JP6631747B2 - 植生指標算出装置、植生指標算出方法、及びプログラム - Google Patents

植生指標算出装置、植生指標算出方法、及びプログラム Download PDF

Info

Publication number
JP6631747B2
JP6631747B2 JP2019507446A JP2019507446A JP6631747B2 JP 6631747 B2 JP6631747 B2 JP 6631747B2 JP 2019507446 A JP2019507446 A JP 2019507446A JP 2019507446 A JP2019507446 A JP 2019507446A JP 6631747 B2 JP6631747 B2 JP 6631747B2
Authority
JP
Japan
Prior art keywords
image
crop
vegetation index
learning model
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019507446A
Other languages
English (en)
Other versions
JPWO2018173577A1 (ja
Inventor
恒輔 石田
恒輔 石田
石川 肇
肇 石川
真二 大湊
真二 大湊
俊祐 秋元
俊祐 秋元
雅美 坂口
雅美 坂口
眞太郎 松本
眞太郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2018173577A1 publication Critical patent/JPWO2018173577A1/ja
Application granted granted Critical
Publication of JP6631747B2 publication Critical patent/JP6631747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19173Classification techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Image Analysis (AREA)

Description

本発明は、植物の植生指標を算出するための、植生指標算出装置、及び植生指標算出方法に関し、更には、これらを実現するためのプログラムに関する。
近年、コンピュータの発展に伴い、コンピュータシュミレーションによって、農作物の収量を予測する取り組みが行なわれている。例えば、特許文献1は、圃場における農作物の生育状況を把握して、農作物の収量を予測するシステムを提案している。
具体的には、特許文献1に開示されたシステムでは、まず、衛星データ及び気象データに基づいて、特定の圃場(又はエリア)について、時期毎に、農作物の植生指標と、有効積算温度とを算出し、これらを用いて、現在までの農作物の生長曲線を生成する。続いて、特許文献1に開示されたシステムは、得られた成長曲線を用いて、統計モデルを生成し、生成した統計モデルを用いて、将来の成長曲線を予測する。
また、このようなシステムにおいては、農作物の植生指標の精度が重要となる。植生指標としては、例えば、NDVI(正規化差植生指数:Normalized Difference Vegetation
Index)が知られている。NDVIは、植物の葉が青と赤の波長を吸収し、近赤外線領域の波長を強く反射する特性を利用した指数であり、植生の分布状況及び活性度を示している。NDVIの値が、正の大きな値になるほど、植生が濃くなる傾向にある。
特開2015−188333号公報
ところで、NDVIは、衛星データから得られた可視域赤の反射率をR、衛星データから得られた近赤外域の反射率をIRとすると、(IR−R)/(IR+R)で得られた値を−1から+1の間に正規化することによって算出される。つまり、NDVIは、衛星で得られたデータから算出される。
しかしながら、実際の圃場においては、農作物以外の植物、例えば、雑草が茂っていることもあるため、NVDIは雑草の植生を含めた値となっている。このため、NDVIの信頼性が低いことがあり、このような場合、農作物の収量の予測精度は著しく低下してしまう。
本発明の目的の一例は、上記問題を解消し、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出し得る、植生指標算出装置、植生指標算出方法、及びプログラムを提供することにある。
上記目的を達成するため、本発明の一側面における第1の植生指標算出装置は、
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする。
上記目的を達成するため、本発明の一側面における第2の植生指標算出装置は、
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする。
上記目的を達成するため、本発明の一側面における第1の植生指標算出方法は、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
また、上記目的を達成するため、本発明の一側面における第2の植生指標算出方法は、(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
更に、上記目的を達成するため、本発明の一側面における第1のプログラムは、
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させることを特徴とする。
更に、上記目的を達成するため、本発明の一側面における第2のプログラムは、
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させることを特徴とする。
以上のように、本発明によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
図1は、本発明の実施の形態1における植生指標算出装置の構成を示すブロック図である。 図2は、本発明の実施の形態1における学習モデルの生成処理を説明する図である。 図3は、本発明の実施の形態1における学習モデルの生成処理の別の例を説明する図である。 図4は、本発明の実施の形態1における植生指標算出装置のサポートベクトルマシンによる学習モデル生成処理時の動作を示すフロー図である。 図5は、本発明の実施の形態1における植生指標算出装置のディープラーニングによる学習モデル生成処理時の動作を示すフロー図である。 図6は、本発明の実施の形態1における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。 図7は、本発明の実施の形態2における植生指標算出装置の構成を示すブロック図である。 図8は、本発明の実施の形態2における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。 図9は、本発明の実施の形態1及び2における植生指標算出装置を実現するコンピュータの一例を示すブロック図である。
(実施の形態1)
以下、本発明の実施の形態1における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図1〜図6を参照しながら説明する。
[装置構成]
最初に、本実施の形態1における植生指標算出装置の構成について図1を用いて説明する。図1は、本発明の実施の形態1における植生指標算出装置の構成を示すブロック図である。
図1に示す、植生指標算出装置10は、対象領域、例えば、特定の圃場又はエリアにおける植生指標を算出するための装置である。図1に示すように、植生指標算出装置10は、学習モデル生成部11と、画像取得部12と、特定部13と、植生指標算出部14とを備えている。
学習モデル生成部11は、植生指標の算出対象となる農作物(以下、単に農作物ともいう)の画像と、農作物以外の植物(以下、単に植物ともいう)の画像とを用いて農作物の画像の特徴量を学習することによって、学習モデル15を生成する。
ここで、農作物の画像及び植物の画像は、例えば、該農作物及び該植物を上空から撮影した上空画像とすることができる。後述するように、学習モデル15に適用する画像が上空画像であるため、学習モデル生成部11が学習モデル15の生成に用いる画像も上空画像であることが好ましい。
該農作物及び該植物を上空から撮影した上空画像は、例えば人工衛星、航空機、ドローン等によって圃場を上空から撮影することにより得られる。学習モデル15を生成する際に、人工衛星、航空機、ドローン等によって圃場を上空から撮影することにより得られた上空画像を用いる場合、一枚の上空画像には、農作物の画像及び植物の画像が含まれていることがある。一枚の上空画像に農作物の画像及び植物の画像が含まれている場合は、該上空画像から農作物の画像及び植物の画像をそれぞれ切り出して学習モデル15の生成に使用することができる。
なお、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行うことにより、学習モデルの精度が向上する。農作物以外の植物が雑草である場合を例に説明すると、実際の圃場において雑草は、農作物と混在しているケースが多い。また、雑草の種類は一種類に限らないため、例えば雑草の葉の形状については、上空から見て葉が尖っている又は葉が丸い等様々な形状が考えられる。
したがって、「農作物の画像」と「農作物の画像及び雑草の画像を含む画像」を多数取得して学習を行う方が、実際のケースにより近い学習モデルを生成することができる。さらに、雑草が独立して存在しているケースも考えられるため、「農作物の画像」、「農作物の画像及び雑草の画像を含む画像」及び「雑草の画像」を用いて学習を行うことで、実際のケースにさらに近い学習モデルを生成することができる。
画像取得部12は、農作物が栽培されている対象領域の上空画像を取得する。画像取得部12は、例えば人工衛星、航空機、ドローン等によって上空から撮影された圃場等の上空画像を取得する。
特定部13は、学習モデル生成部11が生成した学習モデル15に、画像取得部12が取得した上空画像を適用して、この上空画像における農作物の画像を特定する。
植生指標算出部14は、特定部13が特定した農作物の画像を用いて、対象領域における農作物の植生指標を算出する。
このように、本実施の形態1では、学習モデル生成部11が、農作物の画像の特徴量を学習することによって、農作物の画像を特定できる学習モデル15を生成するので、上空画像から、精度よく農作物の画像を特定できる。このため、本実施の形態1によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
続いて、図2及び図3を用いて、本実施の形態1における植生指標算出装置10の構成についてより具体的に説明する。図2は、本発明の実施の形態1における学習モデルの生成処理を説明する図である。図2では、学習モデルの生成に用いられる画像として圃場等の上空画像を用いる例を説明する。
図2に示すように、まず、人工衛星、航空機、ドローン等によって上空から圃場等の撮影が行なわれ、学習用の上空画像が得られる。学習モデル生成部11は、この学習用の上空画像から、該農作物が存在している領域及び該農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出する。そして、学習モデル作成部11は、サポートベクトルマシンを用いて、該農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す学習モデルを生成する。
具体的には、学習モデル生成部11は、図2に示すように、得られた学習用の上空画像のうち、植生指標の算出対象となる農作物の上空からの画像を第1の上空画像として取得する。また、学習モデル生成部11は、該農作物以外の植物の上空からの画像を第2の上空画像として取得する。なお、撮影によって得られた上空画像が農作物の画像及び該農作物以外の植物の画像の両方を含む場合は、画像を加工することによって、第1の上空画像及び第2の上空画像が作成されても良い。また、取得される第1の上空画像及び第2の上空画像の枚数は限定されないが、学習モデルによる判別精度の点から、枚数はできるだけ多いのが良い。
続いて、学習モデル生成部11は、第1の上空画像から、該農作物が存在している領域の形状、色、位置を示す特徴量を抽出する。更に、学習モデル生成部11は、第2の上空画像から、該農作物以外の植物が存在している領域の形状、色、位置を示す特徴量を抽出する。そして、学習モデル生成部11は、第1の上空画像から得られた特徴量と、第2の上空画像から得られた特徴量とを分類して保持する。
なお、該農作物が存在している領域の形状には、対象となる該農作物に固有の形状、畝の形状等が含まれる。また、該農作物に固有の形状とは、その農作物の葉の形、葉の重なり方によって決まる、その農作物を上から見たときの固有の形状を意味している。更に、該農作物が存在している位置には、圃場における畝の配列の状態が含まれる。また、該農作物が存在している領域の色には、農作物の色によって決まる、その領域における周波数特性(赤外、紫外を含めた色成分)が含まれる。
また、該農作物以外の植物が存在している領域の形状には、該農作物以外の植物に固有の形状等が含まれる。更に、該農作物以外の植物の固有の形状も、その植物の葉の形、葉の重なり方によって決まる、その植物を上から見たときの固有の形状を意味している。加えて、該農作物以外の植物が存在している領域の色にも、その植物の色によって決まる、その領域における周波数特性(赤外、紫外を含めた色成分)が含まれる。
次に、学習モデル生成部11は、サポートベクトルマシンを用いて、植生指標の算出対象となる農作物が存在している領域の形状、色、位置を示す特徴量を学習する。具体的には、学習モデル生成部11は、サポートベクトルマシンに、分類された各上空画像の特徴量を与えて、植生指標の算出対象となる農作物と該農作物以外の植物との境界を学習させ、学習結果を示す学習モデル15を生成する。
また、学習モデル生成部11は、取得した多数の学習用の上空画像を用いて、ディープラーニングを行ない、それによって、該農作物の上空からの画像と該農作物以外の植物の上空からの画像とを識別する分類器を作成し、作成した分類器を学習モデル15とすることもできる。
特定部13は、学習モデル生成部11が生成した学習モデル15を用いて、画像取得部12が取得した上空画像から、農作物の画像を特定する。ここで、画像取得部12が取得する上空画像も、学習に用いられる上空画像(図2参照)と同様に、人工衛星、航空機、ドローン等によって上空から圃場等を撮影することによって得られている。
指標算出部14は、特定部13が特定した画像を用いて、対象領域における農作物の植生指標を算出する。本実施の形態1で算出される植生指標としては、背景技術の欄で述べたNDVIに加え、SAVI(Soil Adjusted Vegetation Index)、WDVI(Weighted Difference Vegetation Index)、NDRE(Normalized Difference Red Edge)等も挙げられる。
SAVIは、NDVIに背景土壌の反射の影響を配慮して得られた指数である。WDVIは、重み付き差分植生指数であり、植物からの反射光の各バンドに重みを付け、土壌の値を0として計算される。NDREは、Rapid Eye衛星によるRed edgeバンド(波長710nm付近)での測定値を正規化して得られた指数である。
図3は、本発明の実施の形態1における学習モデルの生成処理の別の例を説明する図である。図3の例では、学習モデル生成部11は、ディープラーニングによって、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行う。先述したように、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行うことにより、学習モデルの精度が向上する。
[装置動作]
次に、本発明の実施の形態1における植生指標算出装置10の動作について図4〜図6を用いて説明する。また、本実施の形態1では、植生指標算出装置10を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態1における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
最初に、学習モデルの生成処理について図4及び図5を用いて説明する。まず、図4を用いて、サポートベクトルマシンによって学習モデルが生成される場合について説明する。図4は、本発明の実施の形態1における植生指標算出装置のサポートベクトルマシンによる学習モデル生成処理時の動作を示すフロー図である。
図4に示すように、学習モデル生成部11は、外部から、多数の上空画像を取得する(ステップA1)。取得された上空画像には、第1の上空画像と第2の上空画像とが含まれている。第1の上空画像と第2の上空画像については、上述の通りである。
次に、学習モデル生成部11は、ステップA1で取得した上空画像のうち、第1の上空画像から、農作物が存在している領域の形状、色、位置を示す特徴量を抽出し、第2の上空画像から、該農作物以外の植物が存在している領域の形状、色、位置を示す特徴量を抽出する(ステップA2)。
次に、学習モデル生成部11は、第1の上空画像から得られた特徴量と、第2の上空画像から得られた特徴量とを分類して保持する(ステップA3)。
次に、学習モデル生成部11は、サポートベクトルマシンを用いて、植生指標の算出対象となる農作物が存在している領域の形状、色、位置を示す特徴量を学習して、学習モデル15を生成する(ステップA4)。
具体的には、学習モデル生成部11は、サポートベクトルマシンに、分類された各上空画像の特徴量を与えて、植生指標の算出対象となる農作物と該農作物以外の植物との境界を学習させ、学習結果を示す学習モデル15を生成する。
続いて、図5を用いて、ディープラーニングによって学習モデルが生成される場合について説明する。図5は、本発明の実施の形態1における植生指標算出装置のディープラーニングによる学習モデル生成処理時の動作を示すフロー図である。
図5に示すように、学習モデル生成部11は、外部から、多数の上空画像を取得する(ステップB1)。上空画像には、例えば、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」とが含まれている。
次に、学習モデル生成部11は、ステップB1で取得した多数の学習用の上空画像を用いて、ディープラーニングを実行する(ステップB2)。
そして、学習モデル生成部11は、ステップB2の結果から、植生指標の算出対象となる農作物の上空からの画像と、該農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した分類器を学習モデル15とする(ステップB3)。
続いて、植生指標の算出処理について図6を用いて説明する。図6は、本発明の実施の形態1における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。
図6に示すように、最初に、画像取得部12は、農作物が栽培されている対象領域の上空画像を取得する(ステップC1)。
次に、特定部13は、学習モデル15に、ステップC1で画像取得部12が取得した上空画像を適用して、この上空画像における農作物の画像を特定する(ステップC2)。
次に、植生指標算出部14は、ステップC2で特定部13が特定した農作物の画像を用いて、対象領域における農作物の植生指標、例えば、NDVIを算出する(ステップC3)。また、植生指標算出部14は、算出した植生指標を、外部の端末装置等に送信する。
以上のように、図4に示すステップA1〜A4、又は図5に示すステップB1〜B3を実行することにより、学習モデル生成部11が、植生指標の算出対象となる農作物の画像の特徴量を学習し、該農作物の画像を特定できる学習モデル15を生成する。特定部13は、この学習モデル15に、対象となる圃場又はエリアの上空画像を適用することにより、その圃場又はエリアでの該農作物の画像を特定することができる。そして、植生指標算出部14は、特定部13が特定した農作物の画像を用いて農作物の植生指標を算出する。このため、本実施の形態1によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
[プログラム]
本実施の形態1におけるプログラムは、コンピュータに、図4に示すステップA1〜A4(又は図5に示すステップB1〜B3)と、図6に示すステップC1〜C3とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における植生指標算出装置10と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部11、画像取得部12、特定部13、及び植生指標算出部14として機能し、処理を行なう。
また、本実施の形態1におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、学習モデル生成部11、画像取得部12、特定部13、及び植生指標算出部14のいずれかとして機能しても良い。
(実施の形態2)
続いて、本発明の実施の形態2における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図7〜図8を参照しながら説明する。
[装置構成]
最初に、本実施の形態2における植生指標算出装置の構成について図7を用いて説明する。図7は、本発明の実施の形態2における植生指標算出装置の構成を示すブロック図である。
図7に示すように、本実施の形態2では、植生指標算出装置20は、実施の形態1における植生指標算出装置10と同様に、学習モデル生成部21と、画像取得部22と、特定部23と、植生指標算出部24とを備えている。但し、本実施の形態2では、植生指標算出部20は、植生指標補正部25を備えており、この点で、実施の形態1における植生指標算出装置10と異なっている。以下、実施の形態1との相違点を中心に説明する。
学習モデル生成部21は、本実施の形態2では、農作物以外の植物の画像の特徴量を学習する。以下、農作物以外の植物の一例として雑草を用いて説明する。学習モデル生成部21は、対象となる圃場又はエリアに存在する雑草の画像の特徴量を学習し、該雑草の画像を特定できる学習モデル26を生成する。また、特定部23は、本実施の形態2では、学習モデル26に、対象となる圃場又はエリアの上空画像を適用することにより、その圃場又はエリアでの該雑草の画像を特定する。
そして、植生指標算出部24は、画像取得部22が取得した、対象となる圃場又はエリアの上空画像全体を用いて第1の植生指標(対象となる圃場又はエリアに存在する植物(農作物を含む)の植生指標)を算出し、更に、特定部23が特定した雑草の画像を用いて第2の植生指標(雑草の植生指標)を算出する。
植生指標補正部25は、対象となる圃場又はエリアの上空画像全体から算出した第1の植生指標を、第2の植生指標(雑草の植生指標)を用いて補正して、植生指標の算出対象となる農作物の植生指標を算出する。
[装置動作]
次に、本発明の実施の形態2における植生指標算出装置20の動作について図8を用いて説明する。図8は、本発明の実施の形態2における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。また、本実施の形態2では、植生指標算出装置20を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態2における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
まず、本実施の形態2においても、実施の形態1と同様に行なわれ、学習モデル生成部21は、図4に示すステップA1〜A4又は図5に示すステップB1〜B3に準じて学習モデルを生成する。但し、生成される学習モデルは、雑草の画像を特定するものであるため、図4に示したステップA4では、学習モデル生成部21は、サポートベクトルマシンを用いて、雑草が存在している領域の形状、色、位置を示す特徴量を学習する。
図8に示すように、最初に、画像取得部22は、農作物が栽培されている対象領域の上空画像を取得する(ステップD1)。
次に、特定部23は、学習モデル26に、ステップD1で画像取得部22が取得した上空画像を適用して、この上空画像における雑草の画像を特定する(ステップD2)。
次に、植生指標算出部24は、ステップD1で画像取得部22が取得した上空画像全体を用いて、第1の植生指標(対象となる圃場又はエリアに存在する植物(農作物を含む)の植生指標)を算出する(ステップD3)。
次に、植生指標算出部24は、ステップD2で特定部23が特定した雑草の画像を用いて第2の植生指標(雑草の植生指標)を算出する(ステップD4)。
次に、植生指標補正部25は、植生指標算出部24がステップD3で算出した第1の植生指標を、植生指標算出部24がステップD4で算出した第2の植生指標を用いて補正して、農作物の植生指標を算出する(ステップD5)。また、植生指標補正部25は、算出した植生指標を、外部の端末装置等に送信する。
このように、本実施の形態2では、対象となる圃場又はエリアの上空画像全体から算出した第1の植生指標を、第2の植生指標(雑草の植生指標)を用いて補正することによって、農作物の植生指標が算出されるので、農作物の植生指標の算出精度を高めることができる。
[プログラム]
本実施の形態2におけるプログラムは、コンピュータに、図4に示すステップA1〜A4(又は図5に示すステップB1〜B3)と、図8に示すステップD1〜D5とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態2における植生指標算出装置20と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部21、画像取得部22、特定部23、植生指標算出部24、及び植生指標補正部25として機能し、処理を行なう。
また、本実施の形態2におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、学習モデル生成部21、画像取得部22、特定部23、植生指標算出部24、及び植生指標補正部25のいずれかとして機能しても良い。
(物理構成)
ここで、本実施の形態1及び2におけるプログラムを実行することによって、植生指標算出装置10を実現するコンピュータについて図9を用いて説明する。図9は、本発明の実施の形態1又は2における植生指標算出装置を実現するコンピュータの一例を示すブロック図である。
図9に示すように、コンピュータ110は、CPU(Central Processing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-ProgrammableGate Array)を備えていても良い。
CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD−ROM(Compact DiskRead Only Memory)などの光学記録媒体が挙げられる。
なお、本実施の形態における植生指標算出装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、植生指標算出装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。

上述した実施の形態の一部又は全部は、以下に記載する(付記1)〜(付記12)によって表現することができるが、以下の記載に限定されるものではない。

(付記1) 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする植生指標算出装置。

(付記2) 前記学習モデル生成部が、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記1に記載の植生指標算出装置。

(付記3) 前記学習モデル生成部が、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記1に記載の植生指標算出装置。

(付記4) 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする植生指標算出装置。

(付記5)(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。

(付記6) 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記5に記載の植生指標算出方法。

(付記7) 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記5に記載の植生指標算出方法。

(付記8)(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。
(付記9)コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させるプログラム。
(付記10) 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記9に記載のプログラム
(付記11) 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記9に記載のプログラム
(付記12)コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させるプログラム。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2017年3月23日に出願された日本出願特願2017−57781を基礎とする優先権を主張し、その開示の全てをここに取り込む。
以上のように、本発明によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。本発明は、正確な植生指標の値を必要とする、農作物の収量予測を行なうシステムに有用である。
10 植生指標算出装置(実施の形態1)
11 学習モデル生成部
12 画像取得部
13 特定部
14 植生指標算出部
15 学習モデル
20 植生指標算出装置(実施の形態2)
21 学習モデル生成部
22 画像取得部
23 特定部
24 植生指標算出部
25 植生指標補正部
26 学習モデル
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス

Claims (9)

  1. 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
    前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
    前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
    前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
    前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
    を備えている、ことを特徴とする植生指標算出装置。
  2. 前記学習モデル生成部が、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
    請求項1に記載の植生指標算出装置。
  3. 前記学習モデル生成部が、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
    請求項1に記載の植生指標算出装置。
  4. (a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
    (b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
    (c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
    (d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
    (e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
    を有する、ことを特徴とする植生指標算出方法。
  5. 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
    請求項4に記載の植生指標算出方法。
  6. 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
    請求項4に記載の植生指標算出方法。
  7. コンピュータに、
    (a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
    (b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
    (c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
    (d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
    (e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
    を実行させる、プログラム。
  8. 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
    請求項7に記載のプログラム。
  9. 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
    請求項7に記載のプログラム。
JP2019507446A 2017-03-23 2018-02-16 植生指標算出装置、植生指標算出方法、及びプログラム Active JP6631747B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017057781 2017-03-23
JP2017057781 2017-03-23
PCT/JP2018/005579 WO2018173577A1 (ja) 2017-03-23 2018-02-16 植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体

Publications (2)

Publication Number Publication Date
JPWO2018173577A1 JPWO2018173577A1 (ja) 2019-11-07
JP6631747B2 true JP6631747B2 (ja) 2020-01-15

Family

ID=63586544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019507446A Active JP6631747B2 (ja) 2017-03-23 2018-02-16 植生指標算出装置、植生指標算出方法、及びプログラム

Country Status (4)

Country Link
US (1) US11417089B2 (ja)
EP (1) EP3605455A4 (ja)
JP (1) JP6631747B2 (ja)
WO (1) WO2018173577A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348272B2 (en) * 2017-03-23 2022-05-31 Nec Corporation Vegetation index calculation apparatus, vegetation index calculation method, and computer readable recording medium
JP7068747B2 (ja) * 2019-01-30 2022-05-17 株式会社オプティム コンピュータシステム、作物生育支援方法及びプログラム
JP7273259B2 (ja) * 2019-06-17 2023-05-15 株式会社パスコ 植生領域判定装置及びプログラム
CN110852149B (zh) * 2019-09-24 2022-10-04 广州地理研究所 基于分类和回归树算法的植被指数预测方法、系统及设备
WO2021153791A1 (ja) * 2020-01-31 2021-08-05 株式会社ロングターム・インダストリアル・ディベロップメント 与信管理装置、マッチング装置、それらの方法およびプログラム
CN112861807B (zh) * 2021-03-18 2022-12-09 国家海洋信息中心 一种基于改进gli指数和深度学习的极地植被提取方法
CN115830442B (zh) * 2022-11-11 2023-08-04 中国科学院空天信息创新研究院 一种基于机器学习的小麦茎蘖密度遥感估算方法和系统
CN117372503B (zh) * 2023-12-08 2024-03-08 水利部交通运输部国家能源局南京水利科学研究院 一种河湖岸带植被分类及覆盖度计算方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020444B2 (ja) * 2001-06-29 2012-09-05 独立行政法人農業・食品産業技術総合研究機構 作物生育量測定装置、作物生育量測定方法、作物生育量測定プログラム及びその作物生育量測定プログラムを記録したコンピュータ読取可能な記録媒体
JP2006085517A (ja) 2004-09-17 2006-03-30 Hiroshima Pref Gov 衛星データによる森林地域の植生分類方法
JP4887130B2 (ja) * 2006-12-15 2012-02-29 株式会社日立ソリューションズ 農地区画データ作成システム
JP5761789B2 (ja) 2011-03-30 2015-08-12 国立大学法人神戸大学 植物体の画像領域抽出方法、植物体の画像領域抽出装置、および植物体の生育監視システム
US20150206255A1 (en) * 2011-05-13 2015-07-23 HydroBio, Inc Method and system to prescribe variable seeding density across a cultivated field using remotely sensed data
US9030549B2 (en) * 2012-03-07 2015-05-12 Blue River Technology, Inc. Method and apparatus for automated plant necrosis
JP6172657B2 (ja) * 2013-03-27 2017-08-02 国立大学法人神戸大学 植物体の画像生成装置
US20150254800A1 (en) * 2014-03-06 2015-09-10 F12 Solutions, Llc Nitrogen status determination in growing crops
JP2015188333A (ja) 2014-03-27 2015-11-02 株式会社日立製作所 植生生長分析システム及び方法
US10349584B2 (en) * 2014-11-24 2019-07-16 Prospera Technologies, Ltd. System and method for plant monitoring
JP5892275B2 (ja) 2015-02-26 2016-03-23 カシオ計算機株式会社 多クラス識別器生成装置、データ識別装置、多クラス識別器生成方法、データ識別方法、及びプログラム
JP6539901B2 (ja) * 2015-03-09 2019-07-10 学校法人法政大学 植物病診断システム、植物病診断方法、及びプログラム
JP6326009B2 (ja) 2015-06-29 2018-05-16 株式会社オプティム 無線航空機、位置情報出力方法及び無線航空機用プログラム。
JP2017057781A (ja) 2015-09-16 2017-03-23 トヨタ自動車株式会社 内燃機関の制御装置
JP2019513315A (ja) * 2016-02-29 2019-05-23 ウルグス ソシエダード アノニマ 惑星規模解析のためのシステム

Also Published As

Publication number Publication date
EP3605455A4 (en) 2020-04-01
EP3605455A1 (en) 2020-02-05
JPWO2018173577A1 (ja) 2019-11-07
US11417089B2 (en) 2022-08-16
US20210142056A1 (en) 2021-05-13
WO2018173577A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6631747B2 (ja) 植生指標算出装置、植生指標算出方法、及びプログラム
JP6729791B2 (ja) 植生指標算出装置、植生指標算出方法、及びプログラム
Gao et al. Deep convolutional neural networks for image-based Convolvulus sepium detection in sugar beet fields
Gutierrez et al. A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases
López-Granados et al. Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds
US11521380B2 (en) Shadow and cloud masking for remote sensing images in agriculture applications using a multilayer perceptron
US20200250427A1 (en) Shadow and cloud masking for agriculture applications using convolutional neural networks
Swain et al. Weed identification using an automated active shape matching (AASM) technique
WO2019176879A1 (ja) 栽培作物選定支援装置、栽培作物選定支援方法、及びコンピュータ読み取り可能な記録媒体
Tiwari et al. An experimental set up for utilizing convolutional neural network in automated weed detection
Shirzadifar et al. Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season
Gonçalves et al. Automatic detection of Acacia longifolia invasive species based on UAV-acquired aerial imagery
JP6977733B2 (ja) パラメータ最適化装置、パラメータ最適化方法、及びプログラム
Karasiak et al. Remote sensing of distinctive vegetation in Guiana amazonian park
Gómez-Zamanillo et al. Damage assessment of soybean and redroot amaranth plants in greenhouse through biomass estimation and deep learning-based symptom classification
Ke et al. Intelligent vineyard blade density measurement method incorporating a lightweight vision transformer
CN117710833A (zh) 基于云计算的测绘地理信息数据采集方法及相关装置
Sykes et al. Computer vision for plant pathology: A review with examples from cocoa agriculture
JP7452879B2 (ja) 予測システム、予測方法、および予測プログラム
Altınbaş et al. Detecting defected crops: Precision agriculture using haar classifiers and UAV
Vieira et al. ProtectLeaf: An insect predation analyzer for agricultural crop monitoring
Gromova Weed detection in UAV images of cereal crops with instance segmentation
US20220398841A1 (en) Information processing device, information processing method, and program
Logavitool et al. Rice disease detection in UAV images using deep learning-based semantic segmentation
WO2023055954A1 (en) Methods and systems for use in processing images related to crop phenology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150