JP6632937B2 - ガスクラスタービーム装置 - Google Patents

ガスクラスタービーム装置 Download PDF

Info

Publication number
JP6632937B2
JP6632937B2 JP2016126280A JP2016126280A JP6632937B2 JP 6632937 B2 JP6632937 B2 JP 6632937B2 JP 2016126280 A JP2016126280 A JP 2016126280A JP 2016126280 A JP2016126280 A JP 2016126280A JP 6632937 B2 JP6632937 B2 JP 6632937B2
Authority
JP
Japan
Prior art keywords
electrode
gas cluster
gas
unit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016126280A
Other languages
English (en)
Other versions
JP2018005978A (ja
Inventor
登木口 克己
克己 登木口
勝巳 花園
勝巳 花園
泉 潟岡
泉 潟岡
Original Assignee
アールエムテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アールエムテック株式会社 filed Critical アールエムテック株式会社
Priority to JP2016126280A priority Critical patent/JP6632937B2/ja
Publication of JP2018005978A publication Critical patent/JP2018005978A/ja
Application granted granted Critical
Publication of JP6632937B2 publication Critical patent/JP6632937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

本発明は、ガスクラスタービーム装置に関する。
ガスクラスタービーム装置は、ガスクラスター(気体の原子・分子の集合体)のビーム(ガスクラスタービーム、以下、「GCB」と略す)を処理対象(基板、金型等)に照射する装置である。処理対象にGCBを照射することによって、処理対象の表面を平滑化できる。
ガスクラスターは、一般に、イオン化され、ガスクラスターイオン(GCI)となり、加速されて、ガスクラスターイオンビーム(以下、「GCIB」と略す)として処理対象に照射される。
ここで、GCIの生成時には、モノマーイオン(気体の原子・分子がクラスター化されず、そのままイオン化したもの)も生成されるのが通例である。すなわち、GCIとモノマーイオンの混合体が生成される。このため、この混合体からモノマーイオンを除外する(逆に言えば、GCIを選択する)必要がある。処理対象にモノマーイオンが照射されると、その表面及び表面深さ方向の浅い領域に多量の欠陥(結晶欠陥等)が発生し、その表面品質が低下する。
また、GCIBは、一般に、イオンビームに比べてビーム空間電荷量が大きく、発散し易い。このため、処理効率を向上するために、ビームを収束することが好ましい。
この結果、ガスクラスタービーム装置では、一般に、モノマーイオン除外(GCI選択)のための機構やビーム収束のための機構およびビーム走査のための機構等が直列に配置され、そのコンパクト化は必ずしも容易ではない。特に、100μAを越える大電流のGCIBを照射できるコンパクトなガスクラスタービーム装置の実現は困難であった。
特許第3582885号明細書 特許第3770970号明細書 米国特許出願公開第2012/0045615A1号明細書
山田 公 編著「クラスターイオンビーム 基礎と応用」日刊工業新聞社 2006年10月
本発明は、モノマーイオンの除去とビームの収束の双方を実行できる機構を設けることでコンパクト化を図ったガスクラスタービーム装置を提供することを目的とする。
実施形態のガスクラスタービーム装置は、生成部、イオン化部、加速部、第1〜第3の電極、磁石、電源、および照射部を備える。生成部は、ガスクラスターを生成する。イオン化部は、前記ガスクラスターをイオン化して、ガスクラスターイオンを生成する。加速部は、ガスクラスターイオンを加速して、ガスクラスターイオンを含むビームを出射する。第1の電極は、前記ビームが通過する略円柱状の内部空間を有する。磁石は、前記内部空間内に磁場を印加する。第2、第3の電極は、前記第1の電極の入口側、出口側にそれぞれ離間して配置され、前記ビームが通過する略円形の貫通孔をそれぞれ有する。電源は、前記第1の電極と前記第2、第3の電極の間に直流電圧を印加する。照射部には、前記第1〜第3の電極を通過したビームが照射される対象が配置される。
本発明によれば、ガスクラスタービーム装置のコンパクト化が容易となる。
第1の実施形態に係るガスクラスタービーム装置10を表す模式図である。 磁場フィルター51の近傍を表す側面図および断面図である。 第2の実施形態に係るガスクラスタービーム装置10aを表す模式図である。 第3の実施形態に係るガスクラスタービーム装置10bを表す模式図である。 第4の実施形態に係るガスクラスタービーム装置10cを表す模式図である。 電磁石93の近傍を表す側面図および断面図である。
以下,図1〜6を参照して実施形態を説明する。ただし、これらの図は、種々の実施形態を模式的に示しており、必ずしも寸法通りに描かれてはいない。
(第1の実施形態)
図1は,第1の実施形態に係るガスクラスタービーム装置10を示す。ガスクラスタービーム装置10は、ガスクラスター生成部20,イオン化部30、加速部40,選択・収束部50,照射部60を有する。
ガスクラスタービーム装置10は、真空容器11(11a〜11c)を有し、ガスクラスター生成部20等は、真空容器11内に配置される。具体的には、ガスクラスター生成部20,イオン化部30,加速部40が、ガスクラスター生成・イオン化用の真空容器11aに配置される。選択・収束部50が、ビーム輸送用の真空容器11bに配置される。照射部60が、ビーム照射用の真空容器11cに配置される。
ガスクラスタービーム装置10は、真空容器11(11a〜11c)内を排気する真空排気系12(12a〜12b)、例えば、油拡散ポンプ、ターボ分子ポンプを有する。真空容器11a、11c内はそれぞれ、真空排気系12a、12bによって排気され、真空状態となる。真空容器11bには、真空排気系は直接接続されてはいないが、真空容器11a、11cに接続されているため、真空排気系12a、12bによって間接的に排気され、真空状態となる。
ガスクラスター生成部20は、ノズル21,スキマー22を有し、ガスクラスターを生成し、イオン化部30に送り出す。ガスクラスター生成部20は、ガスクラスターを生成する生成部として機能する。
ノズル21には、圧力調整弁26,ガス配管27を介して、高圧ガスボンベ25が接続される。
高圧ガスボンベ25には、例えば、希ガス(Ar、Ne、He、Kr等)、通常ガス(N、O、CO等)、混合ガス(フッ素(F)を含むガス)が充填される。混合ガスは、例えば、フッ素(F)を含むガスを希ガス(Ar、Ne、He、Kr)で希釈したものである。フッ素(F)を含むガスとして、例えば、SF、NF、CHF、CF、Cが挙げられる。処理対象の基板Sおよび処理内容に応じて、適宜のガス種が選択される。
圧力調整弁26は、ノズル21でのガス圧を調節し、例えば、1気圧以上とできる。
高圧ガスボンベ25から供給されたガス分子(または原子)が、ノズル21を通過することで、その一部がクラスター化する。ガス分子は、ノズル21から真空中に噴出することで、断熱膨張により冷却され、ガスクラスターとなる。この結果、ガスクラスターとガス分子の双方を含む流体が噴出する。
ガスクラスターは、数100〜数1000個のガス分子(または原子)の集合体であり、単分子の質量に集合分子数(クラスターサイズ)を乗じた全質量を有する。
スキマー22は、ノズル21の先端と対向して配置され、生成されたガスクラスターをイオン化部30に送り出す。ノズル21から噴出する流体の中心付近にガスクラスターが多く含まれる。このため、スキマー22によって、噴出する流体の中心付近のみを通過させることによって、ガスクラスターを効率的に送り出せる。
イオン化部30は、熱フィラメント31、円筒陽極32を有し、ガスクラスターをイオン化して、ガスクラスターイオン(GCI)を生成する。
熱フィラメント31は、電源35からの電力(電圧V)によって発熱し、熱電子を放出する。熱フィラメント31は、第4の電極の外部に配置され、熱電子を放出する発熱体として機能する。
円筒陽極32は、熱フィラメント31からの熱電子を加速して、ガスクラスター生成部20から出射されるガスクラスターと衝突させる。円筒陽極32は、例えば、メッシュ(網)状の円筒導体から構成できる。円筒陽極32の内部(イオン化室)をガスクラスターが通過する。円筒陽極32の外部に熱フィラメント31が配置される。円筒陽極32は、ビームが通過する内部空間を有するメッシュ状の第4の電極として機能する。
円筒陽極32と熱フィラメント31の間に、電源36からの電圧Vが印加される。この電圧V(電界)によって、熱電子が加速され、円筒陽極32の網の間を通過して、ガスクラスターと衝突する。ガスクラスターは、電子と衝突することによって、イオン化され、GCIとなる。
ここで、イオン化部30には、ガスクラスター以外にガス分子も存在するため、このガス分子もイオン化され、モノマーイオンとなる。
加速部40は、加速電極41、引出電極42を有し、イオン化部30で生成されたGCIを加速して、ビーム15(ガスクラスターイオンビーム:GCIB)として、選択・収束部50に出射する。加速部40は、ガスクラスターイオンを加速して、ガスクラスターイオンを含むビームを出射する加速部として機能する。
ここで、加速部40には、GCI以外に、モノマーイオンも存在するため、このモノマーイオンも加速される。後述のように、このモノマーイオンは、選択・収束部50で除去される。
加速電極41は、円筒陽極32と電気的に接続され、加速電源43の一端からの正の高電圧(加速電圧V)が印加される。引出電極42は接地される。加速電圧Vは、例えば、数kV〜数10kV(一例として、20kV〜40kV)である。
加速電極41と引出電極42間の電界によって、GCIが加速され、引出電極42の開口からビーム15として引き出される。
加速部40には、閉止弁46、圧力調節弁47、流量調節器48を介して、配管によってガスボンベ45からのガスを供給できる。この結果、加速されたGCIとガスを衝突させて、中性粒子を発生させることができる。なお、この詳細は後述する。
ガスボンベ45には、高圧ガスボンベ25と同様、例えば、希ガス(Ar、Ne、He、Kr等)、通常ガス(N、O、CO等)、混合ガス(フッ素(F)を含むガス)が充填される。混合ガスは、例えば、フッ素(F)を含むガスを希ガス(Ar、Ne、He、Kr)で希釈したものである。フッ素(F)を含むガスとして、例えば、SF、NF、CHF、CF、Cが挙げられる。
このガスは、高圧ガスボンベ25中のガスと同一とできるが、異ならせることも可能である。例えば、高圧ガスボンベ25のガスを所定の希ガスを含む混合ガスとして、ガスボンベ45のガスをその所定の希ガスとすることができる。
なお、ガスボンベ45と高圧ガスボンベ25のガス種を同一とする場合、ガスボンベ45を省略して、高圧ガスボンベ25をノズル21と加速部40の双方へのガスの供給に利用できる。
閉止弁46は、必要に応じて、ガスボンベ45から加速部40へのガスの流入を開始、停止できる。
圧力調節弁47および流量調節器48は、加速部40に供給するガスの圧力、流量を調節する。一般に、加速部40に供給するガス量は、ノズル21に供給するガス量と比べて小さい。ガスのクラスター化に必要なガスの圧力、流量に比べて、GCIとの衝突に必要なガスの圧力、流量は小さいからである。
既述のように、加速部40では、基本的には、GCI(およびモノマイオン)を加速している。
このとき、ガスボンベ45からのガスの供給によって、加速部40内でのガスの圧力(GCIに対するガスの割合(個数比))が大きくなると、加速されたGCIがガス分子と衝突して、解離し、電荷を持たない中性粒子(中性の原子や分子のガス粒子(以下、「中性原子・分子」という)およびガスクラスター(GC)粒子(以下、「中性GC」という))が発生する。
この中性粒子は、例えば、GCIを構成するガス分子(中性原子・分子、例えば、モノマー分子)や細分化されたガスクラスター(中性GC)である。
元のGCIが加速されていることから、これからできた中性粒子(中性原子・分子および中性GC)もある程度の運動量(エネルギー)を有し、通常のモノマー分子やガスクラスターと比べて、高速である。詳しくは、中性原子・分子のエネルギーは、室温での原子、分子の持つエネルギーより大きく、元のGCIが加速によって得た加速エネルギーより小さい。また、中性GCのエネルギーも、ガスクラスター生成部20で形成された室温でのガスクラスター(GC)の持つエネルギーより大きく、元のGCIが加速によって得た加速エネルギーより小さい。
ここで、中性GCと中性原子・分子のエネルギーを比較すると、前者が後者よりも大きい。これは、何れの中性粒子も解離前のGCIとほぼ同一の速度vを有する一方、前者の質量m(原子・分子の個数)が後者よりも大きいからである(一般に、運動エネルギーEは、「(m*v)/2」で表される)。
このため、基板Sに衝突した場合、中性GCは、中性原子・分子より、基板Sの表面との相互作用が大きい。
この中性粒子は、加速されたGCI(および加速されたモノマーイオン)と共にビーム15として、引出電極42の開口から引き出される。
ここで、中性粒子のエネルギーは、加速されたモノマーイオンに比べて、小さい。モノマーイオンは、質量電荷比(質量m、電荷量qの比:m/q)が、小さいため、加速後にガス分子一個当たりで大きなエネルギーを有する。これに対して、GCIは、質量電荷比が大きいため、加速後でのガス分子一個当たりでのエネルギーは小さい。中性粒子は、加速されたGCIから生成されることから、ガス分子一個当たりでのエネルギーは、加速されたGCIに対応し、加速されたモノマーイオンと比べて、小さい。
このように、加速部40では、GCIの加速の他に、加速されたGCIからの中性粒子の生成が行われ、加速されたガスクラスターイオンとガス分子を衝突させて、中性粒子を生成する中性粒子生成部として機能する。
この中性粒子の生成は、ガスボンベ45からのガスの供給の有無(加速部40内でのガス圧)によって、制御できる。
ガスボンベ45からガスを供給しなければ、加速されたGCIとガスの衝突の確率は低く、生成される中性粒子は極めて少ない可能性がある。
一方、ガスボンベ45からのガスの供給量が多ければ、加速されたGCIとガスの衝突の確率が非常に高くなり、加速されたGCIの大部分がガス分子と衝突し、大量の中性粒子が生成される可能性がある。
以上のように、ガスボンベ45からのガスの供給によって、加速部40での中性粒子の生成の有無(および生成量)を切り替えることができる。
ここでは、加速部40内のガス圧を大きくすることで、中性粒子を生成している。これに替えて、あるいはこれと共に、加速部40以降のビーム15の経路上において、加速したGCIをガスと衝突させて、中性粒子を生成してもよい。例えば、ビーム15の経路上にガス室(ガスが供給される空間)を配置して、その中をビーム15が通過すれば、ガス室内で中性粒子が生成される。この場合、ガス室は、加速されたガスクラスターイオンとガス分子を衝突させて、中性粒子を生成する中性粒子生成部として機能する。
選択・収束部50は、加速部40から出射されるビーム15中のモノマーイオンを除去する(GCIを選択する)と共に、ビーム15を収束する。なお、この詳細は後述する。
照射部60は、ステージ移動機構61、アパーチャ電極62を有し、第1〜第3の電極を通過したビームが照射される対象が配置される照射部として機能する。
ステージ移動機構61は、基板S(例えば、半導体基板)を載置するステージ、およびそのステージを2次元方向(X,Y方向)に機械的に移動する駆動機構を有する。ステージに載置された基板Sに収束したビーム15を照射し、ステージ(基板S)を2次元的に移動することで、基板S全面にビーム15を均一に照射できる。
アパーチャ電極62は、選択・収束部50から出射されるビーム15からモノマーイオンをさらに除去し、基板Sに照射されるビーム15の均一性をより向上するためのものである。なお、この詳細は後述する。
ビーム15は、加速電圧V(例えば、数kV〜数10kV)に相当するエネルギー(例えば、1keV〜40keV)で基板Sに照射される。ビーム15は、多数のガス分子(または原子)を含むクラスターの状態で基板Sの表面に衝突する。このクラスターは基板Sの表面で砕け、分散した分子が基板Sに作用する。このとき、分子一個当たりのエネルギーは、加速電圧Vをクラスターサイズの数で除した小さな値となる。
エネルギーの小さな多数の分子が表面と相互作用することで、欠陥の極めて少ない表面加工が可能となる。また、分散したガス分子は表面に沿って表面原子を叩き、凸である部分を除去するいわゆるラテラルスパッタリング作用を持つ。すなわち、基板SにGCI(ビーム15)を照射することで、ナノメータレベルで欠陥の少ない表面の平滑化、平坦化が可能となる。
(1)ビーム15中のモノマーイオン除去(GCI選択)の必要性
以下、ビーム15からモノマーイオン(ガス分子(または原子)自体のイオン)を除去する必要性を説明する。
既述のように、加速部40から引き出されたビーム15には、ガスクラスターイオン以外にモノマーイオンが含まれるのが通例である。
基板Sに照射されるビーム15に、GCI以外にモノマーイオンが含まれると、加工の品質は低下する。モノマーイオンは、一個当たりのエネルギーが高く、高速で基板Sに衝突して、多数の欠陥(表面荒れ、内部の結晶欠陥等)を発生させる。また、モノマーイオンは基板Sに残留して不純物ともなる。
以上のように、ビーム15による加工品質を向上するためには、ビーム15中に含まれるモノマーイオンを除去することが好ましい。
既述のように、加速部40にガスボンベ45からのガスを供給した場合、ビーム15にGCIが解離してできた中性粒子が含まれる可能性がある。この中性粒子は、加速されたGCIに対応するエネルギーを有することから(モノマーイオンと比べて、ガス分子一個当たりのエネルギーが小さい)、GCIと同様、基板Sの表面の平滑化、平坦化に寄与する。すなわち、ビーム15中の中性粒子を除去する必要はない。
(2)ビーム15の収束の必要性
以下、ビーム15を収束する必要性を説明する。
荷電体(GCI、イオン)のビームは、互いの電荷により反発、発散する(ビームが広がる)。特に、GCIのビームは、イオンビームに比べて、発散し易い。
これは、GCIの質量m、電荷量qの比(質量電荷比:m/q)が、イオン(モノマーイオン)に比べて、遥かに大きいことに起因する。すなわち、同一の加速電圧を印加したときに、イオンに比べて、GCIの速度は小さくなる。この結果、電流量が比較的小さい場合(例えば、10μA程度)であっても、ビーム空間電荷量(荷電体による電流値をその速度で除した量であり、ビームの発散の程度を規定する)は大きくなり、ビーム15が発散する可能性がある。
このため、ビーム15を収束しないと、基板Sの位置でのビーム径は大きくなり、アパーチャ電極62を通るガスクラスターイオンの量は小さくなり、処理効率が低下する。
アパーチャ電極62を取り除き、大口径のビーム15を基板Sにそのまま照射することも理論上は可能である。しかし、基板S全体にビーム15を均一に照射するためには、ビーム15の径に応じて、基板Sの移動範囲を広くしなければならない。このため、ステージ移動機構61および真空容器11cが大型化する。
また、大口径のビーム15を照射すると、基板S以外への照射量が大きくなり、ビームの利用効率は下がる(照射処理能力(スループット)低下)。
以上のように、処理効率を向上するために、基板Sに照射されるビーム15を収束することが好ましい。
なお、ビーム15中にGCIが解離してできた中性粒子が含まれていても、この中性粒子は、ビームの発散の原因となる電荷自体を有しないことから、収束の必要性はない。
(選択・収束部50の詳細)
以下、選択・収束部50の詳細を説明する。
選択・収束部50は、磁場フィルター51、エンドガード電極55a,55b、絶縁碍子56a,56bを有し、ビーム15中のモノマーイオンを除去する(GCIを選択する)と共に、ビーム15を収束する。
エンドガード電極55a,55bは、絶縁碍子56a,56bにより、磁場フィルター51に取り付けられている。
エンドガード電極55a,55bは、薄い中空円板状の導電部材であり、円形の貫通孔を有し、第1の電極の入口側、出口側にそれぞれ離間して配置され、前記ビームが通過する略円形の貫通孔をそれぞれ有する、第2、第3の電極として機能する。
エンドガード電極55a,55bには、高透磁率の材料(強磁性材料、特に、軟磁性材料、例えば、純鉄や軟鉄)を用いることが好ましい。
これは、磁場フィルター51からの磁場をシールドするためである。磁場フィルター51から磁場が漏れると、他の箇所(例えば、イオン化部30、後述の中和部70)での動作(電子の軌道)に影響を与え、機能を低下させる可能性がある。例えば、イオン化部30に磁場が漏れると、クラスタービームのイオン化の効率や引出し電流量に影響を与える可能性がある。
なお、フッ素を含むガス(混合ガス)を使用する場合、エンドガード電極55a、55bに、耐食性コーティング(例えば、耐食性のある金属薄膜、一例としてNi膜)を形成し、フッ素を含むガスによる腐食を防止することが好ましい。
絶縁碍子56a,56bには、磁器材料(例えば、アルミナ磁器)を使用できる。
図2は、磁場フィルター51の構造を模式的に示す。図2の(A)は、エンドガード電極55a,55bを含めた磁場フィルター51の正面図である。図2の(B)は、その中心部(A−A)の断面図である。
磁場フィルター51は、永久磁石52、内筒53、外筒54を有し、ビームが通過する略円柱状の内部空間を有する第1の電極として機能する。
外筒54内に内筒53が配置され、その両側が一対の円孔付きの円板で閉じられ、全体として、略円筒形状の容器を構成する。この容器中に複数の永久磁石52が配置される。内筒53の内周の径は、円板の円孔と対応する。内筒53および外筒54は、これら一対の円板にネジ等により機械的に取付け固定される。
内筒53は、薄い円筒状導電部材であり、略円筒形状の円筒電極として機能する。この導電部材は、永久磁石52が作る磁場形状や強度を乱さないために、非磁性材料(例えば、非磁性のステンレススチール)であることが好ましい。
なお、略円筒形状の容器を構成する外筒54および円板は、非磁性材料であることが好ましいが、永久磁石52の磁場への影響が比較的小さいため、磁性材料も使用できる。
内筒53の中心軸は、エンドガード電極55a,55bの貫通孔の中心と一致していることが好ましい。
内筒53の内径は、エンドガード電極55a,55bの貫通孔の径と対応し、例えば、略同一とできる。
内筒53の内径をエンドガード電極55a,55bの貫通孔の径より大きくしてもよい。ビーム15の有効な利用が図れる。すなわち、GCIが内筒53の内壁に衝突して、基板Sに照射されなくなることが防止される。
内筒53の内周内をビーム15が通過する。
複数の永久磁石52が内筒53の外周上に配置され、内部空間内に磁場を印加する磁石として機能する。これらの永久磁石52はいわゆるダイポールリング型磁気回路を構成する。永久磁石52は、円周状に配置され、その磁化方向Mが適宜ずらされ、360°で2回転し、内筒53内に一軸方向の磁場(N極、S極のダイポール(2極)磁場)を形成する。
磁場フィルター51は、ビーム15に磁場を印加することによって、ビーム15からモノマーイオンを除去する(GCIを選択的に通過させる)。
一般に、荷電体(モノマーイオンおよびガスクラスターイオン)は、その質量m、電荷量qの比(質量電荷比:m/q)、エネルギー、磁場強度に応じて、磁場内で偏向(回転)する。この偏向半径は、質量電荷比およびエネルギーが小さく、磁場強度が大きくなるにつれて、小さくなる(偏向が大きくなる)。
モノマーイオンの質量電荷比は、ガスクラスターイオンの質量電荷比より遥かに小さいため、モノマーイオンの偏向半径は、ガスクラスターイオンの偏向半径よりも遥かに小さい(大きく曲がる)。
この結果、モノマーイオンは、磁場フィルター51(内筒53)内で曲げられ、その内壁に衝突し、中性化してガスとして排気される。一方、GCIは、内筒53内での偏向が少なく、ほぼ直進運動し、内筒53を通過する。
ここで、モノマーイオンのエネルギー(速度)が大きい場合(加速電圧Vが大きい場合)、その偏向半径は大きくなり(偏向が小さくなる)、モノマーイオンが磁場フィルター51(円筒部内)を通過する可能性がある。
アパーチャ電極62は、このようにして内筒53を通過したモノマーイオンを除去し、基板Sへの照射を防止する。モノマーイオンは、内筒53からの出射後に直進運動して、ビーム15の中心から遠ざかってゆくため、事実上、アパーチャ電極62の開口を通過しない。
なお、モノマーイオンのエネルギーに対応して、磁場フィルター51の磁場強度を大きくすることによって、偏向半径を小さくし、円筒53内でモノマーイオンを除去してもよい。このようにすると、アパーチャ電極62は不要となる。
ビーム15の進行方向に沿って、内筒53内に十分に均一かつ十分な強度の磁場が形成されることが好ましい。モノマーイオンが内筒53の内壁に衝突するか、出射後の直進でアパーチャ電極62の開口から十分に離れるようにして、基板Sへの入射を防止できる。
また、内筒53の長さは、その内径以上であることが好ましい。モノマーイオンの効率的な除去が可能となる。
エンドガード電極55a,55bは、磁場フィルター51(特に、内筒53)と共に、いわゆるアインツエルレンズとして機能し、ビーム15を収束する。
既述のように、内筒53は、薄い円筒状導電部材であり、エンドガード電極55a,55bは、薄い中空円板状導電部材である。このような円筒状導電部材、一対の中空円板状導電部材に電圧を印加することによって、ビームを収束できる。
例えば、内筒53(磁場フィルター51)を正電位とし(正電圧印加)、エンドガード電極55a,55bを接地電位とすることによって、ビームを収束できる。
ここでは、内筒53(磁場フィルター51)を正電位とし(高電圧正電源58からの正の電圧V印加)、エンドガード電極55a,55bを負電位とする(高電圧負電源57からの負の電圧V印加)。この場合、引出電極42と入口側のエンドガード電極55aの間で、GCIのビーム15は加速され、その結果、収束される。加速電界は、一般に収束作用を持つためである。
このとき、エンドガード電極55aを接地電位とする場合と比べ、内筒53に入るビーム15の径を小さくできる。その後、ビーム15は、アインツエルレンズによりさらに収束され、出口側のエンドガード電極55bでは、径がより小さくなる。
この結果、アパーチャ電極62を通過するビーム15の電流量は大きくなる。例えば、ビーム電流が100μAを超える、小孔径のビーム15を基板Sに照射できる。このとき、アパーチャ電極62を不使用とできる。
ここで、内筒53(磁場フィルター51)に印加する正の電圧Vの大きさを調節することによって、GCI(イオン化ガスクラスター)と実質的にイオン化されないガスクラスター(非イオン化ガスクラスター)を切り替えて、基板Sに照射できる。
既述のように、GCIは加速電極41、引出電極42間に印加された加速電圧Vによって加速される。
電圧Vを加速電圧Vより小さくすると、GCIが照射される。加速電極41の電位が内筒53(磁場フィルター51)の電位よりも小さいため、加速電圧Vで加速されたGCIは、内筒53を通過し、基板Sに到達する。
一方、電圧Vを加速電圧Vより大きくすると、中性粒子(前述のように、GCIが加速部40内でガス分子と衝突してできるガス分子(中性原子・分子)またはガスクラスター(中性GC))を照射できる。この場合、加速電圧Vで加速されたGCIは、内筒53を通過せず、基板Sに到達しない。しかし、ビーム15中に含まれる中性粒子は基板Sに到達する。
以上のように、加速電圧Vに対して、電圧Vを調節することで、ビーム15中のイオン化ガスクラスター(GCI)、中性粒子を選択できる。
以上のように、本実施形態によれば、磁場フィルター51は、ビーム15中のモノマーイオンを除去すると共に、ビーム15を収束するアインツエルレンズの一部としても機能する。この結果、選択・収束部50、ひいてはガスクラスタービーム装置10のコンパクト化が図られる。
(第2の実施形態)
図3は,第2の実施形態に係るガスクラスタービーム装置10aを示す。ガスクラスタービーム装置10aは、ガスクラスター生成部20,イオン化部30、加速部40,選択・収束部50,照射部60、中和部70を有する。
中和部70は、選択・収束部50と照射部60の間に配置され、ビームまたは対象に向かって電子を照射する電子照射部として機能する。また、出口側のエンドガード電極55bに電子抑制電極73が付加される。
基板Sの電気的絶縁性が高い場合がある。例えば、基板Sの表面の大部分が、SiO(2酸化シリコン)等の絶縁物で占められることがある。このような絶縁性の高い基板Sにビーム15を照射すると、帯電する。帯電量が大きいと、基板Sに形成されるデバイスが絶縁破壊する可能性がある。また帯電によって、GCIのビーム15が、基板Sに届きにくくなり、照射電流が著しく減る可能性もある。
中和部70は、熱フィラメント71、円筒陽極72、電子抑制電極73を有し、ビーム15ひいては基板Sに電子を供給することによって、基板Sの帯電を低減する。
熱フィラメント71は、電源75からの電力(電圧Vf2)によって発熱し、熱電子を放出するものであり、第4の電極の外部に配置され、熱電子を放出する発熱体として機能する。
円筒陽極72は、熱フィラメント71からの熱電子を加速して、ビーム15に照射する。円筒陽極72は、例えば、メッシュ(網)状の円筒導体から構成できる。円筒陽極72の内部(中和室)をビーム15が通過する。円筒陽極72の外部に熱フィラメント71が配置される。円筒陽極72は、ビームが通過する内部空間を有するメッシュ状の第4の電極として機能する。
円筒陽極72と熱フィラメント71の間に、電源76からの電圧Vが印加される。この電圧V(電界)によって、熱電子が加速され、円筒陽極72の網の間を通過して、ビーム15に照射される。
但し、この電圧Vは、イオン化部30での電圧Vより、一般にかなり小さい。電圧Vは、ガスクラスターのイオン化を目的とするため、ある程度大きい。これに対して、電圧Vは、ビーム15に電子を供給すれば足りるからである。
基板Sの帯電に応じて電子を供給することによって、基板Sの帯電が抑えられ、基板Sを中性に保つことができる。これにより、100μAを超える大電流のGCIのビーム15を基板Sに安定的に照射できる。
基板Sの帯電は直接的な測定も可能であるが、照射電流を測定することによって、基板Sの帯電を間接的に測定しても良い。すなわち、絶縁性の基板Sであっても、ビーム15による電流と熱電子による電流が打ち消し合って照射電流がゼロに近くなれば、基板Sの帯電を防止できる。例えば、中和部70を未作動状態として、ビーム15を照射し、基板Sでの電流を測定することで、GCIの照射を確認できる。実際には、アパーチャ62と基板Sの間に電流測定用のファラデーカップ(図示せず)を挿入して電流値を確認する。この状態で、中和部70を動作させ、ファラデーカップ電流値がゼロになるように、中和部70の動作状態(電圧Vf2,V)を調節する。その後、ファラデーカップを移動し、ビームが基板Sに達するようにする。このようにすることで、大電流のGCIのビーム15を照射し、かつ基板Sの帯電を防止できる。
電子抑制電極73は、略円筒形状の導電体であり、略円柱形状の内部空間を有し、ビームが通過する略円柱状の内部空間を有する第5の電極として機能する。電子抑制電極73は、出口エンドガード電極に取り付けられ、中和部70からの中和用の電子が正高電圧の内筒53内に吸い込まれることを防止する。
電子抑制電極73が無い場合、基板Sに電子が流れなくなる可能性がある。すなわち、出口側のエンドガード電極55bの負電圧の絶対値が小さければ、中和用の電子がエンドガード電極55bを通過して、内筒53内に吸い込まれる。
電子抑制電極73によって、十分に長い負電位領域を形成することによって、中和部70の電子が内筒53内に流れ込むことを防止できる。
電子抑制電極73(内部空間)の長さは、その内径と同等以上であることが好ましい。このようにすることで、電子抑制電極73の内部に入ってきた熱電子を中和部70に戻し、基板Sの帯電防止に利用できる。
本実施形態では、選択・収束部50のコンパクト化に加えて、中和部70によって、GCIのビーム15による基板Sの帯電を防止できる。
ここでは、中和部70をビーム15の輸送経路上に配置しているため、その分、ガスクラスタービーム装置10aが大型化する可能性はある。これを防止するために、中和部70をビーム15の輸送経路外に配置してもよい。例えば、基板Sの横に中和部70を配置し、熱電子を基板Sに直接照射する。アパーチャ電極62と基板S間の距離を大きくしたり、アパーチャ電極62を取り除いたりすることで、このような配置が可能となる。
(第3の実施形態)
図4は,第3の実施形態に係るガスクラスタービーム装置10bを示す。ガスクラスタービーム装置10bは、ガスクラスター生成部20,イオン化部30、加速部40,選択・収束部50,照射部60、収束部80を有する。
収束部80は、選択・収束部50の後段に配置され、アインツエルレンズ円筒81,アース電極82を有する。
アインツエルレンズ円筒81は、薄い円筒状導電部材(略円筒形状の円筒電極)であり、第3の電極と対向して配置され、前記ビームが通過する略円柱状の内部空間を有する第6の電極として機能する。
アース電極82は、薄い中空円板状の導電部材であり、円形の貫通孔を有し、第5の電極と対向して配置され、前記ビームが通過する略円形の貫通孔を有する、第7の電極として機能する。
収束部80は、選択・収束部50の出口側のエンドガード電極55bと共に、2段目のアインツエルレンズとして機能する。
1段目のアインツエルレンズは、エンドガード電極55a,55b、内筒53から構成され、2段目のアインツエルレンズは、エンドガード電極55b、アインツエルレンズ円筒81、アース電極82から構成される。エンドガード電極55bは、第1段、第2段のアインツエルレンズで共用される。
例えば、内筒53(磁場フィルター51)、アインツエルレンズ円筒81を正電位とし(正電圧印加)、エンドガード電極55a,55b、アース電極82を接地電位とすることによって、第1段、第2段のアインツエルレンズでビームを収束できる。
また、第1の実施形態に準じて、内筒53(磁場フィルター51)およびアインツエルレンズ円筒81を正電位とし、エンドガード電極55a,55b、アース電極82を負電位(負電圧印加)としてもよい。このようにすることで、引出電極42とエンドガード電極55aとの間の加速電界によるビーム収束作用も併用できる。
ここでは、内筒53(磁場フィルター51)およびアインツエルレンズ円筒81を正電位(高電圧正電源58、85からの正の電圧V、VP2をそれぞれ印加)、エンドガード電極55aを負電位(高電圧負電源57からの負の電圧Vを印加)とするが、エンドガード電極55bおよびアース電極82は接地電位としている。
この場合、第1段目のアインツエルレンズ、特に、内筒53とエンドガード電極55bの間での収束作用は、エンドガード電極55bを負電位とする場合に比べて、やや低減する。
しかし、2段のアインツエルレンズによって、十分な収束作用が得られる。また、この構成では、アインツエルレンズ用の電源の個数の低減が可能となり、よりコンパクトな構成となる。
磁場フィルター51を通過したビーム15は、磁場の偏向作用によって、一般に通過前より広がる。特に、クラスターサイズの小さいGCIは、磁場による偏向が大きい。2段のアインツエルレンズによって、ビーム15をより絞り、大電流、小口径とできる。この結果、アパーチャ電極62を不要にできる。なお、このような小口径になったビーム15を局所的に照射することで、例えば、金型の表面を局所的に(特定の箇所のみを)効率的に平坦化できる。
アインツエルレンズ円筒81の内径は、内筒53の内径と同様、あるいはより大きくすることができる。アインツエルレンズ円筒81の内径を内筒53の内径より大きくすると、磁場フィルター51を通過して広がったビーム15を余すことなく収束して効率的に利用できる。
以上のように、本実施形態では、選択・収束部50のコンパクト化に加えて、収束部80によって、GCIのビーム15をさらに絞り、処理効率を向上できる。
なお、収束部80と照射部60の間に中和部70を配置してもよい。基板Sが絶縁性の場合、中和用の電子を基板Sに供給できる。既述のように、中和部70をビーム15の輸送経路外に配置してもよい。
中和部70を設置する場合、アース電極82に電子抑制電極73(と同様の部材)を配置し、アース電位とせず、これに負の高電圧を印加することが好ましい。中和部70からの中和用の電子が正高電圧のアインツエルレンズ円筒81内に吸い込まれることを防止できる。このとき、電子抑制電極73と同様、アース電極82に負の高電圧を印加してよい。
(第4の実施形態)
図5は,第4の実施形態に係るガスクラスタービーム装置10cを示す。ガスクラスタービーム装置10cは、ガスクラスター生成部20,イオン化部30、選択・収束部90、照射部60を有する。
ガスクラスタービーム装置10cは、選択・収束部50に代えて、選択・収束部90を有し、また真空容器11bに代えて、真空容器11dを有する。
選択・収束部90は、磁場フィルター91、エンドガード電極55a,55bを有し、ビーム15中のモノマーイオンを除去する(GCIを選択する)と共に、ビーム15を収束する。
真空容器11dは、絶縁部材111〜114、導電部材92、エンドガード電極55a,55bから構成され、真空排気系12(12a〜12b)によって、その内部が真空に保持される。
絶縁部材111〜114は、略円筒形状の絶縁部材である。
導電部材92は、円筒部(略円筒形状の導電部材であり、略円筒形状の円筒電極として機能する)と、その両側に配置される一対の円板部(略円板形状の導電部材)を有する。円板部は、円筒部の内径に対応する円孔を有する。
絶縁部材111,112および絶縁部材113,114の間にそれぞれ、エンドガード電極55a,55bが配置される。エンドガード電極55a,55bの外側は、大気中なので、高電圧負電源57からの負の電圧Vを直接印加できる。
導電部材92は、絶縁部材112,113間に、配置される。
図6は磁場フィルター91の概略構造を示す。(A)は正面図、(B)はA−Aでの断面図である。
磁場フィルター91は、電磁石93、導電部材92(特に、円筒部(略円筒形状の導電部材))を有し、ビームが通過する略円柱状の内部空間を有する第1の電極として機能する。
導電部材92は、真空容器11d、磁場フィルター91で共用される。導電部材92は、電磁石93からの磁場を乱さないために、非磁性材料(例えば、非磁性のステンレススチール)であることが好ましい。
電磁石93は、ヨーク94、一対の空芯コイル95a,95bを備え、導電部材92の円筒部の外部(大気中)に配置される。
ヨーク94は、高透磁率材料(特に、軟磁性材料、例えば、純鉄あるいは軟鉄)からなり、導電部材92の円筒部を挟んで、互いに対向する一対の端部を有する。
一対の空芯コイル95a,95bが、ヨーク94の端部を包むように配置される。空芯コイル95a,95bに電流を流して励磁することにより、ヨーク94の両端にN極、S極の磁場を発生し、導電部材92の円筒部内にダイポール磁場を形成できる。このダイポール磁場により、モノマーイオンは偏向し、導電部材92の円筒部の内壁に衝突し除去される。
例えば、導電部材92に高電圧正電源58からの正の高電圧Vが印加され、エンドガード電極55a,55bに高電圧負電源57からの負の高電圧Vが印加される。この結果、導電部材92等がアインツエルレンズとして機能する。
選択・収束部90では、空芯コイル95a,95bに流す電流値(直流)によって磁場強度を調節し、ビーム15のエネルギーの変更に対応できる。この結果、モノマーイオンの除去率、照射されるクラスターサイズの一定化が容易となる。
これに対して、第1の実施形態のような選択・収束部50では、永久磁石52を用いているため、設計時の設定より低いエネルギーのビーム15に対しては、モノマーイオン、クラスターイオン共に、過度に偏向を受け、ビーム損失を起こすことがあり得る。
以上のように、本実施形態によれば、磁場フィルター91は、ビーム15中のモノマーイオンを除去すると共に、ビーム15を収束するアインツエルレンズの一部としても機能する。この結果、選択・収束部90、ひいてはガスクラスタービーム装置10cのコンパクト化が図られる。さらに、磁場強度を調節し、ビーム15のエネルギーの変更に対応できる。
なお、ガスクラスタービーム装置10cは、第2、第3の実施形態のように、中和部70や収束部80を有してもよい。
(第1の実施形態に対する実施例)
第1の実施形態に対する実施例を述べる。
装置寸法として、イオン発生部側の真空容器11aとビーム輸送部側の真空容器11bを合わせた長さを1m以下とした。
ビーム15の加速電圧Vが20kV〜40kVの場合、引出電極42から出射直後のビーム15の径(直径)は、数cmであった。ビーム15の全電流(GCIおよびモノマーイオン双方の電流)は数100μA以上であった。
内筒53内での磁場強度は、20kVの加速電圧Vのとき、0.1〜0.4T(テスラー)程度とした。
この結果、磁場フィルター51によって、モノマーイオンが除去され、基板Sに到達しないことを確認できた。具体的には、飛行時間型質量分析計(図示せず)によって、磁場フィルター51がある場合、無い場合それぞれのクラスターサイズの分布を測定した。磁場フィルター51を設置すると、低サイズの荷電粒子が著しく低減し、事実上、モノマーイオンが除去されることを確認できた。
エンドガード電極55a、55bや磁場フィルター51に印加する電圧を調整することで、照射電流を100μA以上で安定化できた。なお、電流値はファラデーカップ(図示せず)で測定した。
モノマーイオンの除去、100μA以上の電流は、希ガス、混合ガス(例えば、希ガスで希釈されたSFのガス)のいずれでも可能であった。
(第2の実施形態に対する実施例)
第2の実施形態に対する実施例を説明する。
エンドガード電極55bおよび電子抑制電極73に負の電圧Vを印加し、円筒陽極72に正の電圧Vを印加する。この結果、基板Sに熱フィラメント71からの電子を効率的に供給できた。
基板Sでの電流は、電圧V、V、熱フィラメント71の電流によって調整できた。具体的には、中和部70の非動作時での基板Sの電流が100μA以上のときに、中和部70を動作させることで、基板Sの電流を実質的にゼロとできた。
(第3の実施形態に対する実施例)
第3の実施形態に対する実施形態に対する実施例を説明する。
アインツエルレンズ円筒81の内径は磁場フィルター51の内径より大きくした。また、エンドガード電極55bを接地電位とした。
選択・収束部50、収束部80により2段のアインツエルレンズとしたことから、電流が100μA以上で、基板Sでのビーム15の径を1cm以下とできた。
(第4の実施形態に対する実施例)
第4の実施形態に対する実施例を説明する。
ビーム15の加速エネルギーに応じて、励磁する空芯コイル95a,95bの電流を変化させた。すなわち、モノマーイオンの除去に必要で、クラスターイオンを過度に偏向させない磁場強度を選択した。この結果、10kV以下の低エネルギーで、数10〜100μAの大電流のビーム15を基板Sに照射できた。
また、希ガス(Ar、Ne、He、Kr等)、通常ガス(N、O、CO等)、混合ガス(フッ素(F)を含むガス)のいずれでも、モノマーイオンを除去し、かつビーム15を大電流化できることを確認できた。
10: ガスクラスタービーム装置、11(11a〜11d): 真空容器、111〜114: 絶縁部材、12(12a,12b): 真空排気系、15: ビーム、20: ガスクラスター生成部、21: ノズル、22: スキマー、25: 高圧ガスボンベ、26: 圧力調整弁、27: ガス配管、30: イオン化部、31: 熱フィラメント、32: 円筒陽極、35: 電源、36: 電源、40: 加速部、41: 加速電極、42: 引出電極、43: 加速電源、50: 選択・収束部、51: 磁場フィルター、52: 永久磁石、53: 内筒、54: 外筒、55a,55b: エンドガード電極、56a,56b: 絶縁碍子、57: 高電圧負電源、58、85: 高電圧正電源、60: 照射部、61: ステージ移動機構、62: アパーチャ電極、70: 中和部、71: 熱フィラメント、72: 円筒陽極、73: 電子抑制電極、75: 電源、76: 電源、80: 収束部、81: アインツエルレンズ円筒、82: アース電極、90: 選択・収束部、91: 磁場フィルター、92: 導電部材、93: 電磁石、94: ヨーク、95a,95b: 空芯コイル

Claims (14)

  1. ガスクラスターを生成する生成部と、
    前記ガスクラスターをイオン化して、ガスクラスターイオンを生成するイオン化部と、
    前記ガスクラスターイオンを加速して、ガスクラスターイオンを含むビームを出射する加速部と、
    前記ビームが通過する略円柱状の内部空間を有する第1の電極と、
    前記内部空間内に磁場を印加する磁石と、
    前記第1の電極の入口側、出口側にそれぞれ離間して配置され、前記ビームが通過する略円形の貫通孔をそれぞれ有する、第2、第3の電極と、
    前記第1の電極と前記第2、第3の電極の間に直流電圧を印加する電源と、
    前記第1〜第3の電極を通過したビームが照射される対象が配置される照射部と、
    を具備するガスクラスタービーム装置。
  2. 前記第1の電極が、略円筒形状の円筒電極を有し、
    前記磁石が、前記円筒電極の外周に配置される複数の永久磁石を有する、
    請求項1記載のガスクラスタービーム装置。
  3. 前記第1の電極が、略円筒形状の円筒電極を有し、
    前記磁石が、前記円筒電極をその外周から挟む第1、第2の端部を有するヨークと、前記第1、第2の端部それぞれに磁界を印加する第1、第2のコイルと、前記第1、第2のコイルを励磁する電源と、を有する、
    請求項1記載のガスクラスタービーム装置。
  4. 前記第1の電極がその一部を構成する真空容器をさらに具備する
    請求項2または3に記載のガスクラスタービーム装置。
  5. 前記ビームが、ガスクラスターイオンが解離して生成された中性粒子を含み、
    前記円筒電極に印加する電圧を前記加速部での加速電圧より大きくして、前記ガスクラスターイオンの前記円筒電極の通過を阻害し、前記対象に前記中性粒子のビームを照射する、
    請求項乃至4のいずれか1項に記載のガスクラスタービーム装置。
  6. 加速されたガスクラスターイオンとガス分子を衝突させて、前記中性粒子を生成する中性粒子生成部をさらに具備する
    請求項5に記載のガスクラスタービーム装置。
  7. 前記ビームまたは前記対象に向かって電子を照射する電子照射部をさらに具備する
    請求項1乃至6のいずれか1項に記載のガスクラスタービーム装置。
  8. 前記電子照射部が、
    前記ビームが通過する内部空間を有するメッシュ状の第4の電極と、
    前記第4の電極の外部に配置され、熱電子を放出する発熱体と、
    前記発熱体と前記第4の電極との間に電圧を印加し、前記熱電子を前記内部空間に向かって加速する第2の電源と、を有する、
    請求項7に記載のガスクラスタービーム装置。
  9. 前記第3の電極に接続され、前記ビームが通過する略円柱状の内部空間を有する第5の電極をさらに具備する
    請求項7または8に記載のガスクラスタービーム装置。
  10. 前記第3の電極と対向して配置され、前記ビームが通過する略円柱状の内部空間を有する第6の電極と、
    前記第5の電極と対向して配置され、前記ビームが通過する略円形の貫通孔を有する、第7の電極と、
    前記第6の電極と前記第3,第7の電極の間に直流電圧を印加する電源と、
    をさらに具備する請求項9に記載のガスクラスタービーム装置。
  11. 前記第1の電極は正電位であり、前記第2、第3の電極は負電位である、
    請求項1乃至10のいずれか1項に記載のガスクラスタービーム装置。
  12. 前記第1の電極は正電位であり、前記第2の電極は負電位であり、前記第3の電極は接地電位である
    請求項1乃至10のいずれか1項に記載のガスクラスタービーム装置。
  13. 前記第2、第3の電極が、軟磁性材料を有する
    請求項1乃至12のいずれか1項に記載のガスクラスタービーム装置。
  14. 前記第2、第3の電極が、前記軟磁性材料を覆う耐食性コーティングをさらに有する
    請求項13に記載のガスクラスタービーム装置。
JP2016126280A 2016-06-27 2016-06-27 ガスクラスタービーム装置 Active JP6632937B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126280A JP6632937B2 (ja) 2016-06-27 2016-06-27 ガスクラスタービーム装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126280A JP6632937B2 (ja) 2016-06-27 2016-06-27 ガスクラスタービーム装置

Publications (2)

Publication Number Publication Date
JP2018005978A JP2018005978A (ja) 2018-01-11
JP6632937B2 true JP6632937B2 (ja) 2020-01-22

Family

ID=60949543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126280A Active JP6632937B2 (ja) 2016-06-27 2016-06-27 ガスクラスタービーム装置

Country Status (1)

Country Link
JP (1) JP6632937B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248856A1 (ja) * 2022-06-22 2023-12-28 株式会社Iipt ガスクラスターイオンビーム装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5879948U (ja) * 1981-11-27 1983-05-30 株式会社日立製作所 イオン打込み装置
JPS6340241A (ja) * 1986-08-05 1988-02-20 Nec Corp イオンビ−ム装置
JPH0377242A (ja) * 1989-08-18 1991-04-02 Jeol Ltd 荷電粒子線装置のイオン源
JP2003521812A (ja) * 1999-12-06 2003-07-15 エピオン コーポレイション ガスクラスターイオンビーム・スムーザー装置
JP2004095311A (ja) * 2002-08-30 2004-03-25 Ishikawajima Harima Heavy Ind Co Ltd 電子線発生装置
WO2004027813A1 (en) * 2002-09-23 2004-04-01 Epion Corporation System for and method of gas cluster ion beam processing
JP2007066795A (ja) * 2005-09-01 2007-03-15 Canon Inc ガスクラスターイオンビーム装置
US7982196B2 (en) * 2009-03-31 2011-07-19 Tel Epion Inc. Method for modifying a material layer using gas cluster ion beam processing
GB2484488B (en) * 2010-10-12 2013-04-17 Vg Systems Ltd Improvements in and relating to ion guns
JP5495236B2 (ja) * 2010-12-08 2014-05-21 国立大学法人京都大学 イオンビーム照射装置及びイオンビーム発散抑制方法
JP6030099B2 (ja) * 2014-08-18 2016-11-24 東京エレクトロン株式会社 残渣層除去方法及び残渣層除去装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248856A1 (ja) * 2022-06-22 2023-12-28 株式会社Iipt ガスクラスターイオンビーム装置

Also Published As

Publication number Publication date
JP2018005978A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
US6768120B2 (en) Focused electron and ion beam systems
JP4926067B2 (ja) ガスクラスターイオンビーム形成のためのイオナイザおよび方法
JP5872541B2 (ja) 改良型イオン源
JP5393696B2 (ja) イオンビーム注入装置用のプラズマ電子フラッドシステム
JP5822767B2 (ja) イオン源装置及びイオンビーム生成方法
JP4977008B2 (ja) 高電流ガスクラスターイオンビーム処理システムにおけるビーム安定性向上方法及び装置
JPH06236747A (ja) イオン注入中の半導体ウェハにおける帯電を低減するプラズマ放出システム
US6819053B2 (en) Hall effect ion source at high current density
KR101064567B1 (ko) 빔폭 제어 가능한 전자빔 제공 장치
JP2007525811A (ja) イオンビーム電流の調整
JP2512649B2 (ja) イオン注入用のプラズマソ―ス装置
JP2021533572A (ja) 中性原子ビームを使用した被加工物処理のためのシステムおよび方法
US20190096632A1 (en) Charged particle beam irradiation apparatus and method for reducing electrification of substrate
JP6632937B2 (ja) ガスクラスタービーム装置
US10455683B2 (en) Ion throughput pump and method
Franzen et al. Status of the ELISE test facility
JP3064214B2 (ja) 高速原子線源
JP2003264098A (ja) シートプラズマ処理装置
CN114540777A (zh) 一种结合磁控溅射的离子注入方法
KR101989847B1 (ko) 플라즈마를 이용한 라인 형태의 전자빔 방출 장치
Guharay et al. Characteristics of focused beam spots using negative ion beams from a compact surface plasma source and merits for new applications
JP2007317491A (ja) クラスターのイオン化方法及びイオン化装置
WO2023248856A1 (ja) ガスクラスターイオンビーム装置
JP2003257360A (ja) 電子衝撃型イオン源
JP2019512610A (ja) 電荷量を調整できるプラズマ工程装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6632937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250