JP6637419B2 - プリン体吸収を抑制する乳酸菌及びその用途 - Google Patents

プリン体吸収を抑制する乳酸菌及びその用途 Download PDF

Info

Publication number
JP6637419B2
JP6637419B2 JP2016531383A JP2016531383A JP6637419B2 JP 6637419 B2 JP6637419 B2 JP 6637419B2 JP 2016531383 A JP2016531383 A JP 2016531383A JP 2016531383 A JP2016531383 A JP 2016531383A JP 6637419 B2 JP6637419 B2 JP 6637419B2
Authority
JP
Japan
Prior art keywords
purine
lactic acid
adenine
strain
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016531383A
Other languages
English (en)
Other versions
JPWO2016002757A1 (ja
Inventor
成臣 山田
成臣 山田
幸男 大柴
幸男 大柴
洋 坪井
洋 坪井
宏 狩野
宏 狩野
千鶴 岩本
千鶴 岩本
幸夫 浅見
幸夫 浅見
伊藤 裕之
裕之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Publication of JPWO2016002757A1 publication Critical patent/JPWO2016002757A1/ja
Application granted granted Critical
Publication of JP6637419B2 publication Critical patent/JP6637419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、プリン体吸収を抑制する乳酸菌及びその用途に関する。
日本国内では近年、食生活の変化に伴い、痛風患者や高尿酸血症者が年々増加している。高尿酸血症では、尿酸排泄低下や尿酸産生過剰が起こり、血清尿酸量の増加により、激痛を伴う急性関節炎を発症する痛風がしばしば誘発される。日本国内では現在、痛風患者は推定で100万人であり、高尿酸血症者は推定で1000万人である。現状では、高尿酸血症は主に、食事療法、運動療法、及び投薬を組合せて、血清尿酸値をコントロールすることによって予防・治療されている。食事療法では、摂取カロリーを制限することにより、最終的に尿酸に分解される食餌性プリン体の摂取を低減するが、厳しい摂取カロリーの制限を継続することは必ずしも容易ではない。そのため、痛風や高尿酸血症について、より効果的な治療法が望まれている。さらに、痛風や高尿酸血症について、その予防や症状軽減に効果的な食品の開発も求められている。
ところで、高尿酸血症における血清尿酸値の低減に効果を示す微生物や発酵物が報告されている(特許文献1〜5)。例えば特許文献1では、乳酸菌がプリンヌクレオシドからプリン塩基への高い分解能を有していることを示している。例えば、特許文献4及び5では、乳酸菌がプリン体の分解能を有していることを示している。このような従来の血清尿酸値低減作用を有する微生物や発酵物は、腸管内におけるプリンヌクレオシドのプリン塩基への変換を促進し、腸管から吸収されやすいプリンヌクレオシドから腸管から吸収されにくいプリン塩基に変換することにより、プリン体の吸収抑制や排泄促進をもたらすと考えられてきた。しかし、ヒト試験の結果の報告は少なく、また、血清尿酸値の低減作用を有する乳酸菌の効率的な取得方法も知られていない。
特開2008-005834号公報 国際公開WO2011/102310号 国際公開WO2004/112809号 国際公開WO2008/129802号 特開2013-048636号公報
本発明は、プリン体吸収を抑制する乳酸菌及びその用途を提供することを課題とする。
本発明者らは、上記課題を解決するため、鋭意検討を重ねた結果、ある種のラクトバチルス属菌が、プリン塩基からプリンヌクレオチドへの高い変換能を有することを見出し、本発明を完成するに至った。
すなわち、本発明は以下を包含する。
[1] アデニン、5-ホスホ-D-リボース-1-二リン酸、及びMg2+を含む溶液中で、乳酸菌を培養し、それにより得られるアデニンのアデニル酸への変換活性を指標として、ラクトバチルス・ガセリATCC 33323株と比較して、プリン塩基からプリンヌクレオチドへの変換能が増強された乳酸菌をスクリーニングする方法。
[2] 5'-ヌクレオチダーゼ活性を測定し、ラクトバチルス・ガセリATCC 33323株と比較して該活性が低下した乳酸菌を選抜することをさらに含む、上記[1]に記載の方法。
[3] 乳酸菌がラクトバチルス属菌である、上記[1]又は[2]に記載の方法。
[4] 溶液が緩衝液である、上記[1]〜[3]のいずれかに記載の方法。
[5] 上記[1]〜[4]のいずれかに記載の方法によって得られる乳酸菌を有効成分として含む、プリン塩基のプリンヌクレオチドへの変換剤。
[6] アデニンのアデニル酸への変換用又はグアニンのグアニル酸への変換用の、上記[5]に記載の変換剤。
[7] 乳酸菌が、ラクトバチルス・ガセリOLL2959株(受託番号NITE BP-224)である、上記[5]又は[6]に記載の変換剤。
[8] 上記[5]〜[7]のいずれかに記載の変換剤を含む、飲食品又は医薬品。
[9] 血清尿酸値低減用の、上記[8]に記載の飲食品又は医薬品。
[10] 血清尿酸値低減が、腸管でのアデニンのアデニル酸への変換促進及びグアニンのグアニル酸への変換促進を伴う、上記[9]に記載の飲食品又は医薬品。
[11] 6〜8mg/dLの血清尿酸値を示すヒト被験体を投与対象とする、上記[9]又は[10]に記載の飲食品又は医薬品。
[12] 前記の乳酸菌を1用量当たり1×108〜1010 cfu含む、上記[8]〜[11]のいずれかに記載の飲食品又は医薬品。
[13] 上記[5]〜[7]のいずれかに記載の変換剤を、5-ホスホ-D-リボース-1-二リン酸及びMg2+の存在下でプリン塩基と反応させることにより、プリン塩基からプリンヌクレオチドを生成させる方法。
[14] アデニンからアデニル酸を生成させるか、又はグアニンからグアニル酸を生成させるための、上記[13]に記載の方法。
本発明に係る乳酸菌又は変換剤を用いれば、プリン塩基をプリンヌクレオチドに効率良く変換することができ、それにより投与した被験体において血清尿酸値を低減することができる。
本明細書は本願の優先権主張の基礎となる日本国特許出願 特願2014-134973号、特願2014-234050号及び特願2015-064201号の内容を包含する。
図1は、ラクトバチルス・ガセリOLL2959株によるアデニンからAMPへの変換率(AMP/アデニン変換率)の経時的変化を示すグラフである。 図2は、ラクトバチルス・ガセリOLL2959株によるグアニンのGMPへの変換率(GMP/グアニン変換率)の経時的変化を示すグラフである。 図3は、ラクトバチルス・ガセリOLL2959株のプリンヌクレオシダーゼ活性を示すグラフである。左のバーがアデノシンからアデニン、中央のバーがイノシンからヒポキサンチン、右のバーがグアノシンからグアニンへの変換率を示す。 図4は、ラクトバチルス・ガセリOLL2959株の5'-ヌクレオチダーゼ活性を示すグラフである。左のバーがAMPからアデノシン、中央のバーがIMPからイノシン、右のバーがGMPからグアノシンへの変換率を示す。 図5は、ラクトバチルス・ガセリOLL2959株を継続的に摂取したヒト被験体における血清尿酸値の経時的変化を示すグラフである。 図6は、試験食品摂取後の各被験者の血清尿酸値変化率(摂取前検査時〜8週検査時まで)を示す。 図7は、ラクトバチルス・ガセリOLL2959株のプリン体の取り込み能を示すグラフである。 図8は、プリン体の存在下におけるラクトバチルス・ガセリOLL2959株の増殖能を示すグラフである。 図9は、複数の乳酸菌株のアデニンの取り込み能を示す図である。 図10は、アデニンの存在下における複数の乳酸菌株の増殖能を示すグラフである。 図11は、ラクトバチルス・ガセリOLL2959株とプリン体を同時に投与した動物におけるラクトバチルス・ガセリOLL2959株のプリン体の取り込み能を示すグラフである。 図12は、アデニンの取り込み能を乳酸菌株の種類で比較した結果を示すグラフである。 図13は、アデニンの存在下における乳酸菌株の増殖能を乳酸菌株の種類で比較した結果を示すグラフである。
以下、本発明を詳細に説明する。
プリン体は、プリン骨格を有する物質の総称であり、プリン塩基、プリンヌクレオシド、及びプリンヌクレオチドに分類される。プリン体は、生体の主に細胞内で様々な機能を果たしており、例えば、核酸の構成成分として遺伝情報の伝達を担っている。主なプリン塩基としては、アデニン、グアニン、ヒポキサンチン及びキサンチンがある。プリンヌクレオシドはプリン塩基に糖が結合した化合物であり、リボースが結合したアデノシン、グアノシン、イノシン及びキサントシン、デオキシリボースが結合したデオキシアデノシン、デオキシグアノシン、デオキシイノシン及びデオキシキサントシンが挙げられる。プリンヌクレオチドはプリンヌクレオシドにリン酸が結合した化合物であり、アデニル酸(AMP)、グアニル酸(GMP)、イノシン酸(IMP)及びキサンチル酸(XMP)が挙げられる。
プリン体は、腸管吸収を介して食物から食餌性プリン体として生体内に供給される他、de novo経路でアミノ酸等から新規に生合成される。また、プリン体は、プリンヌクレオチドの分解によって生成されたプリン塩基を再利用してプリンヌクレオチドを合成するサルベージ経路を介して、生合成される。
ヒトの場合、プリンヌクレオチドは最終的に尿酸に代謝される。例えば、アデニル酸は5'-ヌクレオチダーゼ(5'-NT)活性によって、アデノシンとなり、アデノシンはイノシンを経て、ヒポキサンチンに代謝される。ヒポキサンチンはキサンチンデヒドロゲナーゼ(XDH)及びキサンチンオキシダーゼ(XO)活性によって、キサンチンとなる。グアニル酸は5'-ヌクレオチダーゼ活性によって、グアノシンとなり、さらにプリンヌクレオシドホスホリラーゼ(PNP)活性によって、グアニンとなる。グアニンはグアニンデアミナーゼ(GDA)によって、キサンチンとなる。キサンチンはキサンチンデヒドロゲナーゼ(XDH)及びキサンチンオキシダーゼ(XO)活性によって、尿酸に代謝される。一方で、それぞれのプリンヌクレオシド(アデノシン、イノシン、キサントシン及びグアノシン)はプリンヌクレオシドホスホリラーゼ(PNP)活性によって、プリン塩基(アデニン、ヒポキサンチン、キサンチン及びグアニン)に変換される。アデニン、グアニン、ヒポキサンチン及びキサンチンの多くは、サルベージ酵素活性によって、それぞれアデニル酸、グアニル酸、イノシン酸及びキサンチル酸の生合成に再利用される(サルベージ経路)。
乳酸菌の場合も、ヒトと類似のプリン体の代謝経路を有するが、ヒトの代謝経路とは異なる点もある。例えば、ほとんどの乳酸菌はプリンヌクレオシドを最終的に塩基まで代謝する。またラクトバチルス・ガセリ(Lactobacillus gasseri)菌の場合、プリンヌクレオシドはプリンヌクレオシダーゼによって、プリン塩基に変換される。
本発明では、アデニンのアデニル酸への変換活性を指標として、乳酸菌を選抜することにより、プリン塩基からヌクレオチドへの高い変換能を有する乳酸菌を取得することができる。本発明は、基質としてのアデニンを溶液中で、乳酸菌と接触させて、その培養により得られる、溶液中でのアデニンのアデニル酸への変換活性を指標として、プリン塩基からヌクレオチドへの変換能が増強された乳酸菌をスクリーニングする方法に関する。
本発明のスクリーニング方法に供する乳酸菌は、特に限定されるものではないが、好ましくは、ラクトバチルス(Lactobacillus)属菌である。ラクトバチルス属菌としては、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクス(Lactobacillus delbrueckii subsp. burgalicus)、ラクトバチルス・デルブリュッキー・サブスピーシーズ・ラクティス(Lactobacillus delbrueckii subsp. lactis)、ラクトバチルス・パラカゼイ・サブスピーシーズ・パラカゼイ(Lactobacillus paracasei subsp. paracasei)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・ヘルベチカス・サブスピーシーズ・ユーグルティ(Lactobacillus helveticus subsp. jugurti)、ラクトバチルス・クリスパタス(Lactobacillus crispatus)、ラクトバチルス・アミロボラス(Lactobacillus amylovorus)、ラクトバチルス・ガリナラム(Lactobacillus gallinarum)、ラクトバチルス・オリス(Lactobacillus oris)、ラクトバチルス・カゼイ・サブスピーシーズ・ラムノーサス(Lactobacillus casei subsp. rhamnosus)、ラクトバチルス・ジョンソニイ(Lactobacillus johnsonii)、ラクトバチルス・ファーメンタム(Lactobacillus fermentum)、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・ロイテリ(Lactobacillus reuteri)等が挙げられるが、ラクトバチルス・ガセリ(Lactobacillus gasseri)が特に好ましい。乳酸菌は、適当な培地(例えばMRS培地)で培養して濃度を調整した後、スクリーニングに用いることが好ましい。
本発明のスクリーニング方法では、アデニン、5-ホスホ-D-リボース-1-二リン酸、及びMg2+を含む溶液中で乳酸菌を培養する。アデニンからアデニル酸への変換反応(AMP系サルベージ活性)は、5-ホスホ-D-リボース-1-二リン酸(PRPP;ホスホリボシルピロリン酸とも呼ばれる)がMg2+存在下で形成したMg2+-PRPPとアデニンを基質として、アデニンホスホリボシルトランスフェラーゼ(APRT)により触媒されるためである。PRPPは、PRPPの任意の塩(例えば、5-ホスホ-D-リボース-1-二リン酸五ナトリウム塩などのナトリウム塩、カリウム塩、カルシウム塩等の任意の塩)の形態で溶液に添加することにより、溶液に配合してもよい。Mg2+もその任意の塩(例えばMgCl2)の形態で溶液に添加することにより、溶液に配合することができる。スクリーニングに用いる溶液は、乳酸菌が生存でき、その酵素活性を阻害しない限り、任意の溶液であってよいが、好ましくは緩衝液である。緩衝液の例としては、リン酸緩衝液、Tris緩衝液、Tris-HCl緩衝液、HEPES緩衝液等が挙げられるが、これらに限定されるものではない。溶液のpHは、特に限定されるものではないが、通常ではpHで6〜8が好ましい。
スクリーニングに用いる溶液(反応液)中のアデニン、5-ホスホ-D-リボース-1-二リン酸(PRPP)、及びMg2+並びに乳酸菌の濃度は、乳酸菌によるアデニンのアデニル酸への変換反応に適した任意の量であってよい。例えば、当該溶液は、反応開始時の最終濃度で0.1mM〜1mM アデニン(好ましくは、0.1mM〜0.3mM)、1〜15mM PRPP(好ましくは、1mM〜5mM)、及び4mM〜40mM Mg2+(好ましくは、4mM〜15mM)を含んでもよい。反応液はまた、限定するものではないが、5×108 cfu/ml〜5×1010cfu/mlの乳酸菌、例えば、5×109 cfu/mlの乳酸菌を含んでもよい。上記の溶液は、乳酸菌によるアデニンのアデニル酸への変換反応に実質的に影響しない任意の物質をさらに含んでもよい。
スクリーニングにおいては、アデニン、5-ホスホ-D-リボース-1-二リン酸(PRPP)、及びMg2+を含む溶液に乳酸菌を懸濁し、培養することが好ましい。乳酸菌の培養は、乳酸菌の培養に適した温度、通常は20℃〜50℃、好ましくは30〜40℃、例えばおよそ37℃でインキュベートすることにより行うことが好ましい。乳酸菌の培養は、例えば、振とうしながら、水浴中でインキュベートすることによって好適に行うことができる。乳酸菌の培養は、一定時間、典型的には少なくとも15分以上、好ましくは30分以上、より好ましくは60分以上で行う。
上記の溶液中において、乳酸菌を一定時間で培養した後、アデニンのアデニル酸への変換反応を停止させる。この変換反応は、溶液にTFA(トリフルオロ酢酸)を添加することによって停止させることが好ましい。例えば、等量の5%TFAを溶液に添加することができる。変換反応の推移を調べるため、乳酸菌の培養時間の長さを少しずつ変えながら、反応を停止させることが好ましい。
続いて、変換反応を停止させた反応液中のアデニン及びアデニル酸を定量する。また、反応液中の他のプリン体(例えば、プリンヌクレオシド)も併せて定量してもよい。この定量は、任意の測定法によって行えばよいが、例えば、HPLC法によって行うことができる。反応液の上清を回収し、ろ過したろ液を定量のための測定に供することが好ましい。
HPLC法による測定は、一例では、以下の条件で行うことができる。
・移動相:A:20mM リン酸緩衝液(pH7.5)
B:40mM リン酸緩衝液(pH7.5)/アセトニトリル(1:1)
・カラム:SHISEIDO CAPCELL PAK C18 MG2(2.0mm id×150mm)
・流速: 0.2mL/分
・温度: 40℃
・注入量:5μl
・検出波長: 254nm(UV)
・グラジエントA/B(分):100/0(0分)−100/0(5分)−80/20(20分)[%]
HPLC法による定量の場合、反応液中のアデニン及びアデニル酸の量は、HPLCチャートのピーク下面積値を測定することにより相対値として算出することができる。各反応停止時点のアデニンのアデニル酸(AMP)への変換率を以下の式で算出することができる。
変換率(%)=(試験区のAMPのピーク下面積値−対照区のAMPのピーク下面積値)/(試験区の0分時点のアデニンのピーク下面積値−対照区の0分時点のアデニンのピーク下面積値)
ここで対照区は、基質となるアデニンを加えずに代わりに等量の緩衝液を用いて調製した溶液で同様に測定したものである。
本発明のスクリーニング方法では、アデニンのアデニル酸への変換活性を表す値として、アデニンのアデニル酸(AMP)への変換率を用いることができる。すなわち本発明のスクリーニング方法では、アデニンのアデニル酸(AMP)への変換率を指標として、乳酸菌がアデニンのアデニル酸(AMP)への変換活性を有するかどうか、及びその変換活性レベルを判定することができる。例えば、本発明では、アデニンのアデニル酸(AMP)への変換率が、経時的測定により最大で30%以上に達すれば、乳酸菌がアデニンのアデニル酸(AMP)への変換活性を有すると判定できる。本発明のスクリーニング方法では、アデニンのアデニル酸(AMP)への変換率が、経時的測定により最大で好ましくは40%以上、より好ましくは50%以上、さらに好ましくは70%以上、特に好ましくは90%以上に達する乳酸菌が選抜されることが好ましい。本発明のスクリーニング方法の好ましい実施形態では、アデニンのアデニル酸(AMP)への変換率が、経時的測定で最大レベル(好ましくはプラトー)に達する時点までに、例えばラクトバチルス・ガセリ基準株であるATCC 33323株と比較して、例えば5倍以上、好ましくは7倍以上、より好ましくは10倍以上、さらに好ましくは13倍以上、特に好ましくは20倍以上に増加した場合、乳酸菌のアデニンからアデニル酸への変換能が顕著に増強されたものとして、「プリン塩基からプリンヌクレオチドへの変換能が増強された」と判定することができる。
このようにして選抜された乳酸菌は、アデニンのアデニル酸への高い変換能(AMP系サルベージ活性)を有するだけでなく、サルベージ活性による他のプリン塩基からプリンヌクレオチドへの高い変換能も有するものであり得る。具体的には、当該乳酸菌は、グアニンのグアニル酸への変換能が増強されたものであり得る。したがって、アデニンのアデニル酸への変換能が増強されたものとして選抜された乳酸菌について、他のプリン塩基からプリンヌクレオチドへの変換活性を同様に調べることも好ましい。具体的には、グアニン、5-ホスホ-D-リボース-1-二リン酸、及びMg2+を含む溶液中で乳酸菌を培養し、それによって示される、グアニンのグアニル酸への変換活性を指標として、グアニンのグアニル酸への変換能が増強されたかどうかを調べればよい。グアニンのグアニル酸への変換活性の測定及び変換率の算出は、アデニンの代わりにグアニン、アデニル酸の代わりにグアニル酸を用いる点以外は、上記のアデニンのアデニル酸への変換と同様の方法で行うことができる。本発明では、グアニンのグアニル酸(GMP)への変換率が、経時的測定で最大レベル(好ましくはプラトー)に達する時点までに、例えばラクトバチルス・ガセリ基準株であるATCC 33323株と比較して、例えば5倍以上、好ましくは7倍以上、より好ましくは10倍以上、さらに好ましくは13倍以上、特に好ましくは20倍以上増加した場合、乳酸菌のグアニンからグアニル酸への変換能も顕著に増強されていると判定することができる。
本発明では、このようにしてプリン塩基からプリンヌクレオチドへの変換能が増強された乳酸菌をスクリーニングすることができる。本発明のスクリーニング方法で得られる乳酸菌は、プリン塩基からプリンヌクレオチドへの高い変換能、特に、アデニンからアデニル酸への高い変換能及びグアニンからグアニル酸への高い変換能を有する。
本発明のスクリーニング方法で得られる乳酸菌は、プリンヌクレオチドからプリンヌクレオシドへの分解活性と比較して、プリン塩基からプリンヌクレオチドへの変換活性(サルベージ活性)がより高いことが好ましい。そのため、本発明のスクリーニング方法では、プリンヌクレオチドを基質としてプリンヌクレオシドへの分解活性を測定し、その活性が低下している乳酸菌を選抜するステップをさらに含んでもよい。具体的には、プリンヌクレオチド(例えば、アデニル酸)を基質として、乳酸菌におけるプリンヌクレオチドからプリンヌクレオシドへの分解を触媒する5'-ヌクレオチダーゼ(5'-NT)の活性を測定すればよい。
乳酸菌の5'-ヌクレオチダーゼ(5'-NT)の活性測定は、常法により行うことができる。例えば、プリンヌクレオチド(アデニル酸など)及びMg2+を含む溶液中で乳酸菌を培養する。Mg2+はその任意の塩(例えばMgCl2)の形態で溶液に添加することにより、溶液に配合することができる。スクリーニングに用いる溶液は、乳酸菌が生存でき、その酵素活性を阻害しない限り、任意の溶液であってよいが、好ましくは緩衝液である。緩衝液の例としては、リン酸緩衝液、Tris緩衝液、Tris-HCl緩衝液、HEPES緩衝液等が挙げられるが、これらに限定されるものではない。溶液のpHは、特に限定されるものではないが、通常ではpHで6〜8が好ましい。対照としては、ラクトバチルス・ガセリ基準株であるATCC 33323株を用いることが好ましい。
反応液中のプリンヌクレオチド及びMg2+並びに乳酸菌の濃度は、ATCC 33323株菌によるプリンヌクレオチドのプリンヌクレオシドへの変換反応に適した任意の量であってよい。例えば、反応液は、反応開始時の最終濃度で0.1mM〜1mM プリンヌクレオチド(好ましくは、0.1mM〜0.3mM)、及び4mM〜40mM Mg2+(好ましくは、4mM〜15mM)を含んでもよい。反応液はまた、特に限定されるものではないが、5×108cfu/ml〜5×1010 cfu/mlの乳酸菌、例えば、5×109 cfu/mlの乳酸菌を含んでもよい。上記の溶液は、乳酸菌によるプリンヌクレオチドのプリンヌクレオシドへの変換反応に実質的に影響しない任意の物質をさらに含んでもよい。乳酸菌の培養条件は、上記のアデニンのアデニル酸への変換試験と同様の条件であってよい。
プリンヌクレオチドのプリンヌクレオシドへの変換活性(すなわち5'-ヌクレオチダーゼ活性)の測定及び変換率の算出は、アデニンの代わりにプリンヌクレオチド(例えば、アデニン酸)、アデニル酸の代わりにプリンヌクレオシド(例えば、アデニン酸を基質とする場合はアデノシン)を用いる点以外は、上記のアデニンのアデニル酸への変換率の試験と同様の方法で行うことができる。但し、反応時間は、特に限定されるものではないが、アデニンのアデニル酸への変換の場合と比べて、より長く(例えば120分)に設定されることが好ましい。本発明では、プリンヌクレオチドのプリンヌクレオシドへの変換率、好ましい例ではアデニル酸のアデノシンへの変換率が、例えばラクトバチルス・ガセリ基準株であるATCC 33323株と比較して、例えば1/5以下、好ましくは1/7以下、より好ましくは1/10以下、さらに好ましくは1/13以下、特に好ましくは1/20以下に低下した場合、乳酸菌の5'-ヌクレオチダーゼ活性が顕著に低下していると判定することができる。5'-ヌクレオチダーゼ活性が顕著に低下した乳酸菌では、プリンヌクレオチドのプリンヌクレオシドへの変換よりも、プリン塩基からプリンヌクレオチドへの変換が優位になり、哺乳動物体内で腸管から吸収されて尿酸生成を促進するプリンヌクレオシドの減少をさらにもたらすことができる。
本発明はまた、上記のスクリーニング方法で得ることができ、プリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌を有効成分として含む、プリン塩基のプリンヌクレオチドへの変換剤も提供する。この変換剤は、例えば、アデニンのアデニル酸への変換用又はグアニンのグアニル酸への変換用に用いることも好ましい。この変換剤を用いれば、in vivo又はin vitroの反応系で、基質としてのプリン塩基をプリンヌクレオチドに効率よく変換することができる。
上記のようなプリン塩基からプリンヌクレオチドへの高い変換能を有し、かつ5'-ヌクレオチダーゼ活性が低下した乳酸菌の好適例としては、ラクトバチルス・ガセリ(Lactobacillus gasseri)OLL2959株が挙げられる。ラクトバチルス・ガセリOLL2959株はホモ乳酸発酵性であり、ガス産生能を有しない。ラクトバチルス・ガセリOLL2959株は、2006年3月31日付(原寄託日)で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(日本国千葉県木更津市かずさ鎌足2-5-8 122号室 郵便番号292-0818)に受託番号NITE P-224で寄託された後、2007年11月21日付でブダペスト条約に基づく寄託(国際寄託)に移管されており、受託番号がNITE BP-224に変更されている。
ラクトバチルス・ガセリOLL2959株はプリン塩基をプリンヌクレオチドに変換する能力(サルベージ活性)が高く、プリンヌクレオチドをプリンヌクレオシドに変換する能力が低い。そのため、ラクトバチルス・ガセリOLL2959株をヒトに投与すると、ヒトによるプリン塩基やプリンヌクレオシドの吸収・代謝よりも微生物によるプリン塩基のプリンヌクレオチドへの再利用の方が優位となり、それが尿酸生成量の減少に寄与すると考えられる。
本発明は、上記のプリン塩基のプリンヌクレオチドへの変換剤を含む、飲食品又は医薬品も提供する。本発明の変換剤は、本発明のプリン塩基からプリンヌクレオチドへの変換能を有する乳酸菌の菌体を含む薬剤又は組成物であってもよいし、当該乳酸菌を用いて製造された発酵物、培養物、若しくはそれらの濃縮物若しくはそれを含む薬剤又は組成物であってもよい。本発明の変換剤に含まれる本発明に係る乳酸菌は、酵素活性を示す限り、死菌体又は処理物であってもよいが、生菌体であることが好ましい。本発明の変換剤は、生体内(典型的には腸管内)でのプリン塩基のプリンヌクレオチドへの変換活性を飲食品や医薬品に付与することができる。本発明の変換剤を含む飲食品や医薬品は、それを投与した被験体において、乳酸菌及びその酵素活性により、腸管内でのプリン塩基のプリンヌクレオチドへの変換の促進、例えば、アデニンのアデニル酸への変換促進及びグアニンのグアニル酸への変換促進により、血清尿酸値の効果的な低減をもたらすことができる。すなわち、本発明の飲食品や医薬品は、アデニンのアデニル酸への変換促進及びグアニンのグアニル酸への変換促進を伴う血清尿酸値低減用であってもよい。本発明の変換剤を含む飲食品や医薬品は、痛風や高尿酸血症の予防、治療、改善又は症状軽減等のために好適に用いることができる。
本明細書において「飲食品」とは、特に限定されるものではないが、飲料、食品及び機能性食品を包含する。本発明の変換剤を含む飲食品の種類は、特に限定されない。例えば、本発明の変換剤を含む飲料として、発酵乳(ドリンクヨーグルト等)、乳酸菌飲料、乳飲料(コーヒー牛乳、フルーツ牛乳等)、茶系飲料(緑茶、紅茶及び烏龍茶等)、果物・野菜系飲料(オレンジ、りんご、ぶどう等の果汁、トマト、ニンジン等の野菜汁を含む飲料)、アルコール性飲料(ビール、発泡酒、ワイン等)、炭酸飲料、清涼飲料、水ベースの飲料等の飲料を例示することができる。好適な飲料としては、ドリンクヨーグルト、乳酸菌飲料、乳飲料、水ベースの飲料等が挙げられ、特に好適な飲料としては、ドリンクヨーグルトが挙げられる。各種飲料の製造法等については、既存の参考書、例えば「最新・ソフトドリンクス」(2003)(株式会社光琳)等を参考にすることができる。また、例えば、食品としては、発酵乳(セットタイプヨーグルト、ソフトヨーグルト、チーズ等)、乳製品、菓子、インスタント食品等が挙げられ、好適な食品としては、セットタイプヨーグルトやソフトヨーグルト等のヨーグルト、菓子、チーズ等が挙げられ、特に好適な食品としては、ヨーグルト、例えばセットタイプヨーグルトやソフトヨーグルト等が挙げられる。各種の食品の製造法等については、既存の参考書を参考にすることができる。
プリン塩基のプリンヌクレオチドへの変換能を有する乳酸菌を含むヨーグルトなどの発酵乳は、例えば、プリン塩基からプリンヌクレオチドへの変換能を有しても有しなくてもよい乳酸菌などの他の微生物を含み得るスターターを用いて製造した乳製品や発酵乳に、本発明のプリン塩基からプリンヌクレオチドへの変換能を有する乳酸菌を添加することにより製造してもよい。あるいは、そのようなスターターと、本発明のプリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌とを混合してスターターとして用いて、乳製品や発酵乳を製造してもよい。スターターを用いた乳製品や発酵乳は、常法に従って製造することができる。例えば、加温・混合・均質化・殺菌処理後に冷却した乳又は乳製品に、スターターを混合し、発酵・冷却することにより、プレーンヨーグルトを製造することができる。本発明は、本発明のプリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌の、ヨーグルトやチーズ等の乳製品や発酵乳の製造における使用(好ましくは当該乳酸菌を乳製品や発酵乳又はその原料に添加(配合)することを含む)であることが好ましく、ヨーグルトの製造における当該乳酸菌の使用であることが特に好ましい。さらに、本発明は、本発明のプリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌を有効成分として使用する、ヨーグルトやチーズ等の乳製品や発酵乳におけるプリン塩基からプリンヌクレオチドへの変換能の向上方法であることが好ましく、ヨーグルトにおけるプリン塩基からプリンヌクレオチドへの変換能の向上方法であることが特に好ましい。
本発明の変換剤を含有する飲食品として、とりわけ、機能性食品が好ましい。本発明の「機能性食品」は、生体に対して一定の機能性を有する食品を意味し、例えば、特定保健用食品(条件付きトクホ[特定保健用食品]を含む)及び栄養機能食品を含む保健機能食品、機能性表示食品、特別用途食品、栄養補助食品、健康補助食品、サプリメント(例えば、錠剤、被覆錠、糖衣錠、カプセル及び液剤などの各種剤形のもの)及び美容食品(例えばダイエット食品)などのいわゆる健康食品全般を包含する。本発明の機能性食品はまた、コーデックス(FAO/WHO合同食品規格委員会)の食品規格に基づく健康強調表示(Health claim)が適用される健康食品を包含する。
本発明の機能性食品として好ましい、より具体的な例には、病者用食品、妊産婦・授乳婦用粉乳、乳児用調製粉乳、高齢者用食品、介護用食品等の特別用途食品がある。
本発明の機能性食品は、血清尿酸値を低減する上で有用である。本発明の機能性食品は、血清尿酸値低減用、特にプリン塩基のプリンヌクレオチドへの変換促進を伴う血清尿酸値低減用に好適に用いることができる。本発明の機能性食品は、例えば、アデニンのアデニル酸への変換促進及びグアニンのグアニル酸への変換促進を伴う血清尿酸値低減のために好適に用いることができる。
本発明の機能性食品(日本の場合、好ましくは、特定保健用食品又は条件付きトクホ[特定保健用食品])などの飲食品は、血清尿酸値の低減又は血清尿酸値上昇を抑制若しくは緩和するためのものであってよく、その旨について記載又は表示したものであってもよい。本発明は、本発明のプリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌の、機能性食品の製造における使用(好ましくは当該乳酸菌を機能性食品又はその原料に添加(配合)することを含む)であることが好ましく、特定保健用食品の製造における当該乳酸菌の使用であることが特に好ましい。さらに、本発明は、本発明のプリン塩基からプリンヌクレオチドへの高い変換能を有する乳酸菌を有効成分として使用する、機能性食品におけるプリン塩基からプリンヌクレオチドへの変換能の向上方法であることが好ましく、特定保健用食品におけるプリン塩基からプリンヌクレオチドへの変換能の向上方法であることが特に好ましい。
本発明の機能性食品は、錠剤、顆粒剤、散剤、丸剤、カプセル剤などの固形製剤、液剤、懸濁剤、シロップ剤などの液体製剤、又はジェル剤やペースト剤などであってもよいし、通常の飲食品の形状(例えば、飲料、ヨーグルト、菓子など)であってもよい。
本発明の飲食品は、任意の食品成分を含んでもよく、特に限定されない。本発明の飲食品は、本発明の乳酸菌又は変換剤に加えて、水、タンパク質、糖質、脂質、ビタミン類、ミネラル類、有機酸、有機塩基、果汁、フレーバー類等を含んでもよい。タンパク質としては、例えば全脂粉乳、脱脂粉乳、部分脱脂粉乳、カゼイン、ホエイ粉、ホエイタンパク質、ホエイタンパク質濃縮物、ホエイタンパク質分離物、α−カゼイン、β−カゼイン、κ−カゼイン、β−ラクトグロブリン、α−ラクトアルブミン、ラクトフェリン、大豆タンパク質、鶏卵タンパク質、肉タンパク質等の動植物性タンパク質、これら加水分解物、バター、乳清ミネラル、クリーム、ホエイ、非タンパク態窒素、シアル酸、リン脂質、乳糖等の各種乳由来成分などが挙げられる。糖質としては一般の糖類、加工澱粉(デキストリン、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等)、食物繊維などが挙げられる。脂質としては、例えば、ラード、魚油等、これらの分別油、水素添加油、エステル交換油等の動物性油脂;パーム油、サフラワー油、コーン油、ナタネ油、ヤシ油、これらの分別油、水素添加油、エステル交換油等の植物性油脂などが挙げられる。ビタミン類としては、例えば、ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビオチン、イノシトール、コリン、葉酸などが挙げられ、ミネラル類としては、例えば、カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレン、乳清ミネラルなどが挙げられる。有機酸としては、例えば、リンゴ酸、クエン酸、乳酸、酒石酸などが挙げられる。これらの成分は、単独でも2種以上を組み合わせても使用することができ、合成品及び/又はこれらを多く含む食品を用いて添加してもよい。
また、本発明の変換剤を含む医薬品(医薬組成物)は、本発明の乳酸菌又は変換剤に加えて、製薬上許容される担体又は添加剤を含んでもよい。担体としては、例えば、水、医薬的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、水溶性デキストリン、カルボキシメチルスターチナトリウム、ペクチン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、製薬上許容される界面活性剤などの他、リポゾームなどの人工細胞構造物などを用いることができる。添加剤としては、例えば結合剤、賦形剤、滑沢剤、崩壊剤、湿潤剤、安定剤、緩衝剤、矯味剤、保存剤、着色剤などが挙げられる。担体又は添加剤は、製剤の剤形に応じて適宜又は組み合わせて選択することができる。本発明の医薬品は、さらに他の薬理成分を含有してもよい。
本発明の医薬品は、経口投与することが好ましい。本発明の医薬品は、錠剤、顆粒剤、散剤、丸剤、カプセル剤などの固形製剤、ジェル剤、又は液剤、懸濁剤、シロップ剤などの液体製剤等の任意の剤形であってよい。
本発明の飲食品又は医薬品の投与量は、投与対象の被験体の年齢及び体重、投与経路、投与回数等を考慮し、当業者の裁量によって広範囲に変更することができ、特に限定されないが、例えば、本発明の乳酸菌の量で、1用量当たり1×105〜1×1011cfuとなる量が好ましく、1×108〜1×1010cfuがより好ましく、1×109〜1×1010cfuがさらに好ましく、例えば4×109〜6×1010cfuが好ましい。本発明の飲食品又は医薬品は、1用量当たり本発明の乳酸菌をこの量で含有することが好ましい。本発明の飲食品又は医薬品は、1日1回以上、好ましくは2回以上、典型的には1日2回、被験体に投与されることが好ましい。本発明の飲食品又は医薬品は、継続的に投与されることが好ましく、例えば毎日投与されることがより好ましい。本発明の飲食品又は医薬品は、少なくとも1週間、好ましくは2週間以上、例えば4週間以上投与されることが好ましい。本発明の飲食品又は医薬品は、好ましくは経口投与される。本発明において「投与」とは、飲食品の「摂取」と医薬品の「投与」の両方を包含する。本発明において「経口投与」は、鼻チューブや胃ろうチューブなどを介した経管栄養法による投与も含むものとする。
本発明の飲食品又は医薬品を投与する被験体は、ヒト、家畜、愛玩動物、実験(試験)動物等を含む哺乳動物である。特に、ヒト被験体が好ましく、痛風及び/又は高尿酸血症であるヒトの被験体がより好ましく、以下に限定するものではないが、6mg/dL以上、例えば6〜10mg/dLの血清尿酸値を示すヒトの被験体がさらに好ましい。一実施形態では、6〜8mg/dLの血清尿酸値を示す軽度〜境界域の高尿酸血症であるヒトの被験体が好ましい。別の実施形態では、7mg/dL以上、好ましくは7〜11mg/dL(一例では、7.6mg/dL〜9.5mg/dL)の血清尿酸値を示すヒトの被験体が好ましく、そのうちで高尿酸血症及び痛風に罹患したヒトの被験体がより好ましい。また、血清尿酸値と、血清尿酸値の測定に先立つ食品からのプリン体摂取量(例えば、3日間の合計プリン体摂取量)に相関がみられる被験体が、投与(摂取)対象としてより好ましい。本発明の飲食品又は医薬品を投与する被験体は、プリン塩基からプリンヌクレオチドへの変換活性(サルベージ活性)、例えばアデニンからアデニル酸への変換活性、特にアデニンからアデニル酸への変換を担うアデニンホスホリボシルトランスフェラーゼ活性が低下している被験体への投与に適している。
また、本発明は、本発明の変換剤を、5-ホスホ-D-リボース-1-二リン酸及びMg2+の存在下でプリン塩基と反応させることにより、プリン塩基からプリンヌクレオチドを生成させる方法も提供する。本方法は、in vivoで実施するものであってもよいし、in vitroで実施するものであってもよい。in vivoで実施する場合、本発明の変換剤を用いるこの方法は、本発明の変換剤を含む飲食品を用い、医療行為を含まないものであってもよい。in vitroで実施する場合、本発明のこの方法は、溶液中のプリン塩基を基質として用いたプリンヌクレオチドの合成(製造)方法である。具体的には、本発明のこの方法は、アデニンからアデニル酸を生成させる方法であることも好ましい。本発明のこの方法はまた、グアニンからグアニル酸を生成させる方法であってもよい。5-ホスホ-D-リボース-1-二リン酸及びMg2+の存在下での乳酸菌によるプリン塩基の変換は、上記のアデニンのアデニル酸への変換率の試験と同様の方法で行うことができる。
さらに、本発明者らは、ラクトバチルス・ガセリOLL2959株等のラクトバチルス・ガセリ菌をはじめとする一部の乳酸菌が、プリン体の取り込み能とプリン体の存在下における高い増殖能とを有し、プリン体の取り込み能とプリン体の存在下における増殖能が相関すること、また、そのような乳酸菌の投与(摂取)が、プリン体の吸収を抑制し、血清尿酸値の低減に寄与することを見出した。この知見に基づけば、当該乳酸菌のプリン体の捕捉作用も、血清尿酸値の低減に利用することができる。
したがって、本発明では、菌体内へのプリン体の取り込み能を指標として、乳酸菌を選抜(スクリーニング)することにより、プリン体の捕捉作用を有する乳酸菌を効率的に取得(選抜)することができる。プリン体を含む培地における乳酸菌のプリン体の取り込み量を測定し、それを指標としてプリン体の捕捉作用を有する乳酸菌を取得(選抜)することを含む、乳酸菌のスクリーニング方法が提供される。より具体的には、本発明は、プリン体を含む培地で乳酸菌を培養し、菌体内のプリン体の取り込み量を好ましくは経時的に測定し、それを指標としてプリン体の捕捉作用を有する乳酸菌を取得(選抜)することにより、乳酸菌をスクリーニングすることができる。このようにして得られるプリン体の捕捉作用を有する乳酸菌は、血清尿酸値の低減作用を有する蓋然性が高い。ここで、乳酸菌によるプリン体の取り込み量が多いこと、すなわち、乳酸菌の菌体がプリン体捕捉作用を有することは、生体内、特に腸管内のプリン体が大量に当該乳酸菌に捕捉されて腸管内の環境から除去されることにより、腸管からのプリン体の吸収が抑制されることを意味する。なお、乳酸菌は消化管から吸収されることなく排泄されることが知られているため、乳酸菌に捕捉されたプリン体は腸管からの吸収を逃れて、乳酸菌と共に体外に排出されることになる。そこで、本発明では、プリン体を含む培地で乳酸菌を培養し、菌体内のプリン体の取り込み量を測定し、それを指標としてプリン体の捕捉作用を有する乳酸菌を選抜し、この得られたプリン体の捕捉作用を有する乳酸菌を、血清尿酸値の低減作用を有する乳酸菌として取得(選抜)することにより、血清尿酸値の低減作用を有する乳酸菌をスクリーニングすることもできる。
本発明において、プリン体の取り込み能を有する乳酸菌は、そのプリン体の取り込み能の高さと相関するように、プリン体の存在下における高い増殖能を示す。そこで、本発明では、上記のプリン体の取り込み能を指標とした選抜に加えて、この選抜した乳酸菌のプリン体の存在下における増殖能の増強を確認し、それを指標として用いることにより、プリン体の捕捉作用を有する乳酸菌をより高精度に取得(選抜)することもできる。すなわち、本発明では、プリン体の取り込み能を有する乳酸菌のプリン体を含む培地における増殖量を測定し、それを、上記のように測定したプリン体の取り込み量と共に指標として、プリン体の捕捉作用を有する乳酸菌を取得(選抜)することにより、乳酸菌をスクリーニングすることができる。さらに、本発明は、プリン体を含む培地で乳酸菌を培養し、該菌の増殖量を経時的に測定し、それを、上記のように測定したプリン体の取り込み量と共に指標として、プリン体の捕捉作用を有する乳酸菌を選抜し、この得られたプリン体の捕捉作用を有する乳酸菌を、血清尿酸値の低減作用を有する乳酸菌として取得(選抜)することにより、血清尿酸値の低減作用を有する乳酸菌をスクリーニングすることもできる。ただし、プリン体の存在下における増殖量の測定及びそれを指標とした選抜を行ってもよいし、そのような選抜を行わなくてもよい。
本発明のスクリーニング方法に供する乳酸菌は、特に限定されるものではないが、好ましくは、ラクトバチルス(Lactobacillus)属菌である。ラクトバチルス属菌の例としては、上記で例示したのと同じものが挙げられ、ラクトバチルス・ガセリ(Lactobacillus gasseri)菌が特に好ましい。本発明のスクリーニング方法に供する乳酸菌の任意の菌株は、適当な培地(例えばMRS培地)で培養して濃度を調整した後、スクリーニングに用いることが好ましい。スクリーニングに用いる培地は、ラクトバチルス・ガセリ菌が増殖できる任意の培地であればよいが、最少培地又はそれをベースとしてプリン体を加えたか又は一部の成分をプリン体に置換した培地が好ましい。なお、特に好ましい最少培地の例を表5に挙げる。
本発明のスクリーニング方法に供する乳酸菌は、特に限定されるものではないが、好ましくは、ラクトバチルス(Lactobacillus)属菌である。ラクトバチルス属菌の例としては、上記で例示したのと同じものが挙げられ、ラクトバチルス・ガセリ(Lactobacillus gasseri)菌が特に好ましい。これらの乳酸菌の任意の菌株は、適当な培地(例えばMRS培地)で培養して濃度を調整した後、スクリーニングに用いることが好ましい。スクリーニングに用いる培地は、用いる乳酸菌、例えばラクトバチルス・ガセリ菌が増殖できる任意の培地であればよいが、最少培地又はそれをベースとしてプリン体を加えたか又は一部の成分をプリン体に置換した培地が好ましい。なお、特に好ましい最少培地の例を表5に挙げる。
培地に含めるプリン体は、プリン塩基、プリンヌクレオシド、及び/又はプリンヌクレオチドであればよい。プリン塩基の例としては、以下に限定されないが、アデニン、グアニン、ヒポキサンチン及びキサンチンが挙げられ、アデニンが特に好ましい。プリンヌクレオシドの例としては、以下に限定されないが、アデノシン、グアノシン、イノシン及びキサントシンが挙げられ、アデノシンが特に好ましい。プリンヌクレオチドの例としては、以下に限定されないが、アデニル酸(AMP)、グアニル酸(GMP)、イノシン酸(IMP)及びキサンチル酸(XMP)が挙げられ、アデニル酸が特に好ましい。プリン体は放射性同位体で標識されていてもよい。
乳酸菌のプリン体の取り込み量の測定には、培地に含まれるプリン体の一部又は全部として、定量的な検出が可能な標識物で標識されたプリン体、例えば、放射性同位体や蛍光物質で標識されたプリン体を用いた培地を好適に用いることができる。放射性同位体としては、例えば、14Cが好ましい。乳酸菌のプリン体の取り込み量は、例えば、プリン体を含む培地で乳酸菌を培養し、一定時間培養後にTFA(トリフルオロ酢酸)等を添加して反応を停止させ、培養後の菌体の標識プリン体を標識物の活性の検出に基づいて定量し、培養開始時の菌体の同活性と比較することで測定や判定することができる。乳酸菌のプリン体の取り込み量が、培養開始時と比較して有意に増加した場合、その乳酸菌は、そのプリン体を菌体内に取り込む能力(プリン体の取り込み能)を有すると判定することができる。本発明では、このようにしてプリン体の取り込み能を有すると判定された乳酸菌を、プリン体の捕捉作用を有する乳酸菌として取得(選抜)することができる。そして、プリン体の捕捉作用を有する乳酸菌として選抜された乳酸菌を、さらに、血清尿酸値の低減作用を有する乳酸菌又はその候補として取得(選抜)することができる。なお、乳酸菌の培養時間は、増殖曲線の誘導期又は対数増殖期にある任意の時点までの時間であることが好ましい。例えば、乳酸菌を培養開始の30分後及び60分後まで培養し、プリン体の取り込み能等を測定することができる。このとき、通常では、液体シンチレーションカウンターを用いて、放射性同位体で標識したプリン体の放射活性を測定すればよい。
乳酸菌のプリン体の存在下における増殖量は、例えば、プリン体を含む培地において乳酸菌を培養し、培養開始時と一定時間の培養後の培地の濁度(典型的には、650nmにおける吸光度)を測定し、その両者の差を算出することで測定や判定をすることができる。プリン体の存在下で培養した場合の濁度の増加量が、プリン体の不在下で培養した場合と比較して有意に増加した場合、その乳酸菌は、そのプリン体の存在下で増強された増殖能を示すものと判定することができる。乳酸菌がプリン体の取り込み能を有し、かつプリン体の存在下で増強された増殖能を示す場合、その乳酸菌がプリン体を高度に資化できることを意味し、すなわち、当該乳酸菌がプリン体を高度に捕捉できること、ひいては、血清尿酸値の低減作用を有する可能性が裏付けられる。なお、乳酸菌の培養時間は、増殖曲線の対数増殖期にある任意の時点までの時間であることが好ましい。例えば、乳酸菌を培養開始の4時間後及び6時間後まで培養し、プリン体の存在下における増殖能等を測定することができる。
上記の測定では、乳酸菌は、培地の1mLに対して、0.8×107〜 3×107 cfuで植菌して培養することが好ましい。乳酸菌の培養条件は、特に限定されないが、30〜39℃、好ましくは36〜38℃で、嫌気培養することが好ましい。
本発明では、以上のようにして選抜された乳酸菌について、例えば、後述の実施例に記載の方法に従って、血清尿酸値の低減作用を有することをさらに試験することも好ましい。例えば、以上のようにして選抜された乳酸菌を被験体に単回又は複数回で投与し、血清尿酸値を測定し、血清尿酸値の変化(血清尿酸値の低減)の有無を調べることにより、以上のようにして選抜された乳酸菌が血清尿酸値の低減作用を有するか否かを判定することができる。
以上のようにして選抜された乳酸菌は、プリン体の取り込み能、及び好ましくはプリン体の存在下における高い増殖能を有し、すなわち、高いプリン体の捕捉作用を有する。そのような乳酸菌は、典型的には、血清尿酸値の低減作用を有する。以上のようにして選抜された乳酸菌は、生体内(典型的には腸管内)のプリン体の存在下におけるプリン体の取り込み能及び高い増殖能(すなわち、高いプリン体の資化能)を発揮する結果として、生体内(典型的には腸管内)のプリン体を大量に捕捉して低減し、プリン体の吸収量を低減させることによって、血清尿酸値を低減することができる。
また、上記のスクリーニング方法で得ることができる、プリン体の捕捉作用を有する乳酸菌を用いて、それを有効成分として含むプリン体捕捉剤、好ましくは経口投与用のプリン体捕捉剤を提供することができる。このプリン体捕捉剤は、プリン体の捕捉作用を有する乳酸菌、好ましくはラクトバチルス・ガセリ菌に加えて、経口投与用に許容される担体又は添加剤を含んでもよい。プリン体捕捉剤は、プリン体の捕捉作用を有する乳酸菌の菌体を含む薬剤又は組成物であってもよいし、当該菌を用いて製造された発酵物、培養物、若しくはそれらの濃縮物・乾燥物若しくはそれを含む薬剤又は組成物であってもよい。なお、このプリン体捕捉剤に含まれるプリン体の捕捉作用を有する乳酸菌は、生菌体であることが好ましい。プリン体捕捉剤は、上記のとおり、乳酸菌のプリン体の取り込みによる腸管内のプリン体の低減作用を有し、したがって、腸管内のプリン体の低減用、ひいては、血清尿酸値の低減用に好適に用いることができる。
上記のようなプリン体の捕捉作用を有する乳酸菌の好適例としては、以下に限定されないが、ラクトバチルス・ガセリ(Lactobacillus gasseri)OLL2959株やラクトバチルス・ガセリP14054ME002株等のラクトバチルス・ガセリ菌が挙げられる。ラクトバチルス・ガセリOLL2959株はホモ乳酸発酵性であり、ガス産生能を有しない。ラクトバチルス・ガセリOLL2959株は、2006年3月31日付(原寄託日)で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(日本国千葉県木更津市かずさ鎌足2-5-8 122号室 郵便番号292-0818)に受託番号NITE P-224で寄託された後、2007年11月21日付でブダペスト条約に基づく寄託(国際寄託)に移管されており、受託番号がNITE BP-224に変更されている。
プリン体捕捉剤は、飲食品又は医薬品と組み合わせて使用することもできる。したがって、飲食品又は医薬品と組み合わせて使用するためのプリン体捕捉剤も提供される。
上記のプリン体捕捉剤を用いて、上記のプリン体捕捉剤を含む、飲食品又は医薬品も提供することができる。この飲食品や医薬品は、それを投与(摂取)した被験体において、菌体内にプリン体を積極的に取り込んで資化し、それにより腸管内のプリン体を低減し、血清尿酸値の効果的な低減をもたらすことができる。したがってこれらの飲食品及び医薬品は、腸管内のプリン体の低減用に用いることができる。なお、ここでいう「腸管内のプリン体」には、腸管内に存在する細菌(乳酸菌等)、真菌、ウイルス、被験体の細胞等が保持するプリン体は含まないものとする。これらの飲食品及び医薬品は、腸管内のプリン体の低減に基づく血清尿酸値の低減用であってもよい。プリン体捕捉剤を含む飲食品や医薬品は、例えば、痛風や高尿酸血症の予防、治療、改善又は症状の軽減等のために好適に用いることができる。
ここでいう「飲食品」は、特に限定されないが、飲料、食品及び機能性食品を包含する。飲食品の種類は、特に限定されず、例えば、飲料としては、発酵乳(ドリンクヨーグルト等)、乳酸菌飲料、乳飲料(コーヒー牛乳、フルーツ牛乳等)、茶系飲料(緑茶、紅茶、烏龍茶等)、果物・野菜系飲料(オレンジ、りんご、ぶどう等の果汁、トマト、ニンジン等の野菜汁を含む飲料)、アルコール性飲料(ビール、発泡酒、ワイン等)、炭酸飲料、清涼飲料、水ベースの飲料等が挙げられ、好適な飲料としては、ドリンクヨーグルト、乳酸菌飲料、乳飲料、水ベースの飲料等が挙げられ、特に好適な飲料としては、ドリンクヨーグルトが挙げられる。各種の飲料の製造法等については、既存の参考書、例えば「最新・ソフトドリンクス」(2003)(株式会社光琳)等を参考にすることができる。また、例えば、食品としては、発酵乳(セットタイプヨーグルト、ソフトヨーグルト、チーズ等)、乳製品、菓子、インスタント食品等が挙げられ、好適な食品としては、セットタイプヨーグルトやソフトヨーグルト等のヨーグルト、菓子、チーズ等が挙げられ、特に好適な飲料としては、ヨーグルト、例えばセットタイプヨーグルト、ソフトヨーグルト等が挙げられる。各種の食品の製造法等については、既存の参考書を参考にすることができる。
プリン体の捕捉作用を有する乳酸菌を含むヨーグルト等の発酵乳は、例えば、プリン体の捕捉作用を有していても、それを有していなくてもよい、乳酸菌等の他の微生物を含み得るスターターを用いて製造した乳製品や発酵乳に、プリン体の捕捉作用を有する乳酸菌を添加することによって製造してもよい。なお、スターターを用いた乳製品や発酵乳は、常法に従って製造することができる。例えば、加温・混合・均質化・殺菌処理後に冷却した乳又は乳製品に、スターターを混合し、発酵・冷却することにより、ヨーグルトを製造することができる。好ましい態様として、プリン体の捕捉作用を有する乳酸菌の、ヨーグルトやチーズ等の乳製品や発酵乳の製造における使用(好ましくは当該乳酸菌を乳製品や発酵乳又はその原料に添加(配合)することを含む)が提供され、特に好ましい態様として、ヨーグルトの製造における当該乳酸菌の使用が提供される。さらに、プリン体の捕捉作用を有する乳酸菌を有効成分として使用する、ヨーグルトやチーズ等の発酵乳や乳製品における、乳酸菌のプリン体の捕捉作用に基づくプリン体の低減方法も提供される。
飲食品として、とりわけ、機能性食品が好ましい。機能性食品の種類、好ましい例等は、上記の変換剤を用いた飲食品に関する機能性食品についての記載と同じである。
この機能性食品は、腸管内のプリン体の低減により血清尿酸値を低減する上で特に有用である。機能性食品は、血清尿酸値の低減用、特に乳酸菌によるプリン体の取り込み及び乳酸菌の増殖促進による腸管内のプリン体の低減及び、その結果としての腸管におけるプリン体の吸収の低減を伴う血清尿酸値の低減用に好適に用いることができる。
この機能性食品(日本の場合、好ましくは、特定保健用食品、条件付きトクホ[特定保健用食品]又は機能性表示食品)等の飲食品は、腸管内のプリン体の低減用であってもよいし、血清尿酸値の低減又は血清尿酸値の上昇を抑制若しくは緩和するためのものであってもよく、その旨について記載又は表示したものであってもよい。プリン体の捕捉作用を有する乳酸菌の、そのような機能性食品の製造における使用(好ましくは当該乳酸菌を機能性食品又はその原料に添加(配合)することを含む)も提供される。
この機能性食品の剤形又は形状は、上記の変換剤を用いた飲食品に関する機能性食品についての記載と同じである。
ここでの飲食品に含まれる上記の乳酸菌以外の食品成分についても、上記の変換剤を用いた飲食品に関する記載と同じである。
また、上記のプリン体の捕捉作用を有する乳酸菌又はプリン体捕捉剤を含む機能性食品は、その乳酸菌又はプリン体捕捉剤に加えて、経口用に許容される担体又は添加剤を含んでもよい。担体としては、例えば、水、経口投与において許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、アルギン酸ナトリウム、水溶性デキストラン、水溶性デキストリン、カルボキシメチルスターチナトリウム、ペクチン、キサンタンガム、アラビアゴム、カゼイン、ゼラチン、寒天、グリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、経口投与において許容される界面活性剤等が挙げられる。添加剤としては、例えば、結合剤、賦形剤、滑沢剤、崩壊剤、湿潤剤、安定剤、緩衝剤、矯味剤、保存剤、着色剤等が挙げられる。これらの担体又は添加剤は、単独でも2種以上を組み合わせても用いることができ、製剤の剤形に応じて適宜用いることができる。なお、本発明の機能性食品は、さらに他の機能性成分を含有してもよい。
また、プリン体の捕捉作用を有する乳酸菌又はプリン体捕捉剤を含む医薬品(医薬組成物)は、本発明の乳酸菌又はプリン体捕捉剤に加えて、製薬上で許容される担体又は添加剤、特に、経口用に許容される担体又は添加剤を含んでもよい。担体及び添加剤の例は上記の変換剤を用いた医薬品に関する記載と同じである。これらの担体又は添加剤は、単独でも2種以上を組み合わせても用いることができ、製剤の剤形に応じて適宜用いることができる。なお、この医薬品は、さらに他の薬理成分を含有してもよい。
上記の医薬品は、経口投与することが好ましい。医薬品は、錠剤、顆粒剤、散剤、丸剤、カプセル剤等の固形製剤、ジェル剤、又は液剤、懸濁剤、シロップ剤等の液体製剤等の任意の剤形であってもよい。
プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品では、その投与量(摂取量)は、投与(摂取)対象の被験体の年齢及び体重、投与経路、投与回数等を考慮しながら、当業者の裁量によって広範囲に変更することができる。そのため、プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品では、乳酸菌(ラクトバチルス・ガセリ菌等)の投与量としては、特に限定されないが、例えば、1用量当たり1×105〜1×1011 cfu となる量が好ましく、1×108〜1×1010 cfu となる量がより好ましく、1×109〜1×1010 cfu となる量がさらに好ましく、例えば、4×109〜6×1010 cfu となる量が特に好ましい。プリン体捕捉剤、飲食品又は医薬品は、プリン体の捕捉作用を有する乳酸菌を、1用量当たり1×105〜1×1011 cfu となる量で含有することが好ましく、1×108〜1×1010 cfu となる量で含有することがより好ましく、1×109〜1×1010 cfu となる量で含有することがさらに好ましく、例えば、4×109〜6×1010 cfu となる量で含有することが特に好ましい。
一実施形態において、プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品は、1日1回以上、好ましくは1日2回以上、より好ましくは1日2回で、被験体に投与される(又は消費者が摂取する)。プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品は、被験体に継続的に投与されてもよく、例えば、毎日で投与されてもよい。この場合、プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品は、少なくとも1週間、好ましくは2週間以上、より好ましくは4週間以上にわたって、被験体に投与される。このプリン体捕捉剤、飲食品又は医薬品では、被験体に継続的に投与する場合、本発明の乳酸菌の投与量としては、1用量当たり1×105〜1×1011 cfu となる量が好ましく、1×108〜1×1010 cfu となる量がより好ましく、1×109〜1×1010 cfu となる量がさらに好ましく、例えば、4×109〜6×1010 cfu となる量が特に好ましい。
別の一実施形態において、プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品は、単回投与であってもよい。このプリン体捕捉剤、飲食品又は医薬品では、被験体に単回投与する場合、プリン体の捕捉作用を有する乳酸菌の投与量としては、1用量当たり1×105〜1×1011 cfu となる量が好ましく、1×108〜1×1010 cfu となる量がより好ましく、1×109〜1×1010 cfu となる量がさらに好ましく、例えば、4×109〜6×1010 cfu となる量が特に好ましい。プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品は、好ましくは、経口投与(経口摂取)される。
ここで「投与」とは、一般的に飲食品に対して用いられる「摂取」と医薬品に対して用いられる「投与」の両方を包含する。「経口投与」は、口からの投与又は摂取の他、鼻チューブや胃ろうチューブ等を介した経管栄養法による投与も含むものとする。したがって、そのような経口投与に用いることができる経口剤も提供される。そこで、好ましい実施形態では、プリン体の捕捉作用を有する乳酸菌又はプリン体捕捉剤を含む、腸管内のプリン体を低減し、血清尿酸値を低減するための経口剤も提供される。
プリン体の捕捉作用を有する乳酸菌、プリン体捕捉剤、飲食品又は医薬品では、その投与する被験体は、ヒト、家畜、愛玩動物、実験(試験)動物等を含む哺乳動物であり、ヒトの被験体が好ましく、痛風及び/又は高尿酸血症であるヒトの被験体がより好ましく、以下に限定するものではないが、6mg/dL以上、例えば6〜10mg/dLの血清尿酸値を示すヒトの被験体がさらに好ましい。一実施形態では、6〜8mg/dLの血清尿酸値を示す軽度〜境界域の高尿酸血症であるヒトの被験体が好ましい。別の実施形態では、7mg/dL以上、好ましくは7〜11mg/dL(一例では、7.6mg/dL〜9.5mg/dL)の血清尿酸値を示すヒトの被験体が好ましく、そのうちで高尿酸血症及び痛風に罹患したヒトの被験体がより好ましい。また、血清尿酸値と、血清尿酸値の測定に先立つ食品からのプリン体摂取量(例えば、3日間の合計プリン体摂取量)に相関がみられる被験体が、投与(摂取)対象としてより好ましい。
すなわち、以下の態様も提供される。
[a1] プリン体を含む培地における乳酸菌のプリン体の取り込み量を測定し、それを指標としてプリン体の捕捉作用を有する乳酸菌を選抜することを含む、乳酸菌のスクリーニング方法。
[a2] プリン体がアデニン、アデノシン、及びアデニル酸からなる群より選択される少なくとも1つである、[a1]に記載の方法。
[a3] プリン体がアデニンである、[a1]又は[a2]に記載の方法。
[a4] プリン体が放射性同位体で標識されている、[a1]〜[a3]のいずれかに記載の方法。
[a5] プリン体を含む培地における前記の乳酸菌の増殖量を測定し、それを前記のプリン体の取り込み量と共に指標としてプリン体の捕捉作用を有する乳酸菌を選抜することを含む、[a1]〜[a4]のいずれかに記載の方法。
[a6] 乳酸菌がラクトバチルス・ガセリ菌である、[a1]〜[a5]のいずれかに記載の方法。
[a7] [a1]〜[a6]のいずれかに記載の方法によって得られるプリン体の捕捉作用を有する乳酸菌。
[a8] [a1]〜[a6]のいずれかに記載の方法によって得られるプリン体の捕捉作用を有する乳酸菌を有効成分として含む、プリン体捕捉剤。
[a9] 血清尿酸値の低減用である、[a8]に記載のプリン体捕捉剤。
[a10] 乳酸菌が、ラクトバチルス・ガセリOLL2959株(受託番号NITE AP-224)である、[a8]又は[a9]に記載のプリン体捕捉剤。
[a11] [a8]〜[a10]のいずれかに記載のプリン体捕捉剤を含む、飲食品又は医薬品。
[a12] 腸管内のプリン体の低減用である、[a11]に記載の飲食品又は医薬品。
[a13] 6〜8mg/dLの血清尿酸値を示すヒトの被験体を投与対象とする、[a11]又は[a12]に記載の飲食品又は医薬品。
[a14] 前記の乳酸菌を1用量当たり1×108〜1×1010 cfuで含む、[a11]〜[a13]のいずれかに記載の飲食品又は医薬品。
以下、実施例を用いて、本発明をさらに具体的に説明する。但し、本発明の技術的範囲は、これら実施例に限定されるものではない。
[実施例1]
(1)乳酸菌の調製
乳酸菌として、ラクトバチルス・ガセリ(Lactobacillus gasseri)OLL2959株菌、及びラクトバチルス・ガセリ(Lactobacillus gasseri)ATCC 33323株菌を使用した。ラクトバチルス・ガセリ基準株であるATCC 33323株菌は、ATCC(American Type Culture Collection)からカタログ番号ATCC 33323で入手でき、また、独立行政法人理化学研究所バイオリソースセンター(RIKEN BRC)微生物材料開発室(Japan Collection of Microorganisms)(RIKEN BRC-JCM)からカタログ番号JCM 1131Tで入手することもできる。
乳酸菌ラクトバチルス・ガセリOLL2959株菌、及びラクトバチルス・ガセリATCC 33323株菌を、各々2本のファルコンチューブ中のMRS培地に接種し、37℃、16〜20時間で培養した。この培養物を4℃、6,000rpm×10分間で遠心分離して集菌した後、この得られた乳酸菌を1つにまとめた。これに緩衝液10mLを加えて懸濁した後、4℃、6,000rpm×10分間で遠心分離して集菌することによる洗浄を2回行った。次いで緩衝液を加えて、およそ1×1010 cfu/mLに希釈した菌体懸濁液(生菌)を以下で使用した。
(2)アデニンをアデニル酸(AMP)に変換するサルベージ活性の測定
(1)で調製した乳酸菌について、アデニンを基質として用いて、アデニンをアデニル酸(AMP)に変換する活性を測定した。
ラクトバチルス・ガセリOLL2959株菌及びATCC 33323株菌のそれぞれについて、以下の組成で反応液(100μLずつ)を調製した。乳酸菌は、MgCl2、PRPP、アデニン及びTris-HClを含む溶液(緩衝液)を調製した後で懸濁した。反応液中の乳酸菌濃度は、およそ5×109 cfu/mLであった。
Figure 0006637419
反応液の調製後、37℃で振とうしながら水浴中でインキュベートすることにより、乳酸菌を培養し、0分、15分、30分及び60分の時点で、等量の5% TFA(トリフルオロ酢酸)を添加することにより変換反応を停止させた。
反応停止後の反応液を4℃、15,000rpm×10分間で遠心分離した。上清を回収し、遠心式フィルターユニット、0.22μmのUltrafree-MC(micon)を用いて、4℃、15,000rpm×10分間で再度、遠心分離して、精密ろ過した。
この得られた、ろ液についてHPLC分析を行った。この用いたHPLC分析条件は、以下のとおりである。
・移動相:A:20mM リン酸緩衝液(pH7.5)
B:40mM リン酸緩衝液(pH7.5)/アセトニトリル(1:1)
・カラム:SHISEIDO CAPCELL PAK C18 MG2(2.0mm id×150mm)
・流速: 0.2mL/分
・温度: 40℃
・注入量:5μl
・検出波長: 254nm(UV)
・グラジエントA/B(分):100/0(0分)−100/0(5分)−80/20(20分)[%]
反応液中のアデニン及びAMPの定量は、HPLCチャートのピーク下面積値を測定することにより行った。各反応停止時点におけるアデニンのAMPへの変換率を以下の式で算出した。
変換率(%)=(試験区のAMPのピーク下面積値−対照区のAMPのピーク下面積値)/(試験区の0分時点のアデニンのピーク下面積値−対照区の0分時点のアデニンのピーク下面積値)
この得られた変換率の経時的変化を表2及び図1に示す。ATCC 33323株を反応に用いた場合、アデニンからAMPへの変換活性は、ほとんど示されなかった。一方、OLL2959株を用いた場合には、AMP量の急激な増加と共にアデニン量が減少し、60分後には、大部分のアデニンがAMPに変換された。表2及び図1に示すように、OLL2959株では、ATCC 33323株と比較して、アデニンからAMPへの変換活性は圧倒的に高かった。
Figure 0006637419
以上の結果から、ラクトバチルス・ガセリOLL2959株菌はアデニンをAMPへと変換する能力が非常に高いことが示された。すなわち、ラクトバチルス・ガセリOLL2959株菌において、アデニンをAMPへの変換(サルベージ経路)を触媒するアデニンホスホリボシルトランスフェラーゼ(APRT)活性が高いと考えられた。
(3)グアニンをグアノシン(GMP)に変換する活性の測定
サルベージ経路には、アデニンをAMPに変換する経路の他、グアニンをグアニル酸(GMP)に変換する経路、ヒポキサンチンをイノシン酸(IMP)に変換する経路、及びキサンチンをキサンチル酸(XMP)に変換する経路も存在する。ヒトなどの哺乳動物及び乳酸菌では、アデニンのAMPへの変換を触媒する酵素APRTは、グアニンのGMPへの変換にも関与すると考えられている。一方、哺乳動物及び乳酸菌において、ヒポキサンチンのIMPへの変換、及びキサンチンのXMPへの変換には、ヒポキサンチン−グアニンホスホリボシルトランスフェラーゼが関与している。なお乳酸菌では、キサンチンのXMPへの変換及びグアニンのGMPへの変換には、キサンチンホスホリボシルトランスフェラーゼも関与することが知られている。
そこで、グアニンのGMPへの変換活性も測定した。このとき、アデニンをグアニンに、AMPをGMPに変更したこと以外は、上記の(2)と同様にして、グアニンのGMPへの変換活性を測定した。この結果を表3及び図2に示す。ATCC 33323株では、グアニンのGMPへの変換活性が非常に低かったが、OLL2959株では、グアニンをGMPへと変換する能力も比較的に高いことが示された(図2)。
Figure 0006637419
[実施例2]
(1)プリンヌクレオシダーゼ活性の測定
特許文献1に示すように、ラクトバチルス・ガセリOLL2959株は、イノシンやグアノシンなどのプリンヌクレオシドに対する高い分解能を有する。そこで、プリンヌクレオシドのプリン塩基への分解活性として、プリンヌクレオシダーゼ活性を測定した。
具体的には、100mM リン酸緩衝液(pH7.0)を用いて調製した終濃度0.2mM アデノシン溶液に、およそ5×109 cfu/mlになるようにOLL2959株菌体を懸濁させ、反応液とした。ここで、37℃、120分間で反応させ、HPLC分析により、アデノシン及びアデニンを面積値として測定した。また、比較対照として、ATCC 33323株を用いて、上記と同様に試験した。この測定結果を、アデノシン(プリンヌクレオシド)のアデニン(プリン塩基)への変換率(面積比較)で表現した。実施例1(2)と同様にして、この変換率を算出した。
さらに、アデノシンの代わりに、イノシン及びグアノシンをそれぞれ用いて同様に試験した。この結果を図3に示す。ラクトバチルス・ガセリOLL2959株は、ラクトバチルス・ガセリATCC 33323株と比較して、いずれのプリンヌクレオシドに対しても顕著にプリン塩基への変換率が高く、すなわち、プリンヌクレオシダーゼ活性が高かった。
(2)5'-ヌクレオチダーゼ(5'-NT)活性の測定
プリン塩基からサルベージ活性により変換されたプリンヌクレオチドは、5'-ヌクレオチダーゼ活性によりヌクレオシドに変換される。そこでラクトバチルス・ガセリOLL2959株について5'-ヌクレオチダーゼ活性を測定した。
25mM Tris-HCl緩衝液(pH7.5)を用いて調製した終濃度5mM MgCl2、0.2mM AMPの溶液に、およそ5×109 cfu/mlになるようにOLL2959株菌体を懸濁させ、反応液とした(試験区)。対照区では0.2mM AMPの代わりに、上記の緩衝液を用いて反応液を調製した。ここで、37℃、120分間で反応させ、HPLC分析により、AMP及びアデノシンを面積値として測定した。また、比較対照として、ATCC 33323株を用いて、上記と同様に試験した。この測定結果を、AMP(プリンヌクレオチド)のアデノシン(ヌクレオシド)への変換率(面積比較)で表現した。実施例1(2)と同様にして、この変換率を算出した。
さらに、AMPの代わりにIMP及びGMPをそれぞれ用いて同様の試験を行った。この結果を表4及び図4に示す。ラクトバチルス・ガセリOLL2959株では、ラクトバチルス・ガセリATCC 33323株と比較して、いずれのプリンヌクレオチドに対してもプリンヌクレオシドへの変換率が顕著に低かった。すなわち、5'-ヌクレオチダーゼ活性が顕著に低かった。
Figure 0006637419
上記の5'-ヌクレオチダーゼ活性の測定結果、並びに実施例1のサルベージ活性の測定結果、及び実施例2の(1)プリンヌクレオシダーゼ活性の測定結果から、ラクトバチルス・ガセリOLL2959株では、全般的にプリン体代謝活性が高く、その代謝活性は特にエネルギーとして利用可能なヌクレオチドを積極的に生成及び蓄積する方向に偏向していることが示された。
[実施例3]
軽度〜境界域の高尿酸血症が疑われるヒト被験者に、ラクトバチルス・ガセリOLL2959株を継続的に摂取させ、プラセボ対照二重盲検比較試験により、尿酸値への影響について検討した(ヒト試験)。
試験開始前の検査で尿酸値が6〜8 mg/dLであった35歳以上の成人男性:14名(平均年齢:44.3歳)を、尿酸値と年齢に有意差がないように、プラセボ群とアクティブ群の2群に割付した。プラセボ群には、ラクトバチルス・ガセリOLL2959株を含まないヨーグルトを2個(85g/個)/日、4週間で摂取させた。アクティブ群には、プラセボ群に与えたヨーグルトに、ラクトバチルス・ガセリOLL2959株を1×108 cfu/gで含有させたものを2個(85g/個)/日、4週間で摂取させた。なお、ヨーグルトの2個/日は、朝食、昼食、夕食のうち、いずれかの食後の2回で摂取させた。
各被験者について、試験開始時(試験食摂取前)、2週後及び4週後(試験食摂取期間)に血液検査を行い、血清尿酸値を測定した。試験開始時の血清尿酸値と比較した各時点の血清尿酸値の変化量を算出し、試験期間中の血清尿酸値の変化量の推移について、反復測定2元配置分散分析法により統計解析を行った。この結果を図5に示した。
図5に示されるとおり、アクティブ群では、プラセボ群と比較して、血清尿酸値が有意に低かった(p = 0.042)。すなわち、ラクトバチルス・ガセリOLL2959株は、血清尿酸値を低減させる効果を有することが示された。
[実施例4]
本実施例では高尿酸血症と痛風の通院治療中の患者を被験者として、ラクトバチルス・ガセリ(Lactobacillus gasseri;ガセリ菌)OLL2959株を摂取させ、血清尿酸値に対する効果を評価した。無作為化プラセボ対照二重盲検並行群間試験を実施した。
(1)試験食品の製造
被験者が摂取する試験食品(被験食品又は対照食品)は、以下のようにして製造した。ラクトバチルス・ガセリOLL2959株を含む被験食品は、ヨーグルトスターターであるラクトバチルス・ブルガリクス(Lactobcillus bulgaricus)とストレプトコッカス・サーモフィラス(Streptococcus thermophilus)の2種類の菌と、有効成分であるラクトバチルス・ガセリOLL2959株(8.5×107cfu/mL)とを含むヨーグルトを調製し、それを1本当たり100g充填したペットボトル入り飲料を製造した。
ラクトバチルス・ガセリOLL2959株を含まない対照食品は、ヨーグルトスターターであるラクトバチルス・ブルガリクス(Lactobcillus bulgaricus)とストレプトコッカス・サーモフィラス(Streptococcus thermophilus)の2種類の菌を含むラクトバチルス・ガセリOLL2959株を含まないヨーグルトを同様の方法で調製し、それを1本当たり100g充填したペットボトル入り飲料を製造した。各食品のヨーグルトは、原材料である、ラクトバチルス・ガセリOLL2959株菌(被験食品のみ)、上記のヨーグルトスターター、乳製品、安定化剤(ペクチン)、香料、及び水などを配合することにより調製した。
試験食品の製造後、任意の1個の製品について菌数を測定した。具体的には、試験食品のヨーグルトをBL培地に接種し、3日間の好気培養後、培地上のコロニー数をカウントすることにより、菌数が上記のレベルを満たしていることを確認した。
(2)摂取試験
試験参加の同意を得た、高尿酸血症と痛風を発症しており尿酸降下薬を服用中の20歳以上の患者(被験者)について、血清尿酸値測定を含む事前検査を行い、尿酸降下薬について4週間の休薬を実施させた。
4週間の休薬後、被験者に対し血清尿酸値測定を含む摂取前検査を実施した。また摂取前検査の前3日間の被験者の食事調査を行った。
休薬後の血清尿酸値が7mg/dLを超える被験者を選抜し、休薬後の血清尿酸値に基づき、摂取前検査の血清尿酸値と年齢で被験食品摂取群と対照食品摂取群において、有意差が無いように、被験者の割付を実施した。なお、身長、体重、BMI、血圧収縮期、血圧拡張期、及び脈拍の測定値でも群間において、有意差は認められなかった。
この割付に従って、摂取前検査後に、被験者は、試験食品(8.5 x 107cfu/mLのOLL2959株を含有する被験食品、又はOLL2959株を含有しない対照食品)を2本/日、8週間で摂取した(試験食品摂取期間)。試験食品の摂取期間中にも、被験者は、引き続き休薬した。摂取開始から8週間後に血清尿酸値の測定を含む検査を行った(8週検査)。また、8週検査の前3日間の食事調査も行った。
摂取前検査(0週)及び8週検査のそれぞれの検査前3日間について、全部の被験者で、食事調査を行った。被験者に3日間の朝食、昼食、夕食及び間食の内容を日誌に記載するか、及び/又は写真に撮影して報告させた。この報告された食事内容に基づき、管理栄養士がエネルギー、タンパク質、脂質、炭水化物、及び塩分の摂取量を算出した。また、各被験者の報告に基づき、プリン体量を算出した。
摂取期間中の脱落及び試験食品の摂取率の90%以下、血清尿酸値及びプリン体の摂取量の相関から外れた被験者を除いた母集団(17名; 被験食品摂取群:9名、対照食品摂取群:8名(休薬後血清尿酸値:7.6mg/dL〜9.5mg/dL))で層別解析を実施した。この8週検査時までの結果によると、被験食品の摂取群で、休薬中にも血清尿酸値の大幅な上昇が生じない傾向が示され(図6)、被験食品の摂取群では、対照食品の摂取群と比較して、p<0.05で有意に、血清尿酸値が低下したことが示された(p=0.0342、Mann-Whitney U test)。
以上の結果から、ラクトバチルス・ガセリOLL2959株の摂取により、高尿酸血症及び痛風を発症した患者においても、食品由来のプリン体に起因する血清尿酸値の上昇が抑制されることが示された。
[実施例5]プリン体の取り込み能の評価試験
放射性同位体(RI)で標識したプリン体を用いて、ラクトバチルス・ガセリ(Lactobacillus gasseri;ガセリ菌)OLL2959株のプリン体の取り込み能について評価した。
ラクトバチルス・ガセリ(Lactobacillus gasseri;ガセリ菌)OLL2959株は、2006年3月31日付(原寄託日)で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(日本国千葉県木更津市かずさ鎌足2-5-8 122号室 郵便番号292-0818)に受託番号NITE P-224で寄託された後、2007年11月21日付でブダペスト条約に基づく寄託(国際寄託)に移管されており、受託番号がNITE BP-224に変更されている。ラクトバチルス・ガセリOLL2959株をMRS培地(Lactobacilli MRS Broth 、Difco社)に接種し、37℃、16〜20時間で培養した培養物(4〜7×108cfu/ml)を以下で使用した。
最少培地(DM培地;表5): 0.1mLに、放射性同位体14Cで標識したアデニル酸(AMP)、アデノシン、又はアデニン(それぞれ14C-AMP、14C-アデノシン、14C-アデニン)を終濃度: 20μMとなるように添加し、次いで、上記で調製したラクトバチルス・ガセリOLL2959株の培養液を2重量%(0.002mL: 0.8〜1.4×106cfu)で植菌して、37℃、30分間で嫌気培養した。
その後、これらの培地に、TFA溶液(トリフルオロ酢酸、5%)を添加し、次いで、生理食塩水にて菌体を洗浄してから、液体シンチレーションカウンター(アロカ製、LSC-6100)にて放射活性を測定した。コントロール(0分)として、サンプルの調製の直後にTFA溶液(5%)を添加し、次いで、生理食塩水にて菌体を洗浄してから、前記と同様に、放射活性を測定した。この結果を図7に示した。図7において、菌体中の14C標識プリン体の量を示す放射活性(縦軸)の単位は、放射性物質が1分間あたりに壊変する数である disintegrations per minute(dpm)である。なお、DM培地を用いて60分間で培養した場合に、試験開始時と試験終了時における生菌数が有意に変化しないことを確認した。
以上の結果から、ラクトバチルス・ガセリOLL2959株では、プリン体のアデニル酸(AMP)、アデノシン、及びアデニンを菌体内に取り込む能力(プリン体の取り込み能)が有ること、特にアデニンを菌体内に取り込む能力(プリン体の取り込み能)が高いことが示された(図7)。
Figure 0006637419
[実施例6]プリン体の存在下における増殖能の評価試験
プリン体の存在下においてラクトバチルス・ガセリOLL2959株を培養し、プリン体の存在下における増殖能について評価した。
DM培地(表5): 1mLに、プリン体として、アデニル酸(AMP)、アデノシン、又はアデニンを終濃度が400μMとなるように添加し、次いで、実施例5で調製したラクトバチルス・ガセリOLL2959株の培養液を4重量%(0.04mL: 1.6〜2.8×107 cfu)で植菌して、37℃で嫌気培養した。そして、この培養開始から0時間、4時間及び6時間後に、培地の濁度(650nmにおける吸光度)を測定した。比較対照として、最少培地にプリン体を添加しないこと以外は同様の方法により、ラクトバチルス・ガセリOLL2959株を培養して、培地の濁度を測定した。この結果を図8に示した。
以上の結果から、ラクトバチルス・ガセリOLL2959株は、アデニル酸(AMP)、アデノシン、又はアデニンの存在下において増殖能が増強されること、特に、アデニン存在下において増殖能がより増強されることが示された(図8)。
[実施例7]アデニンの取り込み能及びアデニンの存在下における増殖能の比較試験
アデニン存在下においてラクトバチルス・ガセリOLL2959株及び他のラクトバチルス・ガセリ菌株を培養し、それぞれのアデニンの取り込み能とアデニンの存在下における増殖能について比較した。
他のラクトバチルス・ガセリ菌株として、ラクトバチルス・ガセリP14054ME001株及びP14054ME002株を用いた。なお、ラクトバチルス・ガセリP14054ME001株及びP14054ME002株では、プリン体を添加しないMRS培地(Lactobacilli MRS Broth 、Difco社)にて、20時間で培養した場合、それぞれの増殖能がラクトバチルス・ガセリOLL2959株と同等であった(表6)。
Figure 0006637419
放射性同位体14Cで標識したプリン体として、アデニン(14C-アデニン)のみを使用した点以外は、実施例5と同様にして、アデニンの取り込み能を評価した。この結果を図9に示した。ラクトバチルス・ガセリP14054ME002株では、ラクトバチルス・ガセリOLL2959株ほどには、アデニンの取り込み能が高くないものの、ラクトバチルス・ガセリP14054ME002株でも、アデニンの取り込み能が高いことを確認できた(図9)。ラクトバチルス・ガセリOLL2959株及びP14054ME002株と比較して、ラクトバチルス・ガセリP14054ME001株では、アデニンの取り込み能が低いことを確認できた(図9)。
アデニンの存在下における増殖能の評価では、DM培地(表5):1mLに、アデニンを終濃度が400μMとなるように添加し、次いで、実施例5で調製したラクトバチルス・ガセリOLL2959株の培養液、実施例5に記載の方法と同様にして調製したP14054ME001株及びP14054ME002株の培養液のいずれかを4重量%(0.04mL: 1.6〜2.8×107 cfu)で植菌して、37℃で嫌気培養した。そして、この培養開始から、0時間、4時間及び6時間後に、培地の濁度(650nmにおける吸光度)を測定した。この結果を図10に示した。ラクトバチルス・ガセリOLL2959株と同様に、ラクトバチルス・ガセリP14054ME001株及びP14054ME002株でも、アデニンの存在下において増殖能の増強を示した。また、ラクトバチルス・ガセリP14054ME001株及びP14054ME002株と比較して、ラクトバチルス・ガセリOLL2959株では、その増殖能の増強程度が極めて強かった。なお、ラクトバチルス・ガセリP14054ME001株と比較して、ラクトバチルス・ガセリP14054ME002株では、その増殖能の増強程度が強かった。
以上の結果から、ラクトバチルス・ガセリ菌において、アデニンの存在下における増殖能の増強は、アデニンの取り込み能の高さと相関することが示された。そして、一部の乳酸菌が高いアデニンの資化能を有することが示された。
[実施例8]ラクトバチルス・ガセリ菌のプリン体の取り込み能(動物試験)
乳酸菌によるプリン体の取り込み能が高い場合、動物の被験体に乳酸菌とプリン体を同時に投与する(摂取させる)と、プリン体単独を摂取させたときと比較して、被験体におけるプリン体の吸収が抑えられると考えられる。そこで、ラクトバチルス・ガセリ菌のプリン体の取り込み能を試験するため、以下の手順で、動物実験を行った。
まず、8週齢のWistarラット(雄、190〜210g)の14匹を購入してから一週間に亘って馴化した。これらのラットでは、試験の前日から約16時間で絶食させ、この絶食後の体重を測定した。この絶食後の体重に基づき、群分けプログラムを用いて、無作為抽出法により、ラットを陰性群(生理食塩水投与群)、AMP(放射性同位体14C-AMP)投与群、AMP+OLL2959株(放射性同位体14C-AMP 及びOLL2959株)投与群の合計で3群に振り分けた。このとき、陰性群のみを4匹、他群を各5匹とした。これらの全部のラットを無麻酔下にて、ホルダーに入れ、メスを用いて、尾静脈を傷つけ、ヘマトクリット管を用いて、これら湧出してきた血液を60μLで採血した。これを被験物質の投与前の0分時点の採血とした。これらの採血した血液には、等量の2mg/mL EDTA-2Na溶液(EDTA-2Naを生理食塩水に溶解した)を加えた。
次いで、被験物質を強制経口投与した。ここで、これらの被験物質には、陰性群では、生理食塩水、AMP投与群では、放射性同位体14Cで標識したアデニル酸(14C-AMP:57.6mCi/mmol、0.1mCi/ml)、AMP+OLL2959株投与群では、14C-AMP 及びラクトバチルス・ガセリOLL2959株(1×1010cfu/body)を用いた。また、14C-AMP及びOLL2959株には、生理食塩水(大塚製薬)で希釈したものを用いた。AMP群及びAMP+OLL2959群では、14C-AMPを10μCi/bodyで投与した。なお、全例(全群)において、投与容量を2mL/bodyとした。
被験物質の投与から15、30、45、60、90、120及び180分後に、これらの全部のラットを無麻酔下にて、ホルダーに入れ、メスを用いて、尾静脈を傷つけ、ヘマトクリット管を用いて、これら湧出してきた血液を60μLで採血した。これらの採血した血液には、等量の2mg/mL EDTA-2Na溶液(EDTA-2Naを、生理食塩水に溶解した)を加えた。これらの試験の終了の直後に、二酸化炭素の吸入により、ラットを殺処分した。
液体シンチレーションカウンター(アロカ製、LSC-6100)を用いて、これらの採血した血液の放射活性を測定した。この結果を図11に示す。図11に示されるとおり、血中濃度がピークを迎えている投与から30、45及び60分後に、プリン体の吸収量に有意差が見られた(* p<0.05、** p<0.01、t-test)。この結果から、ラクトバチルス・ガセリOLL2959株を摂取することで、腸管からのプリン体の吸収量を抑制できることが示された。
[実施例9]乳酸菌株の種類の比較試験
(1)アデニンの取り込み能の比較試験
放射性同位体(RI)で標識したアデニン(14C-アデニン)を含む培地で、ラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を培養し、アデニンの取り込み能について、乳酸菌株の種類の影響を比較した。なお、ラクトバチルス・ガセリJCM1130株は、理化学研究所バイオリソースセンター 微生物材料開発室(RIKEN BRC JCM;茨城県つくば市、日本)から、JCM1130として入手することができる。
ここで、MRS培地を用いて、それぞれラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を培養し、これらの増殖能を予め評価した。すなわち、MRS培地を用いて、それぞれラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を、37℃、20時間で嫌気培養した。このとき、この20時間に亘って嫌気培養した後に、ラクトバチルス・ガセリOLL2959株と比較して、ラクトバチルス・ガセリJCM1130株では、菌数が2.5倍以上で高かった。このことから、ラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を同じ培地で培養した場合に、基本的には、ラクトバチルス・ガセリJCM1130株の増殖能が高いことが示された(表7)。
Figure 0006637419
アデニンの取り込み能の比較試験では、まず、最少培地(表5)に、14C-アデニンを終濃度が20μMとなるように添加して、本試験の培地を調製した。次いで、MRS培地を用いて、それぞれラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を培養してから、これらの培養液を2重量%で、本試験の培地に植菌し、37℃で嫌気培養した。これらの培養液では、MRS培地を用いて、それぞれ同等の菌数になるように調整した。
これらの培養開始時(0分)と、培養開始から30又は60分後に、5%濃度のTFA溶液を添加して、培養を停止させ、次いで、生理食塩水にて菌体を洗浄した後に、液体シンチレーションカウンター(アロカ製、LSC-6100)を用いて、これらの放射活性を測定した。この結果を図12に示す。ここで、図12の放射活性(縦軸)は、放射性物質が1分間あたりに壊変する数(disintegrations per minute;dpm)で表している。
図12に示されるように、ラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株では、いずれもアデニンの取り込み能が発揮されていたが、これらの培養開始から30及び60分後ともに、ラクトバチルス・ガセリJCM1130株に比較して、ラクトバチルス・ガセリOLL2959株では、アデニンを多く取り込んでおり、アデニンの取り込み量に有意差が見られた(p<0.05、t-test)。
以上の結果から、MRS培地における増殖能が高いラクトバチルス・ガセリJCM1130株と比較して、ラクトバチルス・ガセリOLL2959株では、プリン体を有意に多く取り込めることが明らかになった。
(2)アデニンの存在下における増殖能の比較試験
アデニンの存在下において、ラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を培養し、菌体の増殖能について、乳酸菌株の種類の影響を比較した。
最少培地(表5)に、アデニンを終濃度が400μMとなるように添加して、本試験の培地を調製した。次いで、MRS培地を用いて、それぞれラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株を培養してから、これらの培養液を4重量%で、本試験の培地に植菌して、37℃で嫌気培養した。これらの培養開始(0時間)と、培養開始から4及び6時間後に、濁度(650nmにおける吸光度)を測定した。この結果を図13に示す。
図13に示されるように、ラクトバチルス・ガセリOLL2959株と、ラクトバチルス・ガセリJCM1130株では、いずれもアデニンの存在下における増殖能が増強されていたが、MRS培地における増殖能が高いラクトバチルス・ガセリJCM1130株と比較して、ラクトバチルス・ガセリOLL2959株では、増殖能の増強の程度が有意に高いことが明らかになった(p<0.05、t-test)。したがって、ラクトバチルス・ガセリOLL2959株では、プリン体存在下における増殖能が特に強く増強されることが示された。
本明細書で引用した全部の刊行物、特許及び特許出願は、その全体が参照により、本明細書に組み入れられるものとする。
本発明の乳酸菌は、in vivo又はin vitroで基質として、プリン塩基をプリンヌクレオチドに効率良く変換することができる。本発明の乳酸菌を含むプリン塩基のプリンヌクレオチドへの変換剤を用いれば、血清尿酸値が高い被験体やサルベージ活性が低下した被験体においても、腸管内でプリン塩基からプリンヌクレオチドへの変換を促進でき、血清尿酸値を低減させることができる。したがって、本発明の乳酸菌を含むプリン塩基のプリンヌクレオチドへの変換剤並びにそれを含む飲食品及び医薬品は、痛風や高尿酸血症の予防及び/又は治療等のために有効である。

Claims (8)

  1. アデニン、5-ホスホ-D-リボース-1-二リン酸、及びMg2+を含む溶液中で、乳酸菌を培養し、それにより得られるアデニンのアデニル酸への変換活性を指標として、ラクトバチルス・ガセリATCC 33323株と比較して、プリン塩基からプリンヌクレオチドへの変換能が増強された乳酸菌をスクリーニングする方法。
  2. アデニン、5-ホスホ-D-リボース-1-二リン酸、及びMg2+を含む溶液中で、乳酸菌を培養し、それにより得られるアデニンのアデニル酸への変換活性を指標として、ラクトバチルス・ガセリATCC 33323株と比較して、プリン塩基からプリンヌクレオチドへの変換能が増強された乳酸菌を選抜すること、及び、5'-ヌクレオチダーゼ活性を測定し、ラクトバチルス・ガセリATCC 33323株と比較して該活性が低下した乳酸菌を選抜することを含み、それにより、プリン塩基からプリンヌクレオチドへの変換能が増強され、かつ5'-ヌクレオチダーゼ活性が低下した乳酸菌をスクリーニングする方法。
  3. 乳酸菌がラクトバチルス属菌である、請求項1又は2に記載の方法。
  4. 溶液が緩衝液である、請求項1〜3のいずれか1項に記載の方法。
  5. ラクトバチルス・ガセリOLL2959株(受託番号NITE BP-224)である乳酸菌を有効成分として含む、プリン塩基のプリンヌクレオチドへの変換剤を、in vitroで5-ホスホ-D-リボース-1-二リン酸及びMg2+の存在下でプリン塩基と反応させることにより、プリン塩基からプリンヌクレオチドを生成させる方法。
  6. アデニンからアデニル酸を生成させるか、又はグアニンからグアニル酸を生成させるための、請求項に記載の方法。
  7. 請求項1〜4のいずれか1項に記載の方法によって、プリン塩基からプリンヌクレオチドへの変換能が増強された乳酸菌を取得し、得られた乳酸菌を有効成分として含むプリン塩基のプリンヌクレオチドへの変換剤を含む飲食品又は医薬品を製造することを含む、腸管でのプリン塩基からプリンヌクレオチドへの変換を促進するための飲食品又は医薬品の製造方法。
  8. 前記飲食品又は医薬品が、アデニンのアデニル酸への変換又はグアニンのグアニル酸への変換を促進するためのものである、請求項に記載の方法。
JP2016531383A 2014-06-30 2015-06-30 プリン体吸収を抑制する乳酸菌及びその用途 Active JP6637419B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2014134973 2014-06-30
JP2014134973 2014-06-30
JP2014234050 2014-11-18
JP2014234050 2014-11-18
JP2015064201 2015-03-26
JP2015064201 2015-03-26
PCT/JP2015/068785 WO2016002757A1 (ja) 2014-06-30 2015-06-30 プリン体吸収を抑制する乳酸菌及びその用途

Publications (2)

Publication Number Publication Date
JPWO2016002757A1 JPWO2016002757A1 (ja) 2017-04-27
JP6637419B2 true JP6637419B2 (ja) 2020-01-29

Family

ID=55019289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016531383A Active JP6637419B2 (ja) 2014-06-30 2015-06-30 プリン体吸収を抑制する乳酸菌及びその用途

Country Status (4)

Country Link
JP (1) JP6637419B2 (ja)
CN (1) CN106460029A (ja)
SG (1) SG11201610413RA (ja)
WO (1) WO2016002757A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108703218A (zh) * 2018-05-24 2018-10-26 南京小洋人生物科技发展有限公司 一种抑制嘌呤吸收的发酵型乳酸菌饮料的制备方法
JP2021531015A (ja) * 2018-07-24 2021-11-18 バイオガイア・エイビーBiogaia AB アデノシンレベルを増加させることができる細菌株を使用する治療法
HUE059963T2 (hu) * 2018-07-24 2023-01-28 Biogaia Ab Melatonintámogató baktériumok szelektálása és felhasználása az infantilis kólika csökkentésére
TWI719691B (zh) * 2019-10-28 2021-02-21 葡萄王生技股份有限公司 羅伊氏乳桿菌(Lactobacillus reuteri)菌株GKR1用於製備降低尿酸之組成物的用途
CN110747146B (zh) * 2019-11-28 2022-05-27 微康益生菌(苏州)股份有限公司 具有降解尿酸作用的格氏乳杆菌lg08及其应用
JP7537679B2 (ja) 2020-05-25 2024-08-21 学校法人帝京大学 プリンヌクレオチド取り込み能を有する乳酸菌を含む組成物
CN115725437B (zh) * 2022-07-20 2024-04-30 江南大学 一株高效利用嘌呤的发酵粘液乳杆菌及其在黄酒酿造中的应用
CN115478028B (zh) * 2022-09-13 2023-12-15 南昌大学 一株嗜酸乳杆菌f02及其制得的制剂和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013157B2 (ja) * 1996-09-27 2000-02-28 カルピス株式会社 乳酸酸度上昇が抑制された乳酸菌発酵乳材料
KR20060028426A (ko) * 2003-06-24 2006-03-29 오츠카 세이야쿠 가부시키가이샤 혈청 요산치 감소용 조성물
JP5237581B2 (ja) * 2006-05-31 2013-07-17 株式会社明治 血中尿酸値低減作用を有する乳酸菌
US8231911B2 (en) * 2007-03-20 2012-07-31 Sanwa Shurui Co., Ltd. Serum uric acid level-decreasing agent and food and drink with label telling that food and drink decrease serum uric acid level
EP2476747B1 (en) * 2007-11-29 2014-09-03 Meiji Co., Ltd Lactic acid bacteria having action of lowering blood uric acid level
EP2457576B1 (en) * 2010-11-29 2020-07-08 Eurochit Danuta Kruszewska Lactobacillus reuteri strain for use in the medical and veterinary prophylaxis and treatment of metabolic syndrome or infections

Also Published As

Publication number Publication date
CN106460029A (zh) 2017-02-22
JPWO2016002757A1 (ja) 2017-04-27
SG11201610413RA (en) 2017-02-27
WO2016002757A1 (ja) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6637419B2 (ja) プリン体吸収を抑制する乳酸菌及びその用途
JP5149305B2 (ja) 血中尿酸値低減作用を有する乳酸菌
EP2476747B1 (en) Lactic acid bacteria having action of lowering blood uric acid level
JP5237581B2 (ja) 血中尿酸値低減作用を有する乳酸菌
JP4834798B2 (ja) 新規ビフィズス菌、耐糖能改善剤、および抗肥満剤
JP6782166B2 (ja) プリン体の取り込み能を有する乳酸菌及びその用途
JP7193469B2 (ja) 筋肉増量用組成物
AU2021225184A1 (en) Composition for degrading opioid peptide
JP5597237B2 (ja) 血中尿酸値低減作用を有する乳酸菌
JP7555439B2 (ja) 骨格筋遅筋化用組成物
JP6654824B2 (ja) 血中尿酸値低減剤
EP3479836B1 (en) Cartilage regeneration facilitating composition
JP6061530B2 (ja) Nash予防治療剤
JP7537679B2 (ja) プリンヌクレオチド取り込み能を有する乳酸菌を含む組成物
CA2851018C (en) Lactic acid bacteria having action of lowering blood uric acid level
JP6654639B2 (ja) 血中トリプトファン濃度上昇抑制剤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6637419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150