WO2018173577A1 - 植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents
植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体 Download PDFInfo
- Publication number
- WO2018173577A1 WO2018173577A1 PCT/JP2018/005579 JP2018005579W WO2018173577A1 WO 2018173577 A1 WO2018173577 A1 WO 2018173577A1 JP 2018005579 W JP2018005579 W JP 2018005579W WO 2018173577 A1 WO2018173577 A1 WO 2018173577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- crop
- vegetation index
- learning model
- learning
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/188—Vegetation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V30/00—Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
- G06V30/10—Character recognition
- G06V30/19—Recognition using electronic means
- G06V30/191—Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06V30/19173—Classification techniques
Definitions
- the present invention relates to a vegetation index calculating device and a vegetation index calculating method for calculating a vegetation index of a plant, and further relates to a computer-readable recording medium storing a program for realizing these.
- Patent Document 1 proposes a system that grasps the growth status of crops in a field and predicts the yield of crops.
- Patent Document 1 Specifically, in the system disclosed in Patent Document 1, first, based on satellite data and weather data, for a specific field (or area), a vegetation index of crops and an effective integrated temperature are calculated for each period. Calculate and use these to generate crop growth curves to date. Subsequently, the system disclosed in Patent Literature 1 generates a statistical model using the obtained growth curve, and predicts a future growth curve using the generated statistical model.
- NDVI Normalized Difference Vegetation Index: Normalized Difference Vegetation Index
- NDVI is an index that uses the characteristic that a plant leaf absorbs blue and red wavelengths and strongly reflects wavelengths in the near-infrared region, and indicates the distribution and activity of vegetation. As the value of NDVI becomes a large positive value, the vegetation tends to become darker.
- NDVI was obtained as (IR ⁇ R) / (IR + R), where R is the reflectance in the visible region red obtained from the satellite data, and IR is the reflectance in the near infrared region obtained from the satellite data. Calculated by normalizing the value between -1 and +1. That is, NDVI is calculated from data obtained by the satellite.
- NVDI has a value including vegetation of weeds. For this reason, the reliability of NDVI may be low, and in such a case, the prediction accuracy of the yield of agricultural products will be significantly reduced.
- An example of an object of the present invention is to solve the above-described problem and to accurately calculate a vegetation index of a target crop in a specific field or area, a vegetation index calculation device, a vegetation index calculation method, and a computer-readable It is to provide a recording medium.
- a first vegetation index calculating device includes: A learning model generation unit that generates a learning model by learning a feature amount of the image of the crop using the image of the crop that is a calculation target of the vegetation index and an image of a plant other than the crop; An image acquisition unit for acquiring an aerial image of the target area where the crop is cultivated; A specifying unit that applies the sky image acquired by the image acquisition unit to the learning model generated by the learning model generation unit and specifies the image of the crop in the sky image acquired by the image acquisition unit; , A vegetation index calculating unit that calculates a vegetation index of the crop using the image of the crop specified by the specifying unit; It is characterized by having.
- a second vegetation index calculating device includes: A learning model generation unit that generates a learning model by learning a feature amount of an image of a plant other than the crop using an image of the crop that is a calculation target of a vegetation index and an image of a plant other than the crop
- An image acquisition unit for acquiring an aerial image of the target area where the crop is cultivated; Applying the sky image acquired by the image acquisition unit to the learning model generated by the learning model generation unit to identify an image of a plant other than the crop in the sky image acquired by the image acquisition unit; A specific part, Calculating a first vegetation index using the aerial image, and calculating a second vegetation index using an image of a plant other than the crop specified by the specifying unit;
- a vegetation index correction unit that calculates the vegetation index of the crop by correcting the first vegetation index with the second vegetation index; It is characterized by having.
- a first vegetation index calculation method includes: (A) generating a learning model by learning a feature amount of the image of the crop using the image of the crop to be calculated for the vegetation index and an image of a plant other than the crop; and (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the sky image obtained in the step (b) to the learning model generated in the step (a), the crop image in the sky image obtained in the step (b) Identifying the image, steps, (D) calculating a vegetation index of the crop using the crop image identified in the step of (c); It is characterized by having.
- a second vegetation index calculating method uses (a) an image of a crop that is a calculation target of a vegetation index and an image of a plant other than the crop. Generating a learning model by learning feature values of images of plants other than the crops, and (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the above-mentioned sky image acquired at the step (b) to the learning model generated at the step (a), and other than the crop in the sky image acquired at the step (b) Identifying images of plants, steps, (D) calculating a first vegetation index using the aerial image, and calculating a second vegetation index using an image of a plant other than the crop identified in the step (c); (E) calculating the vegetation index of the crop by correcting the first vegetation index with the second vegetation index; It is characterized by having.
- a first computer-readable recording medium On the computer, (A) generating a learning model by learning a feature amount of the image of the crop using the image of the crop to be calculated for the vegetation index and an image of a plant other than the crop; and (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the sky image obtained in the step (b) to the learning model generated in the step (a), the crop image in the sky image obtained in the step (b) Identifying the image, steps, (D) calculating a vegetation index of the crop using the crop image identified in the step of (c); A program including an instruction for executing is recorded.
- a second computer-readable recording medium On the computer, (A) generating a learning model by learning a feature amount of an image of a plant other than the crop using an image of a crop to be calculated for a vegetation index and an image of a plant other than the crop; When, (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the above-mentioned sky image acquired at the step (b) to the learning model generated at the step (a), and other than the crop in the sky image acquired at the step (b) Identifying images of plants, steps, (D) calculating a first vegetation index using the aerial image, and calculating a second vegetation index using an image of a plant other than the crop identified in the step (c); (E) calculating the vegetation index of the crop by correcting the first vegetation index with the second vegetation index; A program including instructions to be executed is recorded.
- a vegetation index of a target crop can be accurately calculated in a specific field or area.
- FIG. 1 is a block diagram showing a configuration of a vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram for explaining learning model generation processing according to Embodiment 1 of the present invention.
- FIG. 3 is a diagram for explaining another example of learning model generation processing according to Embodiment 1 of the present invention.
- FIG. 4 is a flowchart showing an operation during learning model generation processing by the support vector machine of the vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- FIG. 5 is a flowchart showing an operation during learning model generation processing by deep learning of the vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- FIG. 1 is a block diagram showing a configuration of a vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram for explaining learning model generation processing according to Embodiment 1 of the present invention.
- FIG. 3 is a diagram for explaining another example of learning model generation processing according to
- FIG. 6 is a flowchart showing an operation during the vegetation index calculation process of the vegetation index calculation apparatus according to Embodiment 1 of the present invention.
- FIG. 7 is a block diagram showing a configuration of the vegetation index calculating apparatus according to Embodiment 2 of the present invention.
- FIG. 8 is a flowchart showing an operation during a vegetation index calculation process of the vegetation index calculation apparatus according to Embodiment 2 of the present invention.
- FIG. 9 is a block diagram illustrating an example of a computer that implements the vegetation index calculating apparatus according to Embodiments 1 and 2 of the present invention.
- Embodiment 1 a vegetation index calculating device, a vegetation index calculating method, and a program according to Embodiment 1 of the present invention will be described with reference to FIGS.
- FIG. 1 is a block diagram showing a configuration of a vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- a vegetation index calculating apparatus 10 shown in FIG. 1 is an apparatus for calculating a vegetation index in a target region, for example, a specific field or area.
- the vegetation index calculating device 10 includes a learning model generation unit 11, an image acquisition unit 12, a specifying unit 13, and a vegetation index calculation unit 14.
- the learning model generation unit 11 uses the image of a crop (hereinafter also simply referred to as “agricultural crop”) to be a vegetation index calculation target and the image of a crop image using an image of a plant other than the crop (hereinafter also simply referred to as “plant”)
- a learning model 15 is generated by learning the quantity.
- the crop image and the plant image can be, for example, a sky image obtained by photographing the crop and the plant from above.
- the image applied to the learning model 15 is the sky image
- the image used by the learning model generation unit 11 to generate the learning model 15 is also preferably the sky image.
- the above-mentioned sky image obtained by photographing the crops and the plants from above is obtained, for example, by photographing the field from above using an artificial satellite, an aircraft, a drone, or the like.
- the learning model 15 when using an aerial image obtained by photographing an agricultural field from above with an artificial satellite, an aircraft, a drone, or the like, an image of a crop and an image of a plant are included in a single aerial image. May be included.
- the crop image and the plant image can be cut out from the sky image and used to generate the learning model 15.
- the accuracy of the learning model is improved by performing learning using “a crop image” and “an image including a crop image and a plant image other than the crop”.
- a crop image and “an image including a crop image and a plant image other than the crop”.
- plants other than crops are weeds
- weeds are often mixed with crops in actual fields.
- the type of weed is not limited to one type, for example, the shape of the weed leaf may be various shapes such as a pointed leaf or a round leaf as viewed from above.
- a learning model closer to an actual case can be generated by learning by acquiring a large number of “agricultural crop images” and “a crop image and a weed image”.
- weeds may exist independently, by performing learning using “agricultural crop image”, “a crop image and a weed image” and “weed image”, A learning model closer to the actual case can be generated.
- the image acquisition unit 12 acquires an aerial image of the target area where the crop is cultivated.
- the image acquisition unit 12 acquires an aerial image of a field or the like taken from above by, for example, an artificial satellite, an aircraft, a drone, or the like.
- the specifying unit 13 applies the sky image acquired by the image acquisition unit 12 to the learning model 15 generated by the learning model generation unit 11, and specifies the crop image in the sky image.
- the vegetation index calculating unit 14 calculates the vegetation index of the crop in the target region using the crop image specified by the specifying unit 13.
- the learning model generation unit 11 generates the learning model 15 that can identify the crop image by learning the feature amount of the crop image. Identify crop images. For this reason, according to this Embodiment 1, the vegetation index of the target crop can be accurately calculated in a specific field or area.
- FIG. 2 is a diagram for explaining learning model generation processing according to Embodiment 1 of the present invention.
- FIG. 2 illustrates an example in which an aerial image such as a farm field is used as an image used for generating a learning model.
- an image of a farm field or the like is taken from the sky by an artificial satellite, an aircraft, a drone or the like, and a sky image for learning is obtained.
- the learning model generation unit 11 extracts a feature amount indicating the shape, color, and position in each of the region where the crop is present and the region where plants other than the crop are present from the learning sky image. .
- the learning model creation unit 11 learns the feature quantity indicating the shape, color, and position of the region where the farm product exists using the support vector machine, and generates a learning model indicating the learning result.
- the learning model generation unit 11 sets an image from above the crop that is the target for calculating the vegetation index, as the first sky image, among the obtained sky images for learning. get.
- the learning model generation unit 11 acquires an image from above the plant other than the crop as a second sky image.
- the sky image obtained by photography includes both the image of the crop and the image of the plant other than the crop
- the first sky image and the second sky image are created by processing the image. Also good.
- the number of first sky images and second sky images acquired is not limited, but the number should be as large as possible from the viewpoint of discrimination accuracy by the learning model.
- the learning model generation unit 11 extracts a feature amount indicating the shape, color, and position of the region where the crop is present from the first sky image. Furthermore, the learning model generation unit 11 extracts a feature amount indicating the shape, color, and position of an area where a plant other than the crop is present from the second sky image. Then, the learning model generation unit 11 classifies and holds the feature amount obtained from the first sky image and the feature amount obtained from the second sky image.
- the shape of the region where the crop is present includes a shape unique to the target crop, a shape of a basket, and the like.
- the shape unique to the crop means a shape unique to the crop as viewed from above, which is determined by the shape of the leaf of the crop and how the leaves overlap.
- the position where the crop is present includes the state of the arrangement of straws in the field.
- the color of the region where the crop is present includes frequency characteristics (color components including infrared and ultraviolet) in the region determined by the color of the crop.
- the shape of the region where plants other than the crop are present includes shapes unique to the plants other than the crop.
- the unique shape of a plant other than the agricultural product means the unique shape when the plant is viewed from above, which is determined by the leaf shape of the plant and the way the leaves overlap.
- the color of a region where plants other than the crop are present also includes frequency characteristics (color components including infrared and ultraviolet) in the region determined by the color of the plant.
- the learning model generation unit 11 learns the feature quantity indicating the shape, color, and position of the area where the crop that is the target for calculating the vegetation index exists using the support vector machine. Specifically, the learning model generation unit 11 gives the support vector machine the feature amount of each classified sky image, and learns the boundary between the crop to be calculated for the vegetation index and a plant other than the crop. Then, a learning model 15 indicating the learning result is generated.
- the learning model generation unit 11 performs deep learning using a large number of acquired sky images for learning, whereby an image from above the crop and an image from above the plants other than the crop are obtained.
- a classifier to be identified can be created, and the created classifier can be used as the learning model 15.
- the specifying unit 13 uses the learning model 15 generated by the learning model generating unit 11 to specify a crop image from the sky image acquired by the image acquiring unit 12.
- the sky image acquired by the image acquisition unit 12 is also obtained by photographing a farm field or the like from the sky with an artificial satellite, an aircraft, a drone, or the like, similar to the sky image used for learning (see FIG. 2). .
- the index calculation unit 14 calculates the vegetation index of the crop in the target area using the image specified by the specifying unit 13.
- SAVI Soil Adjusted Vegetation Index
- WDVI Weighted Difference Vegetation Index
- NDRE Normalized Difference Red Edge
- SAVI is an index obtained by taking into consideration the influence of background soil reflection on NDVI.
- WDVI is a weighted differential vegetation index, and is calculated by weighting each band of reflected light from the plant and setting the soil value to zero.
- NDRE is an index obtained by normalizing the measurement value in the Red edge band (wavelength near 710 nm) by the Rapid Eye satellite.
- FIG. 3 is a diagram for explaining another example of learning model generation processing according to Embodiment 1 of the present invention.
- the learning model generation unit 11 performs learning using “agricultural crop image” and “an image including a crop image and a plant image other than the crop” by deep learning. As described above, the accuracy of the learning model is improved by performing learning using “a crop image” and “an image including a crop image and a plant image other than the crop”.
- FIG. 4 is a flowchart showing an operation during learning model generation processing by the support vector machine of the vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- the learning model generation unit 11 acquires a large number of sky images from the outside (step A1).
- the acquired sky image includes a first sky image and a second sky image.
- the first sky image and the second sky image are as described above.
- the learning model generation unit 11 extracts a feature amount indicating the shape, color, and position of the region where the crop is present from the first sky image among the sky images acquired in Step A1, and the second A feature amount indicating the shape, color, and position of an area where a plant other than the crop is present is extracted from the sky image (step A2).
- the learning model generation unit 11 classifies and holds the feature values obtained from the first sky image and the feature values obtained from the second sky image (step A3).
- the learning model generation unit 11 uses the support vector machine to learn the feature amount indicating the shape, color, and position of the region where the crop for which the vegetation index is to be calculated exists, and the learning model 15 Generate (step A4).
- the learning model generation unit 11 gives the support vector machine the feature amount of each classified sky image, and learns the boundary between the crop to be calculated for the vegetation index and a plant other than the crop. Then, a learning model 15 indicating the learning result is generated.
- FIG. 5 is a flowchart showing an operation during learning model generation processing by deep learning of the vegetation index calculating apparatus according to Embodiment 1 of the present invention.
- the learning model generation unit 11 acquires a large number of sky images from the outside (step B1).
- the sky image includes, for example, “a crop image” and “an image including a crop image and a plant image other than the crop”.
- the learning model generation unit 11 performs deep learning using a large number of learning sky images acquired in step B1 (step B2).
- the learning model generation unit 11 creates a classifier that identifies the image from above of the crop that is the target for calculating the vegetation index and the image from above the plant other than the crop from the result of step B2.
- the created classifier is used as a learning model 15 (step B3).
- FIG. 6 is a flowchart showing an operation during the vegetation index calculation process of the vegetation index calculation apparatus according to Embodiment 1 of the present invention.
- the image acquisition unit 12 acquires an aerial image of the target area where the crop is cultivated (step C1).
- the specifying unit 13 applies the sky image acquired by the image acquiring unit 12 in step C1 to the learning model 15, and specifies the crop image in the sky image (step C2).
- the vegetation index calculating unit 14 calculates the vegetation index of the crop in the target area, for example, NDVI, using the crop image specified by the specifying unit 13 in Step C2 (Step C3). In addition, the vegetation index calculating unit 14 transmits the calculated vegetation index to an external terminal device or the like.
- the learning model generation unit 11 calculates the feature amount of the image of the crop that is the calculation target of the vegetation index. Learning is performed, and a learning model 15 that can specify an image of the crop is generated.
- the identification unit 13 can identify an image of the farm product in the field or area by applying a sky image of the target field or area to the learning model 15.
- the vegetation index calculating unit 14 calculates the vegetation index of the crop using the crop image specified by the specifying unit 13. For this reason, according to this Embodiment 1, the vegetation index of the target crop can be accurately calculated in a specific field or area.
- the program in the first embodiment may be a program that causes a computer to execute steps A1 to A4 shown in FIG. 4 (or steps B1 to B3 shown in FIG. 5) and steps C1 to C3 shown in FIG. .
- the processor of the computer functions as the learning model generation unit 11, the image acquisition unit 12, the identification unit 13, and the vegetation index calculation unit 14, and performs processing.
- each computer may function as any of the learning model generation unit 11, the image acquisition unit 12, the identification unit 13, and the vegetation index calculation unit 14, respectively.
- FIG. 7 is a block diagram showing a configuration of the vegetation index calculating apparatus according to Embodiment 2 of the present invention.
- the vegetation index calculating device 20 is similar to the vegetation index calculating device 10 in the first embodiment, with a learning model generation unit 21, an image acquisition unit 22, and a specifying unit. 23 and a vegetation index calculating unit 24.
- the vegetation index calculating unit 20 includes a vegetation index correcting unit 25, and this is different from the vegetation index calculating apparatus 10 in the first embodiment.
- the difference from the first embodiment will be mainly described.
- the learning model generation unit 21 learns the feature amount of the image of the plant other than the crop.
- weeds will be described as an example of plants other than agricultural crops.
- the learning model generation unit 21 learns the feature amount of a weed image existing in a target field or area, and generates a learning model 26 that can identify the weed image.
- the identifying unit 23 identifies the weed image in the field or area by applying a sky image of the target field or area to the learning model 26.
- the vegetation index calculating unit 24 uses the entire aerial image of the target field or area acquired by the image acquisition unit 22 to use the first vegetation index (plants (including crops) included in the target field or area. ), And a second vegetation index (weed vegetation index) is calculated using the weed image specified by the specifying unit 23.
- the vegetation index correcting unit 25 corrects the first vegetation index calculated from the entire sky image of the target field or area using the second vegetation index (weed vegetation index), and calculates the vegetation index calculation target. Calculate the vegetation index of the crop
- FIG. 8 is a flowchart showing an operation during a vegetation index calculation process of the vegetation index calculation apparatus according to Embodiment 2 of the present invention. Moreover, in this Embodiment 2, the vegetation index calculation method is implemented by operating the vegetation index calculation apparatus 20. Therefore, the description of the vegetation index calculating method in the second embodiment is replaced with the operation description of the following vegetation index calculating apparatus.
- the second embodiment is performed in the same manner as in the first embodiment, and the learning model generation unit 21 selects a learning model according to steps A1 to A4 shown in FIG. 4 or steps B1 to B3 shown in FIG. Generate.
- the learning model generation unit 21 uses a support vector machine to present a region where weeds exist. The feature amount indicating the shape, color, and position of the image is learned.
- the image acquisition unit 22 acquires an aerial image of the target area where the crop is cultivated (step D1).
- the specification unit 23 applies the sky image acquired by the image acquisition unit 22 in step D1 to the learning model 26, and specifies the weed image in the sky image (step D2).
- the vegetation index calculating unit 24 uses the entire aerial image acquired by the image acquiring unit 22 in step D1, and uses the entire vegetation index (vegetation of plants (including agricultural crops) present in the target field or area). (Index) is calculated (step D3).
- the vegetation index calculating unit 24 calculates a second vegetation index (weed vegetation index) using the weed image specified by the specifying unit 23 in step D2 (step D4).
- the vegetation index correcting unit 25 corrects the first vegetation index calculated by the vegetation index calculating unit 24 in step D3 using the second vegetation index calculated by the vegetation index calculating unit 24 in step D4. Then, the vegetation index of the crop is calculated (step D5). In addition, the vegetation index correction unit 25 transmits the calculated vegetation index to an external terminal device or the like.
- the calculation accuracy of the crop vegetation index can be improved.
- the program in the second embodiment may be a program that causes a computer to execute steps A1 to A4 shown in FIG. 4 (or steps B1 to B3 shown in FIG. 5) and steps D1 to D5 shown in FIG. .
- the processor of the computer functions as a learning model generation unit 21, an image acquisition unit 22, a specification unit 23, a vegetation index calculation unit 24, and a vegetation index correction unit 25, and performs processing.
- each computer may function as any one of the learning model generation unit 21, the image acquisition unit 22, the specification unit 23, the vegetation index calculation unit 24, and the vegetation index correction unit 25, respectively.
- FIG. 9 is a block diagram illustrating an example of a computer that implements the vegetation index calculating apparatus according to Embodiment 1 or 2 of the present invention.
- a computer 110 includes a CPU (Central Processing Unit) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. With. These units are connected to each other via a bus 121 so that data communication is possible.
- the computer 110 may include a GPU (GraphicsGraphProcessing Unit) or an FPGA (Field-ProgrammableGate Array) in addition to or instead of the CPU 111.
- GPU GraphicsGraphProcessing Unit
- FPGA Field-ProgrammableGate Array
- the CPU 111 performs various operations by developing the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executing them in a predetermined order.
- the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
- the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. Note that the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
- the storage device 113 includes a hard disk drive and a semiconductor storage device such as a flash memory.
- the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
- the display controller 115 is connected to the display device 119 and controls display on the display device 119.
- the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and reads a program from the recording medium 120 and writes a processing result in the computer 110 to the recording medium 120.
- the communication interface 117 mediates data transmission between the CPU 111 and another computer.
- the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as ROM (Compact Disk Read Only Memory) may be used.
- CF Compact Flash
- SD Secure Digital
- magnetic recording media such as a flexible disk
- CD- An optical recording medium such as ROM (Compact Disk Read Only Memory) may be used.
- the vegetation index calculating apparatus 10 can be realized by using hardware corresponding to each unit instead of a computer in which a program is installed. Furthermore, part of the vegetation index calculating apparatus 10 may be realized by a program, and the remaining part may be realized by hardware.
- An image acquisition unit for acquiring an aerial image of the target area where the crop is cultivated;
- a specifying unit that applies the sky image acquired by the image acquisition unit to the learning model generated by the learning model generation unit and specifies the image of the crop in the sky image acquired by the image acquisition unit;
- a vegetation index calculating unit that calculates a vegetation index of the crop using the image of the crop specified by the specifying unit;
- a vegetation index calculating device characterized by comprising:
- the learning model generation unit has a feature amount indicating a shape, a color, and a position in each of a region where the crop is present and a region where a plant other than the crop is present from the learning sky image. And using a support vector machine to learn the feature amount indicating the shape, color, and position of the region where the crop is present, and to generate the learning model indicating the learning result, The vegetation index calculating apparatus according to appendix 1.
- generation part produces the classifier which distinguishes the image from the sky of the said crop, and the image from the sky of plants other than the said crop by deep learning from the sky image for learning. And the created classifier as the learning model, The vegetation index calculating apparatus according to appendix 1.
- a learning model is generated by learning the feature-value of the image of plants other than the said crop using the image of the crop used as the calculation object of a vegetation index, and the image of plants other than the said crop, A learning model generation unit;
- An image acquisition unit for acquiring an aerial image of the target area where the crop is cultivated; Applying the sky image acquired by the image acquisition unit to the learning model generated by the learning model generation unit to identify an image of a plant other than the crop in the sky image acquired by the image acquisition unit;
- a vegetation index correction unit that calculates the vegetation index of the crop by correcting the first vegetation index with the second vegetation index;
- a vegetation index calculating device characterized by comprising:
- a learning model is generated by learning a feature amount of an image of the crop using the image of the crop that is a target for calculating the vegetation index and an image of a plant other than the crop. Steps, (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the sky image obtained in the step (b) to the learning model generated in the step (a), the crop image in the sky image obtained in the step (b) Identifying the image, steps, (D) calculating a vegetation index of the crop using the crop image identified in the step of (c);
- a vegetation index calculating method characterized by comprising:
- step (a) a classifier that distinguishes an image from above the crop and an image from above the plant other than the crop by deep learning from the learning sky image.
- the created classifier is used as the learning model.
- (Additional remark 8) (a) By learning the feature-value of the image of plants other than the said crop using the image of the crop used as the calculation object of the vegetation index, and the image of plants other than the said crop, a learning model is obtained. Generating, steps, (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the above-mentioned sky image acquired at the step (b) to the learning model generated at the step (a), and other than the crop in the sky image acquired at the step (b) Identifying images of plants, steps, (D) calculating a first vegetation index using the aerial image, and calculating a second vegetation index using an image of a plant other than the crop identified in the step (c); (E) calculating the vegetation index of the crop by correcting the first vegetation index with the second vegetation index;
- a vegetation index calculating method characterized by comprising:
- (Appendix 9) (A) generating a learning model by learning a feature amount of the image of the crop using the image of the crop to be calculated for the vegetation index and an image of a plant other than the crop; and (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the sky image obtained in the step (b) to the learning model generated in the step (a), the crop image in the sky image obtained in the step (b) Identifying the image, steps, (D) calculating a vegetation index of the crop using the crop image identified in the step of (c);
- the computer-readable recording medium characterized by recording the program containing the instruction
- step (a) a classifier that distinguishes an image from the sky above the crop and an image from above the plant other than the crop by deep learning from the sky image for learning.
- the created classifier is used as the learning model.
- (Supplementary note 12) (A) generating a learning model by learning a feature amount of an image of a plant other than the crop using an image of a crop to be calculated for a vegetation index and an image of a plant other than the crop; When, (B) obtaining a sky image of a target area where the crop is cultivated; (C) Applying the above-mentioned sky image acquired at the step (b) to the learning model generated at the step (a), and other than the crop in the sky image acquired at the step (b) Identifying images of plants, steps, (D) calculating a first vegetation index using the aerial image, and calculating a second vegetation index using an image of a plant other than the crop identified in the step (c); (E) calculating the vegetation index of the crop by correcting the first vegetation index with the second vegetation index;
- a computer-readable recording medium characterized by recording a program including instructions to be executed.
- a vegetation index of a target crop can be accurately calculated in a specific field or area.
- the present invention is useful for a crop yield prediction system that requires accurate vegetation index values.
- Vegetation index calculation device (Embodiment 1) DESCRIPTION OF SYMBOLS 11 Learning model production
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
Abstract
植生指標算出装置10は、植生指標の算出対象となる農作物の画像と、農作物以外の植物の画像と、を用いて農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部11と、農作物が栽培されている対象領域の上空画像を取得する、画像取得部12と、学習モデル生成部11が生成した学習モデルに、画像取得部12が取得した上空画像を適用して、画像取得部12が取得した上空画像における農作物の画像を特定する、特定部13と、特定部13が特定した農作物の画像を用いて、農作物の植生指標を算出する、植生指標算出部14とを備えている。
Description
本発明は、植物の植生指標を算出するための、植生指標算出装置、及び植生指標算出方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
近年、コンピュータの発展に伴い、コンピュータシュミレーションによって、農作物の収量を予測する取り組みが行なわれている。例えば、特許文献1は、圃場における農作物の生育状況を把握して、農作物の収量を予測するシステムを提案している。
具体的には、特許文献1に開示されたシステムでは、まず、衛星データ及び気象データに基づいて、特定の圃場(又はエリア)について、時期毎に、農作物の植生指標と、有効積算温度とを算出し、これらを用いて、現在までの農作物の生長曲線を生成する。続いて、特許文献1に開示されたシステムは、得られた成長曲線を用いて、統計モデルを生成し、生成した統計モデルを用いて、将来の成長曲線を予測する。
また、このようなシステムにおいては、農作物の植生指標の精度が重要となる。植生指標としては、例えば、NDVI(正規化差植生指数:Normalized Difference Vegetation
Index)が知られている。NDVIは、植物の葉が青と赤の波長を吸収し、近赤外線領域の波長を強く反射する特性を利用した指数であり、植生の分布状況及び活性度を示している。NDVIの値が、正の大きな値になるほど、植生が濃くなる傾向にある。
Index)が知られている。NDVIは、植物の葉が青と赤の波長を吸収し、近赤外線領域の波長を強く反射する特性を利用した指数であり、植生の分布状況及び活性度を示している。NDVIの値が、正の大きな値になるほど、植生が濃くなる傾向にある。
ところで、NDVIは、衛星データから得られた可視域赤の反射率をR、衛星データから得られた近赤外域の反射率をIRとすると、(IR-R)/(IR+R)で得られた値を-1から+1の間に正規化することによって算出される。つまり、NDVIは、衛星で得られたデータから算出される。
しかしながら、実際の圃場においては、農作物以外の植物、例えば、雑草が茂っていることもあるため、NVDIは雑草の植生を含めた値となっている。このため、NDVIの信頼性が低いことがあり、このような場合、農作物の収量の予測精度は著しく低下してしまう。
本発明の目的の一例は、上記問題を解消し、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出し得る、植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
上記目的を達成するため、本発明の一側面における第1の植生指標算出装置は、
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする。
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする。
上記目的を達成するため、本発明の一側面における第2の植生指標算出装置は、
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする。
植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする。
上記目的を達成するため、本発明の一側面における第1の植生指標算出方法は、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
また、上記目的を達成するため、本発明の一側面における第2の植生指標算出方法は、(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする。
更に、上記目的を達成するため、本発明の一側面における第1のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
更に、上記目的を達成するため、本発明の一側面における第2のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させる命令を含む、プログラムを記録していることを特徴とする。
コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させる命令を含む、プログラムを記録していることを特徴とする。
以上のように、本発明によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
(実施の形態1)
以下、本発明の実施の形態1における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図1~図6を参照しながら説明する。
以下、本発明の実施の形態1における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図1~図6を参照しながら説明する。
[装置構成]
最初に、本実施の形態1における植生指標算出装置の構成について図1を用いて説明する。図1は、本発明の実施の形態1における植生指標算出装置の構成を示すブロック図である。
最初に、本実施の形態1における植生指標算出装置の構成について図1を用いて説明する。図1は、本発明の実施の形態1における植生指標算出装置の構成を示すブロック図である。
図1に示す、植生指標算出装置10は、対象領域、例えば、特定の圃場又はエリアにおける植生指標を算出するための装置である。図1に示すように、植生指標算出装置10は、学習モデル生成部11と、画像取得部12と、特定部13と、植生指標算出部14とを備えている。
学習モデル生成部11は、植生指標の算出対象となる農作物(以下、単に農作物ともいう)の画像と、農作物以外の植物(以下、単に植物ともいう)の画像とを用いて農作物の画像の特徴量を学習することによって、学習モデル15を生成する。
ここで、農作物の画像及び植物の画像は、例えば、該農作物及び該植物を上空から撮影した上空画像とすることができる。後述するように、学習モデル15に適用する画像が上空画像であるため、学習モデル生成部11が学習モデル15の生成に用いる画像も上空画像であることが好ましい。
該農作物及び該植物を上空から撮影した上空画像は、例えば人工衛星、航空機、ドローン等によって圃場を上空から撮影することにより得られる。学習モデル15を生成する際に、人工衛星、航空機、ドローン等によって圃場を上空から撮影することにより得られた上空画像を用いる場合、一枚の上空画像には、農作物の画像及び植物の画像が含まれていることがある。一枚の上空画像に農作物の画像及び植物の画像が含まれている場合は、該上空画像から農作物の画像及び植物の画像をそれぞれ切り出して学習モデル15の生成に使用することができる。
なお、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行うことにより、学習モデルの精度が向上する。農作物以外の植物が雑草である場合を例に説明すると、実際の圃場において雑草は、農作物と混在しているケースが多い。また、雑草の種類は一種類に限らないため、例えば雑草の葉の形状については、上空から見て葉が尖っている又は葉が丸い等様々な形状が考えられる。
したがって、「農作物の画像」と「農作物の画像及び雑草の画像を含む画像」を多数取得して学習を行う方が、実際のケースにより近い学習モデルを生成することができる。さらに、雑草が独立して存在しているケースも考えられるため、「農作物の画像」、「農作物の画像及び雑草の画像を含む画像」及び「雑草の画像」を用いて学習を行うことで、実際のケースにさらに近い学習モデルを生成することができる。
画像取得部12は、農作物が栽培されている対象領域の上空画像を取得する。画像取得部12は、例えば人工衛星、航空機、ドローン等によって上空から撮影された圃場等の上空画像を取得する。
特定部13は、学習モデル生成部11が生成した学習モデル15に、画像取得部12が取得した上空画像を適用して、この上空画像における農作物の画像を特定する。
植生指標算出部14は、特定部13が特定した農作物の画像を用いて、対象領域における農作物の植生指標を算出する。
このように、本実施の形態1では、学習モデル生成部11が、農作物の画像の特徴量を学習することによって、農作物の画像を特定できる学習モデル15を生成するので、上空画像から、精度よく農作物の画像を特定できる。このため、本実施の形態1によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
続いて、図2及び図3を用いて、本実施の形態1における植生指標算出装置10の構成についてより具体的に説明する。図2は、本発明の実施の形態1における学習モデルの生成処理を説明する図である。図2では、学習モデルの生成に用いられる画像として圃場等の上空画像を用いる例を説明する。
図2に示すように、まず、人工衛星、航空機、ドローン等によって上空から圃場等の撮影が行なわれ、学習用の上空画像が得られる。学習モデル生成部11は、この学習用の上空画像から、該農作物が存在している領域及び該農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出する。そして、学習モデル作成部11は、サポートベクトルマシンを用いて、該農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す学習モデルを生成する。
具体的には、学習モデル生成部11は、図2に示すように、得られた学習用の上空画像のうち、植生指標の算出対象となる農作物の上空からの画像を第1の上空画像として取得する。また、学習モデル生成部11は、該農作物以外の植物の上空からの画像を第2の上空画像として取得する。なお、撮影によって得られた上空画像が農作物の画像及び該農作物以外の植物の画像の両方を含む場合は、画像を加工することによって、第1の上空画像及び第2の上空画像が作成されても良い。また、取得される第1の上空画像及び第2の上空画像の枚数は限定されないが、学習モデルによる判別精度の点から、枚数はできるだけ多いのが良い。
続いて、学習モデル生成部11は、第1の上空画像から、該農作物が存在している領域の形状、色、位置を示す特徴量を抽出する。更に、学習モデル生成部11は、第2の上空画像から、該農作物以外の植物が存在している領域の形状、色、位置を示す特徴量を抽出する。そして、学習モデル生成部11は、第1の上空画像から得られた特徴量と、第2の上空画像から得られた特徴量とを分類して保持する。
なお、該農作物が存在している領域の形状には、対象となる該農作物に固有の形状、畝の形状等が含まれる。また、該農作物に固有の形状とは、その農作物の葉の形、葉の重なり方によって決まる、その農作物を上から見たときの固有の形状を意味している。更に、該農作物が存在している位置には、圃場における畝の配列の状態が含まれる。また、該農作物が存在している領域の色には、農作物の色によって決まる、その領域における周波数特性(赤外、紫外を含めた色成分)が含まれる。
また、該農作物以外の植物が存在している領域の形状には、該農作物以外の植物に固有の形状等が含まれる。更に、該農作物以外の植物の固有の形状も、その植物の葉の形、葉の重なり方によって決まる、その植物を上から見たときの固有の形状を意味している。加えて、該農作物以外の植物が存在している領域の色にも、その植物の色によって決まる、その領域における周波数特性(赤外、紫外を含めた色成分)が含まれる。
次に、学習モデル生成部11は、サポートベクトルマシンを用いて、植生指標の算出対象となる農作物が存在している領域の形状、色、位置を示す特徴量を学習する。具体的には、学習モデル生成部11は、サポートベクトルマシンに、分類された各上空画像の特徴量を与えて、植生指標の算出対象となる農作物と該農作物以外の植物との境界を学習させ、学習結果を示す学習モデル15を生成する。
また、学習モデル生成部11は、取得した多数の学習用の上空画像を用いて、ディープラーニングを行ない、それによって、該農作物の上空からの画像と該農作物以外の植物の上空からの画像とを識別する分類器を作成し、作成した分類器を学習モデル15とすることもできる。
特定部13は、学習モデル生成部11が生成した学習モデル15を用いて、画像取得部12が取得した上空画像から、農作物の画像を特定する。ここで、画像取得部12が取得する上空画像も、学習に用いられる上空画像(図2参照)と同様に、人工衛星、航空機、ドローン等によって上空から圃場等を撮影することによって得られている。
指標算出部14は、特定部13が特定した画像を用いて、対象領域における農作物の植生指標を算出する。本実施の形態1で算出される植生指標としては、背景技術の欄で述べたNDVIに加え、SAVI(Soil Adjusted Vegetation Index)、WDVI(Weighted Difference Vegetation Index)、NDRE(Normalized Difference Red Edge)等も挙げられる。
SAVIは、NDVIに背景土壌の反射の影響を配慮して得られた指数である。WDVIは、重み付き差分植生指数であり、植物からの反射光の各バンドに重みを付け、土壌の値を0として計算される。NDREは、Rapid Eye衛星によるRed edgeバンド(波長710nm付近)での測定値を正規化して得られた指数である。
図3は、本発明の実施の形態1における学習モデルの生成処理の別の例を説明する図である。図3の例では、学習モデル生成部11は、ディープラーニングによって、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行う。先述したように、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」を用いて学習を行うことにより、学習モデルの精度が向上する。
[装置動作]
次に、本発明の実施の形態1における植生指標算出装置10の動作について図4~図6を用いて説明する。また、本実施の形態1では、植生指標算出装置10を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態1における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
次に、本発明の実施の形態1における植生指標算出装置10の動作について図4~図6を用いて説明する。また、本実施の形態1では、植生指標算出装置10を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態1における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
最初に、学習モデルの生成処理について図4及び図5を用いて説明する。まず、図4を用いて、サポートベクトルマシンによって学習モデルが生成される場合について説明する。図4は、本発明の実施の形態1における植生指標算出装置のサポートベクトルマシンによる学習モデル生成処理時の動作を示すフロー図である。
図4に示すように、学習モデル生成部11は、外部から、多数の上空画像を取得する(ステップA1)。取得された上空画像には、第1の上空画像と第2の上空画像とが含まれている。第1の上空画像と第2の上空画像については、上述の通りである。
次に、学習モデル生成部11は、ステップA1で取得した上空画像のうち、第1の上空画像から、農作物が存在している領域の形状、色、位置を示す特徴量を抽出し、第2の上空画像から、該農作物以外の植物が存在している領域の形状、色、位置を示す特徴量を抽出する(ステップA2)。
次に、学習モデル生成部11は、第1の上空画像から得られた特徴量と、第2の上空画像から得られた特徴量とを分類して保持する(ステップA3)。
次に、学習モデル生成部11は、サポートベクトルマシンを用いて、植生指標の算出対象となる農作物が存在している領域の形状、色、位置を示す特徴量を学習して、学習モデル15を生成する(ステップA4)。
具体的には、学習モデル生成部11は、サポートベクトルマシンに、分類された各上空画像の特徴量を与えて、植生指標の算出対象となる農作物と該農作物以外の植物との境界を学習させ、学習結果を示す学習モデル15を生成する。
続いて、図5を用いて、ディープラーニングによって学習モデルが生成される場合について説明する。図5は、本発明の実施の形態1における植生指標算出装置のディープラーニングによる学習モデル生成処理時の動作を示すフロー図である。
図5に示すように、学習モデル生成部11は、外部から、多数の上空画像を取得する(ステップB1)。上空画像には、例えば、「農作物の画像」と、「農作物の画像及び該農作物以外の植物の画像を含む画像」とが含まれている。
次に、学習モデル生成部11は、ステップB1で取得した多数の学習用の上空画像を用いて、ディープラーニングを実行する(ステップB2)。
そして、学習モデル生成部11は、ステップB2の結果から、植生指標の算出対象となる農作物の上空からの画像と、該農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した分類器を学習モデル15とする(ステップB3)。
続いて、植生指標の算出処理について図6を用いて説明する。図6は、本発明の実施の形態1における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。
図6に示すように、最初に、画像取得部12は、農作物が栽培されている対象領域の上空画像を取得する(ステップC1)。
次に、特定部13は、学習モデル15に、ステップC1で画像取得部12が取得した上空画像を適用して、この上空画像における農作物の画像を特定する(ステップC2)。
次に、植生指標算出部14は、ステップC2で特定部13が特定した農作物の画像を用いて、対象領域における農作物の植生指標、例えば、NDVIを算出する(ステップC3)。また、植生指標算出部14は、算出した植生指標を、外部の端末装置等に送信する。
以上のように、図4に示すステップA1~A4、又は図5に示すステップB1~B3を実行することにより、学習モデル生成部11が、植生指標の算出対象となる農作物の画像の特徴量を学習し、該農作物の画像を特定できる学習モデル15を生成する。特定部13は、この学習モデル15に、対象となる圃場又はエリアの上空画像を適用することにより、その圃場又はエリアでの該農作物の画像を特定することができる。そして、植生指標算出部14は、特定部13が特定した農作物の画像を用いて農作物の植生指標を算出する。このため、本実施の形態1によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。
[プログラム]
本実施の形態1におけるプログラムは、コンピュータに、図4に示すステップA1~A4(又は図5に示すステップB1~B3)と、図6に示すステップC1~C3とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における植生指標算出装置10と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部11、画像取得部12、特定部13、及び植生指標算出部14として機能し、処理を行なう。
本実施の形態1におけるプログラムは、コンピュータに、図4に示すステップA1~A4(又は図5に示すステップB1~B3)と、図6に示すステップC1~C3とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態1における植生指標算出装置10と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部11、画像取得部12、特定部13、及び植生指標算出部14として機能し、処理を行なう。
また、本実施の形態1におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、学習モデル生成部11、画像取得部12、特定部13、及び植生指標算出部14のいずれかとして機能しても良い。
(実施の形態2)
続いて、本発明の実施の形態2における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図7~図8を参照しながら説明する。
続いて、本発明の実施の形態2における、植生指標算出装置、植生指標算出方法、及びプログラムについて、図7~図8を参照しながら説明する。
[装置構成]
最初に、本実施の形態2における植生指標算出装置の構成について図7を用いて説明する。図7は、本発明の実施の形態2における植生指標算出装置の構成を示すブロック図である。
最初に、本実施の形態2における植生指標算出装置の構成について図7を用いて説明する。図7は、本発明の実施の形態2における植生指標算出装置の構成を示すブロック図である。
図7に示すように、本実施の形態2では、植生指標算出装置20は、実施の形態1における植生指標算出装置10と同様に、学習モデル生成部21と、画像取得部22と、特定部23と、植生指標算出部24とを備えている。但し、本実施の形態2では、植生指標算出部20は、植生指標補正部25を備えており、この点で、実施の形態1における植生指標算出装置10と異なっている。以下、実施の形態1との相違点を中心に説明する。
学習モデル生成部21は、本実施の形態2では、農作物以外の植物の画像の特徴量を学習する。以下、農作物以外の植物の一例として雑草を用いて説明する。学習モデル生成部21は、対象となる圃場又はエリアに存在する雑草の画像の特徴量を学習し、該雑草の画像を特定できる学習モデル26を生成する。また、特定部23は、本実施の形態2では、学習モデル26に、対象となる圃場又はエリアの上空画像を適用することにより、その圃場又はエリアでの該雑草の画像を特定する。
そして、植生指標算出部24は、画像取得部22が取得した、対象となる圃場又はエリアの上空画像全体を用いて第1の植生指標(対象となる圃場又はエリアに存在する植物(農作物を含む)の植生指標)を算出し、更に、特定部23が特定した雑草の画像を用いて第2の植生指標(雑草の植生指標)を算出する。
植生指標補正部25は、対象となる圃場又はエリアの上空画像全体から算出した第1の植生指標を、第2の植生指標(雑草の植生指標)を用いて補正して、植生指標の算出対象となる農作物の植生指標を算出する。
[装置動作]
次に、本発明の実施の形態2における植生指標算出装置20の動作について図8を用いて説明する。図8は、本発明の実施の形態2における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。また、本実施の形態2では、植生指標算出装置20を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態2における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
次に、本発明の実施の形態2における植生指標算出装置20の動作について図8を用いて説明する。図8は、本発明の実施の形態2における植生指標算出装置の植生指標算出処理時の動作を示すフロー図である。また、本実施の形態2では、植生指標算出装置20を動作させることによって、植生指標算出方法が実施される。よって、本実施の形態2における植生指標算出方法の説明は、以下の植生指標算出装置の動作説明に代える。
まず、本実施の形態2においても、実施の形態1と同様に行なわれ、学習モデル生成部21は、図4に示すステップA1~A4又は図5に示すステップB1~B3に準じて学習モデルを生成する。但し、生成される学習モデルは、雑草の画像を特定するものであるため、図4に示したステップA4では、学習モデル生成部21は、サポートベクトルマシンを用いて、雑草が存在している領域の形状、色、位置を示す特徴量を学習する。
図8に示すように、最初に、画像取得部22は、農作物が栽培されている対象領域の上空画像を取得する(ステップD1)。
次に、特定部23は、学習モデル26に、ステップD1で画像取得部22が取得した上空画像を適用して、この上空画像における雑草の画像を特定する(ステップD2)。
次に、植生指標算出部24は、ステップD1で画像取得部22が取得した上空画像全体を用いて、第1の植生指標(対象となる圃場又はエリアに存在する植物(農作物を含む)の植生指標)を算出する(ステップD3)。
次に、植生指標算出部24は、ステップD2で特定部23が特定した雑草の画像を用いて第2の植生指標(雑草の植生指標)を算出する(ステップD4)。
次に、植生指標補正部25は、植生指標算出部24がステップD3で算出した第1の植生指標を、植生指標算出部24がステップD4で算出した第2の植生指標を用いて補正して、農作物の植生指標を算出する(ステップD5)。また、植生指標補正部25は、算出した植生指標を、外部の端末装置等に送信する。
このように、本実施の形態2では、対象となる圃場又はエリアの上空画像全体から算出した第1の植生指標を、第2の植生指標(雑草の植生指標)を用いて補正することによって、農作物の植生指標が算出されるので、農作物の植生指標の算出精度を高めることができる。
[プログラム]
本実施の形態2におけるプログラムは、コンピュータに、図4に示すステップA1~A4(又は図5に示すステップB1~B3)と、図8に示すステップD1~D5とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態2における植生指標算出装置20と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部21、画像取得部22、特定部23、植生指標算出部24、及び植生指標補正部25として機能し、処理を行なう。
本実施の形態2におけるプログラムは、コンピュータに、図4に示すステップA1~A4(又は図5に示すステップB1~B3)と、図8に示すステップD1~D5とを実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態2における植生指標算出装置20と植生指標算出方法とを実現することができる。この場合、コンピュータのプロセッサは、学習モデル生成部21、画像取得部22、特定部23、植生指標算出部24、及び植生指標補正部25として機能し、処理を行なう。
また、本実施の形態2におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、学習モデル生成部21、画像取得部22、特定部23、植生指標算出部24、及び植生指標補正部25のいずれかとして機能しても良い。
(物理構成)
ここで、本実施の形態1及び2におけるプログラムを実行することによって、植生指標算出装置10を実現するコンピュータについて図9を用いて説明する。図9は、本発明の実施の形態1又は2における植生指標算出装置を実現するコンピュータの一例を示すブロック図である。
ここで、本実施の形態1及び2におけるプログラムを実行することによって、植生指標算出装置10を実現するコンピュータについて図9を用いて説明する。図9は、本発明の実施の形態1又は2における植生指標算出装置を実現するコンピュータの一例を示すブロック図である。
図9に示すように、コンピュータ110は、CPU(Central Processing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-ProgrammableGate Array)を備えていても良い。
CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact DiskRead Only Memory)などの光学記録媒体が挙げられる。
なお、本実施の形態における植生指標算出装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、植生指標算出装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記12)によって表現することができるが、以下の記載に限定されるものではない。
(付記1) 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする植生指標算出装置。
(付記2) 前記学習モデル生成部が、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記1に記載の植生指標算出装置。
(付記3) 前記学習モデル生成部が、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記1に記載の植生指標算出装置。
(付記4) 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする植生指標算出装置。
(付記5)(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。
(付記6) 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記5に記載の植生指標算出方法。
(付記7) 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記5に記載の植生指標算出方法。
(付記8)(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。
(付記9)コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させる命令を含む、プログラムを記録している、ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記10) 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
付記9に記載のコンピュータ読み取り可能な記録媒体。
(付記11) 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
付記9に記載のコンピュータ読み取り可能な記録媒体。
(付記12)コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させる命令を含む、プログラムを記録している、ことを特徴とするコンピュータ読み取り可能な記録媒体。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2017年3月23日に出願された日本出願特願2017-57781を基礎とする優先権を主張し、その開示の全てをここに取り込む。
以上のように、本発明によれば、特定の圃場又はエリアにおいて、対象となる農作物の植生指標を精度よく算出することができる。本発明は、正確な植生指標の値を必要とする、農作物の収量予測を行なうシステムに有用である。
10 植生指標算出装置(実施の形態1)
11 学習モデル生成部
12 画像取得部
13 特定部
14 植生指標算出部
15 学習モデル
20 植生指標算出装置(実施の形態2)
21 学習モデル生成部
22 画像取得部
23 特定部
24 植生指標算出部
25 植生指標補正部
26 学習モデル
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス
11 学習モデル生成部
12 画像取得部
13 特定部
14 植生指標算出部
15 学習モデル
20 植生指標算出装置(実施の形態2)
21 学習モデル生成部
22 画像取得部
23 特定部
24 植生指標算出部
25 植生指標補正部
26 学習モデル
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス
Claims (12)
- 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物の画像を特定する、特定部と、
前記特定部が特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、植生指標算出部と、
を備えている、ことを特徴とする植生指標算出装置。 - 前記学習モデル生成部が、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
請求項1に記載の植生指標算出装置。 - 前記学習モデル生成部が、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
請求項1に記載の植生指標算出装置。 - 植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、学習モデル生成部と、
前記農作物が栽培されている対象領域の上空画像を取得する、画像取得部と、
前記学習モデル生成部が生成した前記学習モデルに、前記画像取得部が取得した前記上空画像を適用して、前記画像取得部が取得した前記上空画像における前記農作物以外の植物の画像を特定する、特定部と、
前記上空画像を用いて第1の植生指標を算出し、前記特定部が特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、植生指標算出部と、
前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、植生指標補正部と、
を備えている、ことを特徴とする植生指標算出装置。 - (a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。 - 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
請求項5に記載の植生指標算出方法。 - 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
請求項5に記載の植生指標算出方法。 - (a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
を有する、ことを特徴とする植生指標算出方法。 - コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物の画像を特定する、ステップと、
(d)前記(c)のステップで特定した前記農作物の画像を用いて、前記農作物の植生指標を算出する、ステップと、
を実行させる命令を含む、プログラムを記録している、ことを特徴とするコンピュータ読み取り可能な記録媒体。 - 前記(a)のステップにおいて、学習用の上空画像から、前記農作物が存在している領域及び前記農作物以外の植物が存在している領域それぞれにおける、形状、色、位置を示す特徴量を抽出し、サポートベクトルマシンを用いて、前記農作物が存在している領域の形状、色、位置を示す特徴量を学習し、その学習結果を示す前記学習モデルを生成する、
請求項9に記載のコンピュータ読み取り可能な記録媒体。 - 前記(a)のステップにおいて、学習用の上空画像から、ディープラーニングによって、前記農作物の上空からの画像と、前記農作物以外の植物の上空からの画像と、を識別する分類器を作成し、作成した前記分類器を前記学習モデルとする、
請求項9に記載のコンピュータ読み取り可能な記録媒体。 - コンピュータに、
(a)植生指標の算出対象となる農作物の画像と、前記農作物以外の植物の画像と、を用いて前記農作物以外の植物の画像の特徴量を学習することによって、学習モデルを生成する、ステップと、
(b)前記農作物が栽培されている対象領域の上空画像を取得する、ステップと、
(c)前記(a)のステップで生成した前記学習モデルに、前記(b)のステップで取得した前記上空画像を適用して、前記(b)のステップで取得した前記上空画像における前記農作物以外の植物の画像を特定する、ステップと、
(d)前記上空画像を用いて第1の植生指標を算出し、前記(c)のステップで特定した前記農作物以外の植物の画像を用いて第2の植生指標を算出する、ステップと、
(e)前記第1の植生指標を、前記第2の植生指標で補正することにより、前記農作物の植生指標を算出する、ステップと、
実行させる命令を含む、プログラムを記録している、ことを特徴とするコンピュータ読み取り可能な記録媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019507446A JP6631747B2 (ja) | 2017-03-23 | 2018-02-16 | 植生指標算出装置、植生指標算出方法、及びプログラム |
US16/494,117 US11417089B2 (en) | 2017-03-23 | 2018-02-16 | Vegetation index calculation apparatus, vegetation index calculation method, and computer readable recording medium |
EP18772317.6A EP3605455A4 (en) | 2017-03-23 | 2018-02-16 | VEGETATION INDEX CALCULATION DEVICE, VEGETATION INDEX CALCULATION METHOD AND COMPUTER READABLE RECORDING MEDIUM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017057781 | 2017-03-23 | ||
JP2017-057781 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173577A1 true WO2018173577A1 (ja) | 2018-09-27 |
Family
ID=63586544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005579 WO2018173577A1 (ja) | 2017-03-23 | 2018-02-16 | 植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11417089B2 (ja) |
EP (1) | EP3605455A4 (ja) |
JP (1) | JP6631747B2 (ja) |
WO (1) | WO2018173577A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110852149A (zh) * | 2019-09-24 | 2020-02-28 | 广州地理研究所 | 基于分类和回归树算法的植被指数预测方法、系统及设备 |
WO2020157878A1 (ja) * | 2019-01-30 | 2020-08-06 | 株式会社オプティム | コンピュータシステム、作物生育支援方法及びプログラム |
JP2020204523A (ja) * | 2019-06-17 | 2020-12-24 | 株式会社パスコ | 植生領域判定装置及びプログラム |
CN112861807A (zh) * | 2021-03-18 | 2021-05-28 | 国家海洋信息中心 | 一种基于改进gli指数和深度学习的极地植被提取方法 |
WO2021153791A1 (ja) * | 2020-01-31 | 2021-08-05 | 株式会社ロングターム・インダストリアル・ディベロップメント | 与信管理装置、マッチング装置、それらの方法およびプログラム |
CN117372503A (zh) * | 2023-12-08 | 2024-01-09 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种河湖岸带植被分类及覆盖度计算方法及系统 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11348272B2 (en) * | 2017-03-23 | 2022-05-31 | Nec Corporation | Vegetation index calculation apparatus, vegetation index calculation method, and computer readable recording medium |
CN115830442B (zh) * | 2022-11-11 | 2023-08-04 | 中国科学院空天信息创新研究院 | 一种基于机器学习的小麦茎蘖密度遥感估算方法和系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009664A (ja) * | 2001-06-29 | 2003-01-14 | Minolta Co Ltd | 作物生育量測定装置、作物生育量測定方法、作物生育量測定プログラム及びその作物生育量測定プログラムを記録したコンピュータ読取可能な記録媒体 |
JP2015099616A (ja) * | 2015-02-26 | 2015-05-28 | カシオ計算機株式会社 | 多クラス識別器生成装置、データ識別装置、多クラス識別器生成方法、データ識別方法、及びプログラム |
JP2015188333A (ja) | 2014-03-27 | 2015-11-02 | 株式会社日立製作所 | 植生生長分析システム及び方法 |
JP2017016271A (ja) * | 2015-06-29 | 2017-01-19 | 株式会社オプティム | 無線航空機、位置情報出力方法及び無線航空機用プログラム。 |
JP2017057781A (ja) | 2015-09-16 | 2017-03-23 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006085517A (ja) | 2004-09-17 | 2006-03-30 | Hiroshima Pref Gov | 衛星データによる森林地域の植生分類方法 |
JP4887130B2 (ja) * | 2006-12-15 | 2012-02-29 | 株式会社日立ソリューションズ | 農地区画データ作成システム |
JP5761789B2 (ja) | 2011-03-30 | 2015-08-12 | 国立大学法人神戸大学 | 植物体の画像領域抽出方法、植物体の画像領域抽出装置、および植物体の生育監視システム |
US20150206255A1 (en) * | 2011-05-13 | 2015-07-23 | HydroBio, Inc | Method and system to prescribe variable seeding density across a cultivated field using remotely sensed data |
US9030549B2 (en) * | 2012-03-07 | 2015-05-12 | Blue River Technology, Inc. | Method and apparatus for automated plant necrosis |
JP6172657B2 (ja) * | 2013-03-27 | 2017-08-02 | 国立大学法人神戸大学 | 植物体の画像生成装置 |
US20150254800A1 (en) * | 2014-03-06 | 2015-09-10 | F12 Solutions, Llc | Nitrogen status determination in growing crops |
US10349584B2 (en) * | 2014-11-24 | 2019-07-16 | Prospera Technologies, Ltd. | System and method for plant monitoring |
JP6539901B2 (ja) * | 2015-03-09 | 2019-07-10 | 学校法人法政大学 | 植物病診断システム、植物病診断方法、及びプログラム |
JP2019513315A (ja) * | 2016-02-29 | 2019-05-23 | ウルグス ソシエダード アノニマ | 惑星規模解析のためのシステム |
-
2018
- 2018-02-16 EP EP18772317.6A patent/EP3605455A4/en not_active Withdrawn
- 2018-02-16 WO PCT/JP2018/005579 patent/WO2018173577A1/ja active Application Filing
- 2018-02-16 JP JP2019507446A patent/JP6631747B2/ja active Active
- 2018-02-16 US US16/494,117 patent/US11417089B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003009664A (ja) * | 2001-06-29 | 2003-01-14 | Minolta Co Ltd | 作物生育量測定装置、作物生育量測定方法、作物生育量測定プログラム及びその作物生育量測定プログラムを記録したコンピュータ読取可能な記録媒体 |
JP2015188333A (ja) | 2014-03-27 | 2015-11-02 | 株式会社日立製作所 | 植生生長分析システム及び方法 |
JP2015099616A (ja) * | 2015-02-26 | 2015-05-28 | カシオ計算機株式会社 | 多クラス識別器生成装置、データ識別装置、多クラス識別器生成方法、データ識別方法、及びプログラム |
JP2017016271A (ja) * | 2015-06-29 | 2017-01-19 | 株式会社オプティム | 無線航空機、位置情報出力方法及び無線航空機用プログラム。 |
JP2017057781A (ja) | 2015-09-16 | 2017-03-23 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3605455A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020157878A1 (ja) * | 2019-01-30 | 2020-08-06 | 株式会社オプティム | コンピュータシステム、作物生育支援方法及びプログラム |
JPWO2020157878A1 (ja) * | 2019-01-30 | 2021-06-03 | 株式会社オプティム | コンピュータシステム、作物生育支援方法及びプログラム |
JP7068747B2 (ja) | 2019-01-30 | 2022-05-17 | 株式会社オプティム | コンピュータシステム、作物生育支援方法及びプログラム |
JP2020204523A (ja) * | 2019-06-17 | 2020-12-24 | 株式会社パスコ | 植生領域判定装置及びプログラム |
JP7273259B2 (ja) | 2019-06-17 | 2023-05-15 | 株式会社パスコ | 植生領域判定装置及びプログラム |
CN110852149A (zh) * | 2019-09-24 | 2020-02-28 | 广州地理研究所 | 基于分类和回归树算法的植被指数预测方法、系统及设备 |
WO2021153791A1 (ja) * | 2020-01-31 | 2021-08-05 | 株式会社ロングターム・インダストリアル・ディベロップメント | 与信管理装置、マッチング装置、それらの方法およびプログラム |
CN112861807A (zh) * | 2021-03-18 | 2021-05-28 | 国家海洋信息中心 | 一种基于改进gli指数和深度学习的极地植被提取方法 |
CN112861807B (zh) * | 2021-03-18 | 2022-12-09 | 国家海洋信息中心 | 一种基于改进gli指数和深度学习的极地植被提取方法 |
CN117372503A (zh) * | 2023-12-08 | 2024-01-09 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种河湖岸带植被分类及覆盖度计算方法及系统 |
CN117372503B (zh) * | 2023-12-08 | 2024-03-08 | 水利部交通运输部国家能源局南京水利科学研究院 | 一种河湖岸带植被分类及覆盖度计算方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3605455A4 (en) | 2020-04-01 |
JP6631747B2 (ja) | 2020-01-15 |
EP3605455A1 (en) | 2020-02-05 |
JPWO2018173577A1 (ja) | 2019-11-07 |
US11417089B2 (en) | 2022-08-16 |
US20210142056A1 (en) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173577A1 (ja) | 植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体 | |
WO2018173622A1 (ja) | 植生指標算出装置、植生指標算出方法、及びコンピュータ読み取り可能な記録媒体 | |
Neupane et al. | Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV) | |
Gutierrez et al. | A benchmarking of learning strategies for pest detection and identification on tomato plants for autonomous scouting robots using internal databases | |
Zhang et al. | Growth monitoring of greenhouse lettuce based on a convolutional neural network | |
JP6935377B2 (ja) | 時空間画像の変化を自動推論するためのシステムおよび方法 | |
da Silva et al. | Estimating soybean leaf defoliation using convolutional neural networks and synthetic images | |
CA3125790A1 (en) | Shadow and cloud masking for remote sensing images in agriculture applications using multilayer perceptron | |
Swain et al. | Weed identification using an automated active shape matching (AASM) technique | |
CA3125794A1 (en) | Shadow and cloud masking for agriculture applications using convolutional neural networks | |
Sabrol et al. | Intensity based feature extraction for tomato plant disease recognition by classification using decision tree | |
WO2019176879A1 (ja) | 栽培作物選定支援装置、栽培作物選定支援方法、及びコンピュータ読み取り可能な記録媒体 | |
CN115631419B (zh) | 一种基于变化检测的水稻种植面积和空间分布提取方法和装置 | |
EP4256465A1 (en) | System and method for determining damage on plants after herbicide application | |
CN111814545A (zh) | 作物识别方法、装置、电子设备及存储介质 | |
WO2016121432A1 (ja) | 技能承継支援装置、技能承継支援方法、及びコンピュータ読み取り可能な記録媒体 | |
Li et al. | Hybrid rice row detection at the pollination stage based on vanishing point and line-scanning method | |
Ke et al. | Intelligent vineyard blade density measurement method incorporating a lightweight vision transformer | |
CN110969080A (zh) | 作物病害识别方法及装置、电子设备、存储介质 | |
Altınbaş et al. | Detecting defected crops: Precision agriculture using haar classifiers and UAV | |
Chaudhary et al. | An efficient approach for automated system to identify the rice crop disease using intensity level based multi-fractal dimension and twin support vector machine | |
JP7452879B2 (ja) | 予測システム、予測方法、および予測プログラム | |
Terzi et al. | Automatic detection of grape varieties with the newly proposed CNN model using ampelographic characteristics | |
KR20220055807A (ko) | 식물의 생육 상태 판단 장치 및 방법 | |
JP6287176B2 (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772317 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019507446 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018772317 Country of ref document: EP Effective date: 20191023 |