ja) 2011-12-05 2013-06-13 Panasonic Corp 携帯端末及び近接センサ
US8766162B2 (en) * 2012-01-12 2014-07-01 Maxim Integrated Products, Inc. Ambient light based gesture detection
US8638989B2 (en) * 2012-01-17 2014-01-28 Leap Motion, Inc. Systems and methods for capturing motion in three-dimensional space
JP2013213680A (ja) * 2012-03-30 2013-10-17 Pioneer Electronic Corp 物体検出装置、物体検出方法、物体検出用プログラム及び情報記録媒体
JP2013250833A (ja) * 2012-06-01 2013-12-12 Nec Saitama Ltd 携帯電子機器、その制御方法及びプログラム
TWI503701B (zh) * 2012-07-20 2015-10-11 接近感測方法
JP2014053656A (ja) * 2012-09-05 2014-03-20 Sharp Corp 携帯電話装置、プログラムおよび記録媒体
WO2014115397A1 (ja) * 2013-01-25 2014-07-31 シャープ株式会社 光センサおよび電子機器
FR3002329A1 (fr) * 2013-02-20 2014-08-22 St Microelectronics Grenoble 2 Capteur de proximite
US9772398B2 (en) * 2014-06-26 2017-09-26 Intersil Americas LLC Optical proximity sensors with reconfigurable photodiode array
EP2988479B1 (en) * 2014-08-19 2019-01-30 Semtech Corporation Capacitive proximity sensor and mobile device
US9547365B2 (en) * 2014-09-15 2017-01-17 Google Inc. Managing information display
US9977512B2 (en) * 2014-10-24 2018-05-22 Intersil Americas LLC Open loop correction for optical proximity detectors
WO2018086133A1 (en) * 2016-11-14 2018-05-17 SZ DJI Technology Co., Ltd. Methods and systems for selective sensor fusion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488531B2 (en) 2020-06-22 2022-11-01 Sharp Semiconductor Innovation Corporation Proximity sensor and electronic device

Also Published As

Publication number Publication date
JPWO2017199550A1 (ja) 2019-02-28
US10514448B2 (en) 2019-12-24
CN109155628A (zh) 2019-01-04
US20190285735A1 (en) 2019-09-19
WO2017199550A1 (ja) 2017-11-23
CN109155628B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6641469B2 (ja) 近接センサ、近接照度センサ、電子機器、および近接センサのキャリブレーション方法
US8723149B2 (en) Systems and methods for advanced monitoring and control using an LED driver in an optical processor
EP3627808A1 (en) Screen-off control method and apparatus, storage medium, and electronic device
ES2859555T3 (es) Método, terminal móvil y medio de almacenamiento legible por ordenador no transitorio para ajustar la frecuencia de barrido de una pantalla táctil
CN106303023B (zh) 屏幕状态调节方法及装置
JP6062175B2 (ja) 携帯端末、省電力制御プログラムおよび省電力制御方法
TW201539010A (zh) 近距離感測器的校正方法及系統
US8823682B2 (en) Proximity sensor and electronic device
US20100127159A1 (en) Photodetecting semiconductor apparatus and mobile device
JP5618703B2 (ja) 携帯端末
US9689810B2 (en) Electronic apparatus with proximity sensor and automatic calibration method thereof
CN106101402B (zh) 调整接近传感器感知阈值的方法和系统
JP5901889B2 (ja) 光センサおよびそれを備えた携帯電話ならびにデジタルカメラ
CN109343066A (zh) 接近传感器的控制方法、装置、存储介质及移动终端
EP3654624B1 (en) Screen state control method and device, storage medium, and mobile terminal
US9134172B2 (en) Ambient light sensing method and an ambient light sensing device
JP2013118565A (ja) 携帯端末及び近接センサ
US20150305635A1 (en) Portable electronic device and heart rate sensing method of the same
KR102495326B1 (ko) 전자장치 및 그 제어방법
JP2014053656A (ja) 携帯電話装置、プログラムおよび記録媒体
JP7317600B2 (ja) 赤外線測定装置、およびその測定方法
EP4183125A1 (en) Adaptive proximity detection system
KR20210115543A (ko) 영상 인식 센서 모듈 및 이를 포함하는 모바일 단말기
JP6372367B2 (ja) 情報処理装置、電力制御方法および電力制御プログラム
CN113758560A (zh) 感光元件的参数配置方法、装置、智能设备及介质

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191227

R150 Certificate of patent or registration of utility model

Ref document number: 6641469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150