JP6634192B2 - トンネル覆工コンクリートにおけるケーブル配管類の埋設構造 - Google Patents

トンネル覆工コンクリートにおけるケーブル配管類の埋設構造 Download PDF

Info

Publication number
JP6634192B2
JP6634192B2 JP2015203305A JP2015203305A JP6634192B2 JP 6634192 B2 JP6634192 B2 JP 6634192B2 JP 2015203305 A JP2015203305 A JP 2015203305A JP 2015203305 A JP2015203305 A JP 2015203305A JP 6634192 B2 JP6634192 B2 JP 6634192B2
Authority
JP
Japan
Prior art keywords
tunnel
lining concrete
heat exchange
cable
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015203305A
Other languages
English (en)
Other versions
JP2017075487A (ja
Inventor
洋一 守屋
洋一 守屋
厚 武田
厚 武田
吉田 公宏
公宏 吉田
賢一 安藤
賢一 安藤
岡本 章司
章司 岡本
和稔 杉山
和稔 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Mitsubishi Materials Techno Corp
Original Assignee
Obayashi Corp
Mitsubishi Materials Techno Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Mitsubishi Materials Techno Corp filed Critical Obayashi Corp
Priority to JP2015203305A priority Critical patent/JP6634192B2/ja
Publication of JP2017075487A publication Critical patent/JP2017075487A/ja
Application granted granted Critical
Publication of JP6634192B2 publication Critical patent/JP6634192B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

本発明は、設備配管や通信ケーブルといったケーブル配管類をトンネルに沿って敷設する際に適用されるトンネル覆工コンクリートにおけるケーブル配管類の埋設構造及び方法に関する。
エアコン、冷蔵庫、冷凍庫等に用いられているヒートポンプは、大気等を熱源とし、該熱源との間で熱を移動させることで、加熱や暖房あるいは冷却や冷房を行う技術であり、エネルギー効率に優れCO2排出量も削減できることから、住宅やオフィスをはじめ、さまざまな産業施設に広く利用されている。
ここで、ヒートポンプの熱源は、冷房時であれば低い温度が、暖房時であれば高い温度がそれぞれ望ましいが、夏期は屋外温度が高くなり、冬期は低くなるため、大気を熱源とする場合には、熱効率を上げるにも限度がある。
このような状況下、最近では、ヒートポンプの熱源として地中熱を利用するケースが増えてきた。すなわち、深さ10〜15mの地中温度は年間を通してほぼ一定であり、夏期には大気温度よりも低く、冬期には高くなるため、地中熱を熱源とすることで、熱効率に優れたヒートポンプシステムを実現することができる。
特開2003−176698号公報 特開2008−175562号公報
地中熱利用ための熱交換方式としては、従来、ボーリングマシンを用いて孔井を削孔し該孔井内に熱交換器を挿入するいわゆるボアホール方式や、熱交換器が埋設された熱交換杭を用いる基礎杭方式、あるいは地盤内に水平敷設する水平方式などが開発され実用化されている。
しかしながら、上述した熱交換方式は、熱交換器を設置するためのスペースを地盤内や杭内に別途確保する必要があるとともに、季節の温度変動が少ないという利点を生かすためには、上述したように10〜15mの深さまで地盤を掘削しなければならないため、経済性の観点では、さらなる改良の余地があった。
また、上述の課題を解決すべく、本出願人らは、トンネルを利用して熱交換器としての熱交換用パイプを配置できないかに着眼し研究開発を開始したが、かかる構成が新規な構造であるがゆえに、その施工方法については別途開発する必要があり、特に、トンネル本体工事と干渉することなく、なおかつトンネル本体工事と同時進行で熱交換用パイプを敷設することができる施工方法が求められていた。
本発明は、上述した事情を考慮してなされたもので、熱交換器の設置コストを低減可能なトンネル覆工コンクリートにおけるケーブル配管類の埋設構造を提供することを目的とする。
上記目的を達成するため、本発明に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造は請求項1に記載したように、トンネル空間の地山内面が被覆されるように該地山内方に配置された覆工コンクリートにケーブル配管類をトンネル軸線に沿って埋設したトンネル覆工コンクリートにおけるケーブル配管類の埋設構造において、
前記ケーブル配管類を、ヒートポンプの熱媒が循環する熱交換用パイプとするとともに、前記熱交換用パイプを共同溝に延設したものである。
また、本発明に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造は、前記熱交換用パイプを、前記共同溝に敷設された既存の熱交換用パイプを介して、地上に設置されたオフィスビル又は工場に延設したものである。
本発明
本発明に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造においては、トンネル空間の覆工コンクリートにケーブル配管類を埋設するにあたり、該ケーブル配管類を、ヒートポンプの熱媒が循環する熱交換用パイプとしてある。
このようにすると、地表面から10m〜15m以上の深さに構築されたトンネルであれば、トンネル空間を取り囲む地山は、地中温度が年間を通してほぼ一定であって、夏期には大気温度よりも低く、冬期には高くなるため、これを熱源として利用することにより、熱効率に優れたヒートポンプシステムを実現することができる。
また、トンネルの覆工コンクリートに埋設すれば足りるため、地中熱利用のためだけの構造を専用に構築する必要がなくなり、熱効率に優れたヒートポンプシステムを経済的に有利な形で構築することも可能となる。
また、熱交換用パイプは、覆工コンクリートに埋設される形で敷設されるため、トンネル内で火災や爆発が生じたときにも、その機能を確実に維持することができる。
本発明が適用されるトンネルは、トンネル空間を取り囲む地山の地中温度が、ヒートポンプの熱源に用いるという観点で見た場合に年間を通してほぼ一定であり、なおかつトンネル空間の地山内面が覆工コンクリートで覆われた構造である限り、どのようなトンネルにも適用が可能であって、高速道路や地下鉄といった車両交通用途をはじめ、洪水調節や共同溝など、さまざまな用途のものが対象となる。
トンネル空間は、掘削形成後にその地山内方に覆工コンクリートが構築されることを妨げるものでない限り、任意の形式で掘削形成することが可能であって、シールドジャッキによって内型枠から反力をとる形で前進し、あるいはグリッパーによって側方地山から反力をとる形で前進しつつ、それらの先端に設けられたカッターで切羽を切削する掘削機で形成されたものが包摂され、シールドマシン、TBMといった呼称も不問である。また、山岳トンネルに適用される発破工法で掘削形成されたものでもかまわない。
熱交換用パイプをトンネル軸線に沿って埋設するとは、トンネル軸線に平行に埋設することだけを意味するものではなく、トンネル軸線廻りに螺旋状に埋設する場合も包摂される。
熱交換用パイプは、ヒートポンプの熱媒を循環させることができる限り、その材質は任意であるが、例えばポリエチレン(PE管)を用いる構成が典型例となる。
熱交換用パイプは、トンネル軸線に沿って覆工コンクリートに埋設される限り、具体的な埋設形態は任意であるが、該熱交換用パイプを、並列配置された一対のパイプ本体で構成するとともに、該一対のパイプ本体のうち、一方の基端側から熱媒が流入して他方の基端側に戻るように、それらの各端部を互いに連通接続した構成が埋設形態の典型例となる。
熱交換用パイプは、ヒートポンプの構成機器がトンネル空間から離れた場所にあるのであれば、その場所まで延設する必要があるが、延設経路は任意であり、例えば地上に連通する立坑を新規に構築し該立坑を介して地上まで延設するようにしてもよいし、トンネル工事完了後も地下鉄の駅舎や換気口として残置される立坑を介して地上まで延設するようにしてもよい。
ここで、本発明においては、熱交換用パイプを共同溝に延設するものとする。
かかる構成とすれば、共同溝に敷設された既存の熱交換用パイプを介して、地上に設置されたオフィスビルや工場に延設することができるとともに、上述した既存の熱交換用パイプに支障が生じたときにその補修を行う間の予備配管として本発明の熱交換用パイプを利用することも可能となる。
参考発明
参考発明に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設方法においては、内型枠及び妻型枠で囲まれたコンクリート打設空間にフレッシュコンクリートを充填して覆工コンクリートを構築するにあたり、フレッシュコンクリートの充填前又は充填中に、妻型枠に設けられた送出用開口を介して所定のケーブル配管類をトンネル軸線に沿うようにコンクリート打設空間に送出する。
このようにすると、実質的に覆工コンクリートの断面欠損とはならない範囲でケーブル配管類を該覆工コンクリートに埋設するのであれば、トンネル本体工事と干渉することなく、なおかつトンネル本体工事と同時進行で敷設することが可能となる。
本発明が適用されるトンネルは、高速道路や地下鉄といった車両交通用途をはじめ、洪水調節や共同溝など、さまざまな用途のものが包摂される。
トンネル空間は、掘削形成後、内型枠及び妻型枠で囲まれたコンクリート打設空間にフレッシュコンクリートを打設して覆工コンクリートが構築される限り、任意の形式で掘削形成することが可能であって、シールドジャッキによって内型枠から反力をとる形で前進し、あるいはグリッパーによって側方地山から反力をとる形で前進しつつ、それらの先端に設けられたカッターで切羽を切削する掘削機で形成される場合が包摂され、シールドマシン、TBMといった呼称も不問である。また、山岳トンネルに適用される発破工法で掘削形成される構成でもかまわない。
ケーブル配管類をトンネル軸線に沿って埋設するとは、トンネル軸線に平行に埋設することだけを意味するものではなく、トンネル軸線廻りに螺旋状に埋設する場合も包摂される。
ケーブル配管類は、さまざまな用途に用いられるケーブルや配管がすべて包摂されるものであって、ケーブル用途としては、通信用、電力供給用、計測用(特にトンネル本体周囲の地中変位計測用)などから、配管用途としては、ケーブル敷設用、水、熱媒、ガスといった流体搬送用、機器設置用(特にトンネル本体周囲の地中変位を計測する傾斜計の設置用)、トンネル本体周囲の地山の水抜き用などからそれぞれ適宜選択することができるし、構成材料も任意であって、ケーブル材料としては、メタル、光ファイバー等から、配管材料としては、硬質ポリ塩化ビニル(VP管、VU管)、ポリエチレン(PE管)、鋳鉄(鋳鉄管)、ステンレス(ステンレス鋼管)などからそれぞれ適宜選択することができる。
ここで、ケーブル配管類をヒートポンプの熱交換用パイプとしたならば、覆工コンクリートを構築するためのフレッシュコンクリートの打設と並行して熱交換用パイプを敷設することができるため、熱効率に優れたヒートポンプシステムを経済的に有利な形で構築することが可能となる。
ケーブル配管類は、これが硬質材料で形成された配管であっても、順次継ぎ足しながら押し出すことで、コンクリート打設空間への送出が可能であるが、巻取りリールに巻取り可能な軟質材料の場合には、トンネル空間を筒状のテール部を有するトンネル掘削機で掘削するとともに、該テール部の内側空間にケーブル配管類が巻回された巻取りリールを配置し、該巻取りリールからケーブル配管類を巻き出しながら上述の送出工程を行うようにしてもよい。
[各発明に共通する事項]
シールドマシンを用いて掘削を行いつつ、該シールドマシンのテール部で覆工コンクリートの構築を行う工法としてECL工法(Extruded Concrete Lining Method)が、同じくシールドマシンを用いて掘削を行いつつ、該シールドマシンのテール部で一次覆工コンクリートの構築を行い、その後、二次覆工コンクリートを構築する工法としてSENS工法がそれぞれ知られているが、上述した本発明参考発明においては、それらの工法を用いてトンネル空間の形成及び覆工コンクリートの構築が可能である。
なお、本発明に係る覆工コンクリートは、トンネル空間の地山内面が被覆されるように該地山内方に配置される必要があるが、地山内面を直接的に被覆する場合のみならず、所定の構造体を介して地山内面を間接的に被覆する場合も包摂されるし、参考発明の覆工コンクリートについても、トンネル空間の地山内面をどのように被覆するかは任意であって、直接的に被覆する場合のみならず、所定の構造体を介して間接的に被覆する場合も包摂される。
ここで、直接被覆の場合の覆工コンクリートの具体例としては、ECL工法における一次覆工コンクリートやSENS工法における一次覆工コンクリートなどが該当し、間接被覆の場合の覆工コンクリートの具体例としては、NATM工法等の山岳工法における二次覆工コンクリートやSENS工法における二次覆工コンクリートなどが該当する。
また、間接被覆の場合における上述した構造体とは、NATM工法における吹付けコンクリート、別の山岳工法における鋼製支保工、SENS工法における一次覆工コンクリートなどが該当する。
本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造を示した斜視図。 本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設方法の実施状況を示した図であり、(a)は縦断面図、(b)は部分斜視図。 変形例に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設方法の実施状況を示した縦断面図。 本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造1の適用例を示した図であり、(a)は斜視図、(b)及び(c)は縦断面図。 本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造1の別の適用例を示した縦断面図。
以下、本発明に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造及び方法の実施の形態について、添付図面を参照して説明する。
図1は、本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造を示した斜視図である。同図に示すように、本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造1は、トンネル空間2における地山3の内面4に覆工コンクリート8を構築するとともに該覆工コンクリートにケーブル配管類としての熱交換用パイプ10をトンネル軸線と平行になるように埋設してなる。
熱交換用パイプ10は、ポリエチレン製のパイプ(PE管)で構成してあって、その内部にヒートポンプの熱媒が流れるとともに、該熱媒が覆工コンクリート8を介して周囲の地山3と熱交換するようになっており、周囲の地山3は、ヒートポンプの熱源として機能する。
熱媒は、伝熱可能な流体であれば何でもよいが、例えば水や不凍液を用いることが可能である。
ここで、熱交換用パイプ10は、一対のパイプ本体5,5を並列に配置した上、それらの一方の基端側(図示せず)から上述の熱媒が流入して他方の基端側(図示せず)に戻るように、それらの各端部をU字状の連通接続部6を介して互いに連通接続してある。
本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造1を構築するには、トンネル掘削機としてのシールドマシン(図示せず)によって地山3にトンネル空間2を掘削形成する一方、図2に示すようにトンネル空間2の地山内面4から離隔するように内型枠21を建て込むとともに該内型枠の先頭側にそれに直交するように地山内面4に向けて環状の妻型枠22を配置し、これら内型枠21及び妻型枠22と地山内面4との間に拡がるコンクリート打設空間にフレッシュコンクリート23を充填しつつ、円筒状をなすシールドマシンのテール部24に配置されたプレスジャッキ25で妻型枠22をトンネル軸線方向に加圧することで、図1で説明した覆工コンクリート8を構築する。
フレッシュコンクリート23は、内型枠21に注入口を設けて該注入口から充填するようにしてもよいし、妻型枠22に同じく注入口を設けて該注入口から充填するようにしてもよい。
なお、本実施形態では、ECL工法を用いて覆工コンクリート8を構築することを前提に説明を行っているので、従来公知の工程については適宜説明を省略する。
フレッシュコンクリート23を充填する際には、その充填前又は充填中に、妻型枠22に設けられた送出用開口としての挿通孔26,26にパイプ本体5,5をそれぞれ挿通し、該挿通孔のシールドマシン側に設けられた止水部27,27でフレッシュコンクリートのシールドマシン側への流入を防止しつつ、パイプ本体5,5をトンネル軸線に沿うようにコンクリート打設空間に送出する。
ここで、パイプ本体5,5は、テール部24の内側空間に配置された巻取りリール28,28にそれぞれ巻回してあるので、該パイプ本体を巻取りリール28,28からそれぞれ巻き出しつつ、上述した送出を行えばよい。
以下、シールドマシンのテール部24に配置されたシールドジャッキ29を、内型枠21から反力をとりつつ作動させることでシールドマシンを前進させては、内型枠21をその先頭側で順次継ぎ足して上述したフレッシュコンクリート23の充填及びパイプ本体5,5の送出を行う手順を繰り返し行う。
一方、パイプ本体5,5の各端部が突出するように、かつ内型枠21を脱型した状態ではトンネル空間2に露出するように、覆工コンクリート8の内面に作業用凹部30を予め形成しておき、コンクリートの強度発現に応じて内型枠21を適宜脱型した後、作業用凹部30内でパイプ本体5,5の各端部を連通接続部6で連通接続し、熱交換用パイプ10とする。
作業用凹部30に残された空隙については、モルタルやコンクリートを適宜充填することで該空隙を埋めればよい。
以上説明したように、本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設構造1によれば、トンネル空間2の覆工コンクリート8に熱交換用パイプ10を埋設するようにしたので、地表面から10m〜15m以上の深さに構築されたトンネルであれば、トンネル空間2を取り囲む地山3は、地中温度が年間を通してほぼ一定であって、夏期には大気温度よりも低く、冬期には高くなるため、これを熱源として利用することにより、熱効率に優れたヒートポンプシステムを実現することができる。
また、トンネルの覆工コンクリート8に埋設すれば足りるため、地中熱利用のためだけの構造を専用に構築する必要がなくなり、熱効率に優れたヒートポンプシステムを経済的に有利な形で構築することも可能となる。
さらに、熱交換用パイプ10は、覆工コンクリート8に埋設される形で敷設されるため、トンネル内で火災や爆発が生じたときにも、その機能を確実に維持することができる。
また、本実施形態に係るトンネル覆工コンクリートにおけるケーブル配管類の埋設方法によれば、フレッシュコンクリート23の充填前又は充填中に、妻型枠22に設けられた挿通孔26,26を介してパイプ本体5,5をトンネル軸線に沿うようにコンクリート打設空間に送出するようにしたので、実質的に覆工コンクリート8の断面欠損とはならない範囲であれば、トンネル本体工事と干渉することなく、なおかつトンネル本体工事と同時進行で熱交換用パイプ10の敷設が可能となる。
本実施形態では、熱交換用パイプ10を、パイプ本体5,5とそれらの端部を連通接続するU字状の連通接続部6とで構成することにより、熱媒を、ほぼ同一のトンネル断面位置で流出入させるようにしたが、本発明の熱交換用パイプはかかる構成に限定されるものではなく、上述の構成に代えて、熱交換用パイプを直管で構成し、異なるトンネル断面位置で熱媒を流出入させるようにしてもかまわない。
また、本実施形態では、本発明に係るケーブル配管類の埋設方法を熱交換用パイプ10に適用した例で説明したが、本発明に係るケーブル配管類の埋設方法は、熱交換用パイプ10に限定されるものではなく、該熱交換用パイプに代えて、水を搬送する給水管やガスを搬送するガス管を覆工コンクリート8に埋設するようにしてもよいし、流体搬送用に代えて、ケーブル敷設用や機器設置用、あるいは地山3の水抜き用の配管としてもよい。特に、機器設置用の配管としては、トンネル空間2周囲の地中変位を計測する傾斜計を設置する配管とすることができる。
さらには、配管ではなく、通信用ケーブル、電力供給用ケーブル、計測用ケーブルといった各種ケーブルを上述した実施形態と同様な手順で覆工コンクリート8に埋設するようにしてもよい。特に、計測用ケーブルとしては、トンネル空間2周囲の地中変位を計測する光ファイバーケーブルとすることができる。
また、本実施形態では、本発明に係るケーブル配管類の埋設方法をECL工法を用いた手順で説明したが、これに代えて、SENS工法を用いる構成としてもかまわないし、その場合、ケーブル配管類が埋設される対象を一次覆工コンクリートとしてもよいし、二次覆工コンクリートとしてもかまわない。さらには、従来公知の山岳トンネル工法における二次覆工コンクリートに適用することも可能である。
また、本実施形態では、トンネル空間の掘削形成を、内型枠から反力をとる形でシールドマシンを前進させる構成としたが、これに代えてグリッパーによって側方地山から反力をとる形としてもかまわない。
また、本実施形態及びその変形例では、本発明に係るケーブル配管類の埋設方法をシールドマシンその他のトンネル掘削機と関連させて説明したが、本発明に係るケーブル配管類の埋設方法は、妻型枠に設けられた送出用開口を介して所定のケーブル配管類をトンネル軸線に沿うようにコンクリート打設空間に送出すれば足りるものであって、送出元がトンネル掘削機である必要はない。
図3は、SENS工法で構築された一次覆工コンクリート、あるいは山岳工法の一種であるNATM工法で構築された吹付けコンクリートに重ねて二次覆工コンクリートを構築する場合に該二次覆工コンクリートにケーブル配管類を埋設する例を示したものであり、地山3の内面4に直接構築するのではなく、該内面に構築された一次覆工コンクリート(又は吹付けコンクリート)31の上に覆工コンクリートとしての二次覆工コンクリート32を重ねる点を除いては、上述の実施形態とその施工手順や作用効果はほぼ同様であるので、ここではその説明を省略する。
また、本実施形態では特に言及しなかったが、熱交換用パイプ10が接続されるヒートポンプの構成機器、冷暖房設備であれば圧縮機等が内蔵された室内機をどこに設置するかは任意であって、例えばオフィスビル、マンション、生産施設、地下鉄の駅舎などに設置することが可能である。例えば、適用対象となるトンネルが地下鉄用途の場合であれば、熱交換用パイプ10を地下鉄の駅舎に設置されたヒートポンプの室内機に接続すればよい。
ここで、地上に設置されたヒートポンプの構成機器に熱交換用パイプ10を接続する場合における該熱交換用パイプの延設経路は任意であり、例えば図4(a)に示すように、トンネル工事完了後に地下鉄の駅舎や換気口として残置される立坑41を介して地上まで延設するようにしてもよいし、同図(b)に示すように、トンネル工事のために形成された導坑42をさらに利用して熱交換用パイプ10を地上まで延設するようにしてもよい。さらには、同図(c)に示すように地上に連通する立坑43を新規に構築し該立坑を介して熱交換用パイプ10を地上まで延設することも可能である。
また、図5に示すように、熱交換用パイプ10を共同溝51の内部空間52に延設しておけば、共同溝51が既に連通されているオフィスビル53であれば、あらたな管路を地中に構築せずとも、共同溝51を介して熱媒を容易に循環させることが可能となる。
また、本実施形態では、熱交換用パイプ10をトンネル軸線と平行になるように配置したが、これに代えて、トンネル軸線廻りに螺旋状に配置するようにしてもよい。かかる構成によれば、覆工コンクリート8を介した熱交換用パイプ10と周辺地山3との接触長さが単位トンネル長当たりで大きくなり、熱交換効率を高めることが可能となる。
また、本実施形態では、熱交換用パイプ10を構成するパイプ本体5,5を、巻取りリール28,28に巻回しておき、これを巻き出すことで、該パイプ本体を送り出すようにしたが、必ずしも巻取りリール28,28に巻回しておく必要はないし、硬質材料で構成された配管を送り出すのであれば、これらを順次継ぎ足しながら押し出すことで、コンクリート打設空間へ送り出すようにしてもよい。
1 トンネル覆工コンクリートにおけるケーブル配管類の埋設構造
2 トンネル空間
3 地山
4 地山3の内面
5 パイプ本体
6 連通接続部
8 覆工コンクリート
10 熱交換用パイプ(ケーブル配管類)
21 内型枠
22 妻型枠
23 フレッシュコンクリート
26 挿通孔(送出用開口)
28 巻取りリール
32 二次覆工コンクリート(覆工コンクリート)
51 共同溝
52 共同溝51の内部空間

Claims (2)

  1. トンネル空間の地山内面が被覆されるように該地山内方に配置された覆工コンクリートにケーブル配管類をトンネル軸線に沿って埋設したトンネル覆工コンクリートにおけるケーブル配管類の埋設構造において、
    前記ケーブル配管類を、ヒートポンプの熱媒が循環する熱交換用パイプとするとともに、該熱交換用パイプを共同溝に延設したことを特徴とするトンネル覆工コンクリートにおけるケーブル配管類の埋設構造。
  2. 前記熱交換用パイプを、前記共同溝に敷設された既存の熱交換用パイプを介して、地上に設置されたオフィスビル又は工場に延設した請求項1記載のトンネル覆工コンクリートにおけるケーブル配管類の埋設構造。
JP2015203305A 2015-10-14 2015-10-14 トンネル覆工コンクリートにおけるケーブル配管類の埋設構造 Active JP6634192B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203305A JP6634192B2 (ja) 2015-10-14 2015-10-14 トンネル覆工コンクリートにおけるケーブル配管類の埋設構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203305A JP6634192B2 (ja) 2015-10-14 2015-10-14 トンネル覆工コンクリートにおけるケーブル配管類の埋設構造

Publications (2)

Publication Number Publication Date
JP2017075487A JP2017075487A (ja) 2017-04-20
JP6634192B2 true JP6634192B2 (ja) 2020-01-22

Family

ID=58550075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203305A Active JP6634192B2 (ja) 2015-10-14 2015-10-14 トンネル覆工コンクリートにおけるケーブル配管類の埋設構造

Country Status (1)

Country Link
JP (1) JP6634192B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113760A (zh) * 2018-07-06 2019-01-01 江苏华威线路设备集团有限公司 一种用于快速安装盾构隧道机电设备管线的环保捷装工法
WO2020208456A1 (en) 2019-04-10 2020-10-15 Ecole Polytechnique Federale De Lausanne (Epfl) Heat exchanger module and methods of using thereof
CN111005737B (zh) * 2019-12-28 2021-07-23 上海建旗建筑工程设计有限公司 一种隧道形式预应力管幕结构及施工方法
CN113482672B (zh) * 2021-07-22 2024-03-12 中国路桥工程有限责任公司 寒区隧道防冻保温层及基于该保温层的保温体系

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125495U (ja) * 1980-02-27 1981-09-24
JPS60123700A (ja) * 1983-09-26 1985-07-02 株式会社熊谷組 場所打ちライニングシ−ルド工法の覆工コンクリ−ト内鉄筋組立方法
JP2767639B2 (ja) * 1989-12-08 1998-06-18 西松建設株式会社 シールドトンネル場所打ちコンクリートのプレストレスライニング工法およびその装置
JP2663410B2 (ja) * 1991-09-13 1997-10-15 東京電力株式会社 トンネルのライニング打継部構造
JP2603301Y2 (ja) * 1993-03-22 2000-03-06 株式会社フジクラ トンネル内路面凍結防止装置
JP2003176698A (ja) * 2001-12-11 2003-06-27 Hayakawa Rubber Co Ltd トンネル構造の補修工法及びトンネル構造
JP4535981B2 (ja) * 2005-10-14 2010-09-01 三菱マテリアルテクノ株式会社 トンネル熱交換用パネル及びトンネル熱利用熱交換システム
JP2008175562A (ja) * 2007-01-16 2008-07-31 Central Nippon Expressway Co Ltd 歪み計測システム
JP4931777B2 (ja) * 2007-11-21 2012-05-16 株式会社奥村組 トンネル覆工コンクリートの打設管理方法
KR20090054856A (ko) * 2007-11-27 2009-06-01 에코랜드 주식회사 에너지터널
JP5063669B2 (ja) * 2009-12-02 2012-10-31 三菱マテリアルテクノ株式会社 トンネル工法とその熱交換路固定具
WO2013123586A1 (en) * 2012-02-22 2013-08-29 The Royal Institution For The Advancement Of Learning/Mcgill University Method of extracting energy from a cavity created by mining operations
JP5997574B2 (ja) * 2012-10-17 2016-09-28 鹿島建設株式会社 トンネル冠部覆工コンクリート打設システム及び方法

Also Published As

Publication number Publication date
JP2017075487A (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6634192B2 (ja) トンネル覆工コンクリートにおけるケーブル配管類の埋設構造
JP4535981B2 (ja) トンネル熱交換用パネル及びトンネル熱利用熱交換システム
JP6680505B2 (ja) シールドトンネルにおけるケーブル配管類の埋設構造及び方法
JP2016160717A (ja) シールドトンネル施工の凍結方法、及び凍結装置
JP2011117171A (ja) トンネル工法とその熱交換路固定具
JP2000002084A (ja) トレンチを設けることなく、地中にパイプ構造物を敷設するための方法および装置
CN210380191U (zh) 一种轻量化电力通信组合预制缆线通道
CN210106788U (zh) 一种圆形沉井的顶管结构
CN210370655U (zh) 一种顶管机
CN204287567U (zh) 光纤套管支管配件
CN111502698B (zh) 高海拔隧道施工方法
JP5780663B1 (ja) 既製杭内部への採熱管設置方法
CN107023305B (zh) 地下连接通道的单元化施工方法
KR101025071B1 (ko) 연속압출공법을 이용한 지중터널 및 그의 시공방법
Bascom et al. Technical considerations for applying trenchless technology methods to underground power cables
FI85431B (fi) Ledningskonstruktion foer en eldistributions- och/eller informationsfoerbindelse.
CN214741349U (zh) 盾构机定推城市隧道防止管片上浮的管片结构
CN213016343U (zh) 一种适用于顶管施工的管道及电力隧道
CN214657232U (zh) 用于电缆工井远期扩建预留孔的封孔结构
CN218154881U (zh) 利用lng储罐桩基安装换热管的结构
CN208508482U (zh) 低成本的市政道路电缆预埋用砌砖
CN210264721U (zh) 隧道结构
CN117691538A (zh) 一种非开挖电缆排管保护装置及其使用方法
Murray et al. HDD Utilized to Complete Key Crossings for Transmission Lines from New Woodbridge Energy Center
CN113047342A (zh) 用于电缆工井远期扩建预留孔的封孔结构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191214

R150 Certificate of patent or registration of utility model

Ref document number: 6634192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250