JP6634998B2 - 膨張弁 - Google Patents

膨張弁 Download PDF

Info

Publication number
JP6634998B2
JP6634998B2 JP2016200938A JP2016200938A JP6634998B2 JP 6634998 B2 JP6634998 B2 JP 6634998B2 JP 2016200938 A JP2016200938 A JP 2016200938A JP 2016200938 A JP2016200938 A JP 2016200938A JP 6634998 B2 JP6634998 B2 JP 6634998B2
Authority
JP
Japan
Prior art keywords
refrigerant
passage
throttle
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016200938A
Other languages
English (en)
Other versions
JP2018063071A (ja
Inventor
雄輝 竹内
雄輝 竹内
山田 悦久
悦久 山田
浩也 長谷川
浩也 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016200938A priority Critical patent/JP6634998B2/ja
Publication of JP2018063071A publication Critical patent/JP2018063071A/ja
Application granted granted Critical
Publication of JP6634998B2 publication Critical patent/JP6634998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、蒸気圧縮式の冷凍サイクル装置に適用される膨張弁に関する。
従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用される電気式の膨張弁が開示されている。この特許文献1の膨張弁は、冷媒回路を切替可能な冷凍サイクル装置に適用されており、絞り通路の一方の出入口側から他方の出入口側へ冷媒を順方向に流す際にも、他方の出入口側から一方の出入口側へ冷媒を逆方向に流す際にも冷媒減圧作用を発揮する、いわゆる両流し式の膨張弁として用いられている。
特開2004−93031号公報
ところで、特許文献1のような両流し式の膨張弁では、絞り通路における冷媒の流れ方向が変化すると、絞り通路の開度(すなわち、絞り部の通路面積)を変化させる弁体部が冷媒から受ける荷重も変化する。このため、弁体部を変位させる電動アクチュエータに同一の制御信号を出力していても、絞り通路における冷媒の流れ方向が変化すると、絞り通路の開度が変化して適切な冷媒減圧作用を発揮できなくなってしまうことがある。
本発明は、上記点に鑑み、内部を流通する冷媒の流れ方向によらず適切な冷媒減圧作用を発揮する膨張弁を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されて、冷媒を流入出させる第1冷媒通路(211)、冷媒を流入出させる第2冷媒通路(212)、第1冷媒通路と第2冷媒通路と連通させる絞り通路(213)、および第1冷媒通路に連通する圧力空間(217)が形成されたボデー(200、200a)と、絞り通路の第1冷媒通路側に設けられた第1絞り部(213a)の第1通路面積、および絞り通路の第2冷媒通路側に設けられた第2絞り部(213b)の第2通路面積を変化させる絞り弁体(220)と、を備え、
第1冷媒通路側から第2冷媒通路側へ冷媒を流す際には第1通路面積および第2通路面積のいずれか一方の通路面積を縮小させることによって減圧作用を発揮し、さらに、第2冷媒通路側から第1冷媒通路側へ冷媒を流す際には第1通路面積および第2通路面積のいずれか他方の通路面積を縮小させることによって減圧作用を発揮する膨張弁であって、
絞り弁体を変位させる駆動力を出力する電動式の駆動装置(230)と、絞り弁体に対して荷重を作用させる差圧応動機構(240)と、を備え、
絞り弁体は、第1通路面積を縮小させる側に変位するに伴って第2通路面積を拡大させる側に変位するように配置されており、差圧応動機構(240)は、圧力空間内の冷媒圧力から第2冷媒通路内の冷媒圧力を減算した圧力差(ΔP)が増加するに伴って一方の通路面積を縮小させる側の荷重を増加させるとともに、圧力差(ΔP)が減少するに伴って一方の通路面積を拡大させる側の荷重を増加させる膨張弁である。
これによれば、冷媒を第1冷媒通路(211)側から第2冷媒通路(212)側へ流して減圧させる際には、駆動装置(230)が、第1冷媒通路および第2通路面積のいずれか一方の通路面積を縮小させて他方の通路面積を拡大させるように絞り弁体(220)を変位させる。
この際、絞り通路(213)を流通する冷媒の動圧の作用によって、絞り弁体(220)が一方の通路面積を拡大させる側の荷重を受けても、圧力空間(217)内の冷媒圧力から第2冷媒通路(212)内の冷媒圧力を減算した圧力差(ΔP)が増加する。これにより、絞り弁体(220)が差圧応動機構(240)から受ける一方の通路面積を縮小させる側の荷重を増加させることができる。
従って、絞り弁体(220)が差圧応動機構(240)から受ける荷重によって、絞り弁体(220)が冷媒の動圧の作用によって受ける一方の通路面積を拡大させる側の荷重を打ち消すことができる。その結果、冷媒の動圧の作用によって、一方の通路面積が変化してしまうことを抑制することができる。
また、冷媒を第2冷媒通路(212)側から第1冷媒通路(211)側へ流して減圧させる際には、駆動装置(230)が、第1冷媒通路および第2通路面積のうち他方の通路面積を縮小させて一方の通路面積を拡大させるように絞り弁体(220)を変位させる。
この際、絞り通路(213)を流通する冷媒の動圧の作用によって、絞り弁体(220)が他方の通路面積を拡大させる側の荷重を受けても、圧力空間(217)内の冷媒圧力から第2冷媒通路(212)内の冷媒圧力を減算した圧力差(ΔP)が減少する。これにより、絞り弁体(220)が差圧応動機構(240)から受ける他方の通路面積を拡大させる側の荷重が減少させることができる。
従って、絞り弁体(220)が差圧応動機構(240)から受ける荷重によって、絞り弁体(220)が冷媒の動圧の作用によって受ける他方の通路面積を拡大させる側の荷重を打ち消すことができる。その結果、冷媒の動圧の作用によって、他方の通路面積が変化してしまうことを抑制することができる。
すなわち、本発明によれば、内部を流通する流れ方向によらず適切な冷媒減圧作用を発揮する膨張弁を提供することができる。
ここで、絞り弁体(220)は、第1通路面積を縮小させる側に変位するに伴って第2通路面積を拡大させる側に変位するように配置されているとは、必ずしも絞り弁体(220)が第2通路面積を拡大させる側に変位するに伴って第1通路面積を縮小させる側に変位することを意味するものではない。
すなわち、絞り弁体(220)が、第1通路面積を変化させる第1絞り弁体(221)、および第2通路面積を変化させる第2絞り弁体(222)を有し、第1絞り弁体(221)および第2絞り弁体(222)が、互いに別部材で形成されている際には、第1絞り弁体(221)が第1通路面積を縮小させる側に変位するに伴って第2絞り弁体(222)が第2通路面積を拡大させる側に変位するものであっても、第2絞り弁体(222)が第2通路面積を拡大させる側に変位するに伴って、第1絞り弁体(221)が第1通路面積を縮小させる側に変位することを意味するものではない。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルの冷房モード時および第1除湿暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの第2除湿暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの第3除湿暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの暖房モード時の冷媒回路を示す全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの除霜モード時の冷媒回路を示す全体構成図である。 第1実施形態の膨張弁にて冷媒を順方向に流す際の模式的な断面図である。 第1実施形態の膨張弁にて冷媒を逆方向に流す際の模式的な断面図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態のエジェクタ式冷凍サイクルの冷房モード時における冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルの第1除湿暖房モード時の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルの第2除湿暖房モード時の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルの第3除湿暖房モード時の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルの暖房モード時の冷媒の状態を示すモリエル線図である。 第1実施形態のエジェクタ式冷凍サイクルの除霜モード時の冷媒の状態を示すモリエル線図である。 第2実施形態の冷凍サイクル装置の全体構成図である。 第2実施形態の膨張弁にて冷媒を順方向に流す際の模式的な断面図である。 第3実施形態の膨張弁にて冷媒を順方向に流す際の模式的な断面図である。
(第1実施形態)
図1〜図14により、本発明の第1実施形態について説明する。本実施形態では、本発明に係る膨張弁20を備えるエジェクタ式冷凍サイクル10を、車両走行用の駆動力を走行用電動モータから得る電気自動車に搭載される車両用空調装置1に適用している。エジェクタ式冷凍サイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される送風空気を加熱あるいは冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の熱交換対象流体は、送風空気である。
エジェクタ式冷凍サイクル10は、図1〜図5の全体構成図に示すように、加熱側エジェクタ16および冷却側エジェクタ22を備える蒸気圧縮式の冷凍サイクル装置である。
エジェクタ式冷凍サイクル10は、冷房モードの冷媒回路(図1参照)、第1除湿暖房モードの冷媒回路(図1参照)、第2除湿暖房モードの冷媒回路(図2参照)、第3除湿暖房モードの冷媒回路(図3参照)、暖房モードの冷媒回路(図4参照)、除霜モードの冷媒回路(図5参照)を切替可能に構成されている。図1〜図5では、それぞれの運転モードにおける冷媒の流れ方向を実線矢印で示している。
冷房モードは、送風空気を冷却して車室内を冷房する運転モードである。第1除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内の除湿暖房を行う運転モードである。第2除湿暖房モードは、冷却して除湿された送風空気を第1除湿暖房モードよりも高い加熱能力で送風空気を再加熱して車室内の除湿暖房を行う運転モードである。第3除湿暖房モードは、冷却して除湿された送風空気を第2除湿暖房モードよりも高い加熱能力で送風空気を再加熱して車室内の除湿暖房を行う運転モードである。暖房モードは、送風空気を加熱して車室内を暖房する運転モードである。除霜モードは、後述する室外熱交換器17に着霜が生じた際にこれを取り除くための運転モードである。
また、エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない蒸気圧縮式の亜臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、車両ボンネット内に配置され、エジェクタ式冷凍サイクル10において冷媒を吸入し、圧縮して吐出するものである。本実施形態では、圧縮機11として、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機を採用している。圧縮機11は、後述する空調制御装置40から出力される制御信号によって、その作動(回転数)が制御される。
圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、後述する室内空調ユニット30において送風空気の空気通路を形成するケーシング31内に配置されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と後述する室内蒸発器23通過後の送風空気とを熱交換させて、高圧冷媒を熱源として送風空気を加熱する加熱用熱交換器である。室内空調ユニット30の詳細については後述する。
室内凝縮器12の冷媒出口には、第1三方継手13aの1つ流入出口側が接続されている。さらに、エジェクタ式冷凍サイクル10では、後述するように、第2〜第6三方継手13b〜13fを備えている。第2〜第6三方継手13b〜13fの基本的構成は、第1三方継手13aと同様である。
これらの三方継手のうち、例えば、第3除湿暖房モード時の第1三方継手13aでは、3つの流入出口のうち1つが流入口として用いられ、残りの2つが流出口として用いられている。従って、第3除湿暖房モード時の第1三方継手13aは、流入口から流入した冷媒の流れを分岐して流出口から流出させる分岐部としての機能を果たす。
また、例えば、第3除湿暖房モード時の第5三方継手13eでは、3つの流入出口のうち2つが流入口として用いられ、残りの1つが流出口として用いられている。従って、第3除湿暖房モード時の第5三方継手13eは、2つの流入口から流入した冷媒を合流させて流出口から流出させる合流部としての機能を果たす。
第1三方継手13aの一方の流出口には、第2三方継手13bの1つの流入出口側が接続されている。第1三方継手13aの一方の流出口側と第2三方継手13bの1つの流入出口側とを接続する冷媒通路には、第1開閉弁14aが配置されている。
第1三方継手13aの他方の流出口には、後述する加熱側エジェクタ16の加熱側ノズル部16aの入口側が接続されている。第1三方継手13aの他方の流出口側と加熱側ノズル部16aの入口側とを接続する冷媒通路には、第1流量調整弁15aが配置されている。
第1開閉弁14aは、第1三方継手13aの一方の流出口から第2三方継手13bの1つの流入出口へ至る冷媒通路を開閉する電磁弁である。さらに、エジェクタ式冷凍サイクル10では、後述するように、第2、第3開閉弁14b、14cを備えている。第2、第3開閉弁14b、14cの基本的構成は、第1開閉弁14aと同様である。
これらの第1〜第3開閉弁14a〜14cは、冷媒通路を開閉することで、上述した各運転モードの冷媒回路を切り替えることができる。従って、第1〜第3開閉弁14a〜14cは、冷媒回路切替装置としての機能を果たす。第1〜第3開閉弁14a〜14cは、空調制御装置40から出力される制御電圧によって、その作動が制御される。
第1流量調整弁15aは、冷媒通路の開度を変化させる弁体と、この弁体の開度を変化させる電動アクチュエータ(具体的には、ステッピングモータ)とを有して構成される電気式の可変絞り機構である。第1流量調整弁15aは、少なくとも暖房モード時に、加熱側エジェクタ16の加熱側ノズル部16aへ流入する冷媒の流量や比エンタルピを調整する加熱側流量調整弁としての機能を果たす。
さらに、エジェクタ式冷凍サイクル10では、後述するように、第2〜第4流量調整弁15b〜15dを備えている。第2〜第4流量調整弁15b〜15dの基本的構成は、第1流量調整弁15aと同様である。
これらの第1〜第4流量調整弁15a〜15dは、弁開度を全開にすることで流量調整作用および冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能、および弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。
そして、この全開機能および全閉機能により、第1〜第4流量調整弁15a〜15dは、各運転モードの冷媒回路を切り替えることができる。従って、第1〜第4流量調整弁15a〜15dは、第1〜第3開閉弁14a〜14cとともに、冷媒回路切替装置としての機能を兼ね備えている。第1〜第4流量調整弁15a〜15dは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。
第2三方継手13bの別の流入出口には、第3三方継手13cの1つの流入出口側が接続されている。第2三方継手13bの別の流入出口側と第3三方継手13cの1つの流入出口側とを接続する冷媒通路には、第2流量調整弁15bが配置されている。第2三方継手13bのさらに別の流入出口には、膨張弁20の第1副冷媒通路214の一方の出入口214a側が接続されている。
第3三方継手13cの別の流入出口には、膨張弁20の第2副冷媒通路215の出入口215a側が接続されている。第3三方継手13cのさらに別の流入出口には、室外熱交換器17の一方の冷媒出入口側が接続されている。
室外熱交換器17は、車両ボンネット内に配置されて、内部を流通する冷媒と図示しない送風ファンから送風された外気とを熱交換させる熱交換器である。室外熱交換器17は、冷房モードおよび第1除湿暖房モードでは、高圧冷媒を放熱させる放熱器として機能する。さらに、室外熱交換器17は、第2除湿暖房モード、第3除湿暖房モード、および暖房モードでは、冷媒を蒸発させる蒸発器として機能する。
室外熱交換器17の他方の冷媒出入口には、膨張弁20の主冷媒通路210の一方の出入口211a側が接続されている。膨張弁20は、主冷媒通路210を形成する絞り通路213を流通する冷媒を減圧させる電動式の膨張弁に、内部に形成された複数(本実施形態では2つ)の副冷媒通路を開閉する開閉弁を一体化させた統合型の膨張弁である。従って、膨張弁20は、統合弁と表現することもできる。
さらに、この膨張弁20は、絞り通路213の一方(本実施形態では、後述する第1冷媒通路211側)の出入口側から他方(本実施形態では、後述する第2冷媒通路212側)の出入口側へ冷媒を順方向に流す際にも、絞り通路213の他方の出入口側から一方の出入口側へ冷媒を逆方向に流す際にも冷媒減圧作用を発揮させる、いわゆる両流し式の膨張弁として用いられている。
膨張弁20の詳細構成については、図6、図7を用いて説明する。図6は、太実線矢印で示すように、冷媒を絞り通路213の順方向に流す際に冷媒減圧作用を発揮する状態になっている膨張弁20の模式的な断面図である。図7は、太実線矢印で示すように、冷媒を絞り通路213の逆方向に流す際に冷媒減圧作用を発揮する状態になっている膨張弁20の模式的な断面図である。
膨張弁20は、金属製あるいは樹脂製の複数の構成部材を組み合わせることによって、角柱状あるいは円柱状に形成されたボデー200を備えている。ボデー200は、膨張弁20の外殻を形成するとともに、内部に絞り弁体220、差圧応動部材240、第1通路開閉弁224、第2通路開閉弁225等を収容するハウジングとしての機能を果たす。
ボデー200の内部には、第1冷媒通路211、第2冷媒通路212、絞り通路213、第1副冷媒通路214、第2副冷媒通路215、および圧力連通路216といった冷媒通路、並びに、圧力空間217等が形成されている。
第1冷媒通路211および第2冷媒通路212は、冷媒を流入出させるための冷媒通路である。絞り通路213は、第1冷媒通路211と第2冷媒通路は212とを連通させる冷媒通路である。この絞り通路213の内部空間は、円柱状に形成されている。圧力連通路216は、第1冷媒通路211と圧力空間217とを連通させる冷媒通路である。
第1冷媒通路211、絞り通路213、第2冷媒通路212は、この順に連通して主冷媒通路210を形成している。主冷媒通路210は、室外熱交換器17の他方の冷媒出入口と後述する加熱側アキュムレータ19の一方の液相冷媒流入出口とを接続する冷媒通路となる。
また、ボデー200には、室外熱交換器17の他方の冷媒出入口側が接続される第1冷媒通路211側の出入口211a、および加熱側アキュムレータ19の一方の液相冷媒流入出口側が接続される第2冷媒通路212側の出入口212aが形成されている。第1冷媒通路211側の出入口211aは主冷媒通路210の一方の出入口となり、第2冷媒通路212側の出入口212aは主冷媒通路210の他方の出入口となる。
主冷媒通路210の内部には、絞り通路213の通路面積を変化させて、膨張弁20の絞り開度を変化させる金属製あるいは樹脂製の絞り弁体220が配置されている。絞り弁体220は、絞り通路213の第1冷媒通路211側に設けられた第1絞り部213aの第1通路面積、および絞り通路213の第2冷媒通路212側に設けられた第2絞り部213bの第2通路面積を変化させるものである。
より具体的には、本実施形態の絞り弁体220は、いずれも円錐台状に形成された第1絞り弁体221および第2絞り弁体222の2つの弁体を有している。第1絞り弁体221および第2絞り弁体222は、互いに別部材で形成されている。また、本実施形態では、冷媒を順方向に流す際には、第2通路面積(一方の通路面積)を変化させ、逆方向に流す際には、第1通路面積(他方の通路面積)を変化させる。
第1絞り弁体221は、第1絞り部213aの第1通路面積を変化させるものである。また、第1絞り部213aは、絞り通路213の第1冷媒通路211側の開口部である。第1絞り弁体221の中心軸は、絞り通路213の中心軸と同軸上に配置されている。第1絞り弁体221は、第1冷媒通路211側から第1絞り部213aへ近づくことによって第1通路面積を縮小させる。
第2絞り弁体222は、第2絞り部213bの第2通路面積を変化させるものである。また、第2絞り部213bは、絞り通路213の第2冷媒通路212側の開口部である。第2絞り弁体221の中心軸は、絞り通路213の中心軸と同軸上に配置されている。第2絞り弁体221は、第2冷媒通路212側から第2絞り部213bへ近づくことによって第2通路面積を縮小させる。
従って、絞り通路213の第1冷媒通路211側に設けられた第1絞り部213aとは、第2絞り部213bよりも第1冷媒通路211の近くに設けられた第1絞り部213aを意味している。また、絞り通路213の第2冷媒通路212側に設けられた第2絞り部213bとは、第1絞り部213aよりも第2冷媒通路212の近くに設けられた第2絞り部213bを意味している。
第1絞り弁体221と第2絞り弁体222との間には、円柱状に形成された連結棒223が配置されている。連結棒223は、第1絞り弁体221の頂部側と第2絞り弁体222の頂部側との間に配置されている。
より詳細には、連結棒223の一方の端部は、第1絞り弁体221に結合されている。連結棒223の他方の端部は第2絞り弁体222に当接しているものの、第2絞り弁体222から分離することができる。連結棒223の中心軸は、絞り通路213の中心軸と同軸上に配置されており、第1絞り弁体221および第2絞り弁体222の変位方向に延びている。
第1絞り弁体221は、駆動装置230に連結されている。駆動装置230は、第1絞り弁体221を絞り通路213および連結棒223の中心軸方向へ変位させるための駆動力を出力する電動アクチュエータ(具体的には、ステッピングモータ)である。駆動装置230は、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。駆動装置230は、ボデー200の外部に配置されている。
従って、駆動装置230は、制御信号に応じて第1絞り弁体221を変位させて第1通路面積を変化させることができる。
第2絞り弁体222は、差圧応動部材240に一体的に形成されていることで、差圧応動部材240に連結されている。差圧応動部材240は、第2絞り弁体222に対して、圧力空間217内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した圧力差ΔPに応じた荷重を作用させる差圧応動機構を構成するものである。
ここで、圧力差ΔPは、第1冷媒通路211内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した値である。従って、冷媒を絞り通路213の順方向に流す際には、圧力差ΔPは正の値となって増加しやすい。一方、冷媒を絞り通路213の逆方向に流す際には、圧力差ΔPは負の値となって減少しやすい。
差圧応動部材240は、略円柱状に形成されており、ボデー200の内部に形成された円柱状空間内に収容されている。より詳細には、差圧応動部材240は、この円柱状空間内に、第1絞り弁体221および第2絞り弁体222の変位方向へ摺動可能に嵌め込まれている。なお、差圧応動部材240とボデー200との隙間には、Oリング等のシール部材が配置されており、この隙間から冷媒が漏れることはない。
差圧応動部材240が嵌め込まれた円柱状空間は、第2冷媒通路212と圧力空間217とを連通させるように形成されている。このため、差圧応動部材240の第2冷媒通路212側の面は、第2冷媒通路212内に露出して、第2冷媒通路212内の冷媒の圧力を受ける。また、差圧応動部材240の圧力空間217側の面は、圧力空間217内に露出して、圧力空間217内の冷媒の圧力を受ける。
従って、差圧応動部材240は、圧力空間217内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した圧力差ΔPが増加するに伴って、第2絞り弁体222を第2絞り部213bに近づけて第2通路面積を縮小させる側の荷重を増加させる。一方、圧力差ΔPが減少するに伴って、第2絞り弁体222を第2絞り部213bから遠ざけて第2通路面積を拡大させる側の荷重を増加させる。
さらに、差圧応動部材240は、弾性部材であるコイルバネ241の荷重を受けている。このコイルバネ241は、差圧応動部材240に対して、第2絞り弁体222を第2絞り部213bに近づけて第2通路面積を縮小させる側の荷重を作用させている。
ここで、前述の如く、第1絞り弁体221は、駆動装置230に連結されており、第1絞り弁体221と第2絞り弁体222との間には連結棒223が配置されている。従って、駆動装置230が第1通路面積を縮小させる側に第1絞り弁体221を変位させると、第2絞り弁体222も第2通路面積を拡大させる側に変位する。
その一方で、第2絞り弁体222は連結棒223から離れることができるので、差圧応動部材240が第2通路面積を拡大させる側に第2絞り弁体222を変位させたとしても、必ずしも、第1絞り弁体221は、第2絞り弁体222に連動して第1通路面積を縮小させる側に変位するわけではない。
第1副冷媒通路214は、第2三方継手13bの1つの流入出口(すなわち、室内凝縮器12の冷媒出口)側と第4三方継手13dの1つの流入出口(すなわち、後述する電気式三方弁21の入口)側とを接続する冷媒通路である。このため、ボデー200には、第2三方継手13bの1つの流入出口側が接続される第1副冷媒通路214の一方の出入口214a、および第4三方継手13dの1つの流入出口側が接続される第1副冷媒通路214の他方の出入口214bが形成されている。
第1副冷媒通路214の内部には、第1副冷媒通路214を開閉する第1通路開閉弁224が配置されている。第1通路開閉弁224は、差圧応動部材240から出力される機構側駆動力(すなわち、荷重)によって第1副冷媒通路214を開閉するものである。第1通路開閉弁224には、連結部材242を介して、機構側駆動力が伝達される。
第1通路開閉弁224は、第1通路主開閉弁224a、第1パイロット弁224b、第1コイルバネ224cを有している。第1通路主開閉弁224aは、円板状に形成されて、第1副冷媒通路214内に形成された円環状のシート部に当接することによって第1副冷媒通路214を閉じ、シート部から離れることによって第1副冷媒通路214を開く主開閉弁である。
第1パイロット弁224bは、第1通路主開閉弁224aの表裏を貫通するように形成された均圧孔224dを開閉するパイロット弁である。第1パイロット弁224bには、連結部材242の一方の端部が結合されている。
第1コイルバネ224cは、第1通路主開閉弁224aに対して、第1副冷媒通路214を開く側の荷重を作用させる弾性部材である。同時に、第1コイルバネ224cは、第1通路主開閉弁224aに対して、第1パイロット弁224bに近づく側、すなわち均圧孔224dが閉塞される側の荷重を作用させる弾性部材である。
第1通路主開閉弁224aとシート部との接触部には、当該接触部からの冷媒の漏れを抑制するシール部材が配置されている。また、第1パイロット弁224bと第1通路主開閉弁224aとの接触部には、当該接触部からの冷媒の漏れを抑制するシール部材が配置されている。これらのシール部材としては、円環状のゴム製のパッキン等を採用することができる。
連結部材242の他方の端部は、差圧応動部材240の当接部240aに当接するように配置されている。従って、連結部材242は、当接部240aから離れることができる。さらに、連結部材242は、弾性部材であるコイルバネ243の荷重を受けている。コイルバネ243は、連結部材242に対して、第1通路開閉弁224が第1副冷媒通路214を閉じる方向の荷重をかけるものである。
従って、差圧応動部材240が第2通路面積を拡大させる側に変位し、差圧応動部材240の当接部240aが連結部材242の他方の端部に当接すると、連結部材242を介して、機構側駆動力が第1パイロット弁224bへ伝達される。これにより、第1パイロット弁224bが第1通路主開閉弁224aの均圧孔224dを開く。
そして、第1通路主開閉弁224aの上流側冷媒と下流側冷媒との圧力差が縮小すると、第1コイルバネ224cの荷重によって第1通路主開閉弁224aがシート部から離れる。これにより、 図7に示すように、第1通路開閉弁224が第1副冷媒通路214を開く。
一方、差圧応動部材240が第2通路面積を縮小させる側に変位して、第1パイロット弁224bへ伝達される第1副冷媒通路214を開く側の荷重が減少すると、コイルバネ243の作用によって、第1通路主開閉弁224aがシート部に当接する。これにより、第1通路開閉弁224が第1副冷媒通路214を閉じる。
さらに、差圧応動部材240が第2通路面積を縮小させる側に変位すると、連結部材242の他方の端部が当接部240aから離れ、図6に示すように、空隙部218が形成される。これにより、第1通路開閉弁224が第1副冷媒通路214を閉じた状態であっても、差圧応動部材240は、第2絞り弁体222を変位させて第2通路面積を調整することができる。
第2副冷媒通路215は、第3三方継手13cの1つの流入出口(すなわち、室外熱交換器17の一方の冷媒出入口)側と加熱側エジェクタ16の加熱側冷媒吸引口16c側とを接続する冷媒通路である。このため、ボデー200には、第2三方継手13cの1つの流入出口側が接続される第2副冷媒通路215の一方の出入口215a、および加熱側エジェクタ16の加熱側冷媒吸引口16c側が接続される第2副冷媒通路215の他方の出入口215bが形成されている。
第2副冷媒通路215内には、第2副冷媒通路215を開閉する第2通路開閉弁225が配置されている。第2通路開閉弁225の基本的構成は第1通路開閉弁224と同様である。従って、第2通路開閉弁225は、第2通路主開閉弁225a、第2パイロット弁225b、第2コイルバネ225c等を有している。第2通路主開閉弁225aには、均圧孔225dが形成されている。
そして、差圧応動部材240が第2通路面積を拡大させる側に第2絞り弁体222を変位させると、第2通路開閉弁225が第2副冷媒通路215を開く。一方、差圧応動部材240が第2通路面積を縮小させる側に第2絞り弁体222を変位させると、第2通路開閉弁225が第2副冷媒通路215を閉じる。
次に、図1〜図5に示す加熱側エジェクタ16は、少なくとも第3除湿暖房モードおよび暖房モード時に、室内凝縮器12から流出した冷媒を減圧させる冷媒減圧装置としての機能を果たす。さらに、加熱側エジェクタ16は、高速度で噴射される噴射冷媒の吸引作用によって、室外熱交換器17から流出した冷媒を吸引して輸送する冷媒輸送装置としての機能を果たす。
より具体的には、加熱側エジェクタ16は、加熱側ノズル部16aおよび加熱側ボデー部16bを有している。加熱側ノズル部16aは、冷媒の流れ方向に向かって徐々に先細る形状の金属製(本実施形態では、ステンレス製)の略円筒状部材で形成されている。加熱側ノズル部16aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧させるものである。
加熱側ノズル部16aの内部に形成された冷媒通路には、通路断面積が最も縮小した喉部(最小通路面積部)が形成され、さらに、この喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って冷媒通路面積が拡大する末広部が形成されている。つまり、加熱側ノズル部16aは、ラバールノズルとして構成されている。
さらに、本実施形態では、加熱側ノズル部16aとして、エジェクタ式冷凍サイクル10の通常作動時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、加熱側ノズル部16aを先細ノズルで構成してもよい。
加熱側ボデー部16bは、金属製(本実施形態では、アルミニウム合金製)の円筒状部材で形成されており、内部に加熱側ノズル部16aを支持固定する固定部材として機能するとともに、加熱側エジェクタ16の外殻を形成するものである。より具体的には、加熱側ノズル部16aは、加熱側ボデー部16bの長手方向一端側の内部に収容されるように圧入にて固定されている。従って、加熱側ノズル部16aと加熱側ボデー部16bとの固定部(圧入部)から冷媒が漏れることはない。
また、加熱側ボデー部16bの外周面のうち、加熱側ノズル部16aの外周側に対応する部位には、その内外を貫通して加熱側ノズル部16aの冷媒噴射口と連通するように設けられた加熱側冷媒吸引口16cが形成されている。
加熱側冷媒吸引口16cは、加熱側ノズル部16aから噴射される噴射冷媒の吸引作用によって、室外熱交換器17から流出した冷媒を、膨張弁20の第2副冷媒通路215および逆止弁18を介して、加熱側エジェクタ16の内部へ吸引する貫通穴である。
逆止弁18は、膨張弁20の第2副冷媒通路215の出入口215bと加熱側冷媒吸引口16cとを接続する冷媒通路に配置されている。この逆止弁18は、加熱側エジェクタ16の加熱側冷媒吸引口16c側から膨張弁20の第2副冷媒通路215の出入口212a側へ冷媒が流れること禁止して、第2副冷媒通路215の出入口215b側から加熱側冷媒吸引口16c側へ冷媒が流れることを許容するものである。
加熱側ボデー部16bの内部には、加熱側冷媒吸引口16cから吸引された吸引冷媒を加熱側ノズル部16aの冷媒噴射口側へ導く吸引通路、および吸引通路を介して加熱側エジェクタ16の内部へ流入した吸引冷媒と噴射冷媒とを混合させて昇圧させる加熱側昇圧部である加熱側ディフューザ部16dが形成されている。
加熱側ディフューザ部16dは、吸引通路の出口に連続するように配置されて、冷媒通路面積が徐々に拡大するように形成されている。これにより、噴射冷媒と吸引冷媒とを混合させながら、その流速を減速させて噴射冷媒と吸引冷媒との混合冷媒の圧力を上昇させる機能、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する機能を果たす。
加熱側ディフューザ部16dの冷媒出口には、加熱側アキュムレータ19の流入口側が接続されている。加熱側アキュムレータ19は、加熱側エジェクタ16の加熱側ディフューザ部16dから流出した冷媒の気液を分離する加熱側気液分離部である。加熱側アキュムレータ19には、分離された気相冷媒を流出させるための気相冷媒流出口と、分離された液相冷媒を流入出させるための2つの液相冷媒流入出口が設けられている。
加熱側アキュムレータ19の気相冷媒流出口には、第5三方継手13eの一方の流入口が接続されている。加熱側アキュムレータ19の気相冷媒流出口と第5三方継手13eの一方の流入口とを接続する冷媒通路には、第2開閉弁14bが配置されている。加熱側アキュムレータ19の一方の液相冷媒流入出口には、膨張弁20の主冷媒通路210の他方の出入口212a側が接続されている。
加熱側アキュムレータ19の他方の液相冷媒流入出口には、前述した膨張弁20の第1副冷媒通路214の他方の出入口214b側が接続された第4三方継手13dの別の流入出口側が接続されている。加熱側アキュムレータ19の他方の液相冷媒流入出口と第4三方継手13dとを接続する冷媒通路には、第3開閉弁14cが配置されている。
第4三方継手13dのさらに別の流入出口には、電気式三方弁21の入口側が接続されている。第4三方継手13dのさらに別の流入出口側と電気式三方弁21の入口側とを接続する冷媒通路には、第3流量調整弁15cが配置されている。
電気式三方弁21は、膨張弁20の第1副冷媒通路214の他方の出入口214b側と冷却側エジェクタ22の冷却側ノズル部22a側とを接続する冷媒回路、および第1副冷媒通路214の他方の出入口214b側と室内蒸発器23の冷媒入口側とを接続する冷媒回路を切り替える冷媒回路切替装置である。電気式三方弁21は、空調制御装置40から出力される制御電圧によって、その作動が制御される。
冷却側エジェクタ22の基本的構成は、加熱側エジェクタ16と同様である。従って、冷却側エジェクタ22は、冷却側ノズル部22a、冷却側ボデー22bを有している。そして、冷却側ボデー22bには、冷却側冷媒吸引口22c、冷却側昇圧部である冷却側ディフューザ部22dが形成されている。
冷却側ディフューザ部22dの冷媒出口には、冷却側アキュムレータ24の入口側が接続されている。冷却側アキュムレータ24は、冷却側エジェクタ22の冷却側ディフューザ部22dから流出した冷媒の気液を分離する冷却側気液分離部である。冷却側アキュムレータ24には、分離された気相冷媒を流出させるための気相冷媒流出口と、分離された液相冷媒を流出させるための液相冷媒流出口が設けられている。
冷却側アキュムレータ24の気相冷媒流出口には、前述した第5三方継手13eの他方の流入口が接続されている。第5三方継手13eの流出口には、圧縮機11の吸入口側が接続されている。冷却側アキュムレータ24の液相冷媒流出口には、第6三方継手13fの一つの流入口側が接続されている。
冷却側アキュムレータ24の液相冷媒流出口側と第6三方継手13fの一つの流入口側とを接続する冷媒通路には、第4流量調整弁15dが配置されている。第6三方継手13fの別の流入口には、前述した電気式三方弁21の1つの流出口側が接続されている。第6三方継手13fの流出口には、室内蒸発器23の冷媒入口側が接続されている。
室内蒸発器23は、室内空調ユニット30のケーシング31内であって、前述した室内凝縮器12よりも空気流れ上流側に配置されている。室内蒸発器23は、第4流量調整弁15dにて減圧された低圧冷媒を送風空気と熱交換させて蒸発させ、吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。室内蒸発器23の冷媒出口側には、冷却側エジェクタ22の冷却側冷媒吸引口22c側が接続されている。
次に、室内空調ユニット30について説明する。室内空調ユニット30は、エジェクタ式冷凍サイクル10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側(車室内)に配置されている。室内空調ユニット30は、その外殻を形成するケーシング31内に送風機32、室内蒸発器23、室内凝縮器12、およびエアミックスドア34等を収容して構成されている。
ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)および外気(車室外空気)を導入する内外気切替装置33が配置されている。
内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。
内外気切替装置33の送風空気流れ下流側には、内外気切替装置33を介して吸入した空気を車室内へ向けて送風する送風機(ブロワ)32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置40から出力される制御電圧によって回転数(送風量)が制御される。
送風機32の送風空気流れ下流側には、室内蒸発器23および室内凝縮器12が、この順に配置されている。つまり、室内蒸発器23は、室内凝縮器12よりも送風空気流れ上流側に配置されている。さらに、室内蒸発器23の空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、室内蒸発器23通過後の送風空気のうち、室内凝縮器12を通過させる風量割合を調整するエアミックスドア34が配置されている。
また、室内凝縮器12の空気流れ下流側には、室内凝縮器12にて冷媒と熱交換して加熱された送風空気と室内凝縮器12を迂回して加熱されていない送風空気とを混合させる混合空間35が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間35にて混合された送風空気(空調風)を、空調対象空間である車室内へ吹き出す開口穴が設けられている。
具体的には、この開口穴としては、フェイス開口穴、フット開口穴、およびデフロスタ開口穴(いずれも図示せず)が設けられている。フェイス開口穴は、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴は、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴は、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
これらのフェイス開口穴、フット開口穴、およびデフロスタ開口穴は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
従って、エアミックスドア34が、室内凝縮器12を通過させる風量と室内凝縮器12を迂回させる風量との風量割合を調整することによって、混合空間にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度が調整されることになる。
つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部としての機能を果たす。なお、エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替装置を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、空調制御装置40から出力される制御信号によって、その作動が制御される。
吹出口モード切替装置によって切り替えられる吹出口モードとしては、具体的に、フェイスモード、バイレベルモード、フットモード等がある。
フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。
さらに、乗員が操作パネル50に設けられた吹出モード切替スイッチをマニュアル操作することによって、デフロスタ吹出口を全開してデフロスタ吹出口から車両フロント窓ガラス内面に空気を吹き出すデフロスタモードとすることもできる。
次に、本実施形態の電気制御部について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器11、14a〜14c、15a〜15d、20、21、32等の作動を制御する。
また、空調制御装置40の入力側には、図8のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、室外熱交換器温度センサ44、吐出温度センサ45、室内蒸発器温度センサ46、空調風温度センサ47等が接続されている。そして、空調制御装置40には、これらのセンサ群の検出信号が入力される。
内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。室外熱交換器温度センサ44は、室外熱交換器における冷媒の温度(室外熱交換器温度)Toutを検出する室外熱交換器温度検出部である。吐出温度センサ45は、圧縮機11の吐出冷媒温度Tdを検出する吐出温度検出部である。室内蒸発器温度センサ46は、室内蒸発器23における冷媒蒸発温度(室内蒸発器温度)Tefinを検出する蒸発器温度検出部である。空調風温度センサ47は、混合空間から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。
さらに、空調制御装置40の入力側には、図8に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。操作パネル50に設けられた各種操作スイッチとしては、オートスイッチ、冷房スイッチ(A/Cスイッチ)、風量設定スイッチ、温度設定スイッチ、吹出モード切替スイッチ等がある。
オートスイッチは、車両用空調装置1の自動制御運転を設定あるいは解除する入力部である。冷房スイッチ(A/Cスイッチ)は、車室内の冷房を行うことを要求する入力部である。風量設定スイッチは、送風機32の風量をマニュアル設定する入力部である。温度設定スイッチは、車室内の目標温度Tsetをマニュアル設定する入力部である。吹出モード切替スイッチは吹出モードをマニュアル設定する入力部である。
なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
例えば、空調制御装置40のうち、圧縮機11の冷媒吐出能力(圧縮機11の回転数)を制御する構成は、吐出能力制御部を構成している。また、第1〜第3開閉弁14a〜14c等の冷媒回路切替装置の作動を制御する構成は、冷媒回路制御部を構成している。
次に、上記構成における本実施形態の作動について説明する。前述の如く、本実施形態のエジェクタ式冷凍サイクル10では、冷房モード、第1除湿暖房モード、第2除湿暖房モード、第3除湿暖房モード、暖房モード、除霜モードの運転を切り替えることができる。
これらの運転モードの切り替えは、空調制御装置40の記憶回路に予め記憶された空調制御プログラムが実行されることによって行われる。空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)された際に実行される。
より具体的には、空調制御プログラムのメインルーチンでは、上述の空調制御用のセンサ群の検出信号および各種空調操作スイッチからの操作信号を読み込む。そして、読み込んだ検出信号および操作信号の値に基づいて、車室内へ吹き出す吹出空気の目標温度である目標吹出温度TAOを、以下数式F1に基づいて算出する。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気センサによって検出された車室内温度(内気温)、Tamは外気センサによって検出された外気温、Asは日射センサによって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
さらに、操作パネル50の冷房スイッチが投入されており、かつ、目標吹出温度TAOが予め定めた冷房基準温度αよりも低くなっている場合には、冷房モードでの運転を実行する。
また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、外気温Tamが予め定めた除湿暖房基準温度βよりも高くなっており、さらに、室外熱交換器温度センサ44によって検出された室外熱交換器温度Toutが外気温Tamよりも高くなっている場合には、第1除湿暖房モードでの運転を実行する。
また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、外気温Tamが除湿暖房基準温度βよりも高くなっており、さらに、室外熱交換器温度Toutが外気温Tamよりも低くなっている場合には、第2除湿暖房モードでの運転を実行する。
また、冷房スイッチが投入された状態で、目標吹出温度TAOが冷房基準温度α以上になっており、かつ、外気温Tamが除湿暖房基準温度β以下になっている場合には、第3除湿暖房モードでの運転を実行する。
また、冷房スイッチが投入されていない場合には、暖房モードでの運転を実行する。さらに、暖房モードの実行中等に室外熱交換器17に着霜が生じた際には、これを取り除くための除霜運転を行う。
これにより、本実施形態の車両用空調装置1では、主に夏季のように比較的外気温が高い場合に、冷房モードでの運転を実行している。また、主に早春季あるいは初冬季等に、第1〜第3除湿暖房モードでの運転を実行している。また、主に冬季のように比較的外気温が低い場合に、暖房モードでの運転を実行している。以下に各運転モードにおける作動を説明する。
(a)冷房モード
冷房モードでは、空調制御装置40が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、第1流量調整弁15aを全閉とし、第2流量調整弁15bを全開とし、第3流量調整弁15cを全開とし、第4流量調整弁15dを減圧作用を発揮する絞り状態とする。また、第3流量調整弁15cの出口側と冷却側エジェクタ22の冷却側ノズル部22aとを接続するように電気式三方弁21の作動を制御する。
さらに、空調制御装置40は、第1絞り部213aを全開、すなわち第1通路面積が最大となるように膨張弁20の駆動装置230の作動を制御する。
ここで、冷房モードでは、膨張弁20の一方の出入口211aから高圧冷媒が流入し、絞り通路213の順方向に冷媒が流れる。このため、圧力空間217内の冷媒圧力も高圧冷媒と同等となる。その結果、図6に示すように、差圧応動部材240が第2冷媒面積を縮小させる側へ第2絞り弁体222を変位させる。さらに、第1通路開閉弁224が第1副冷媒通路214を閉じ、第2通路開閉弁225が第2副冷媒通路215を閉じる。
従って、冷房モードでは、図1の実線矢印に示すように、圧縮機11(→室内凝縮器12→第2流量調整弁15b)→室外熱交換器17→膨張弁20→加熱側アキュムレータ19(→第3流量調整弁15c)→冷却側エジェクタ22→冷却側アキュムレータ24→圧縮機11の順に冷媒が循環するとともに、冷却側アキュムレータ24→室内蒸発器23→冷却側エジェクタ22の順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内蒸発器23の目標蒸発器吹出温度TEOを決定する。この目標蒸発器吹出温度TEOは、室内蒸発器23の着霜を抑制可能に決定された基準着霜防止温度(例えば、1℃)以上となるように決定される。
そして、この目標蒸発器吹出温度TEOと室内蒸発器温度センサ46によって検出された室内蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて室内蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
また、第4流量調整弁15dの絞り開度、すなわち第4流量調整弁15dへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された冷房用基準開度となるように決定される。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を迂回して流れるように決定される。
そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置1の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
従って、冷房モード時のエジェクタ式冷凍サイクル10では、図9のモリエル線図に示すように冷媒の状態が変化する。
具体的には、圧縮機11から吐出された高圧冷媒(図9のa9点)が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど送風空気と熱交換することなく室内凝縮器12から流出する。
室内凝縮器12から流出した冷媒は、第1三方継手13a、第1開閉弁14a、第2三方継手13b、全開となっている第2流量調整弁15b、および第3三方継手13cを介して、室外熱交換器17の一方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱して凝縮する(図9のa9点→e9点)。
室外熱交換器17の他方の冷媒出入口から流出した冷媒は、膨張弁20の一方の出入口211aへ流入する。膨張弁20の主冷媒通路210へ流入した冷媒は、絞り通路213の第2絞り部213bにて減圧される(図9のe9点→f9点)。第2絞り部213bにて減圧された冷媒は、膨張弁20の他方の出入口212aから流出する。
膨張弁20の他方の出入口212aから流出した冷媒は、加熱側アキュムレータ19へ流入して気液分離される。加熱側アキュムレータ19にて分離された液相冷媒は、第4三方継手13d、全開となっている第3流量調整弁15c、および電気式三方弁21を介して、冷却側エジェクタ22の冷却側ノズル部22aへ流入する。
冷却側ノズル部22aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図9のf9点→i9点)。そして、冷却側ノズル部22aから噴射された噴射冷媒の吸引作用によって、室内蒸発器23の冷媒出口から流出した冷媒が、冷却側エジェクタ22の冷却側冷媒吸引口22cから吸引される。
冷却側ノズル部22aから噴射された噴射冷媒および冷却側エジェクタ22の冷却側冷媒吸引口22cから吸引された吸引冷媒は、冷却側ディフューザ部22dへ流入する(図9のi9→k9点、q9点→k9点)。
冷却側ディフューザ部22dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図9のk9点→m9点)。冷却側ディフューザ部22dから流出した冷媒は冷却側アキュムレータ24へ流入して気液分離される。
冷却側アキュムレータ24にて分離された液相冷媒(図9のo9点)は、絞り状態となっている第4流量調整弁15dへ流入して減圧される(図9のo9点→p9点)。第4流量調整弁15dにて減圧された冷媒は、第6三方継手13fを介して、室内蒸発器23の冷媒入口から流入し、送風機32から送風された送風空気から吸熱して蒸発する(図9のp9点→q9点)。これにより、送風空気が冷却される。
一方、冷却側アキュムレータ24にて分離された気相冷媒(図9のn9点)は、第5三方継手13eを介して圧縮機11へ吸入されて再び圧縮される(図9のn9点→a9点)。
従って、冷房モードでは、室内蒸発器23にて冷却された送風空気を、室内凝縮器12にて再加熱することなく車室内へ吹き出すことによって、車室内の冷房を行うことができる。
さらに、冷房モードでは、冷却側エジェクタ22の冷却側ディフューザ部22dにて昇圧された冷媒を圧縮機11へ吸入させている。従って、蒸発器として機能する熱交換器(冷房モードでは、室内蒸発器23)における冷媒蒸発圧力と圧縮機11の吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも圧縮機11の消費動力を低減させて、サイクルの成績係数COPを向上させることができる。
(b)第1除湿暖房モード
第1除湿暖房モードでは、空調制御装置40が、第1開閉弁14aを開き、第2開閉弁14bを閉じ、第3開閉弁14cを開く。また、第1流量調整弁15aを全閉とし、第2流量調整弁15bを絞り状態とし、第3流量調整弁15cを全開とし、第4流量調整弁15dを絞り状態とする。また、第3流量調整弁15cの出口側と冷却側エジェクタ22の冷却側ノズル部22aとを接続するように電気式三方弁21の作動を制御する。
さらに、空調制御装置40は、第1絞り部213aが全開となるように膨張弁20の駆動装置230の作動を制御する。従って、冷房モードと同様に、第2絞り部213bの第2冷媒面積が縮小し、第1副冷媒通路214および第2副冷媒通路215が閉じられる。
従って、第1除湿暖房モードでは、図1の実線矢印に示すように、圧縮機11→室内凝縮器12→第2流量調整弁15b→室外熱交換器17→膨張弁20→加熱側アキュムレータ19(→第3流量調整弁15c)→冷却側エジェクタ22→冷却側アキュムレータ24→圧縮機11の順に冷媒が循環するとともに、冷却側アキュムレータ24→室内蒸発器23→冷却側エジェクタ22の順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、第2流量調整弁15bの絞り開度、すなわち第2流量調整弁15bへ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、目標吹出温度TAOの上昇に伴って、絞り開度が減少するように決定される。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が減少するように決定される。
また、エアミックスドア34の開度、すなわちエアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、空調風温度センサ47によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように決定される。その他の制御対象機器の作動状態は、冷房モードと同様に決定される。
従って、第1除湿暖房モード時のエジェクタ式冷凍サイクル10では、図10のモリエル線図に示すように冷媒の状態が変化する。図9のモリエル線図では、冷房モードで説明した図9のモリエル線図とサイクル構成上同等の箇所の冷媒の状態を、図9と同一の符号(アルファベット)で示し、添字(数字)のみを変更している。このことは、以下で説明する他のモリエル線図においても同様である。
具体的には、第1除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の送風空気通路を開くので、圧縮機11から吐出された高圧冷媒(図10のa10点)が、室内凝縮器12へ流入し、室内蒸発器23にて冷却されて除湿された送風空気の一部と熱交換して放熱する(図10のa10点→b10点)。これにより、送風空気の一部が加熱される。
室内凝縮器12から流出した冷媒は、第1三方継手13a、第1開閉弁14a、第2三方継手13bを介して、第2流量調整弁15bへ流入して減圧される(図10のb10点→c10点)。第2流量調整弁15bにて減圧された冷媒は、第3三方継手13cを介して、室外熱交換器17の一方の冷媒出入口へ流入する。
第1除湿暖房モードでは、室外熱交換器温度Toutが外気温Tamよりも高くなっているので、室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱して凝縮する(図10のc10点→e10点)。
室外熱交換器17の他方の冷媒出入口から流出した冷媒は、膨張弁20の一方の出入口211aへ流入する。膨張弁20の主冷媒通路210へ流入した冷媒は、絞り通路213の第2絞り部213bにて減圧される(図10のe10点→f10点)。第2絞り部213bにて減圧された冷媒は、膨張弁20の他方の出入口212aから流出する
膨張弁20の他方の出入口212aから流出した冷媒は、加熱側アキュムレータ19へ流入して気液分離される。以降の作動は、冷房モードと同様である。
従って、第1除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
また、第1除湿暖房モードでは、第2流量調整弁15bを絞り状態とすることによって、冷房モードよりも室外熱交換器17へ流入する冷媒の温度を低下させている。従って、冷房モードよりも室外熱交換器17における冷媒の温度と外気温との温度差を縮小して、室外熱交換器17における冷媒の放熱量を低減させることができる。
これにより、単に冷房モード時に送風空気温度TAVが目標吹出温度TAOに近づくようにエアミックスドア34の作動を制御する場合に対して、サイクルを循環する循環冷媒流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させて、室内凝縮器12における送風空気の加熱能力を向上させることができる。
(c)第2除湿暖房モード
第2除湿暖房モードでは、空調制御装置40が、第1開閉弁14aを閉じ、第2開閉弁14bを閉じ、第3開閉弁14cを閉じる。また、第1流量調整弁15aを全開とし、第2流量調整弁15bを全開とし、第3流量調整弁15cを絞り状態とし、第4流量調整弁15dを全閉とする。また、第3流量調整弁15cの出口側と第6三方継手13fの他方の冷媒流入口とを接続するように電気式三方弁21の作動を制御する。
さらに、空調制御装置40は、第1絞り部213aが絞り状態となるように膨張弁20の駆動装置230の作動を制御する。
ここで、第2除湿暖房モードでは、膨張弁20の他方の出入口212aから冷媒が流入し、絞り通路213の逆方向に冷媒が流れる。このため、圧力空間217内の冷媒圧力が低下する。その結果、図7に示すように、差圧応動部材240が第2冷媒面積を拡大させる側へ第2絞り弁体222を変位させる。さらに、第1通路開閉弁224が第1副冷媒通路214を開き、第2通路開閉弁225が第2副冷媒通路215を開く。
従って、第2除湿暖房モードでは、図2の実線矢印に示すように、圧縮機11→室内凝縮器12(→第1流量調整弁15a→加熱側エジェクタ16)→加熱側アキュムレータ19→膨張弁20→室外熱交換器17(→第2流量調整弁15b→膨張弁20の第1副冷媒通路214)→第3流量調整弁15c→室内蒸発器23(→冷却側エジェクタ22)→冷却側アキュムレータ24→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、膨張弁20の第1絞り部213aの絞り開度については、すなわち駆動装置230へ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。
具体的には、この制御マップでは、目標吹出温度TAOの上昇に伴って、絞り開度が縮小するように決定される。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が縮小するように決定される。さらに、室外熱交換器温度Toutが外気温Tamよりも低くなる範囲で決定される。
また、第3流量調整弁15cの絞り開度については、主冷媒通路210における減圧量と第3流量調整弁15cにおける減圧量の合計値が、サイクルの成績係数COPが極大値に近づくように決定される。このため、第3流量調整弁15cの絞り開度は、主冷媒通路210の絞り開度が減少するに伴って増加することになる。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が増加するように決定される。
また、エアミックスドア34の開度、すなわちエアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、第1除湿暖房モードと同様に、空調風温度センサ47によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように決定される。その他の制御対象機器の作動状態は、冷房モードと同様に決定される。
従って、第2除湿暖房モード時のエジェクタ式冷凍サイクル10では、図11のモリエル線図に示すように冷媒の状態が変化する。
具体的には、第2除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の送風空気通路を開くので、圧縮機11から吐出された高圧冷媒(図11のa11点)が、室内凝縮器12へ流入し、室内蒸発器23にて冷却されて除湿された送風空気の一部と熱交換して放熱する(図11のa11点→e11点)。これにより、送風空気の一部が加熱される。
室内凝縮器12から流出した冷媒は、第1三方継手13a、全開となっている第1流量調整弁15a、加熱側エジェクタ16を介して、加熱側アキュムレータ19へ流入して気液分離される。
この際、第2除湿暖房モードでは、膨張弁20および第3流量調整弁15cが直列的に接続されて、双方が絞り状態となっているので、加熱側エジェクタ16の加熱側ノズル部16aを流通する冷媒の流速は比較的遅くなる。このため、加熱側ノズル部16aでは、冷媒は殆ど減圧されない。
加熱側アキュムレータ19から流出した冷媒は、膨張弁20の他方の出入口212aへ流入する。膨張弁20の主冷媒通路210へ流入した冷媒は、絞り通路213の第1絞り部213aにて減圧される(図11のe11点→d11点)。第1絞り部213aにて減圧された冷媒は、膨張弁20の一方の出入口211aから流出する。
膨張弁20の一方の出入口211aから流出した冷媒は、室外熱交換器17の他方の冷媒出入口へ流入する。第2除湿暖房モードでは、室外熱交換器温度Toutが外気温Tamよりも低くなっているので、室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気から吸熱して蒸発する(図11のd11点→r11点)。
室外熱交換器17の一方の冷媒出入口から流出した冷媒は、第3三方継手13c、全開となっている第2流量調整弁15b、第2三方継手13b、膨張弁20の第1副冷媒通路214、および第4三方継手13dを介して、第3流量調整弁15cへ流入して減圧される(図11のr11点→g11点)。
ここで、第2除湿暖房モードでは、第2通路開閉弁225が第2副冷媒通路215を開いているものの、上記の如く、加熱側エジェクタ16内の冷媒圧力が低下しない。このため、逆止弁18の作用によって、室外熱交換器17の一方の冷媒出入口から流出した冷媒が、加熱側エジェクタ16の加熱側冷媒吸引口16c側へ流出してしまうことはない。
第3流量調整弁15cにて減圧された冷媒は、電気式三方弁21および第6三方継手13fを介して室内蒸発器23へ流入し、送風機32から送風された送風空気と熱交換して蒸発する(図11のg11点→n11点)。これにより、送風空気が冷却される。室内蒸発器23から流出した冷媒は、冷却側エジェクタ22を介して冷却側アキュムレータ24へ流入する。
この際、冷却側エジェクタ22では、冷却側冷媒吸引口22cから冷却側ディフューザ部22dへ冷媒を流通させ、冷却側ノズル部22aに冷媒を流入させない。このため、冷却側エジェクタ22を通過する冷媒は殆ど減圧されない。冷却側アキュムレータ24にて分離された気相冷媒は、第5三方継手13eを介して、圧縮機11へ吸入されて再び圧縮される(図11のn11点→a11点)。
従って、第2除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
また、第2除湿暖房モードでは、室外熱交換器17を蒸発器として機能させているので、第1除湿暖房モードよりも室内凝縮器12における冷媒の放熱量を増加させることができる。これにより、第1除湿暖房モードに対して、サイクルを循環する循環冷媒流量を増加させることなく、室内凝縮器12における冷媒圧力を上昇させることができる。
その結果、室内凝縮器12における送風空気の加熱能力を向上させて、送風空気を第1除湿暖房モードよりも高い温度帯まで昇温させることができる。
さらに、エジェクタは、ノズル部へ流入する冷媒圧力が低下してしまうと噴射冷媒の流速が低下して吸引作用を発揮できなくなってしまうことがある。これに対して、第2除湿暖房モードでは、冷却側エジェクタ22の冷却側ノズル部22aに冷媒を流入させることなく、圧縮機11の吸入吐出作用によって、室内蒸発器23へ冷媒を流入させる冷媒回路に切り替えている。
従って、第2除湿暖房モードでは、室外熱交換器17における冷媒蒸発圧力を室内蒸発器23における冷媒蒸発圧力と同等となるまで低下させたとしても、エジェクタ式冷凍サイクル10を確実に作動させることができる。
(d)第3除湿暖房モード
第3除湿暖房モードでは、空調制御装置40が、第1開閉弁14aを開き、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、第1流量調整弁15aを絞り状態とし、第2流量調整弁15bを全閉とし、第3流量調整弁15cを絞り状態とし、第4流量調整弁15dを全閉とする。また、第3流量調整弁15cの出口側と第6三方継手13fの他方の冷媒流入口とを接続するように電気式三方弁21の作動を制御する。
さらに、空調制御装置40は、第1絞り部213aが絞り状態となるように膨張弁20の駆動装置230の作動を制御する。従って、第2除湿暖房モードと同様に、第1絞り部213aの第1冷媒面積が縮小し、第1副冷媒通路214および第2副冷媒通路215が開かれる。
従って、第3除湿暖房モードでは、図3の実線矢印に示すように、圧縮機11→室内凝縮器12→第1流量調整弁15a→加熱側エジェクタ16→加熱側アキュムレータ19→圧縮機11の順に冷媒が循環するとともに、加熱側アキュムレータ19→膨張弁20→室外熱交換器17(→膨張弁20の第2副冷媒通路215)→加熱側エジェクタ16の加熱側冷媒吸引口16cの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
同時に、圧縮機11→室内凝縮器12(→膨張弁20の第1副冷媒通路214)→第3流量調整弁15c→室内蒸発器23(→冷却側エジェクタ22)→冷却側アキュムレータ24→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、第1流量調整弁15aの絞り開度については、すなわち第1流量調整弁15aへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された制御マップを参照して、第1三方継手13aから第1流量調整弁15a側へ流入する冷媒の流量と第1三方継手13aから第2三方継手13b側へ流入する冷媒の流量との流量比が予め定めた基準流量比に近づくように決定される。
また、膨張弁20の主冷媒通路210の絞り開度については、すなわち駆動装置230へ出力される制御信号(制御パルス)については、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。具体的には、目標吹出温度TAOの上昇に伴って、絞り開度が減少するように決定される。換言すると、サイクルに要求される加熱能力の上昇に伴って、絞り開度が減少するように決定される。
また、第3流量調整弁15cの絞り開度については、すなわち第3流量調整弁15cへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された第3除湿暖房モード用の基準開度となるように決定される。さらに、第3除湿暖房モードでは、室外熱交換器17における冷媒蒸発温度が室内蒸発器23における冷媒蒸発温度以下となるように、第3流量調整弁15cの絞り開度が決定される。
また、エアミックスドア34の開度、すなわちエアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、第1除湿暖房モードと同様に、空調風温度センサ47によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように決定される。その他の制御対象機器の作動状態は、冷房モードと同様に決定される。
従って、第3除湿暖房モード時のエジェクタ式冷凍サイクル10では、図12のモリエル線図に示すように冷媒の状態が変化する。
具体的には、第3除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の送風空気通路を開くので、圧縮機11から吐出された高圧冷媒(図12のa12点)が、室内凝縮器12へ流入し、室内蒸発器23にて冷却されて除湿された送風空気の一部と熱交換して放熱する(図12のa12点→b12点)。これにより、送風空気の一部が加熱される。室内凝縮器12から流出した冷媒の流れは、第1三方継手13aにて分岐される。
第1三方継手13aにて分岐された一方の冷媒は、第1流量調整弁15aへ流入して減圧される(図12のb12点→s12点)。第1流量調整弁15aにて減圧された冷媒は、加熱側エジェクタ16の加熱側ノズル部16aへ流入する。加熱側ノズル部16aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図12のs12点→t12点)。
そして、噴射冷媒の吸引作用によって、室外熱交換器17の一方の冷媒出入口から流出した冷媒が、加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引される。加熱側ノズル部16aから噴射された噴射冷媒および加熱側冷媒吸引口16cから吸引された吸引冷媒は、加熱側ディフューザ部16dへ流入する(図12のt12→u12点、c12点→u12点)。
加熱側ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図12のu12点→v12点)。加熱側ディフューザ部16dから流出した冷媒は加熱側アキュムレータ19へ流入して気液分離される。
加熱側アキュムレータ19にて分離された液相冷媒(図12のe12点)は、膨張弁20の他方の出入口212aへ流入する。膨張弁20の主冷媒通路210へ流入した冷媒は、絞り通路213の第1絞り部213aにて減圧される(図12のe12点→d12点)。第1絞り部213aにて減圧された冷媒は、膨張弁20の一方の出入口211aから流出する。
膨張弁20の一方の出入口211aから流出した冷媒は、室外熱交換器17の他方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、送風ファンから送風された外気から吸熱して蒸発する(図12のd12点→c12点)。室外熱交換器17の一方の冷媒出入口から流出した冷媒は、第3三方継手13cおよび膨張弁20の第2副冷媒通路215を介して、加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引される。
第1三方継手13aにて分岐された他方の冷媒は、第1開閉弁14a、第2三方継手13b、膨張弁20の第1副冷媒通路214、および第4三方継手13dを介して、第3流量調整弁15cへ流入して減圧される(図12のb12点→g12点)。
第3流量調整弁15cにて減圧された冷媒は、室内蒸発器23へ流入し、室内蒸発器23へ流入し、送風機32から送風された送風空気と熱交換して蒸発する(図12のg12点→n12点)。これにより、送風空気が冷却される。室内蒸発器23から流出した冷媒は、第5三方継手13eにて、加熱側アキュムレータ19にて分離された気相冷媒と合流して圧縮機11へ吸入されて再び圧縮される(図12のn12点→a12点)。
従って、第3除湿暖房モードでは、室内蒸発器23にて冷却されて除湿された送風空気を室内凝縮器12にて再加熱して車室内へ吹き出すことによって、車室内の除湿暖房を行うことができる。
また、第3除湿暖房モードでは、室外熱交換器17および室内蒸発器23をサイクル全体としての冷媒流れに対して並列的に接続し、室外熱交換器17を蒸発器として機能させている。さらに、室外熱交換器17における冷媒蒸発温度を室内蒸発器23における冷媒蒸発温度よりも低下させている。
従って、第2除湿暖房モードよりも外気からの冷媒の吸熱量を増加させることができる。これにより、室内凝縮器12における冷媒圧力を上昇させることができる。その結果、室内凝縮器12における送風空気の加熱能力を向上させて、送風空気を第2除湿暖房モードよりも高い温度帯まで昇温させることができる。
(e)暖房モード
暖房モードでは、空調制御装置40が、第1開閉弁14aを閉じ、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、第1流量調整弁15aを絞り状態とし、第2流量調整弁15bを全閉とする。
さらに、空調制御装置40は、第1絞り部213aが絞り状態となるように膨張弁20の駆動装置230の作動を制御する。従って、第2除湿暖房モードと同様に、第1絞り部213aの第1冷媒面積が縮小し、第1副冷媒通路214および第2副冷媒通路215が開かれる。
従って、暖房モードでは、図4の実線矢印に示すように、圧縮機11→室内凝縮器12→第1流量調整弁15a→加熱側エジェクタ16→加熱側アキュムレータ19→圧縮機11の順に冷媒が循環するとともに、加熱側アキュムレータ19→絞り状態となっている膨張弁20の主冷媒通路210→室外熱交換器17(→膨張弁20の第2副冷媒通路215)→加熱側エジェクタ16の加熱側冷媒吸引口16cの順に冷媒が循環するエジェクタ式冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力については、すなわち圧縮機11の電動モータに出力される制御信号については、次のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶された制御マップを参照して、室内凝縮器12の目標凝縮器温度TCOを決定する。
そして、この目標凝縮器温度TCOと吐出温度センサ45によって検出された吐出冷媒温度Tdとの偏差に基づいて、フィードバック制御手法を用いて吐出冷媒温度Tdが目標凝縮器温度TCOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
また、第1流量調整弁15aの絞り開度については、すなわち第1流量調整弁15aへ出力される制御信号(制御パルス)については、圧縮機11の冷媒吐出能力(例えば、圧縮機11の電動モータに出力される制御信号)に基づいて、予め空調制御装置40に記憶された制御マップを参照して決定される。
この制御マップでは、加熱側ノズル部16aへ流入する冷媒の乾き度xが0.5以上かつ0.8以下となるように、第1流量調整弁15aの絞り開度を決定している。この乾き度xの範囲は、室内凝縮器12における送風空気の加熱能力を極大値に近づけることができる値として、予め実験的に得られた値である。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12側の空気通路を流れるように決定される。その他の制御対象機器の作動状態は、第3除湿暖房モードと同様に決定される。
従って、暖房モード時のエジェクタ式冷凍サイクル10では、図13のモリエル線図に示すように冷媒の状態が変化する。
具体的には、暖房モードでは、エアミックスドア34が室内凝縮器12側の送風空気通路を全開とするので、圧縮機11から吐出された高圧冷媒(図13のa13点)が、室内凝縮器12へ流入して送風空気と熱交換して放熱する(図13のa13点→b13点)。これにより、送風空気が加熱される。
室内凝縮器12から流出した冷媒は、第1三方継手13aを介して、第1流量調整弁15aへ流入して減圧される(図13のb13点→s13点)。これにより、加熱側ノズル部16aへ流入する冷媒の乾き度xが0.5以上かつ0.8以下に調整される。
第1流量調整弁15aにて減圧された冷媒は、加熱側エジェクタ16の加熱側ノズル部16aへ流入する。加熱側ノズル部16aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図13のs13点→t13点)。
そして、この噴射冷媒の吸引作用によって、室外熱交換器17の一方の冷媒出入口から流出した冷媒が、加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引される。加熱側ノズル部16aから噴射された噴射冷媒および加熱側冷媒吸引口16cから吸引された吸引冷媒は、加熱側ディフューザ部16dへ流入する(図13のt13→u13点、c13点→u13点)。
加熱側ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する(図13のu13点→v13点)。加熱側ディフューザ部16dから流出した冷媒は加熱側アキュムレータ19へ流入して気液分離される。
加熱側アキュムレータ19にて分離された液相冷媒(図13のe13点)は、膨張弁20の他方の出入口212aへ流入する。膨張弁20の主冷媒通路210へ流入した冷媒は、絞り通路213の第1絞り部213aにて減圧される(図13のe13点→d13点)。第1絞り部213aにて減圧された冷媒は、膨張弁20の一方の出入口211aから流出する。
膨張弁20の一方の出入口211aから流出した冷媒は、室外熱交換器17の他方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気から吸熱して蒸発する(図13のd13点→c13点)。
室外熱交換器17の一方の冷媒出入口から流出した冷媒は、第3三方継手13cおよび膨張弁20の第2副冷媒通路215を介して、加熱側エジェクタ16の加熱側冷媒吸引口16cから吸引される。加熱側アキュムレータ19にて分離された気相冷媒(図13のf13点)は、第5三方継手13eを介して圧縮機11へ吸入されて再び圧縮される(図13のf13点→a13点)。
従って、暖房モードでは、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
さらに、暖房モードでは、加熱側エジェクタ16の加熱側ディフューザ部16dにて昇圧された冷媒を圧縮機11へ吸入させている。従って、蒸発器として機能する熱交換器(暖房モードでは、室外熱交換器17)における冷媒蒸発圧力と圧縮機11の吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも圧縮機11の消費動力を低減させて、サイクルの成績係数COPを向上させることができる。
ここで、エジェクタ式冷凍サイクル10の第3除湿暖房モードや暖房モードのように、エジェクタ式冷凍サイクル10の室外熱交換器17を蒸発器として機能させる冷媒回路では、室外熱交換器17の冷媒蒸発温度が氷点下(0℃以下)になってしまうと、室外熱交換器17に着霜が生じてしまうことがある。
このような着霜が生じると室外熱交換器17の外気通路が霜によって閉塞されてしまうので、室外熱交換器17の熱交換性能が低下してしまう。従って、室外熱交換器17にて冷媒が外気から吸熱する吸熱量が低下して、エジェクタ式冷凍サイクル10が、送風空気を充分に加熱できなくなってしまう。
これに対して、本実施形態の車両用空調装置1では、エジェクタ式冷凍サイクル10の室外熱交換器17に着霜が生じた際に、これを取り除くための除霜モードの運転を実行することができる。
具体的には、本実施形態では、外気温Tamが0℃以下となっており、さらに、外気温Tamから室外熱交換器温度Toutを減算した値(Tam−Tout)が予め定めた基準温度差以上となっている際に、室外熱交換器17に着霜が生じたと判定する。そして、予め定めた基準時間が経過するまで、除霜モードの運転を実行する。以下に除霜モードにおける作動を説明する。
(f)除霜モード
除霜モードでは、空調制御装置40が、第1開閉弁14aを開き、第2開閉弁14bを開き、第3開閉弁14cを閉じる。また、第1流量調整弁15aを全閉とし、第2流量調整弁15bを絞り状態とする。
さらに、空調制御装置40は、第1絞り部213aの第1通路面積が全開(最大)となるように膨張弁20の駆動装置230の作動を制御する。従って、冷房モードおよび第1除湿暖房モードと同様に、第2絞り部213bの第2冷媒面積が縮小し、第1副冷媒通路214および第2副冷媒通路215が閉じられる。
従って、除霜モードでは、図5の実線矢印に示すように、圧縮機11(→室内凝縮器12)→第2流量調整弁15b→室外熱交換器17→膨張弁20→加熱側アキュムレータ19→圧縮機11の順に冷媒が循環する。空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、予め空調制御装置40に記憶された除霜用の冷媒吐出能力が発揮されるように決定される。また、第2流量調整弁15bの絞り開度、すなわち第2流量調整弁15bへ出力される制御信号(制御パルス)については、予め空調制御装置40に記憶された除霜用の基準開度となるように決定される。
また、エアミックスドア34を駆動する電動アクチュエータへ出力される制御信号については、エアミックスドア34が室内凝縮器12側の空気通路を閉塞し、室内蒸発器23通過後の送風空気の全流量が室内凝縮器12を迂回して流れるように決定される。
従って、除霜モード時のエジェクタ式冷凍サイクル10では、図14のモリエル線図に示すように冷媒の状態が変化する。
具体的には、圧縮機11から吐出された高圧冷媒(図14のa14点)が、室内凝縮器12へ流入する。この際、エアミックスドア34が室内凝縮器12側の空気通路を閉塞しているので、室内凝縮器12へ流入した冷媒は、殆ど送風空気と熱交換することなく室内凝縮器12から流出する。
室内凝縮器12から流出した冷媒は、第1三方継手13a、第1開閉弁14a、第2三方継手13bを介して、第2流量調整弁15bへ流入して減圧される(図14のa14点→c14点)。第2流量調整弁15bにて減圧された冷媒は、室外熱交換器17の一方の冷媒出入口へ流入して、室外熱交換器17へ放熱する(図14のc14点→e14点)。これにより、室外熱交換器17の除霜がなされる。
室外熱交換器17から流出した冷媒は、膨張弁20にて減圧されて(図14のe14点→f14点)、加熱側アキュムレータ19、第5三方継手13eを介して圧縮機11へ吸入されて再び圧縮される(図14のf14点→a14点)。
以上の如く、本実施形態のエジェクタ式冷凍サイクル10によれば、車両用空調装置1において、冷房モード、第1除湿暖房モード、第2除湿暖房モード、第3除湿暖房モード、および暖房モードでの運転に切り替えることで、車室内の適切な空調を実現することができる。
この際、本実施形態のエジェクタ式冷凍サイクル10では、車室内の除湿暖房時に、第1〜第3除湿暖房モードの冷媒回路に切り替えることができるので、室外熱交換器17における冷媒の吸放熱量を幅広い範囲で連続的に調整することができる。その結果、除湿暖房時に車室内へ吹き出される送風空気の温度調整範囲を拡大させることができる。
さらに、本実施形態のエジェクタ式冷凍サイクル10では、除霜モードの冷媒回路に切り替えることができるので、室外熱交換器17に着霜が生じた際にこれを取り除くことができる。
ここで、本実施形態の膨張弁20のように、両流し式の膨張弁では、絞り通路213における冷媒の流れ方向が変化すると、絞り弁体220(本実施形態で、第1絞り弁体221および第2絞り弁体222)が冷媒から受ける荷重も変化する。このため、空調制御装置40が、膨張弁20の駆動装置230に対して同一の制御信号を出力していても、絞り部の通路面積が変化して適切な冷媒減圧作用を発揮できなくなってしまうおそれがある。
特に、本実施形態の膨張弁20では、駆動装置230に直接連結されている第1絞り弁体221によって調整される第1通路面積よりも、第1絞り弁体221とは別部材で形成された第2絞り弁体222によって調整される第2通路面積が変化しやすい。
これに対して、本実施形態の膨張弁20によれば、冷媒を絞り通路213の順方向に流して減圧させる際には、駆動装置230が第1絞り部213a側の第1通路面積を拡大させるように第1絞り弁体221を変位させることで、第2絞り部213a側の第2通路面積を縮小させる。
この際、絞り通路213を流通する冷媒の動圧の作用によって、第2絞り弁体222が第2通路面積を拡大させる側の荷重を受けても、圧力空間217内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した圧力差ΔPが増加する。
これにより、第2絞り弁体222が差圧応動部材240から受ける第2通路面積を縮小させる側の荷重も増加する。従って、第2絞り弁体222が差圧応動部材240から受ける荷重によって、第2絞り弁体222が冷媒の動圧の作用によって受ける荷重を打ち消すことができる。その結果、冷媒の動圧の作用によって、第2通路面積が変化してしまうことを抑制することができる。
その結果、本実施形態の膨張弁20によれば、内部を流通する流れ方向が変化しても適切な冷媒減圧作用を発揮することができる。
また、本実施形態の膨張弁20では、絞り弁体220を、互いに別部材で形成された第1絞り弁体221および第2絞り弁体222にて構成している。このため、駆動装置230が第1絞り弁体221を変位させて、第1絞り部213aの第1通路面積を調整している際であっても、圧力差ΔPが減少することによって、差圧応動部材240が第2通路面積を拡大させるように第2絞り弁体222を変位させることができる。
また、本実施形態のように、冷媒減圧装置としてエジェクタを備えるエジェクタ式冷凍サイクルでは、冷媒減圧装置として膨張弁等を備える通常の冷凍サイクル装置に比べて、サイクル構成が複雑化しやすい。その理由は、エジェクタには、冷媒流入口(すなわち、ノズル部の入口)および冷媒流出口(すなわち、ディフューザ部の出口)に加えて、冷媒を吸引する冷媒吸引口が設けられているからである。
さらに、冷媒回路を切替可能なエジェクタ式冷凍サイクルでは、切替可能な冷媒回路の数の増加に伴って、必要となる電気式の制御弁の数量も増加しやすい。そのため、冷媒回路を切替可能に構成されたエジェクタ式冷凍サイクルでは、冷媒回路を切り替えるための制御も複雑化しやすい。
これに対して、本実施形態の膨張弁20では、電動式の駆動装置230の作動を制御することで、第1、第2副冷媒通路214、215の開閉を行うことができる。従って、冷媒回路を切り替え可能に構成されたエジェクタ式冷凍サイクル10に適用することで、冷媒回路切替装置として採用される電気式の制御弁の個数を減らすことができる。
従って、エジェクタ式冷凍サイクル10の制御の複雑化を招くことなく、冷媒回路の切り替えを実現することができる。さらに、エジェクタ式冷凍サイクル10のサイクル構成の簡素化を図ることができるとともに、車両用空調装置1として車両へ搭載する際の搭載性を向上させることもできる。
また、本実施形態の膨張弁20では、差圧応動部材240に当接部240aを設け、連結部材242が当接部240aに当接している際に、機構側駆動力を第1、第2通路開閉弁224、225に伝達するようにしている。換言すると、連結部材242が当接部240aから離れた際には空隙部218を形成して、機構側駆動力が第1、第2通路開閉弁224、225に伝達されないようにしている。
従って、第1、第2副冷媒通路214、215を閉じた状態であっても、差圧応動部材240が第2絞り弁体222を変位させて、第2絞り部213bの第2通路面積を調整することができる。
また、本実施形態の膨張弁20では、第1、第2通路開閉弁224、225として、第1、第2パイロット弁224b、225bを有するものを採用している。従って、機構側駆動力が比較的小さな推力となっていても、第1、第2通路主開閉弁224a、225aの均圧孔224d、225dを開くことができる。従って、第1通路開閉弁224および第2通路開閉弁225を確実に全開とすることができる。
また、本実施形態の膨張弁20では、ボデー200に複数の副冷媒通路(具体的には、第1副冷媒通路214、および第2副冷媒通路215)を形成するとともに、それぞれの副冷媒通路を開閉するように複数個の開閉弁(具体的には、第1通路開閉弁224、および第2通路開閉弁225)を配置している。
従って、1つの駆動装置230の作動を制御することで、複数の副冷媒通路を開閉することができ、より一層、冷媒回路を切替可能なエジェクタ式冷凍サイクル10の制御の複雑化を抑制しやすい。
(第2実施形態)
本実施形態では、本発明に係る膨張弁60を備える冷凍サイクル装置10aを、空調装置に適用した例を説明する。
冷凍サイクル装置10aは、図15の全体構成図に示すように、冷房モードの冷媒回路と、暖房モードの冷媒回路とを切替可能に構成されている。図15では、冷房モードにおける冷媒の流れ方向を太実線矢印で示し、暖房モードにおける冷媒の流れ方向を太破線矢印で示している。なお、図15では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
冷凍サイクル装置10aは、第1実施形態と同様の圧縮機11を備えている。圧縮機11の吐出口には、四方弁25の一つの流入出口側が接続されている。
四方弁25は、圧縮機11の吐出口側と室外熱交換器17の一方の冷媒出入口側とを接続すると同時に室内熱交換器26の他方の冷媒出入口側と圧縮機11の吸入口側とを接続する冷媒回路、および圧縮機11の吐出口側と室内熱交換器26の他方の冷媒出入口側とを接続すると同時に室外熱交換器17の一方の冷媒出入口側と圧縮機11の吸入口側とを接続する冷媒回路を切り替える冷媒回路切替装置である。四方弁25は、空調制御装置40から出力される制御電圧によって、その作動が制御される。
室外熱交換器17の他方の冷媒出入口には、膨張弁60の主冷媒通路210の一方の出入口211a側が接続されている。この膨張弁60は、第1実施形態で説明した膨張弁20と同様に、冷媒を絞り通路213の順方向に流す際にも、冷媒を絞り通路213の逆方向に流す際にも冷媒減圧作用を発揮させる、両流し式の膨張弁として用いられている。
膨張弁60の詳細構成については、図16を用いて説明する。図16は、太実線矢印で示すように、冷媒を絞り通路213の順方向に流す冷房モード時に冷媒減圧作用を発揮する状態になっている膨張弁60の模式的な断面図である。
膨張弁60は、第1実施形態で説明した膨張弁20と同様に、ボデー200aを有している。このボデー200aの内部には、第1冷媒通路211、第2冷媒通路212、絞り通路213、および圧力連通路216といった冷媒通路、並びに、圧力空間217等が形成されている。なお、本実施形態のボデー200aには、副冷媒通路は形成されていない。
主冷媒通路210を形成する絞り通路213の内部には、1つの絞り弁体220が配置されている。絞り弁体220は、2つの円錐台状の部材の底面同士を結合させた回転体形状に形成されている。絞り弁体220の中心軸は、絞り通路213の中心軸と同軸上に配置されて、絞り弁体220の変位方向に延びている。
絞り弁体220の軸方向に垂直な一方の面(第1絞り部213a側の面)には、駆動装置230のシャフト231が結合されている。また、絞り弁体220の軸方向に垂直な他方の面(第2絞り部213b側の面)には、差圧応動部材240が結合されている。従って、本実施形態の差圧応動部材240は、駆動装置230から出力された駆動力によって、絞り弁体220とともに変位する。
また、絞り通路213の第1冷媒通路211側の開口部には円環状の第1リング251が配置されている。本実施形態では、この第1リング251の内周側に第1絞り部213aが形成されている。一方、絞り通路213の第2冷媒通路212側の開口部には円環状の第2リング252が配置されている。本実施形態では、この第2リング252の内周側に第2絞り部213bが形成されている。
従って、絞り弁体220は、絞り通路213の内部から第1絞り部213aへ近づくことによって第1通路面積を縮小させる。さらに、絞り弁体220は、絞り通路213の内部から第2絞り部213bへ近づくことによって第2通路面積を縮小させる。
また、膨張弁60では、第1、第2副冷媒通路214、215が廃止されているだけでなく、第1実施形態で説明した第1、第2通路開閉弁224、225、連結部材242、コイルバネ243等も廃止されている。その他の膨張弁60の構成は、第1実施形態で説明した膨張弁20と同様である。
膨張弁60の主冷媒通路210の他方の出入口212aには、図15に示すように、室内熱交換器26の一方の冷媒出入口側が接続されている。室内熱交換器26は、内部を流通する冷媒と空調対象空間へ送風される送風空気とを熱交換させる熱交換器である。室内熱交換器26は、冷房モードでは、冷媒を蒸発させる蒸発器として機能し、暖房モードでは、高圧冷媒を放熱させる放熱器として機能する。
室内熱交換器26の他方の冷媒出入口には、四方弁25の別の一つの流入出口側が接続されている。冷凍サイクル装置10aでは、第1実施形態で説明した第1〜第3開閉弁14a〜14c、第1〜第4流量調整弁15a〜15d、三方弁21等は廃止されている。その他の冷凍サイクル装置10aの基本的な構成は、第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。本実施形態では、操作パネル50のオートスイッチが投入され、かつ、冷房スイッチが投入されている場合に、冷房モードでの運転を実行する。また、オートスイッチが投入され、かつ、冷房スイッチが投入されていない場合には、暖房モードでの運転を実行する。
(a)冷房モード
冷房モードでは、空調制御装置40が、圧縮機11の吐出口側と室外熱交換器17の一方の冷媒出入口側とを接続すると同時に室内熱交換器26の他方の冷媒出入口側と圧縮機11の吸入口側とを接続するように、四方弁25の作動を制御する。さらに、空調制御装置40は、絞り弁体220が第1絞り部213aに近づくように、すなわち、第1絞り部213aが絞り状態となるように膨張弁60の駆動装置230の作動を制御する。
従って、冷房モードでは、図15の太実線矢印に示すように、圧縮機11→室外熱交換器17→膨張弁60→室内熱交換器26→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、第1実施形態の冷房モードと同様に、室内熱交換器26における冷媒蒸発温度が目標蒸発器吹出温度TEO近づくように決定される。
また、膨張弁60の第1絞り部213aの絞り開度については、すなわち駆動装置230へ出力される制御信号(制御パルス)については、圧縮機11へ吸入される吸入冷媒の過熱度が予め定めた基準過熱度に近づくように決定される。
従って、冷房モード時の冷凍サイクル装置10aでは、圧縮機11から吐出された高圧冷媒が、四方弁25を介して、室外熱交換器17の一方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気へ放熱して凝縮する。
室外熱交換器17の他方の冷媒出入口から流出した高圧冷媒は、膨張弁60の一方の出入口211aへ流入する。膨張弁60の主冷媒通路210へ流入した冷媒は、絞り通路213を順方向に流れ、絞り通路213の第1絞り部213aにて減圧される。この際、圧縮機11吸入冷媒の過熱度が基準過熱度に近づくように調整される。第1絞り部213aにて減圧された冷媒は、膨張弁60の他方の出入口212aから流出する。
膨張弁60の他方の出入口212aから流出した冷媒は、室内熱交換器26の一方の冷媒出入口へ流入する。室内熱交換器26へ流入した冷媒は、室内熱交換器26にて送風ファンから送風された外気から吸熱して蒸発する。これにより、送風空気が冷却される。室内熱交換器26の一方の冷媒出入口から流出した冷媒は、四方弁25を介して、圧縮機11へ吸入されて再び圧縮される。
従って、冷房モードでは、室内熱交換器26にて冷却された送風空気を、空調対象空間へ吹き出すことによって、空調対象空間の冷房を行うことができる。
(b)暖房モード
暖房モードでは、空調制御装置40が、圧縮機11の吐出口側と室内熱交換器26の他方の冷媒出入口側とを接続すると同時に室外熱交換器17の一方の冷媒出入口側と圧縮機11の吸入口側とを接続するように、四方弁25の作動を制御する。さらに、空調制御装置40は、絞り弁体220が第2絞り部213bに近づくように、すなわち、第2絞り部213bが絞り状態となるように膨張弁60の駆動装置230の作動を制御する。
従って、冷房モードでは、図15の太破線矢印に示すように、圧縮機11→室内熱交換器26→膨張弁60→室外熱交換器17→圧縮機11の順に冷媒が循環する冷凍サイクルが構成される。
空調制御装置40は、この冷媒回路の構成で、目標吹出温度TAO、センサ群の検出信号等に基づいて、各種制御対象機器の作動状態(各種制御対象機器へ出力する制御信号)を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、第1実施形態の暖房モードと同様に、室内熱交換器26における冷媒凝縮温度が目標凝縮器温度TCO近づくように決定される。
また、膨張弁60の第2絞り部213bの絞り開度については、すなわち駆動装置230へ出力される制御信号(制御パルス)については、圧縮機11へ吸入される吸入冷媒の過熱度が予め定めた基準過熱度に近づくように決定される。
従って、冷房モード時の冷凍サイクル装置10aでは、圧縮機11から吐出された高圧冷媒が、四方弁25を介して、室内熱交換器26の他方の冷媒流入口へ流入する。室内熱交換器26へ流入した冷媒は、室内熱交換器26にて送風ファンから送風された外気へ放熱して凝縮する。これにより、送風空気が加熱される。
室内熱交換器26の一方の冷媒出入口から流出した高圧冷媒は、膨張弁60の他方の出入口212aへ流入する。膨張弁60の主冷媒通路210へ流入した冷媒は、絞り通路213を順方向に流れ、絞り通路213の第2絞り部213bにて減圧される。この際、圧縮機11吸入冷媒の過熱度が基準過熱度に近づくように調整される。第2絞り部213bにて減圧された冷媒は、膨張弁60の他方の出入口212aから流出する。
膨張弁60の他方の出入口212aから流出した冷媒は、室外熱交換器17の他方の冷媒出入口へ流入する。室外熱交換器17へ流入した冷媒は、室外熱交換器17にて送風ファンから送風された外気から吸熱して蒸発する。室外熱交換器17の一方の冷媒出入口から流出した冷媒は、四方弁25を介して、圧縮機11へ吸入されて再び圧縮される。
従って、暖房モードでは、室内熱交換器26にて加熱された送風空気を、空調対象空間へ吹き出すことによって、空調対象空間の暖房を行うことができる。
以上の如く、本実施形態の冷凍サイクル装置10aによれば、空調装置において、冷房モードおよび暖房モードでの運転に切り替えることで、空調対象空間の適切な空調を実現することができる。
ここで、本実施形態の膨張弁60も両流し式の膨張弁として用いられていることから、絞り通路213における冷媒の流れ方向が変化すると、適切な冷媒減圧作用を発揮できなくなってしまうおそれがある。
これに対して、本実施形態の膨張弁60によれば、冷媒を絞り通路213の順方向に流して減圧させる冷房モード時には、駆動装置230が第1絞り部213aの第1通路面積を縮小させて第2絞り部213bの第2通路面積を拡大させるように絞り弁体220を変位させる。
この際、絞り通路213を流通する冷媒の動圧の作用によって、絞り弁体220が第1通路面積を拡大させる側の荷重を受けても、圧力空間217内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した圧力差ΔPが増加する。これにより、絞り弁体220が差圧応動部材240から受ける第1通路面積を縮小させる側の荷重も増加する。
従って、絞り弁体220が差圧応動部材240から受ける荷重によって、絞り弁体220が冷媒の動圧の作用によって受ける第1通路面積を拡大させる側の荷重を打ち消すことができる。その結果、冷媒の動圧の作用によって、第1通路面積が変化してしまうことを抑制することができる。
また、冷媒を絞り通路213の逆方向に流して減圧させる暖房モード時には、駆動装置230が第2絞り部213bの第2通路面積を縮小させて第1絞り部213aの第1通路面積を拡大させるように絞り弁体220を変位させる。
この際、絞り通路213を流通する冷媒の動圧の作用によって、絞り弁体220が第2通路面積を拡大させる側の荷重を受けても、圧力空間217内の冷媒圧力から第2冷媒通路212内の冷媒圧力を減算した圧力差ΔPが減少する。これにより、絞り弁体220が差圧応動部材240から受ける第2通路面積を拡大させる側の荷重も増加する。
従って、絞り弁体220が差圧応動部材240から受ける荷重によって、絞り弁体220が冷媒の動圧の作用によって受ける第2通路面積を拡大させる側の荷重を打ち消すことができる。その結果、冷媒の動圧の作用によって、第2通路面積が変化してしまうことを抑制することができる。
すなわち、本実施形態の膨張弁60によれば、内部を流通する流れ方向によらず適切な冷媒減圧作用を発揮することができる。
(第3実施形態)
本実施形態では、第2実施形態に対して、膨張弁60の構成を変更した例を説明する。具体的には、本実施形態では、図17に示すように、駆動装置230のシャフト231、絞り弁体220、および差圧応動部材240の内部に、圧力連通路216が形成されている。その他の膨張弁60および冷凍サイクル装置10aの構成および作動は、第2実施形態と同様である。
従って、本実施形態の膨張弁60においても、内部を流通する流れ方向によらず適切な冷媒減圧作用を発揮することができる。さらに、第2実施形態の如く、圧力連通路216をボデー200aに形成する場合のように、ボデー200aを複数の部材に分割して形成する必要がなくなる。従って、膨張弁60の製造コストの低減を狙うこともできる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)第1実施形態では、膨張弁20を備えるエジェクタ式冷凍サイクル10を電気自動車用の空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。
例えば、内燃機関(エンジン)から車両走行用の駆動力を得る通常の車両や、内燃機関と走行用電動モータとの双方から車両走行用の駆動力を得るハイブリッド車両の空調装置に適用してもよい。内燃機関を有する車両に適用する場合は、送風空気の補助加熱部として内燃機関の冷却水を熱源として送風空気を加熱するヒータコアを設けてもよい。
また、エジェクタ式冷凍サイクル10は車両用空調装置に限定されることなく、定置型空調装置等に適用してもよい。もちろん、第2、第3実施形態で説明した冷凍サイクル装置10aについても、空調装置に限定されることなく、温調対象物を周囲の温度よりも低温あるいは高温で保存する保存する冷温蔵庫等に適用してもよい。
(2)第1実施形態で説明した膨張弁20では、第1絞り弁体221と第2絞り弁体222との間に連結棒223を配置した例を説明したが、連結棒223を廃止して第1絞り弁体221および第2絞り弁体222の頂部側同士を直接接触させるようにしてもよい。この場合は、絞り通路223の軸方向距離を短縮して、第1絞り部213aと第2絞り部213aとを近接配置あるいは共通化すればよい。これにより、膨張弁20全体としての小型化を狙うこともできる。
(3)第2、第3実施形態で説明した膨張弁60において、ボデー200aに副冷媒通路を形成し、さらに、この副冷媒通路を開閉する通路開閉弁を備え、通路開閉弁を差圧応動機構から出力される機構側駆動力によって開閉作動させるようにしてもよい。
(4)エジェクタ式冷凍サイクル10および冷凍サイクル装置10aの各構成機器は、上述の実施形態に開示されたものに限定されない。
具体的には、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。例えば、圧縮機11として、エンジン駆動式の可変容量型圧縮機等を採用してもよい。
また、第1実施形態では、加熱用熱交換器として、圧縮機11吐出冷媒と送風空気とを熱交換させて、圧縮機11吐出冷媒を熱源として直接的に送風空気を加熱する室内凝縮器12を採用した例を説明したが、加熱用熱交換器はこれに限定されない。
例えば、水等の熱媒体を循環させる熱媒体循環回路を設け、この熱媒体循環回路に高圧冷媒と熱媒体とを熱交換させる水−冷媒熱交換器、および水−冷媒熱交換器にて加熱された熱媒体と送風空気とを熱交換させて送風空気を加熱する加熱用熱交換器等を配置してもよい。つまり、加熱用熱交換器は、圧縮機吐出冷媒を熱源として、熱媒体を介して間接的に送風空気を加熱するものであってもよい。
また、上述の各実施形態では、冷媒回路切替装置として、複数の流量調整弁、開閉弁、三方弁、四方弁等を採用した例を説明したが、冷媒回路切替装置はこれに限定されない。例えば、全閉機能を有しない流量調整弁と開閉弁とを組み合わせたものや、複数の開閉弁を組み合わせたものを採用してもよい。
また、上述の各実施形態で説明した各構成機器を一体化したものを採用してもよい。例えば、第1実施形態で説明した第1流量調整弁15a、加熱側エジェクタ16、加熱側アキュムレータ19等を一体化(モジュール化)してもよい。
この場合は、加熱側エジェクタ16の加熱側ノズル部16aの通路内にニードル状、あるいは円錐状の弁体を配置し、この弁体を変位させることで、第2流量調整弁15bと同様の機能を発揮させるようにしてもよい。同様に、冷却側エジェクタ22と冷却側アキュムレータ24とを一体化(モジュール化)させてもよい。
また、第1実施形態のエジェクタ式冷凍サイクル10の室内蒸発器23の冷媒出口側に、室内蒸発器23の冷媒蒸発圧力を予め定めた所定値以上に調整する蒸発圧力調整弁を配置してもよい。これによれば、室内蒸発器23の着霜を機械的機構によって、より一層確実に防止することができる。
また、上述の各実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
(5)第1実施形態の暖房モード時には、圧縮機11の冷媒吐出能力に基づいて第1流量調整弁15aの弁開度を調整した例を説明したが、第1流量調整弁15aの弁開度の調整はこれに限定されない。
例えば、室内凝縮器12出口側冷媒の乾き度を検出する乾き度センサを設け、この乾き度センサの検出値が0.5以上かつ0.8以下となるように第1流量調整弁15aの弁開度の弁開度を調整してもよい。また、エジェクタ式冷凍サイクル10の成績係数COPが極大値に近づくように第1流量調整弁15aの弁開度を調整してもよい。
(6)上述の各実施形態では、空調制御プログラムを実行することによって、各運転モードを切り替えた例を説明したが、各運転モードの切り替えはこれに限定されない。例えば、操作パネル50に各運転モードを設定する運転モード設定スイッチを設け、当該運転モード設定スイッチの操作信号に応じて、各暖房モードを切り替えるようにしてもよい。
10、10a エジェクタ式冷凍サイクル、冷凍サイクル装置
20、60 膨張弁
200、200a ボデー
211、212 第1、第2冷媒通路(主冷媒通路)
213 絞り通路
213a、213b 第1、第2絞り部
214、215 第1、第2副冷媒通路(副冷媒通路)
217 圧力空間
220、221、222 絞り弁体、第1、第2絞り弁体
230 駆動装置
240 差圧応動部材(差圧応動機構)

Claims (6)

  1. 蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されて、
    冷媒を流入出させる第1冷媒通路(211)、冷媒を流入出させる第2冷媒通路(212)、前記第1冷媒通路と前記第2冷媒通路と連通させる絞り通路(213)、および前記第1冷媒通路に連通する圧力空間(217)が形成されたボデー(200、200a)と、
    前記絞り通路の前記第1冷媒通路側に設けられた第1絞り部(213a)の第1通路面積、および前記絞り通路の前記第2冷媒通路側に設けられた第2絞り部(213b)の第2通路面積を変化させる絞り弁体(220)と、を備え、
    前記第1冷媒通路側から前記第2冷媒通路側へ冷媒を流す際には前記第1通路面積および前記第2通路面積のいずれか一方の通路面積を縮小させることによって減圧作用を発揮し、さらに、前記第2冷媒通路側から前記第1冷媒通路側へ冷媒を流す際には前記第1通路面積および前記第2通路面積のいずれか他方の通路面積を縮小させることによって減圧作用を発揮する膨張弁であって、
    さらに、前記絞り弁体を変位させる駆動力を出力する電動式の駆動装置(230)と、
    前記絞り弁体に対して荷重を作用させる差圧応動機構(240)と、を備え、
    前記絞り弁体は、前記第1通路面積を縮小させる側に変位するに伴って前記第2通路面積を拡大させる側に変位するように配置されており、
    前記差圧応動機構(240)は、前記圧力空間内の冷媒圧力から前記第2冷媒通路内の冷媒圧力を減算した圧力差(ΔP)が増加するに伴って前記一方の通路面積を縮小させる側の荷重を増加させるとともに、前記圧力差(ΔP)が減少するに伴って前記一方の通路面積を拡大させる側の荷重を増加させるものである膨張弁。
  2. 前記ボデー(200)には、冷媒を流通させる副冷媒通路(214、215)が形成されており、
    さらに、前記副冷媒通路を開閉する通路開閉弁(224、225)を備え、
    前記通路開閉弁は、前記差圧応動機構から出力される機構側駆動力によって前記副冷媒通路を開閉するものである請求項1に記載の膨張弁。
  3. 前記絞り弁体は、前記第1通路面積を変化させる第1絞り弁体(221)、および前記第2通路面積を変化させる第2絞り弁体(222)を有し、
    前記第1絞り弁体(221)および前記第2絞り弁体(222)は、互いに別部材で形成されており、
    前記駆動装置は、前記第1絞り弁体を変位させるものであり、
    前記差圧応動機構は、前記第2絞り弁体に対して荷重を作用させるものである請求項1または2に記載の膨張弁。
  4. 前記一方の通路面積は、前記第2通路面積であり、
    前記第1絞り弁体は、前記第1冷媒通路側から前記第1絞り部へ近づくことによって前記第1通路面積を縮小させるものであり、
    前記第2絞り弁体は、前記第2冷媒通路側から前記第2絞り部へ近づくことによって前記第2通路面積を縮小させるものである請求項3に記載の膨張弁。
  5. 前記機構側駆動力を前記通路開閉弁に伝達する連結部材(242)を備え、
    前記差圧応動部材には、前記連結部材が当接する当接部(240a)が形成されており、
    前記連結部材は、前記当接部に当接している際に前記機構側駆動力を前記第2絞り弁体に伝達するものである請求項4に記載の膨張弁。
  6. 前記一方の通路面積は、前記第1通路面積であり、
    前記絞り弁体は、前記絞り通路内に配置されており、前記第1絞り部へ近づくことによって前記第1通路面積を縮小させるとともに、前記第2絞り部へ近づくことによって前記第2通路面積を縮小させるものである請求項1または2に記載の膨張弁。
JP2016200938A 2016-10-12 2016-10-12 膨張弁 Active JP6634998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200938A JP6634998B2 (ja) 2016-10-12 2016-10-12 膨張弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200938A JP6634998B2 (ja) 2016-10-12 2016-10-12 膨張弁

Publications (2)

Publication Number Publication Date
JP2018063071A JP2018063071A (ja) 2018-04-19
JP6634998B2 true JP6634998B2 (ja) 2020-01-22

Family

ID=61967660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200938A Active JP6634998B2 (ja) 2016-10-12 2016-10-12 膨張弁

Country Status (1)

Country Link
JP (1) JP6634998B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142668U (ja) * 1982-03-19 1983-09-26 三菱重工業株式会社 ヒ−トポンプにおける冷媒制御装置
JP4057379B2 (ja) * 2002-08-30 2008-03-05 株式会社不二工機 電気式膨張弁
JP2005265230A (ja) * 2004-03-17 2005-09-29 Tgk Co Ltd 双方向膨張装置
JP3145048U (ja) * 2008-07-11 2008-09-25 株式会社鷺宮製作所 電動膨張弁及び冷凍サイクル
JP5488185B2 (ja) * 2010-05-10 2014-05-14 株式会社デンソー 車両用空調装置
JP5740587B2 (ja) * 2011-05-13 2015-06-24 株式会社テージーケー 複合弁

Also Published As

Publication number Publication date
JP2018063071A (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6794964B2 (ja) 冷凍サイクル装置
JP6011507B2 (ja) 冷凍サイクル装置
US10493818B2 (en) Refrigeration cycle device
JP6528733B2 (ja) エジェクタ式冷凍サイクル
US10538138B2 (en) Air conditioning device for vehicle
WO2014010178A1 (ja) 冷凍サイクル装置
CN109642756B (zh) 制冷循环装置
WO2015111379A1 (ja) 冷凍サイクル装置
JP6708161B2 (ja) エジェクタ式冷凍サイクル
JP2018118540A (ja) 冷凍サイクル装置
WO2018088034A1 (ja) 冷凍サイクル装置
JP6561922B2 (ja) 統合弁
JP6720934B2 (ja) エジェクタモジュール
JP6634998B2 (ja) 膨張弁
JP6642297B2 (ja) エジェクタ式冷凍サイクル
JP6669033B2 (ja) エジェクタ式冷凍サイクル
JP6720932B2 (ja) エジェクタ式冷凍サイクル
JP6699460B2 (ja) 冷凍サイクル装置
US10495350B2 (en) Ejector-type refrigeration cycle
US10442274B2 (en) Ejector refrigeration cycle device and low outside temperature operation thereof
JP4835296B2 (ja) エジェクタ式冷凍サイクル
WO2018088033A1 (ja) 冷凍サイクル装置
US20170225543A1 (en) Ejector-type refrigeration cycle
JP6183223B2 (ja) ヒートポンプサイクル
JP2017072290A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R151 Written notification of patent or utility model registration

Ref document number: 6634998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250