JP6632576B2 - 点火プラグ - Google Patents

点火プラグ Download PDF

Info

Publication number
JP6632576B2
JP6632576B2 JP2017137682A JP2017137682A JP6632576B2 JP 6632576 B2 JP6632576 B2 JP 6632576B2 JP 2017137682 A JP2017137682 A JP 2017137682A JP 2017137682 A JP2017137682 A JP 2017137682A JP 6632576 B2 JP6632576 B2 JP 6632576B2
Authority
JP
Japan
Prior art keywords
insulator
tip
spark plug
distal end
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017137682A
Other languages
English (en)
Other versions
JP2019021453A (ja
Inventor
治樹 吉田
治樹 吉田
邦治 田中
邦治 田中
敏典 武市
敏典 武市
通崇 山田
通崇 山田
裕介 野村
裕介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017137682A priority Critical patent/JP6632576B2/ja
Priority to US16/033,661 priority patent/US10305260B2/en
Priority to CN201810762138.3A priority patent/CN109256679B/zh
Priority to DE102018211565.6A priority patent/DE102018211565B4/de
Publication of JP2019021453A publication Critical patent/JP2019021453A/ja
Application granted granted Critical
Publication of JP6632576B2 publication Critical patent/JP6632576B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/52Sparking plugs characterised by a discharge along a surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/46Sparking plugs having two or more spark gaps
    • H01T13/467Sparking plugs having two or more spark gaps in parallel connection

Landscapes

  • Spark Plugs (AREA)

Description

本明細書は、点火プラグに関する。
従来から、内燃機関に、点火プラグが用いられている。点火プラグとしては、例えば、軸線の方向に延びる軸孔を有する筒状の絶縁体と、前記絶縁体の外周側に固定された主体金具と、前記軸孔の先端側に少なくとも一部が挿入される中心電極と、を備える点火プラグが利用されている。
特開2009−26469号公報 特開平9−264535号公報 特開2013−165016号公報 特開2011−146130号公報
内燃機関の状態に応じて、点火プラグの絶縁体の温度は、変化する。例えば、絶縁体の温度は、燃焼ガスからの熱によって、上昇する。また、燃焼室に新気が導入されることにより、絶縁体の温度は、低下する。このような温度変化が、繰り返される。ここで、絶縁体は、昇温によって、膨張し、降温によって、収縮する。温度変化が繰り返される場合、絶縁体の膨張と収縮とが繰り返される。これにより、絶縁体が、破損し得る。絶縁体を薄くすれば、膨張と収縮とに起因する応力が緩和されるので、絶縁体の破損を抑制できる。しかし、絶縁体を薄くすると、中心電極と主体金具との間で絶縁体を貫通する意図しない放電が生じる場合があった。
本明細書は、中心電極と主体金具との間で絶縁体を貫通する意図しない放電を抑制しつつ、温度変化に対する絶縁体の耐久性を向上できる技術を開示する。
本明細書は、例えば、以下の適用例を開示する。
[適用例1]
軸線の方向に延びる軸孔を有する筒状の絶縁体と、
少なくとも前記絶縁体の先端に位置する部分を含むように前記軸孔内に配置された中心電極と、
前記絶縁体の先端部が自身の先端から先端側に突出するように前記絶縁体の外周側に固定された主体金具と、
を備える点火プラグであって、
前記絶縁体の前記先端部は、
前記先端部の後端側の部分を成す第1部分と、
前記第1部分の先端側に隣接するとともに、前記第1部分の内径よりも大きい内径を有する第2部分と、のみから成り、
前記第2部分の内周面には、前記絶縁体の先端に接続される面取部が設けられている、
点火プラグ。
この構成によれば、絶縁体の先端と内周面とが接続される部分に面取部が設けられるので、温度変化に対する絶縁体の耐久性を向上できる。さらに、絶縁体のうちの主体金具の先端よりも先端側の先端部は、先端部の後端側を成す第1部分と、第1部分の先端側に隣接するとともに第1部分よりも大きい内径を有する第2部分と、のみで形成されているので、中心電極と主体金具との間で絶縁体を貫通する意図しない放電を抑制しつつ、温度変化に対する絶縁体の耐久性を向上できる。
[適用例2]
適用例1に記載の点火プラグであって、
前記第1部分の先端側の部分の内周面は、先端側を向くとともに第2部分に接続される接続面を有し、
前記軸線を含む断面において、前記接続面に相当する線分の両端を通る直線と、前記軸線と、のなす角度のうち、前記接続面の先端側と前記軸線との間の角度は、75度以上である、
点火プラグ。
この構成によれば、絶縁体と中心電極との間の隙間において、燃焼ガスが接続面に沿って接続面よりも後端側に流れることを、抑制できる。
[適用例3]
適用例1または2に記載の点火プラグであって、
前記第1部分の最小内径部分の内周面と前記第2部分の最小内径部分の内周面との間の前記軸線に垂直な方向の位置の差は、5μm以上、500μm以下である、
点火プラグ。
この構成によれば、絶縁体を貫通する意図しない放電を抑制しつつ、温度変化に対する絶縁体の耐久性を向上できる。
[適用例4]
適用例1から3のいずれかに記載の点火プラグであって、
前記第2部分の最も後端側の部分と、前記絶縁体の先端と、の間の前記軸線の方向の距離は、0.1mm以上である、
点火プラグ。
この構成によれば、温度変化に対する絶縁体の耐久性を向上できる。
[適用例5]
適用例1から4のいずれかに記載の点火プラグであって、
前記絶縁体の前記先端部の内周面の表面粗度は、1μm以下である、
点火プラグ。
この構成によれば、絶縁体の内周面上の意図しない凹部と凸部とが抑制されるので、温度変化に対する絶縁体の耐久性を向上できる。
[適用例6]
適用例1から5のいずれかに記載の点火プラグであって、
前記第1部分の最小内径部分の内周面と前記第2部分の最小内径部分の内周面との間の前記軸線に垂直な方向の位置の差は、15μm以上、100μm以下である、
点火プラグ。
この構成によれば、絶縁体を貫通する意図しない放電を抑制しつつ、温度変化に対する絶縁体の耐久性を向上できる。
[適用例7]
適用例1から6のいずれかに記載の点火プラグであって、
前記面取部は、C面取部、または、R面取部である、
点火プラグ。
この構成によれば、面取部に応力が集中することを抑制できるので、温度変化に対する絶縁体の耐久性を向上できる。
なお、本明細書に開示の技術は、種々の態様で実現することが可能であり、例えば、点火プラグや点火プラグを用いた点火装置、その点火プラグを搭載する内燃機関や、その点火プラグを用いた点火装置を搭載する内燃機関等の態様で実現することができる。
一実施形態としての点火プラグ100の断面図である。 絶縁体10の先端部300の説明図である。 絶縁体10の先端部300の構成と評価結果とを示す表である。 第2実施形態の点火プラグ100aの説明図である。
A.実施形態:
図1は、一実施形態としての点火プラグ100の断面図である。図中には、点火プラグ100の中心軸CL(「軸線CL」とも呼ぶ)と、点火プラグ100の中心軸CLを含む平らな断面と、が示されている。以下、中心軸CLに平行な方向を「軸線CLの方向」、または、単に「軸線方向」または「前後方向」とも呼ぶ。軸線CLを中心とする円の径方向を「径方向」とも呼ぶ。径方向は、軸線CLに垂直な方向である。軸線CLを中心とする円の円周方向を、「周方向」とも呼ぶ。中心軸CLに平行な方向のうち、図1における下方向を先端方向Df、または、前方向Dfと呼び、上方向を後端方向Dfr、または、後方向Dfrとも呼ぶ。先端方向Dfは、後述する端子金具40から中心電極20に向かう方向である。また、図1における先端方向Df側を点火プラグ100の先端側と呼び、図1における後端方向Dfr側を点火プラグ100の後端側と呼ぶ。
点火プラグ100は、軸線CLに沿って延びる貫通孔12(軸孔12とも呼ぶ)を有する筒状の絶縁体10と、貫通孔12の先端側で保持される中心電極20と、貫通孔12の後端側で保持される端子金具40と、貫通孔12内で中心電極20と端子金具40との間に配置された抵抗体73と、中心電極20と抵抗体73とに接触してこれらの部材20、73を電気的に接続する導電性の第1シール部72と、抵抗体73と端子金具40とに接触してこれらの部材73、40を電気的に接続する導電性の第2シール部74と、絶縁体10の外周側に固定された筒状の主体金具50と、一端が主体金具50の先端面55に接合されるとともに他端が中心電極20とギャップgを介して対向するように配置された接地電極30と、を有している。
絶縁体10の軸線方向の略中央には、外径が最も大きな大径部14が形成されている。大径部14より後端側には、後端側胴部13が形成されている。大径部14よりも先端側には、後端側胴部13よりも外径の小さな先端側胴部15が形成されている。先端側胴部15よりもさらに先端側には、縮外径部16と、脚部19とが、先端側に向かってこの順に形成されている。縮外径部16の外径は、前方向Dfに向かって、徐々に小さくなっている。縮外径部16の近傍(図1の例では、先端側胴部15)には、前方向Dfに向かって内径が徐々に小さくなる縮内径部11が形成されている。絶縁体10は、機械的強度と、熱的強度と、電気的強度とを考慮して形成されることが好ましく、例えば、アルミナを焼成して形成されている(他の絶縁材料も採用可能である)。
中心電極20は、金属製の部材であり、絶縁体10の貫通孔12内の前方向Df側の端部に配置されている。中心電極20は、略円柱状の棒部28と、棒部28の先端に接合(例えば、レーザ溶接)された第1チップ29と、を有している。棒部28は、後方向Dfr側の部分である頭部24と、頭部24の前方向Df側に接続された軸部27と、を有している。軸部27は、軸線CLに平行に前方向Dfに向かって延びている。頭部24のうちの前方向Df側の部分は、軸部27の外径よりも大きな外径を有する鍔部23を形成している。鍔部23の前方向Df側の面は、絶縁体10の縮内径部11によって、支持されている。軸部27は、鍔部23の前方向Df側に接続されている。第1チップ29は、軸部27の先端に接合されている。
棒部28は、外層21と、外層21の内周側に配置された芯部22と、を有している。外層21は、芯部22よりも耐酸化性に優れる材料(例えば、ニッケルを主成分として含む合金)で形成されている。ここで、主成分は、含有率(重量パーセント(wt%))が最も高い成分を意味している。芯部22は、外層21よりも熱伝導率が高い材料(例えば、純銅、銅を主成分として含む合金、等)で形成されている。第1チップ29は、軸部27よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。中心電極20のうち第1チップ29を含む先端側の一部分は、絶縁体10の軸孔12から前方向Df側に露出している。このように、中心電極20は、絶縁体10の先端に位置する部分(すなわち、軸線CLに平行な方向の位置が絶縁体10の先端と同じである部分20t)を含むように、絶縁体10の軸孔12内に配置されている。なお、芯部22は、省略されてもよい。また、第1チップ29は、省略されてもよい。
端子金具40は、軸線CLに平行に延びる棒状の部材である。端子金具40は、導電性材料を用いて形成されている(例えば、鉄を主成分として含む金属)。端子金具40は、前方向Dfに向かって順番で並ぶ、キャップ装着部49と、鍔部48と、軸部41と、を有している。軸部41は、絶縁体10の軸孔12の後方向Dfr側の部分に挿入されている。キャップ装着部49は、絶縁体10の後端側で、軸孔12の外に露出している。
絶縁体10の軸孔12内において、端子金具40と中心電極20との間には、電気的なノイズを抑制するための抵抗体73が配置されている。抵抗体73は、導電性材料(例えば、ガラスと炭素粒子とセラミック粒子との混合物)を用いて形成されている。抵抗体73と中心電極20との間には、第1シール部72が配置され、抵抗体73と端子金具40との間には、第2シール部74が配置されている。これらのシール部72、74は、導電性材料(例えば、金属粒子と抵抗体73の材料に含まれるものと同じガラスとの混合物)を用いて形成されている。中心電極20は、第1シール部72、抵抗体73、第2シール部74によって、端子金具40に電気的に接続されている。
主体金具50は、軸線CLに沿って延びる貫通孔59を有する筒状の部材である。主体金具50の貫通孔59には、絶縁体10が挿入され、主体金具50は、絶縁体10の外周に固定されている。主体金具50は、導電材料(例えば、主成分である鉄を含む炭素鋼等の金属)を用いて形成されている。絶縁体10の前方向Df側の一部は、貫通孔59の外に露出している。また、絶縁体10の後方向Dfr側の一部は、貫通孔59の外に露出している。以下、絶縁体10のうち、主体金具50の先端(ここでは、先端面55)よりも前方向Df側に突出する部分300を、先端部300とも呼ぶ。先端部300は、絶縁体10のうち、主体金具50の貫通孔59の前方向Df側に露出した部分である。
主体金具50は、工具係合部51と、先端側胴部52と、を有している。工具係合部51は、点火プラグ用のレンチ(図示せず)が嵌合する部分である。先端側胴部52は、主体金具50の先端面55を含む部分である。先端側胴部52の外周面には、内燃機関(例えば、ガソリンエンジン)の取付孔に螺合するためのネジ部57が形成されている。ネジ部57は、軸線CLの方向に延びる雄ねじが形成された部分である。
主体金具50の工具係合部51と先端側胴部52との間の外周面には、径方向外側に張り出したフランジ状の中胴部54が形成されている。中胴部54の外径は、ネジ部57の最大外径(すなわち、ネジ山の頂の外径)よりも、大きい。中胴部54の前方向Df側の面54fは、座面であり、内燃機関のうちの取付孔を形成する部分である取り付け部(例えば、エンジンヘッド)とのシールを形成する(座面54fと呼ぶ)。
先端側胴部52のネジ部57と中胴部54の座面54fとの間には、環状のガスケット90が配置されている。ガスケット90は、点火プラグ100が内燃機関に取り付けられた際に押し潰されて変形し、主体金具50の座面54fと、図示しない内燃機関の取り付け部(例えば、エンジンヘッド)と、の隙間を封止する。なお、ガスケット90が省略されてもよい。この場合、主体金具50の座面54fは、直接に内燃機関の取り付け部に接触することによって、座面54fと、内燃機関の取り付け部と、の隙間を封止する。
主体金具50の先端側胴部52には、径方向の内側に向かって張り出した張り出し部56が形成されている。張り出し部56は、少なくとも張り出し部56の後方向Dfr側の部分の内径と比べて内径が小さい部分である。本実施形態では、張り出し部56の後方向Dfr側の面56r(後面56rとも呼ぶ)では、内径が、前方向Dfに向かって、徐々に小さくなる。張り出し部56の後面56rと、絶縁体10の縮外径部16と、の間には、先端側パッキン8が挟まれている。本実施形態では、先端側パッキン8は、例えば、鉄製の板状リングである(他の材料(例えば、銅等の金属材料)も採用可能である)。張り出し部56は、パッキン8を介して間接的に、絶縁体10の縮外径部16を前方向Df側から支持している。なお、パッキン8は、省略されてもよい。この場合、張り出し部56(具体的には、張り出し部56の後面56r)は、絶縁体10の縮外径部16に接触してよい。すなわち、張り出し部56は、直接的に、絶縁体10を支持してよい。
主体金具50の工具係合部51より後端側には、主体金具50の後端を形成するとともに工具係合部51と比べて薄肉の部分である後端部53が形成されている。また、中胴部54と工具係合部51との間には、中胴部54と工具係合部51とを接続する接続部58が形成されている。接続部58は、中胴部54と工具係合部51と比べて薄肉の部分である。主体金具50の工具係合部51から後端部53にかけての内周面と、絶縁体10の後端側胴部13の外周面との間には、円環状のリング部材61、62が挿入されている。さらに、これらのリング部材61、62の間には、タルク70の粉末が充填されている。点火プラグ100の製造工程において、後端部53が内側に折り曲げられて加締められると、接続部58が圧縮力の付加に伴って外向きに変形し、この結果、主体金具50と絶縁体10とが固定される。タルク70は、この加締め工程の際に圧縮され、主体金具50と絶縁体10との間の気密性が高められる。また、パッキン8は、絶縁体10の縮外径部16と主体金具50の張り出し部56との間で押圧され、そして、主体金具50と絶縁体10との間をシールする。
接地電極30は、金属製の部材であり、棒状の本体部37と、本体部37の先端部34に取り付けられた第2チップ39と、を有している。本体部37の他方の端部33(基端部33とも呼ぶ)は、主体金具50の先端面55に接合されている(例えば、抵抗溶接)。本体部37は、主体金具50に接合された基端部33から先端方向Dfに向かって延び、中心軸CLに向かって曲がって、先端部34に至る。第2チップ39は、先端部34の後方向Dfr側の部分に固定されている(例えば、抵抗溶接やレーザ溶接)。本体部37は、チップ39が接合される基部に対応する。接地電極30の第2チップ39と、中心電極20の第1チップ29とは、放電ギャップgを形成している。すなわち、接地電極30の第2チップ39は、中心電極20の第1チップ29の前方向Df側に配置されており、第1チップ29と放電ギャップgを介して対向している。第2チップ39は、本体部37よりも放電に対する耐久性に優れる材料(例えば、イリジウム(Ir)、白金(Pt)等の貴金属)を用いて形成されている。なお、第2チップ39は、省略されてもよい。
本体部37は、外層31と、外層31の内周側に配置された内層32と、を有している。外層31は、内層32よりも耐酸化性に優れる材料(例えば、ニッケルを主成分として含む合金)で形成されている。内層32は、外層31よりも熱伝導率が高い材料(例えば、純銅、銅を主成分として含む合金、等)で形成されている。なお、内層32は、省略されてもよい。
図2は、絶縁体10の先端部300の説明図である。図中には、図1の断面のうち、絶縁体10の先端部300の一部と、中心電極20の一部と、主体金具50の一部と、を含む一部分の拡大図が、示されている。絶縁体10の先端部300は、先端部300のうちの後端側の部分である第1部分310と、第1部分310の前方向Df側に隣接する部分である第2部分320と、で構成されている。
図中の左下部には、第1部分310と第2部分320との接続部分の内周側の部分の拡大図が、示されている。第1部分310の内周面Saは、後方向Dfr側の部分である第1部分面Sa1と、第1部分面Sa1の前方向Df側に接続された第2部分面Sa2と、で構成されている。
第1部分面Sa1では、軸線CLに平行な方向の位置によらずに、内径は、一定である。図中の内径Daは、第1部分面Sa1の内径を示している。図中の第1点P1は、第1部分面Sa1と第2部分面Sa2との接続点を示している。
第2部分面Sa2は、前方向Df側を向いている。後方向Dfrを向いて絶縁体10を見る場合に、第2部分面Sa2は、視認可能である。第2部分面Sa2は、第2部分320の内周面Sbに、接続されている。図中の第2点P2は、第2部分面Sa2と内周面Sbとの接続点を示している。前方向Df側を向く第2部分面Sa2の内周側の縁(ここでは、第2点P2)が、第1部分310と第2部分320との接続部分を形成する。本実施形態では、第2点P2は、第1点P1よりも内周側、かつ、前方向Df側に、位置している。
絶縁体10の先端部300の内周面の内径は、第2部分面Sa2において、階段状に変化する。すなわち、第2部分面Sa2は、段部を形成する。以下、第1部分310の内周面Saのうち、前方向Df側を向くとともに第2部分320に接続される部分を、接続面とも呼ぶ(図2の実施形態では、第2部分面Sa2が、接続面Sa2である)。
図中の面Sfは、絶縁体10の先端面を示している。先端面Sfは、絶縁体10の外面のうち最も前方向Df側に位置する面である。絶縁体10の先端面Sfは、第2部分320によって、形成される。第3点P3は、先端面Sfと第2部分320の内周面Sbとの接続点を示している。図示するように、第2部分320の内周面Sbには、絶縁体10の先端(ここでは、先端面Sf)に接続される面取部321が形成されている。本実施形態では、面取部321は、丸められた面取部である(このような面取部321は、R面取部とも呼ばれる)。本実施形態では、第2部分320の内周面Sbの全体が、面取部321を形成している。すなわち、第2部分320の内周面Sbの全体において、内径は、前方向Dfに向かって徐々に大きくなる。
最小内径部分310mは、第1部分310のうちの最も内径が小さい部分である。本実施形態では、最小内径部分310mは、第1部分310の第1部分面Sa1を形成する部分である。内径Daは、最小内径部分310mの内径(すなわち、第1部分面Sa1の内径)である。以下、内径Daを、最小内径Daとも呼ぶ。
最小内径部分320mは、第2部分320のうちの最も内径が小さい部分である。本実施形態では、最小内径部分320mは、第2部分320のうちの第2点P2を形成する部分である。内径Dbは、最小内径部分320mの内径(すなわち、内周面Sbのうちの第2点P2での内径)である。以下、内径Dbを、最小内径Dbとも呼ぶ。なお、第2部分320の最小内径Dbは、第1部分310の最小内径Daよりも、大きい。
図中の長さLaは、面取部321の軸線CLに垂直な方向の長さである。距離Lbは、第1部分310の最小内径部分310mの内周面(ここでは、第1部分面Sa1)と、第2部分320の最小内径部分320mの内周面(ここでは、内周面Sbのうちの第2点P2を形成する部分)と、の間の、軸線CLに垂直な方向の位置の差である。距離Lcは、絶縁体10の先端(ここでは、先端面Sf)と、第2部分320の最も後方向Dfr側の部分(ここでは、第1部分310と第2部分320との接続点である第2点P2)と、の間の軸線CLに平行な方向の距離である。
図中の直線Lsは、図2の断面における接続面Sa2に相当する線分の両端P1、P2を通る直線である。角度AGは、この直線Lsと軸線CLとのなす角度のうち、接続面Sa2の前方向Df側と軸線CLとの間の角度である。
なお、本実施形態では、先端部300の外周面Scには、先端面Sfに接続される面取部322が、設けられている。本実施形態では、面取部322は、丸められた面取部である。面取部322では、外径は、前方向Dfに向かって徐々に小さくなる。
絶縁体10の先端部300のうち前方向Df側の部分である第2部分320は、後方向Dfr側の部分である第1部分310よりも燃焼室側に位置する。従って、第2部分320は、燃焼ガスから熱を受けやすく、第2部分320の温度は、第1部分310の温度よりも、高くなり易い。すなわち、第2部分320の温度変化は、第1部分310の温度変化よりも、大きくなり易い。本実施形態では、第2部分320の内径は、第1部分310の内径よりも、大きい。従って、第2部分320の内径が第1部分310の内径よりも小さい場合と比べて、第2部分320の体積が小さくなる。一般的に、温度変化に起因する体積の変化量は、体積が大きいほど、大きい。そして、体積の変化量が大きいほど、体積の変化に起因する(ここでは、温度の変化に起因する)応力は、大きい。上記の通り、本実施形態では、第2部分320の体積が小さいので、先端部300の温度変化に起因する第2部分320の体積の変化量が小さくなる。これにより、温度変化に起因して第2部分320に作用する応力が小さくなる。例えば、先端面Sfと内周面Sbとの接続部分に作用する応力が、小さくなる。この結果、温度変化に起因する第2部分320の損傷を抑制できる。
また、絶縁体10の先端部300の前方向Df側の第2部分320の内周面Sbには、絶縁体10の先端(ここでは、先端面Sf)に接続される面取部321が形成されている。この結果、図2に示す断面において、先端面Sfと内周面Sbとの接続部分(第3点P3を頂点とする角)が、おおよそ90度の角を形成する場合と比べて、絶縁体10の先端部300の温度変化に起因する応力が、先端面Sfと内周面Sbとの接続部分に集中することが、抑制される。この結果、絶縁体10の先端部300の破損を、抑制できる。
また、第2部分320に面取部321が形成されているので、面取部321が省略される場合(例えば、図2に示す断面において、一定の内径Dbの内周面Sbと先端面Sfとの接続部分が、おおよそ90度の角を形成する場合)と比べて、第2部分320の体積が小さくなる。この結果、先端部300の温度変化に起因する第2部分320の損傷を抑制できる。
また、先端部300のうち後方向Dfr側の部分である第1部分310の内径は、先端部300のうち前方向Df側の部分である第2部分320の内径よりも、小さい。従って、第1部分310の内径が第2部分320の内径よりも大きい場合と比べて、第1部分310の径方向の肉厚が大きくなる。これにより、中心電極20と主体金具50との間で絶縁体10(特に、第1部分310)を貫通する放電が生じることを、抑制できる。例えば、図2の第1部分310を貫通する経路Pthを通る放電を、抑制できる。
また、図2に示すように、先端部300の第1部分310と第2部分320との接続部分(ここでは、第2点P2)は、主体金具50の先端(ここでは、先端面55)よりも前方向Df側に位置している。仮に、接続部分が、主体金具50の先端よりも後方向Dfr側に位置するとする。この場合、主体金具50の先端(ここでは、先端面55)の径方向の内側に、肉厚の薄い第2部分320が配置される。この結果、中心電極20と主体金具50(例えば、先端面55)との間で絶縁体10を貫通する放電が、生じ易い。本実施形態では、主体金具50の先端(ここでは、先端面55)の径方向の内側に、肉厚の厚い第1部分310が配置される。従って、そのような放電を抑制しつつ、先端部300(特に、第2部分320)の破損を抑制できる。
また、図2に示すように、本実施形態では、第2部分320の外周面Scのうち先端面Sfに接続される部分にも、面取部322が形成されている。この結果、図2に示す断面において、先端面Sfと外周面Scとの接続部分が、おおよそ90度の角を形成する場合と比べて、絶縁体10の先端部300の温度変化に起因する応力が、先端面Sfと外周面Scとの接続部分に集中することが、抑制される。この結果、絶縁体10の先端部300の破損を、抑制できる。また、面取部322が省略される場合(例えば、図2に示す断面において、先端面Sfと外周面Scとの接続部分が、おおよそ90度の角を形成する場合)と比べて、第2部分320の体積が小さくなる。この結果、先端部300の温度変化に起因する第2部分320の損傷を抑制できる。
なお、上記の先端部300を有する絶縁体10を製造する方法としては、任意の方法を採用可能である。例えば、複数の成形型を用いて、アルミナなどの焼成前の材料を、先端部300を含む絶縁体10の形状に成形してよい。複数の成形型は、例えば、貫通孔12を成形するピン状の成形型と、絶縁体10の先端部300の内周面Sa、Sbと先端面Sfと外周面Scとを成形する成形型と、絶縁体10の外周面の残りの部分を成形する成形型と、を含んでよい。そして、成形済の材料を焼成して、絶縁体10を製造してよい。また、焼成済の絶縁体10の切削や研磨によって、先端部300を成形してもよい。
B.評価試験:
絶縁体10の更に好ましい構成を検討するために、絶縁体10の先端部300の構成が互いに異なる点火プラグ100の複数種類のサンプルを用いて、評価試験を行った。図3(A)〜図3(D)の表は、それぞれ、絶縁体10の先端部300の構成と評価結果とを示している。
B1.第1評価試験:
図3(A)の表は、絶縁体10の内周面(先端部300の内周面Sa、Sbを含む)の表面粗度Raと、距離Lb(図2)と、耐熱衝撃性能の評価結果と、の対応関係を示している。この試験では、表面粗度Raと距離Lbとの組み合わせが互いに異なる1番から7番の7種類の点火プラグ100のサンプルが、評価された。表面粗度Raは、JIS B 0601−2001によって規定される「算術平均粗さRa」である(後述する他のサンプルの表面粗度Raも、この表面粗度Raと同じである)。なお、表面粗度Raの単位は、μmである。表面粗度Raの調整は、焼成前後の絶縁体10を表面研磨することによって、行われた。距離Lbに関しては、以下の通りである。1番から5番のサンプルの距離Lbは、30μmであった。6番と7番とに関しては、距離Lbはゼロであった。6番と7番の先端部300の内周面Sa、Sbからは、面取部321は省略されずに、第2部分面Sa2(すなわち、段部)が省略され、内周面Sa、Sbは、滑らかに接続されている。すなわち、内周面Sbの後方向Dfr側の端(図2の第2点P2に対応する部分)の内径は、内径Daと同じである。試験に用いられた点火プラグ100の他の部分の構成は、7種類のサンプルの間で共通であった。例えば、以下のパラメータは、7種類のサンプルの間で共通であった。
長さLa:0.9mm
角度AG:90度
距離Lc:0.3mm
耐熱衝撃性能は、絶縁体10が加熱された状態から急冷される場合の耐久性である。耐熱衝撃性能は、以下のように評価された。予め決められた複数の候補温度の中から、未試験の最も低い温度が、加熱温度として選択される。点火プラグ100のサンプルの絶縁体10の先端(ここでは、先端面Sfを含む部分)の温度を、放射温度センサを用いて、測定する。測定される温度が加熱温度となるように、点火プラグ100のサンプルの放電ギャップgの近傍を、ガスバーナで加熱する。そして、中心電極20に、予め決められた量の水を、噴霧する。これにより、中心電極20の温度が急激に低下する。冷えた中心電極20は、絶縁体10のうちの中心電極20を囲む部分である先端部300から、熱を奪う。この結果、絶縁体10の先端部300の温度も、低下する。この温度低下に起因して、先端部300が割れ得る。先端部300が割れたか否かは、目視によって確認される。先端部300が割れなかった場合、加熱温度が、複数の候補温度の中の1段階高い温度(すなわち、未試験の最も低い温度)に変更され、変更された加熱温度に従って、上記の加熱と冷却と確認とが、行われる。このような、サンプルの加熱と急冷と確認と、加熱温度の更新とが、先端部300が割れるまで、繰り返される。そして、各サンプル毎に、先端部300が破損した時の加熱温度(破損温度とも呼ぶ)が、特定される。この破損温度が高いほど、先端部300の耐久性が良い。
表中の耐熱衝撃性能の点数は、破損温度の指標を示している。具体的には、3番のサンプルの破損温度の点数を、「10点」とする(基準加熱温度と呼ぶ)。そして、破損温度が、基準加熱温度から摂氏10度低くなる毎に、1点ずつ減点される。例えば、破損温度が基準加熱温度よりも20度低い場合には、耐熱衝撃性能は8点である。このように、耐熱衝撃性能の点数が大きいほど、破損温度が高い、すなわち、耐久性が良好である。
なお、中心電極20の温度の低下に起因する絶縁体10の先端部300の温度の低下は、実際の内燃機関においても、生じ得る。例えば、燃焼室内に導入された新気は、中心電極20や絶縁体10に接触し得る。一般的に、金属の熱伝導率は、セラミックの熱伝導率よりも、高い。従って、中心電極20の温度は、絶縁体10の温度よりも、速く低下し得る。絶縁体10の内周側に位置する中心電極20の温度が低下すると、絶縁体10は、新気に加えて、中心電極20によって、冷却される。これにより、中心電極20の温度の低下に起因して、絶縁体10の先端部300の温度が、低下し得る。従って、上記の耐熱衝撃性能が良好である場合、内燃機関に装着された点火プラグ100の絶縁体10の破損も、抑制されると推定される。
表に示すように、1番から7番の順に、表面粗度Raは、0.03、0.04、0.1、1、2、1、0.1(μm)であった。そして、耐熱衝撃性能は、1番から7番の順に、10、10、10、8、1、1、1であった。このように、表面粗度Raが2μmである場合(5番)と、段部が省略された場合(6番、7番)とに、耐熱衝撃性能が低い「1」であった。表面粗度Raが大きい場合に耐熱衝撃性能が低くなる理由は、以下の通りである。表面粗度Raが大きい場合(5番)には、絶縁体10の先端部300の内周面Sa、Sbが滑らかではなく、先端部300の内周面Sa、Sbに細かい凹凸が形成されている。温度変化に起因する応力は、このような凸部や凹部に、集中し易い。この結果、先端部300が破損し易い。また、段部が省略される場合、すなわち、距離Lbがゼロである場合(6番、7番)には、先端部300の先端側の部分である第2部分320が、中心電極20に近いので、中心電極20の温度の低下に起因する絶縁体10の先端部300の温度の低下が、促進される。また、距離Lbがゼロである場合には、第2部分320の径方向の厚さが厚いので、第2部分320の体積が大きい。この結果、温度変化に起因する第2部分320の体積の変化が大きくなるので、第2部分320に作用する応力が大きくなる。これらの結果、先端部300が、破損し易い。
8点以上の良好な耐熱衝撃性能を実現した表面粗度Raは、0.03、0.04、0.1、1(μm)であった。これらの値から任意に選択された値を、表面粗度Raの好ましい範囲の上限として採用してよい。例えば、表面粗度Raとしては、1μm以下の値を採用してよい。また、良好な耐熱衝撃性能を実現した上記の表面粗度Raから任意に選択された値(例えば、上限以下の値)を、表面粗度Raの好ましい範囲の下限として採用してよい。例えば、表面粗度Raとしては、0.03μm以上の値を採用してよい。なお、表面粗度Raが小さいほど、絶縁体10の内周面(特に、先端部300の内周面Sa、Sb)が滑らかであるので、内周面の一部に応力が集中することが抑制される。従って、先端部300の破損を抑制するという観点からは、表面粗度Raは、0.03μm未満であってよい。例えば、表面粗度Raは、ゼロμm以上、1μm以下であってよい。ただし、表面粗度Raが、1μmより大きくてもよい。
なお、先端部300の内周面Sa、Sbの表面粗度Raが上記の好ましい範囲内である場合には、先端部300の他の構成(例えば、他のパラメータ)に拘わらずに、温度変化に起因する応力の集中を抑制できる。従って、種々の形状と種々の大きさの先端部300を有する絶縁体10に、表面粗度Raの好ましい範囲を適用してよい。例えば、長さLa、距離Lb、角度AG、距離Lcの少なくとも1つが上記のサンプルの値と異なっていてもよい。
B2.第2評価試験:
図3(B)の表は、絶縁体10の内周面(先端部300の内周面Sa、Sbを含む)の表面粗度Raと、距離Lb(図2)と、角度AG(図2)と、耐熱衝撃性能の評価結果と、耐汚損性の評価結果と、の対応関係を示している。この試験では、角度AGが互いに異なる8番から12番の5種類の点火プラグ100のサンプルが、評価された。なお、表面粗度Raと距離Lbとは、5種類のサンプルに共通であり、Ra=0.1μm、Lb=30μmであった。角度AGは、第1点P1の軸線CLに平行な方向の位置を調整することによって、調整された。耐熱衝撃性能の点数の意味は、図3(A)で説明した耐熱衝撃性能の点数の意味と、同じである。試験に用いられた点火プラグ100の他の部分の構成は、5種類のサンプルの間で共通であった。例えば、以下のパラメータは、5種類のサンプルの間で共通であった。
長さLa:0.9mm
距離Lc:0.3mm
耐汚損性は、JIS D 1606によって規定される耐汚損性評価試験のための試験運転を用いて、評価された。試験運転は、具体的には、以下の通りである。摂氏−10度の低温試験室内のシャシダイナモメータ上に、排気量が1.6L、4気筒、自然吸気、MPI(Multipoint fuel injection)のエンジンを有する試験用自動車を置いた。この試験用自動車のエンジンに、点火プラグのサンプルを、各気筒に組み付けた。そして、第1運転と、第1運転に続く第2運転と、で構成される運転を、1サイクルの試験運転として行った。第1運転は、「3回の空吹かし」と、「3速、35km/hでの40秒間の走行」と、「90秒間のアイドリング」と、「3速、35km/hでの40秒間の走行」と、「エンジンの停止」と、「冷却水の温度が摂氏−10度になるまでの自動車の冷却」とを、この順番に行う運転である。第2運転は、「3回の空ふかし」と、「30秒間のエンジン停止を挟みつつ、1速、15km/hでの20秒間の走行を3回行うこと」と、「エンジンの停止」と、「冷却水の温度が摂氏−10度になるまでの自動車の冷却」とを、この順番に行う運転である。
このような試験運転によって、点火プラグ100(図1)の絶縁体10の外面(例えば、外周面と内周面)に、カーボンが付着し得る。このようなカーボンに起因して、絶縁体10の外面を通る意図しない経路に沿って、放電が生じ得る。従って、カーボンの付着量が少ないことが、好ましい。本評価試験では、上記の試験運転を行った後に、主体金具50と端子金具40との間の電気抵抗が、測定される(絶縁抵抗と呼ぶ)。絶縁体10の外面へのカーボンの付着量が多い場合、中心電極20と主体金具50との間で、絶縁体10の外面上のカーボンを通じて、電流が流れ得る。従って、絶縁抵抗が小さくなる。絶縁抵抗が10MΩ以上である場合、再度、試験運転が行われ、絶縁抵抗が測定される。そして、絶縁抵抗が10MΩ未満となるまで、試験運転が繰り返される。各サンプル毎に、絶縁抵抗が10MΩ未満となるまでの試験運転の繰返し回数が、特定される。
表中の耐汚損性の点数は、試験運転の繰り返し回数の指標を示している。具体的には、「1点」は、繰り返し回数が10未満であることを示し、「5点」は、繰り返し回数が10以上13未満であることを示し、「10点」は、繰り返し回数が13以上であることを示している。このように、耐汚損性の点数が大きいほど、繰り返し回数が多い、すなわち、絶縁体10の耐汚損性が良好である。
表に示すように、8番から12番の順に、角度AGは、30、75、90、105、150(度)であり、耐熱衝撃性能は、10、10、10、10、5であり、耐汚損性は、5、10、10、10、10であった。角度AGが90度である場合、接続面Sa2(図2)は、軸線CLに垂直である。角度AGが90度よりも大きい場合、第2点P2は、第1点P1よりも後方向Dfr側に位置しており、接続面Sa2は、第1点P1から外周側かつ後方向Dfr側に向かって斜めに延びる。
角度AGが小さい場合に耐熱衝撃性能が良好である理由は、以下の通りである。角度AGが小さいほど、図2に示す断面において、第1点P1(図2)を頂点とする角C1の角度AG1が大きくなる(角度AG1は、「180度−角度AG」とおおよそ同じである)。角C1の角度AG1が大きいほど、温度変化に起因する応力が角C1に集中することが抑制されるので、耐熱衝撃性能が良い。
また、角度AGが小さい場合に耐汚損性が低下する理由は、以下の通りである。内燃機関の運転時には、燃焼ガスが、後方向Dfrに向かって流れて、絶縁体10(図2)と中心電極20との間に侵入し得る。このようなガスは、接続面Sa2に接触し、接続面Sa2に沿って、後方向Dfr側に向かって、流れる。角度AGが大きい場合には、接続面Sa2に沿って後方向Dfr側に向かう方向は、第1部分面Sa1と中心電極20との間の隙間に向かう方向ではなく、中心電極20の側面20sに向かう方向、または、第2点P2に向かう方向である。従って、第1部分面Sa1と中心電極20との間にガスが導かれることは、抑制される。一方、角度AGが小さい場合には、接続面Sa2に沿って後方向Dfr側に向かう方向は、第1部分面Sa1と中心電極20との間の隙間に向かう方向であるので、ガスは、第1部分面Sa1と中心電極20との間の隙間に、容易に導かれる。この結果、角度AGが小さい場合には、第1部分面Sa1と中心電極20との間の隙間に、カーボンが付着することによって、耐汚損性が低下する。
10点の良好な耐熱衝撃性能と10点の良好な耐汚損性とを実現した角度AGは、75、90、105(度)であった。これらの値から任意に選択された値を、角度AGの好ましい範囲の下限として採用してよい。例えば、角度AGとしては、75度以上の値を採用してよい。また、10点の耐熱衝撃性能と10点の耐汚損性とを実現した上記の角度AGから任意の選択された値(例えば、下限以上の値)を、角度AGの好ましい範囲の上限として採用してよい。例えば、角度AGとしては、105度以下の値を採用してよい。ただし、角度AGが、75度未満であってもよく、また、105度を超えていてもよい。
なお、角度AGが上記の好ましい範囲内である場合には、先端部300の他の構成(例えば、他のパラメータ)に拘わらずに、温度変化に起因する応力が角C1に集中することが抑制され得、そして、第1部分面Sa1と中心電極20との間の隙間にガスが導かれることが抑制され得る。従って、種々の形状と種々の大きさの先端部300を有する絶縁体10に、角度AGの好ましい範囲を適用してよい。例えば、先端部300の内周面Sa、Sbの表面粗度Ra、長さLa、距離Lb、距離Lcの少なくとも1つが上記のサンプルの値と異なっていてもよい。
B3.第3評価試験:
図3(C)の表は、表面粗度Raと、距離Lb(図2)と、耐熱衝撃性能の評価結果と、耐電圧の評価結果と、の対応関係を示している。この試験では、距離Lbが互いに異なる13番から21番の9種類の点火プラグ100のサンプルが、評価された。なお、表面粗度Raは、9種類のサンプルに共通であり、0.1μmであった。距離Lbは、第3点P3(図2)の位置を変えずに、第2点P2の軸線CLに垂直な方向の位置を調整することによって、調整された。耐熱衝撃性能の点数の意味は、図3(A)で説明した耐熱衝撃性能の点数の意味と、同じである。試験に用いられた点火プラグ100の他の部分の構成は、9種類のサンプルの間で共通であった。例えば、以下のパラメータは、9種類のサンプルの間で共通であった。
長さLa:0.9mm
角度AG:90度
距離Lc:0.3mm
耐電圧は、絶縁体10の先端部300を貫通する放電の生じ難さを示している。耐電圧は、以下のように評価された。絶縁体10のサンプルの軸孔12の先端部に、中心電極20が配置される。中心電極20の位置は、図1の点火プラグ100における中心電極20の位置と、同じである。この中心電極20付きの絶縁体10は、絶縁油中に沈められる。絶縁体10の先端部300を挿入可能な貫通孔を有するリング状のリング電極が、準備される。絶縁油中において、リング電極の貫通孔に、絶縁体10の先端部300が、挿入される。リング電極は、絶縁体10の先端面Sfから後方向Dfr側に5mm離れた位置に、配置される。この位置のリング電極は、絶縁体10のうち先端部300よりも後方向Dfr側に、配置されている。絶縁油中のリング電極と中心電極20との間に、電圧が印加される。電流を監視することによって、リング電極と中心電極20との間で放電(ここでは、絶縁体10を貫通する放電)が生じたか否かが、判断される。このような貫通放電は、絶縁体10の種々の部分(例えば、第1部分310、第2部分320、先端部300以外の部分、のいずれか)を、貫通し得る。そして、放電が生じるまで、電圧が徐々に高められる。そして、放電が生じた時の電圧が、特定される。特定される電圧は、放電が抑制され得る最高電圧である(耐電圧とも呼ぶ)。本評価試験では、絶縁体10のサンプルの種類毎に、10本の絶縁体10が試験された。そして、10本の絶縁体10の平均の耐電圧が、算出された(平均耐電圧と呼ぶ)。
表中の耐電圧の点数は、平均耐電圧の指標を示している。具体的には、図3(A)の3番のサンプルの平均耐電圧の点数を「10点」とする(基準耐電圧と呼ぶ)。そして、平均耐電圧が、基準耐電圧から0.5kV低くなる毎に、1点ずつ減点される。例えば、平均耐電圧が、「基準耐電圧−1kV」より高く「基準耐電圧−0.5kV」以下である場合、平均耐電圧の点数は「9点」である。このように、耐電圧の点数が大きいほど、平均耐電圧が高い、すなわち、耐電圧性能が良好である。
表に示すように、13番から21番の順に、距離Lbは、1、5、15、30、80、100、200、500、1000(μm)であり、耐熱衝撃性能は、5、8、10、10、10、10、10、10、10であり、耐電圧は、10、10、10、10、10、10、8、7、5であった。距離Lbが大きい場合に耐熱衝撃性能が良好である理由は、以下の通りである。距離Lbが大きい場合には、先端部300の先端側の部分である第2部分320が、中心電極20から遠いので、中心電極20の温度の低下に起因する絶縁体10の先端部300(特に、第2部分320)の温度の低下が、抑制される。また、距離Lbが大きい場合には、第2部分320の径方向の厚さが薄いので、第2部分320の体積が小さい。この結果、温度変化に起因する第2部分320の体積の変化が抑制されるので、第2部分320に作用する応力が抑制される。これらの結果、第2部分320の破損が抑制される。また、距離Lbが小さい場合に耐電圧が良好である理由は、距離Lbが小さい場合には、先端部300の先端側の部分である第2部分320の径方向の厚さが厚いので、第2部分320を貫通する放電が抑制されるからである。
8点以上の良好な耐熱衝撃性能と7点以上の良好な耐電圧とを実現した距離Lbは、5、15、30、80、100、200、500(μm)であった。これらの値から任意に選択された値を、距離Lbの好ましい範囲の下限として採用してよい。例えば、距離Lbとしては、5μm以上の値を採用してよく、また、15μm以上の値を採用してよい。また、上記の良好な耐熱衝撃性能と良好な耐電圧とを実現した距離Lbから任意に選択された値(例えば、下限以上の値)を、距離Lbの好ましい範囲の上限として採用してよい。例えば、距離Lbとしては、500μm以下の値を採用してよく、100μm以下の値を採用してよい。例えば、距離Lbは、5μm以上、かつ、500μm以下であることが好ましく、15μm以上、かつ、100μm以下であることが、特に好ましい。ただし、距離Lbが、5μm未満であってもよく、また、500μmを超えていてもよい。
なお、距離Lbが上記の好ましい範囲内である場合には、先端部300の他の構成(例えば、他のパラメータ)に拘わらずに、中心電極20の温度の低下に起因する絶縁体10の先端部300の温度の低下が抑制され得、そして、第2部分320を貫通する放電が抑制され得る。従って、種々の形状と種々の大きさの先端部300を有する絶縁体10に、距離Lbの好ましい範囲を適用してよい。例えば、先端部300の内周面Sa、Sbの表面粗度Ra、長さLa、角度AG、距離Lcの少なくとも1つが上記のサンプルの値と異なっていてもよい。
B4.第4評価試験:
図3(D)の表は、表面粗度Raと、距離Lbと、距離Lcと、耐熱衝撃性能の評価結果と、耐電圧の評価結果と、の対応関係を示している。この試験では、距離Lcが互いに異なる22番から26番の5種類の点火プラグ100のサンプルが、評価された。なお、表面粗度Raと距離Lbとは、5種類のサンプルに共通であり、Ra=0.1μmであり、Lb=30μmであった。熱衝撃性能の点数の意味は、図3(A)で説明した耐熱衝撃性能の点数の意味と同じであり、耐電圧の点数の意味は、図3(C)で説明した耐電圧の点数の意味と同じである。試験に用いられた点火プラグ100の他の部分の構成は、5種類のサンプルの間で共通であった。例えば、以下のパラメータは、5種類のサンプルの間で共通であった。
長さLa:0.9mm
角度AG:90度
表に示すように、22番から26番の順に、距離Lcは、0.05、0.1、0.2、3、5(mm)であり、耐熱衝撃性能は、9、10、10、10、10であり、耐電圧は、10、10、10、10、8であった。距離Lcが小さく0.05mmである場合(22番)に耐熱衝撃性能が低くなる理由は、距離Lcが小さいことに起因して面取部321が小さくなるので、先端面Sfと内周面Sbとの接続点P3を形成する角が鋭利になり、この結果、温度変化に起因する応力が接続点P3に集中するからである。また、距離Lcが大きく5mmである場合(26番)に耐電圧が低下する理由は、距離Lcが大きいことによって、径方向の厚さが薄い第2部分320が大きくなり、第2部分320を貫通する放電が生じ易くなるからである。
10点の良好な耐熱衝撃性能と10点の良好な耐電圧とを実現した距離Lcは、0.1、0.2、3(mm)であった。これらの値から任意に選択された値を、距離Lcの好ましい範囲の下限として採用してよい。例えば、距離Lcとしては、0.1mm以上の値を採用してよい。また、上記の良好な耐熱衝撃性能と良好な耐電圧とを実現した距離Lcから任意に選択された値(例えば、下限以上の値)を、距離Lcの好ましい範囲の上限として採用してよい。例えば、距離Lcとしては、3mm以下の値を採用してよい。ただし、距離Lcが、0.1mm未満であってもよく、また、3mmを超えていてもよい。いずれの場合も、距離Lcは、主体金具50の先端(ここでは、先端面55)と、絶縁体10の先端(ここでは、先端面Sf)と、の間の軸線CLに平行な方向の距離Ld(図2)未満に設定されることが、好ましい。
なお、距離Lcが上記の好ましい範囲内である場合には、先端部300の他の構成(例えば、他のパラメータ)に拘わらずに、温度変化に起因する応力が接続点P3に集中するが抑制され得、そして、第2部分320を貫通する放電が抑制され得る。従って、種々の形状と種々の大きさの先端部300を有する絶縁体10に、距離Lcの好ましい範囲を適用してよい。例えば、先端部300の内周面Sa、Sbの表面粗度Ra、長さLa、距離Lb、角度AGの少なくとも1つが上記のサンプルの値と異なっていてもよい。
C.第2実施形態:
図4は、第2実施形態の点火プラグ100aの説明図である。図中には、図2と同じ部分断面が示されている。図2の実施形態との差異は、曲線で表される面取部321が、折れ線で表される面取部321aに置換されている点だけである。点火プラグ100aの他の部分の構成は、図1、図2の実施形態の対応する部分の構成と、同じである(対応する要素と同じ要素には、同じ符号を付して、説明を省略する)。
本実施形態では、軸孔12aを有する絶縁体10aの先端部300aの第2部分320aの内周面Sbaは、第1部分310の接続面Sa2に接続される第1部分面Sba1と、第1部分面Sba1の前方向Df側に接続される第2部分面Sba2と、で構成されている。第2点P2は、第1部分310の接続面Sa2と第1部分面Sba1との接続点であり、第3点P3は、第2部分面Sba2と先端面Sfとの接続点である。第1部分面Sba1では、軸線CLに平行な方向の位置によらずに、内径Dbは、一定である。第2部分320aのうち第1部分面Sba1を形成する部分320amは、第2部分320aの最小内径部分である。第2部分面Sba2では、内径は、前方向Dfに向けて、徐々に大きくなる。図4の断面において、第2部分面Sba2は、軸線CLに対して斜めに傾斜する方向に延びる直線分で表される。第2部分面Sba2は、面取部321aを形成する。
このように、軸線CLを含む断面において、図2の実施形態のように曲線で表される面取部321に代えて、直線分で表される面取部321aを採用してよい。この場合も、図2の実施形態と同様に、先端面Sfと内周面Sbaとの接続部分(第3点P3を頂点とする角)が、おおよそ90度の角を形成する場合と比べて、絶縁体10aの先端部300aの温度変化に起因する応力が、先端面Sfと内周面Sbaとの接続部分に集中することが、抑制される。この結果、絶縁体10aの先端部300aの破損を、抑制できる。
また、本実施形態の点火プラグ100aにおいても、先端部300aの内周面Sa、Sbaの表面粗度Raと、角度AGと、距離Lbと、距離Lcと、から任意に選択された1以上のパラメータが、図3(A)〜図3(D)で説明した対応する好ましい範囲内であってよい。これにより、点火プラグ100aは、図2、図3の点火プラグ100と同様に、種々の利点を実現できる。
D.変形例:
(1)点火プラグの構成としては、種々の構成を採用してよい。例えば、図2の実施形態において、面取部321と接続面Sa2との間に、内径が一定である円筒状の部分が設けられてもよい。すなわち、第2部分320の内周面Sbは、接続面Sa2に接続されるとともに内径が一定である第1部分面と、第1部分面の前方向Df側に接続されるとともに面取部321を形成する第2部分面と、で構成されてもよい。
また、図2の実施形態において、軸線CLを含む断面上で、面取部321の形状は、円弧状であってよく、また、円弧とは異なる曲線(例えば、楕円の一部)で表される形状であってよい(曲線で表される面取部は、R面取部とも呼ばれる)。いずれの場合も、軸線CLを含む断面において、面取部の形状は、絶縁体の外部に向かって凸な形状であることが好ましい。
また、図4の実施形態において、第2部分320aの内周面Sbaのうちの内径が一定である第1部分面Sba1が省略され、内周面Sbaの全体が、面取部321aを形成してもよい。また、図4の実施形態において、軸線CLを含む断面上で、面取部321aの形状は、1本の直線分で表される形状に代えて、複数の直線分を含む折れ線で表される形状であってよい(1以上の直線分で表される面取部は、C面取部とも呼ばれる)。ここで、折れ線は、絶縁体の外部に向かって凸な形状を形成することが好ましい。一般的には、面取部の構成は、軸線CLを含む断面において、N本(Nは1以上の整数)の直線分で表される構成であってよい。
また、点火プラグの構成としては、図1に示す構成に代えて、他の構成を採用してもよい。例えば、先端側パッキン8(図1)が省略されてもよい。この場合、主体金具の張り出し部56は、直接的に、絶縁体の縮外径部16を、支持する。また、中心電極の先端面(例えば、図1の第1チップ29の前方向Df側の面)に代えて、中心電極の側面(軸線CLに垂直な方向側の面)と、接地電極とが、放電用のギャップを形成してもよい。放電用のギャップの総数が2以上であってもよい。抵抗体73が省略されてもよい。絶縁体の貫通孔内の中心電極と端子金具との間に、磁性体が配置されてもよい。また、接地電極30が省略されてもよい。この場合、点火プラグの中心電極20と、燃焼室内の他の部材と、の間で、放電が生じてよい。
一般的には、点火プラグの構成としては、以下の構成を採用してよい。すなわち、点火プラグは、軸線の方向に延びる軸孔を有する筒状の絶縁体と、少なくとも絶縁体の先端に位置する部分を含むように軸孔内に配置された中心電極と、絶縁体の先端部が自身の先端から先端側に突出するように絶縁体の外周側に固定された主体金具と、を備える。そして、絶縁体の先端部は、先端部の後端側の部分を成す第1部分と、第1部分の先端側に隣接するとともに、第1部分の内径よりも大きい内径を有する第2部分と、のみから成り、第2部分の内周面には、絶縁体の先端に接続される面取部が設けられる。このような点火プラグを採用すれば、絶縁体の先端と内周面とが接続される部分に面取部が設けられるので、温度変化に対する絶縁体の耐久性を向上できる。さらに、絶縁体のうちの主体金具の先端よりも先端側の先端部は、先端部の後端側を成す第1部分と、第1部分の先端側に隣接するとともに第1部分よりも大きい内径を有する第2部分と、のみで形成されているので、中心電極と主体金具との間で絶縁体を貫通する意図しない放電を抑制しつつ、温度変化に対する絶縁体の耐久性を向上できる。
いずれの場合も、点火プラグにおいては、絶縁体の先端部の内周面Sa、Sbの表面粗度Raと、角度AGと、距離Lbと、距離Lcと、から任意に選択された1以上のパラメータが、図3(A)〜図3(D)で説明した対応する好ましい範囲内であってよい。ただし、全てのパラメータが、対応する好ましい範囲外であってもよい。
以上、実施形態、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。
8…先端側パッキン、10、10a…絶縁体、11…縮内径部、12、12a…軸孔(貫通孔)、13…後端側胴部、14…大径部、15…先端側胴部、16…縮外径部、19…脚部、20…中心電極、20s…側面、20t…部分、21…外層、22…芯部、23…鍔部、24…頭部、27…軸部、28…棒部、29…第1チップ、30…接地電極、31…外層、32…内層、33…基端部、34…先端部、37…本体部、39…第2チップ、40…端子金具、41…軸部、48…鍔部、49…キャップ装着部、50…主体金具、51…工具係合部、52…先端側胴部、53…後端部、54…中胴部、54f…座面、55…先端面、56…張り出し部、56r…後面、57…ネジ部、58…接続部、59…貫通孔、61…リング部材、70…タルク、72…第1シール部、73…抵抗体、74…第2シール部、90…ガスケット、100、100a…点火プラグ、300、300a…先端部、310…第1部分、310m…最小内径部分、320、320a…第2部分、320m、320am…最小内径部分、321、321a…面取部、322…面取部、g…放電ギャップ、Df…前方向(先端方向)、Dfr…後端方向(後方向)、Sba1…第1部分面、Sba2…第2部分面、P1…第1点、P2…第2点、P3…第3点(接続点)、C1…角、AG…角度、CL…中心軸(軸線)、Sa…内周面、Da…内径(最小内径)、Sb…内周面、Db…内径(最小内径)、Ra…表面粗度、Lb…距離、Lc…距離、Sc…外周面、Ld…距離、Sf…先端面、Ls…直線、AG1…角度、Sa1…第1部分面、Sa2…第2部分面(接続面)、Sba…内周面、Pth…経路

Claims (6)

  1. 軸線の方向に延びる軸孔を有する筒状の絶縁体と、
    少なくとも前記絶縁体の先端に位置する部分を含むように前記軸孔内に配置された中心電極と、
    前記絶縁体の先端部が自身の先端から先端側に突出するように前記絶縁体の外周側に固定された主体金具と、
    を備える点火プラグであって、
    前記絶縁体の前記先端部は、
    前記先端部の後端側の部分を成す第1部分と、
    前記第1部分の先端側に隣接するとともに、前記第1部分の内径よりも大きい内径を有する第2部分と、のみから成り、
    前記第2部分の内周面には、前記絶縁体の先端に接続される面取部が設けられており、
    前記第1部分の先端側の部分の内周面は、先端側を向くとともに第2部分に接続される接続面を有し、
    前記軸線を含む断面において、前記接続面に相当する線分の両端を通る直線と、前記軸線と、のなす角度のうち、前記接続面の先端側と前記軸線との間の角度は、75度以上である、
    点火プラグ。
  2. 請求項に記載の点火プラグであって、
    前記第1部分の最小内径部分の内周面と前記第2部分の最小内径部分の内周面との間の前記軸線に垂直な方向の位置の差は、5μm以上、500μm以下である、
    点火プラグ。
  3. 請求項1または2に記載の点火プラグであって、
    前記第2部分の最も後端側の部分と、前記絶縁体の先端と、の間の前記軸線の方向の距離は、0.1mm以上である、
    点火プラグ。
  4. 請求項1からのいずれかに記載の点火プラグであって、
    前記絶縁体の前記先端部の内周面の表面粗度は、1μm以下である、
    点火プラグ。
  5. 請求項1からのいずれかに記載の点火プラグであって、
    前記第1部分の最小内径部分の内周面と前記第2部分の最小内径部分の内周面との間の前記軸線に垂直な方向の位置の差は、15μm以上、100μm以下である、
    点火プラグ。
  6. 請求項1からのいずれかに記載の点火プラグであって、
    前記面取部は、C面取部、または、R面取部である、
    点火プラグ。
JP2017137682A 2017-07-14 2017-07-14 点火プラグ Active JP6632576B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017137682A JP6632576B2 (ja) 2017-07-14 2017-07-14 点火プラグ
US16/033,661 US10305260B2 (en) 2017-07-14 2018-07-12 Spark plug including an insulator with a front end portion having first and second sections
CN201810762138.3A CN109256679B (zh) 2017-07-14 2018-07-12 火花塞
DE102018211565.6A DE102018211565B4 (de) 2017-07-14 2018-07-12 Zündkerze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017137682A JP6632576B2 (ja) 2017-07-14 2017-07-14 点火プラグ

Publications (2)

Publication Number Publication Date
JP2019021453A JP2019021453A (ja) 2019-02-07
JP6632576B2 true JP6632576B2 (ja) 2020-01-22

Family

ID=64745589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017137682A Active JP6632576B2 (ja) 2017-07-14 2017-07-14 点火プラグ

Country Status (4)

Country Link
US (1) US10305260B2 (ja)
JP (1) JP6632576B2 (ja)
CN (1) CN109256679B (ja)
DE (1) DE102018211565B4 (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264535A (ja) 1996-03-28 1997-10-07 Ngk Spark Plug Co Ltd スパークプラグ
JP3297636B2 (ja) * 1997-03-07 2002-07-02 日本特殊陶業株式会社 セミ沿面放電形のスパークプラグ
US7557496B2 (en) * 2005-03-08 2009-07-07 Ngk Spark Plug Co., Ltd. Spark plug which can prevent lateral sparking
US8237343B2 (en) * 2005-08-22 2012-08-07 Ngk Spark Plug Co., Ltd. Spark plug having a metal fitting portion for holding an insulator at a portion opposite a tip end
US7598661B2 (en) * 2006-06-23 2009-10-06 Federal-Mogul World Wide, Inc Spark plug
JP4719191B2 (ja) 2007-07-17 2011-07-06 日本特殊陶業株式会社 内燃機関用スパークプラグ
KR101280708B1 (ko) * 2009-01-13 2013-07-01 니혼도꾸슈도교 가부시키가이샤 스파크 플러그
JP4648485B1 (ja) * 2010-01-12 2011-03-09 日本特殊陶業株式会社 スパークプラグ
TWI386645B (zh) * 2010-07-19 2013-02-21 Univ Kaohsiung Medical 可定量任何聚乙二醇分子與其修飾物之抗聚乙二醇表現細胞
JP5167334B2 (ja) * 2010-12-21 2013-03-21 日本特殊陶業株式会社 スパークプラグ
JP5783927B2 (ja) 2012-02-13 2015-09-24 日本特殊陶業株式会社 スパークプラグ
JP5992022B2 (ja) * 2014-09-12 2016-09-14 日本特殊陶業株式会社 絶縁体、および、スパークプラグ
CN104836120B (zh) * 2015-05-12 2016-09-14 宋天顺 一种火花塞和一种高压点火线
JP6712140B2 (ja) 2016-02-03 2020-06-17 三協立山株式会社 簡易構造物
JP6440653B2 (ja) * 2016-06-01 2018-12-19 日本特殊陶業株式会社 スパークプラグ

Also Published As

Publication number Publication date
DE102018211565B4 (de) 2024-05-02
DE102018211565A1 (de) 2019-01-17
CN109256679A (zh) 2019-01-22
US10305260B2 (en) 2019-05-28
US20190020181A1 (en) 2019-01-17
JP2019021453A (ja) 2019-02-07
CN109256679B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
JP5414896B2 (ja) スパークプラグ
JP5167257B2 (ja) スパークプラグ
US11456578B2 (en) Spark plug
US8810120B2 (en) Spark plug
US7944134B2 (en) Spark plug with center electrode having high heat dissipation property
JP5642032B2 (ja) スパークプラグ
KR101998536B1 (ko) 스파크 플러그
JP6328093B2 (ja) スパークプラグ
JP5296677B2 (ja) スパークプラグ
JP6942159B2 (ja) 点火プラグ
JP5140718B2 (ja) プラズマジェット点火プラグ
JP6632576B2 (ja) 点火プラグ
JP6903717B2 (ja) 点火プラグ
WO2009116553A1 (ja) スパークプラグ
US9742157B2 (en) Spark plug
JP6293107B2 (ja) 点火プラグ
CN110676693B (zh) 火花塞
JP2010165698A (ja) スパークプラグ
JP2010165698A5 (ja)
JP6664452B2 (ja) 点火プラグ
JP6653785B2 (ja) 点火プラグ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250