JP6629237B2 - Memsベースの粒子単離システム - Google Patents

Memsベースの粒子単離システム Download PDF

Info

Publication number
JP6629237B2
JP6629237B2 JP2016567572A JP2016567572A JP6629237B2 JP 6629237 B2 JP6629237 B2 JP 6629237B2 JP 2016567572 A JP2016567572 A JP 2016567572A JP 2016567572 A JP2016567572 A JP 2016567572A JP 6629237 B2 JP6629237 B2 JP 6629237B2
Authority
JP
Japan
Prior art keywords
fluid
isolation device
carrier fluid
particle isolation
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016567572A
Other languages
English (en)
Other versions
JP2017524338A (ja
Inventor
フォスター ジョン
フォスター ジョン
マルティネス ニコラス
マルティネス ニコラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Owl Biomedical Inc
Original Assignee
Owl Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owl Biomedical Inc filed Critical Owl Biomedical Inc
Publication of JP2017524338A publication Critical patent/JP2017524338A/ja
Application granted granted Critical
Publication of JP6629237B2 publication Critical patent/JP6629237B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0644Valves, specific forms thereof with moving parts rotary valves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Fluid Mechanics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、微細製造された流路内における小さい粒子を操作するためのシステムおよび方法に関する。
マイクロメカニカルシステム(MEMS)は、たとえば半導体デバイスを製造するために使用されるような、表面リソグラフィ処理技術またはバルクリソグラフィ処理技術を使用して基板上に作製された、しばしば可動である非常に小さい構造である。MEMSデバイスは可動のアクチュエータ、センサ、バルブ、ピストンまたはスイッチになり得るものであり、たとえば、数ミクロンから数百ミクロンまでの特徴的な寸法を有する。たとえば可動のMEMSスイッチは、1つまたは複数の入力接続端を1つまたは複数の出力接続端に接続するために使用することができ、これらはすべて、基板上に微細製造されたものである。かかる可動スイッチの駆動手段は、たとえば熱、圧電式、静電式または磁気的手段とすることができる。MEMSデバイスを流体流で通過する粒子を操作することができるMEMSデバイスは、半導体基板上に製造することができる。
他の一例ではMEMSデバイスは、流体流から種々の粒子を分取するためのソート機構、たとえば血液から細胞を分取するためのソート機構として使用される可動バルブにもなり得る。粒子は、マイクロ流路内に封入され圧力下で流れる流体流で、ソートデバイスへ輸送することができる。MEMSソートデバイスに到達すると、ソートデバイスはたとえば血液幹細胞等の関心対象の粒子を別個の受け部へ送り、流体流の他の残りのものを廃棄受け部へ送る。
MEMSベースのセルソータシステムは、フローサイトメータとして知られている既存の蛍光活性化セルソータシステム(FACS)と比較して格段に有利な点を有し得る。フローサイトメータは一般的に大型の高価なシステムであり、関心対象の細胞に付された標識からの蛍光信号に基づいて細胞を分取するものである。細胞はシース流体中に希釈および懸濁され、その後、ノズルを介しての急速減圧により、個別の液滴に分離される。ノズルから排出された後、これらの液滴は標識からの蛍光信号に基づいて、静電気により、複数の異なる容器内に分離される。かかるシステムの問題の中には、減圧に起因する細胞の機能障害または損傷、サンプル間の困難かつ高コストの滅菌処理、複数の異なるパラメータに即して部分集団を再分取できないこと、および、この大型かつ高価な装置を所有、稼働および保守するためには相当の訓練が必要である、という問題がある。少なくともこれらの理由により、フローサイトメータの使用は大規模な病院や研究所に限定されており、当該技術は、より小規模な団体には手が届かないものとなっている。
上述のようなMEMSベースの粒子ソートデバイスを対象とする多数の特許が付与されている。たとえば米国特許第6838056号明細書(’056特許)は、MEMSベースのセルソートデバイスに関するものであり、米国特許第7264972号明細書(’972特許)は、MEMSベースのセルソートデバイス用のマイクロメカニカルアクチュエータに関するものである。米国特許第7220594号明細書(’594特許)は、MEMSセルソート装置を用いて製造された光学的構造に関するものであり、米国特許第7229838号明細書(’838特許)は、MEMSベースの粒子ソートシステムを動作させるための駆動機構に関するものである。さらに、米国特許出願公開第13/374899号明細書(’899出願)および同第13/374898号明細書(’898出願)に、他のMEMS構成の詳細が記載されている。上記の各特許(’056,’972,’594,および’838)および各特許出願(’898および’899)の内容は、参照により本願の内容に含まれるものとする。
微細製造されたMEMSベースの粒子ソートシステムの1つの特徴に、半導体基板に微細製造された小さい流路に、流体を分取プロセス全体にわたって閉じ込めることができるという特徴がある。粒子、たとえば生体細胞は、プロセス全体にわたって、低流速で流れるサンプル流中に留まる。MEMSデバイスは、このサンプル流の他の成分から1つまたは複数の標的粒子を分離するバルブとすることができる。標的粒子が存在することを信号が示す場合、MEMSデバイスは粒子流の方向を1つの流路から他の流路へ変更することができる。この信号は、標的粒子に付された蛍光標識からの光子とすることができ、この蛍光標識は、MEMSデバイスより上流の送信領域においてレーザ照射により励起されるものである。よってMEMSデバイスは、微細製造された流路に閉じ込められた流体サンプルに作用するがFACSフローサイトメータと同様の検出手段を用いる粒子ソータまたはセルソータになり得る。
MEMSデバイスの特性ゆえ、アーキテクチャが、低流速の流体中に細胞を常に浸漬した状態にしながら、たとえば生体細胞等のマイクロスケールの粒子を操作することを可能にしている。本願にて開示しているシステムや方法を用いると、これらの小さいバルブを用いて、1つの個別の標的細胞を含む流体サンプルを調製することができる。この標的細胞は、さらに下流の研究もしくは操作の対象となることができ、または、たとえば腫瘍細胞、T細胞、B細胞、幹細胞または癌細胞とすることができる。
本願にて開示されているシステムおよび方法は、MEMSベースの粒子単離デバイスを構成するように、微細製造されたMEMS流体バルブと流体インターポーザとを併用することができる。MEMSベースの単離デバイスは、流体流中の非標的物質から1つまたは複数の標的粒子を単離することができ、個別の流体分量で、たとえば個別の液滴でこの標的粒子を排出することができる。
粒子単離システムは、複数のマイクロ流路を備えることができ、このマイクロ流路はサンプル供給流路とソート流路とを含み、マイクロ流路内には、1つまたは複数の標的粒子と非標的物質とを含むサンプル流体が流れる。サンプル供給流路内には、流体流中の非標的物質から上記の1つまたは複数の標的粒子の区別がなされる送信領域を配置することができ、サンプル供給流路において、微細製造された流体バルブが、流体流中の1つまたは複数の標的粒子を分離するように構成することができる。1つまたは複数の標的粒子を一分量のキャリア流体によって包囲するため、キャリア流体供給部がキャリア流体を供給することができる。上述の分離された個別粒子を含む一分量のキャリア流体は、出口部によって受け部へ離散的にディスペンスすることができる。受け部は、特定の分量の流体を、他の分量の流体とは別個に、既知の特定位置に貯蔵するため、各個別分量の流体をインデックス動作方式で貯蔵するための個別の領域を含むことができる。
サンプル流から1つまたは複数の標的粒子を単離するための方法は、当該1つまたは複数の標的粒子を複数のマイクロ流路のうち1つのマイクロ流路内に分離するように構成された、微細製造された流体バルブを設けるステップを含むことができる。その後、本方法は、1つまたは複数の標的粒子を一分量のキャリア流体によって包囲するため、マイクロ流路のうち少なくとも1つに、一分量のキャリア流体を加えることができる。その後、個別分量のキャリア流体と1つまたは複数の標的粒子とを、受け部へディスペンスすることができる。本方法はさらに、1つまたは複数の異なる標的粒子を含む他の一個別分量の流体を受容するため、受け部を新たな位置へ移動させるステップを含むことができる。
MEMSベースの粒子単離デバイスは、微細製造された流路のうち少なくとも1つに、微細製造されたバルブの製造平面外へ流れの経路決定をさせる、特殊なMEMSバルブを使用することができる。かかるバルブは、別途流路やバルブを必要とすることなく、適切な液滴体積を供給するのに十分な漏れ流量を有することができる。
MEMSバルブは、第1の偏向面を有する、微細製造された可動部材を備えることができ、この可動部材は、当該可動部材に加えられた力に応答して第1の位置から第2の位置へ移動することができる。可動部材の上述の移動は実質的に、上記表面に対して平行な平面内とすることができ、基板にサンプル供給流路が形成されており、このサンプル供給流路内に、上述の少なくとも1つの標的粒子と非標的物質とを含む流体が流れる。サンプル供給流路内の流れは、当該表面に対して実質的に平行とすることができる。可動部材は流体を複数の排出流路内に偏向することができる。その際には、少なくとも1つの排出流路内の流れは、上述の平面に対して平行ではなく、少なくとも1つの排出流路は、その移動の少なくとも一部にわたって偏向表面の少なくとも一部の直接下方に位置する。
標的粒子をこのMEMSバルブによってソート流路内に分離することができ、ソート流路はこの粒子とキャリア流体とを組み合わせることができる。このとき単離デバイスは、液滴を形成するのに十分な分量のキャリア流体を加える。キャリア流体中の標的粒子は、ソート流路の終了部において液滴を形成することができ、この終了部の場所においてテーパ領域がシステムの液滴化部を構成する。標的粒子を含む液滴が液滴化部から落下すると、かかる液滴をタイタープレートに、またはより具体的にはマイクロタイタープレートに回収することができる。このタイタープレートは、かかる複数の液滴を、インデックス動作がなされるそれぞれ別個のウェルに収容するため、複数の小さい流体ウェルまたは貯蔵部を有する。特定の標的粒子を既知のインデックス動作がなされる位置特定可能なウェルに回収するため、マイクロタイタープレートをロボットにより位置決めすることができる。
上記および他の特徴および利点は、下記の詳細な説明にて記載されているか、または当該詳細な説明から明らかである。
以下の図面を参照して、複数の具体的な実施例を説明する:
個別粒子を単離するように構成されたMEMS粒子単離デバイスの第1の実施例を簡略化して示す概念図である。 個別粒子を含む液滴をディスペンスするための、図1の微細製造された粒子単離システムの制御の時系列を簡略化して示す図である。 個別粒子を単離するように構成されたMEMS粒子単離デバイスの第2の実施例を簡略化して示す概念図である。 個別粒子を含む液滴をディスペンスするための、図3の微細製造された粒子単離デバイスの制御の時系列を簡略化して示す図である。 個別粒子を単離するように構成されたMEMS粒子単離デバイスの第3の実施例を簡略化して示す概念図である。 図6aは、実質的に同一である複数の流体ウェルを有するマイクロタイタープレートの断面図であり、図6bは、図6aのマイクロタイタープレートの平面図である。 図7aは、非同一である複数の流体ウェルを有するマイクロタイタープレートの断面図であり、図7bは、図7aのマイクロタイタープレートの平面図である。 図1,図3および図5にて示されたMEMS粒子単離デバイスにおいて個別粒子を分離するために使用できるMEMS粒子ソートバルブであって、非駆動(廃棄)位置にあるMEMS粒子ソートバルブの平面図である。 図1,図3および図5にて示されたMEMS粒子単離デバイスにおいて個別粒子を分離するために使用できるMEMS粒子ソートバルブであって、作動(分離)位置にあるMEMS粒子ソートバルブの平面図である。 図1,図3または図5のMEMS粒子単離デバイスと共に用いることができる一例のカートリッジおよびインターポーザの分解図である。 図1,図3または図5のMEMS粒子単離デバイスにおいて用いることができる一例のカートリッジおよびインターポーザの側面図である。 図12aは、図1,図3または図5のMEMS粒子単離デバイスにおいて用いることができる一例のインターポーザの斜視図であり、図12bは、図12aの一例のインターポーザの観察面である。 MEMS粒子単離デバイスを用いるMEMS粒子単離システムの概略図である。
本システムおよび方法は、後の操作または研究のために液滴中の個別の標的粒子を単離することができる粒子単離システムを対象とする。MEMSベースの粒子単離システムは、特殊な種類のMEMSバルブを使用することができるが、粒子単離システムは他の構成のMEMSバルブを使用することもでき、いかなる特定の構成の微細製造バルブにも限定されない。
以下説明する図面では、同様の符号は同様の構造を指しており、これらの構造は、本発明の新規のデバイスの重要な特徴を見やすくするため、詳細レベルを変えて示されている。本図面は必ずしも、実寸の比率通りに各構造を示すものではなく、また、本デバイスはどのような特定の向きにおいても構成および動作することができるので、たとえば「上部」、「下部」、「上方」、「下方」、「左」および「右」等の方向についての記載は任意のものであると解すべきである。「ソート」と「単離」との用語は、本願では入れ替えて使用することも可能なものであり、共に、流体流中に流れる非標的物質から標的粒子を単離することを意味するものである。また、「ソート」と「廃棄」との記載は、それぞれ異なる粒子集団を意味するというだけであり、どのような集団を「標的」集団と称し、または「ソート」集団と称するかは任意であるため、これらの記載も入れ替え可能であると解すべきである。さらに、見やすくするために一部の図は、可能な特徴および選択肢をすべて含んでいない場合があり、また、実際の方法、デバイスおよびシステムを図示するにあたって相当の簡素化を行っている場合もあるとも解すべきである。
図1は、流体流の他の残りの部分から個別の標的粒子を分取(ソート)、分離または単離することができる細胞単離デバイスの第1の実施形態を簡略化して示す概念図である。分取または分離の後、かかるデバイスによって単離される個別の細胞または標的粒子はその周囲に、ピコリットルまたはフェムトリットルのオーダの流体を、簡便に取り扱うには過度に少量の量を有し得る。本願にて開示されているシステムおよび方法は、使い捨て可能であるように、液滴または標的細胞もしくは標的粒子を含む他の量等の個別流体分量を形成するため、懸濁および処理流体として一分量の「キャリア」流体を細胞に加えることができる。かかる流体が加えられた後は、一分量のキャリア流体に覆われることとなった個別細胞は、下流の処理または操作の前に貯蔵するための適切なサイズの容器内に投入することができる。キャリア流体および標的細胞のディスペンスは離散的に、すなわち、有限分量の流体として、たとえば連続流ではなく液滴で行うことができ、各個別分量はそれぞれ、インデックス動作がなされる異なる受け部内にて貯蔵される。より一般的には、1つまたは複数の標的粒子をそれぞれ含む複数の個別分量のキャリア流体を、排出構造部122によって受け部にディスペンスすることができ、または、受け部内に配されている複数の流体ウェルのうち少なくとも1つにディスペンスすることができる。
図1に示された実施形態では、キャリア流体供給部24がソート流路22に結合されており、微細製造された流体バルブ1の下流に配置されている。本実施形態では、上述の一分量のキャリア流体は液滴として、インデックス動作方式の適切な受け部内にディスペンスすることができる。「インデックス動作方式の受け部」とは、一分量の流体を貯蔵するために繰り返し接近できる複数の既知の位置を有する受け部をいうこととする。適した受け部の一例は、流体を収容するための複数のウェルを有するインデックス動作方式のタイタープレートまたはマイクロタイタープレートである。よってタイタープレートは、特定の分量の流体が既知の特定の位置に収容されるように、各分量の流体をインデックス動作方式で貯蔵できるものである。本実施形態ではタイタープレートまたはマイクロタイタープレート1200は、当該タイタープレートまたはマイクロタイタープレート1200に形成された複数のウェル1220を有することができる。ウェル1220は、1μlから100μl未満の範囲となり得る適切な量の物質を難なく保持できるように、約1〜100μlの流体を保持するように構成することができる。たとえば、1つの液滴の体積を15〜30μlとすることができる。マイクロタイタープレート1200は、図示のようにロボット手段1500によって移動することができる。ロボット手段1500は、マイクロタイタープレート1200を繰り返し位置決めすることができる、駆動されるおよび/または関節型の位置決め要素とすることができる。ロボット手段1500は、マイクロタイタープレート1200の複数のウェル1220のいずれも、排出液滴化構造部122の下方に位置決めできるように、マイクロタイタープレート1200を正確かつ繰り返し位置決めするための閉ループ制御、フィードバック制御を有することができる。ロボット手段1500は、MEMSベースの粒子単離デバイス10に形成されたテーパ付きの液滴化部122の下方にウェル1220の列を位置決めするように、マイクロタイタープレート1200をインデックス動作させることができる。テーパ付きの液滴化構造部122は一実施例であり、個別粒子を含むキャリア流体をディスペンスするため、他の種類の排出機構を設けることも可能であると解すべきである。各液滴100は、MEMSベースの粒子単離デバイス10によって非標的物質から分離された1つの個別の標的粒子を含むことができる。これに代えて液滴100は、複数の標的粒子を含むことができるが、非標的物質もしくは非標的粒子は僅かしか含まないか、または全く含まないことができる。
MEMSベース粒子単離デバイス10はサンプル供給流路20を備えることができ、これは、サンプル貯蔵部2から供給されたサンプルを、微細製造されたMEMS可動バルブまたはアクチュエータ1へ移送するものである。バルブまたはアクチュエータ1は、1つの微細製造された流路を閉鎖して他の1つの微細製造された流路を開放する動きを行うことができる。図1に示された実施形態では、MEMSバルブ1は廃棄流路40を閉鎖する。これは通常は、紙面に対して垂直な廃棄流路内に、供給された流体を送るものである。この流路は、図1では破線の円40として示されている。このオリフィスは円形である必要はないが、廃棄流路40への開口部は、いかなる任意のまたは複雑な形状を有することが可能であると解すべきである。流路20,22および40の寸法は20〜50μmのオーダとすることができ、流体はこれらの流体内において約4ml/hの流速で流れることができる。
供給されるサンプル流20は、適切な流体中に懸濁された粒子、たとえばバイオ物質または生体細胞等を含むことができる。流体はたとえば、緩衝流体、塩水、水、血液、血漿等とすることができる。流体中の標的細胞の濃度はいずれの場所においても、約10,000/mlから約1×10/mlとすることができる。標的粒子はたとえば、B細胞、T細胞、癌細胞、腫瘍細胞、精子細胞等とすることができる。標的粒子は比較的幅広い細胞集団または粒子集団中において、通常(たとえば1/10)または多数もしくは高純度から極度に低頻度(1/1,000,000またはそれ以上)までの幅広い範囲の頻度で存在することができる。上述の流路は、5〜20ミクロンのオーダの直径の生体細胞の通過を確保するように選択された寸法であって、詰まりを低減するのに十分に大きく、かつ、当該流路内にて細胞の1列通過を促進するのに十分に小さい寸法を有することができる。
供給流体流路20内に、送信領域200を設けることができる。この送信領域200は供給サンプル流20内の領域であって、標的粒子を非標的物質から区別する領域である。送信領域200用に適した判別機構の例について、以下詳細に説明する。かかる例の判別機構は、たとえば蛍光標識のレーザ送信を含むことができるが、他の機構を用いることも可能である。
送信領域200から信号を受け取ると、MEMSバルブ1はサンプル供給用貯蔵部2および供給サンプル流20からの流れの方向を個別粒子排出流22へ変えることができる。図1では、MEMSバルブ1をキャリア流体バルブX2と区別するため、MEMSバルブ1に符号「X1」を付している。MEMSバルブ1は、第1の位置から第2の位置まで約20〜50μs(マイクロ秒)で移動することができ、それと同時に、廃棄流路40への開口部を閉鎖し、かつ、個別粒子排出流路22への開口部を開放することができる。MEMSバルブ1はこの第2の位置において約20〜50μs留まることができ、これにより1つの個別標的粒子を、その対応する流体と共にソート流路22内に流すことができる。よって、上述の流体流速で、MEMSバルブ1の開弁により、ピコリットルのオーダの非常に少量の流体を個別細胞排出流路22内に導入することができる。
個別粒子を扱うのに十分な流体を供給するため、キャリア流体流路24も設けることができる。このキャリア流体流路24は、キャリア流体貯蔵部4からキャリア流体をソート流路22へ送ることができる。キャリア流体はたとえば、緩衝流体、シース流体、塩水または媒液等とすることができる。キャリア流体は懸濁流体と同一とすることができ、または異なる流体とすることもできる。キャリア流体の機能は、標的細胞をマイクロタイタープレート1200のウェル1220内へ輸送および維持するのに十分な流体体積を提供することである。キャリア流体はまた、たとえば成長阻害剤、成長促進剤、栄養剤、抗生剤、抗ウイルス剤等の活性成分を含むこともできる。
キャリア流体はキャリア流体貯蔵部4から、図1中において「X2」として示されているもう1つのバルブを介してディスペンスすることができる。このバルブX2は、たとえばソレノイドバルブまたはボールバルブ等の巨視的なバルブとすることができ、または、X1のような微細製造されたバルブもしくはMEMSバルブ1に類するバルブとすることもできる。キャリア流体は、キャリア流体貯蔵部4からバルブX2を介して、キャリア流体流路24を通って流路ソート排出流路22内へ流され、これが個別粒子を結合して、ソート流路22の端部の液滴化部122において液滴100を形成するに至る。十分なサイズおよび重量に達すると、マイクロタイタープレート1200のウェル1220内へ液滴100をディスペンスすることができる。
MEMSバルブ1は、数百ミクロンのオーダと実に小さくなることができ、かつ、マイクロタイタープレート1200はたとえば3cm×8cmの巨視的な寸法を有するので、MEMSバルブ1をインターポーザ1400に保持するのが便利である。これは、MEMSバルブ1の微視的幾何要素とマイクロタイタープレート1200の巨視的なウェルとの間に寸法を拡げるように構成されている。インターポーザ1400はかかる機能を果たすことができ、以下、その詳細について図10,図11,図12aおよび図12bを参照して説明する。
図2に簡略なタイムチャートを示しており、同図は、MEMSベースの粒子単離システム10による流体流からの個別標的粒子の単離に関連するイベントの時期を示している。図2に示されているように、そのプロセスは、ステップAにおいて送信領域200にて個別の標的細胞を検出することにより開始する。ステップBにおいて、標的粒子が検出されたことに応答して、MEMSバルブ1へパルスが送信され、これによりMEMSバルブ1は第1の位置から第2の位置へ移動し、廃棄流路40を閉鎖してソート流路22を開放する。マイクロタイタープレート1200の位置を制御するロボットへ、液滴化構造部122の下方の位置にウェル1220を移動させる信号、すなわち、インデックス動作がなされるウェル場所の位置に移動させる信号を送信することもできる。ステップCにおいて、標的粒子を含む液滴100が発生し始めるように、キャリア流体バルブX2を開弁することができる。所要体積に達すると、液滴100は液滴化構造部122から落下する。ステップDにおいて液滴がディスペンスされたことが検出されると、ステップEにおいてロボットは、1つまたは複数の標的粒子を含む他の分量の流体を受けるため、マイクロタイタープレート1200を新規のインデックス位置へ移動させることができる。ステップFにおいて、システムを再設定することができる。
図2の時系列における各期間の例は、以下の通りである:
ステップAとステップBとの間の時間:20μs
ステップBとステップCとの間の時間:10μs〜10ms
ステップCの期間:10〜100ms
ステップDとステップEとの間の時間:10ms
ステップEとステップFとの間の時間:10ms
したがって、図2に示された空間的間隔は、各異なるステップ間にて経過する時間に必ずしも比例しないと解すべきである。また、これらの間隔は一例に過ぎず、その具体的間隔は、用途と使用されるハードウェアとに依存すると解すべきである。たとえばステップCの期間は、キャリア流体流路24にて使用される圧力に依存する。また、使用される方法は、図2に示されている方法より格段に複雑となり得ることも理解すべきである。液滴サイズの測定、バルブX1ならびにX2の閉弁等のステップおよび他の多くのステップは暗黙的なものであり、同図を簡略化して見やすくするために言及していない。
キャリア流体の流れを制御するために使用されるバルブX2の開弁または閉弁は非常に低速とすることができ、たとえば10ms以上とすることができ、ロボット運動も同様に、msオーダと低速にすることができる。バルブX2を全く使用せずに、キャリア流体をソート流路22内へ一定の速度で流せるようにする、他の選択肢も可能である。液滴をパッシブ方式で形成し、パッシブなシース流として一定の速度で流すことができる。かかる液滴は一般的には標的粒子を含まず、単に廃棄受け部にて貯蔵するか、または破棄することができる。この実施形態について、以下、図3を参照して説明する。
図3は、流体流の他の残りの部分から個別の標的粒子を分取、分離または単離することができるMEMSベースの細胞単離デバイス10’の第2の実施形態を簡略化して示す概念図である。この実施形態10’は、キャリア流体流がバルブによって制御されずに単に連続的に流れるようにされる点を除いて、図1に示された実施形態と同様である。かかる連続流により、液滴を液滴化構造部122によって連続的に放出することができる。第2の種類のマイクロタイタープレート1200’は、その「空の」液滴を含むため、比較的大きい貯蔵部1210’を備えることができる。標的粒子が送信領域200において検出されるまで、ロボットはこの廃棄用貯蔵部1210’の位置を液滴化構造部122の下方に維持することができる。
標的粒子を含まない液滴から、個別粒子を含む液滴を分離するためには、マイクロタイタープレート1200’の位置決めを制御するロボット手段1500に、標的粒子が検出されたことをロボット手段1500に通知する信号を送信することができる。ロボット手段1500はこの信号を受け取ると、形成中の液滴が比較的大きい廃棄ウェル1210’内に落下するのではなく、より小さいウェル1220’内に落下するような位置に、マイクロタイタープレート1200’の位置をシフトさせることができる。マイクロタイタープレート1200およびマイクロタイタープレート1200’の具体的構成は、図6a,図6b,図7aおよび図7bに示されている。図1,図3および図5におけるマイクロタイタープレート1200、インターポーザ1400およびMEMSバルブ1の図示は、必ずしも実寸の比率通りではなく、これらの各要素の特徴を示すため、マイクロタイタープレート1200およびインターポーザ1400はMEMSバルブ1と同じスケールに見える場合があることが理解できるはずである。実際にはMEMSバルブ1は、マイクロタイタープレート1200およびインターポーザ1400に対して格段に小さい場合がある。
図4に簡略なタイムチャートを示しており、同図は、図3に示されたMEMSベースの粒子単離システムによる流体流からの個別標的粒子の単離に関連するイベントの時期を示している。そのプロセスは、上述の方法と同様、ステップA’において送信領域200にて個別の標的細胞を検出することにより開始する。ステップB’において、標的粒子が検出されたことに応答して、MEMSバルブ1へパルスが送信され、これによりMEMSバルブ1は第1の位置から第2の位置へ移動し、廃棄流路40を閉鎖してソート流路22を開放する。マイクロタイタープレート1200の位置を制御するロボット手段1500へ、液滴化構造部122の下方の位置にウェル1220’を移動させる信号を送信することもできる。すなわちロボット手段1500に対して、液滴化構造部122の下方に、比較的大きい廃棄ウェル1210’ではなく、インデックス動作がなされる小容積のウェル位置1220’を位置決めすべくマイクロタイタープレート1200’を移動させるように、命令することができる。バルブX2は本実施形態では使用されないので、ステップC’が必要とするのは、キャリア流体が流れる間に時間が経過することのみである。液滴がディスペンスされるまで、この流体は連続的に存在し続ける。ステップD’において液滴がディスペンスされたことが検出されると、ステップE’においてロボット手段1500は、マイクロタイタープレート1200’を新規の位置へ移動させることができる。ステップF’において、システムを再設定することができる。
バルブX2の動きと、マイクロタイタープレート1200を移動させるロボットアクチュエータの動きと、は低速であるため、その動きをより早期に、イベントを予想して引き起こすことができる。具体的には、液滴形成に必要とされるおおよその時間長は、MEMSバルブ1の作動と同様に分かっているので、液滴が形成されて落下できる状態になる前に、ロボット手段1500を作動させることができる。
図4の時系列における各期間の例は、以下の通りである:
ステップA’とステップB’との間の時間:20μs
ステップB’とステップC’との間の時間:10μs〜10ms
ステップC’の期間:10〜100ms
ステップD’とステップE’との間の時間:10ms
ステップE’とステップF’との間の時間:10ms
上記のように、図4に示された空間的間隔は、各異なるステップ間にて経過する時間に必ずしも比例しないと解すべきである。これらの間隔は一例に過ぎず、その具体的間隔は、用途と使用されるハードウェアとに依存する。たとえばステップC’の期間は、キャリア流体流路にて使用される圧力に依存する。また、ロボット手段1500は、図2および図4に示されている時点とは異なる時期において動かすことができることも理解すべきである。たとえば、MEMSバルブ1が作動されて標的粒子が分離された旨の通知を受けて、マイクロタイタープレート1200または1200’を位置移動することができる。図2に示された時系列と同様、図4にて示されたステップ以外の他の多くのステップも存在することができ、これらについては、分かりやすくするために5つのステップに限定していることが明らかである。
図5は、流体流の他の残りの部分から個別の標的粒子を分取、分離または単離することができるMEMSベースの細胞単離デバイス10’’の第3の実施形態を簡略化して示す概念図である。この実施形態10’’は、キャリア流体供給部が、最初の2つの実施形態のようにMEMSバルブ1より下流ではなく上流に配置される点を除いて、図1に示された実施形態と同様である。キャリア流体供給用貯蔵部4からのキャリア流体供給部には、図示のようにバルブX2を備えつけることができる。流れを制御する必要がない場合には、上述の実施形態のようにバルブを用いずに、連続的に流れることも可能である。図5に示された実施形態10’’は追加のバルブX2または追加の流路24を使用しないことが可能であるから、本実施形態10’’は、流体物質の消費量がコストまたは入手可能性の観点で問題とならない場合、または、実現の容易性が重要である場合に使用することができる。本実施形態10’’は、他の粒子ソートシステムの、ソートデバイスより上流にて行うことができるシース流の注入に類似するものであり、キャリア流体が一定に流れるとき、この実施形態10’’は数十mlの流体を消費し得る。
本実施形態は、MEMSバルブ1が、液滴化構造部122において合理的な速度で液滴を生成するのに十分な流体をデバイス周囲に流すために十分な漏れを有する場合に、使用することができる。具体的には液滴形成速度は、MEMSバルブ1周囲の漏れ流量の他、分取される物質の体積によっても決定され得る。よって、本実施形態は特に、図8および図9に詳細に示されているMEMSバルブと共に使用するのに適し得る。
図6aおよび図6bは、マイクロタイタープレート1200の他の具体的構成を示している。マイクロタイタープレート1200は単なる一実施例であり、単離された個別粒子100を受けるため、他のいかなる受け部も使用することができると解すべきである。適した受け部は、複数の別個の分量の流体を貯蔵するための、当該受け部に形成された専用の、インデックス動作がなされる別個の複数の領域を有することができる。たとえばマイクロタイタープレート1200は、当該マイクロタイタープレート1200に形成された凹部またはウェルのアレイから成ることができ、これらの各凹部またはウェルはそれぞれ、一分量の流体を受けて貯蔵することができる。図6aはマイクロタイタープレート1200の断面図であり、図6bは当該マイクロタイタープレート1200の平面図である。図6bには50個のウェル1220が示されているが、これは図示しやすくするためであり、実際には格段に多くのウェル1220を設けることが可能であることが理解できるはずである。
これらのウェルの寸法は、たとえば流体体積が1〜100μlである液滴100を保持するため、約1〜100μlの流体を難なく保持できるように決定することができる。各ウェル間のピッチは数桁異なることができ、たとえば、約50ミクロン乃至約5mmだけ相違することができる。これらの寸法は単なる一例であり、その具体的寸法は用途の環境に依存すると解すべきである。マイクロタイタープレート1200は生体適合性プラスチックから成ることができ、射出成形により±10μmの中間誤差で作製することができる。図6aおよび図6bに示されているように、マイクロタイタープレート1200ではすべてのウェルがほぼ同一形状および同一サイズであり、ロボット手段1500によって図1,図3または図5に示された方向にマイクロタイタープレート1200を移動させるようにインデックス動作する。これにより、50個のウェルまたは凹部1220のいずれも、液滴化部122の下方に位置決めすることができる。以下、検出システム1300について詳細に説明する。
図7aおよび図7bは、マイクロタイタープレート1200’の他の具体的構成を示している。マイクロタイタープレート1200と同様、マイクロタイタープレート1200’は、当該マイクロタイタープレート1200’に形成された凹部またはウェルのアレイから成ることができ、これらの各凹部またはウェルは、一分量の流体を受けることができる。図7aはマイクロタイタープレート1200’の断面図であり、図7bは当該マイクロタイタープレート1200’の平面図である。同図から分かるように、マイクロタイタープレート1200’は、異なる体積の流体を保持することができるように、複数の異なるサイズのウェルまたは凹部を有することができる。図7aに示された実施形態では、比較的小さいサイズの凹部1220’の他に、1つの大きな凹部1210’をマイクロタイタープレート1200’に設けることも可能である。この大きな凹部は、比較的多量の流体を保持することができ、これにより、標的粒子を含まない複数の液滴を貯蔵するのに適し得る。これはたとえば、図3に示された第2の実施形態のMEMSベースの単離システム10における状況である。
液滴100が液滴化部122から放出されてマイクロタイタープレート1200’に落下したことをどのようにして検出するかの技術的問題が生じ得る。液滴100が落下したか否かを判断するために使用できる技術は、複数存在する。かかる技術には、重量変化もしくは振動の測定、または直接的な光学的イメージングが含まれ得るが、ここで挙げたものはごく僅かのみである。図6aおよび図7aにおいて、検出システムは総括的に光学的イメージング部1300として示されている。しかし、この実施形態は単なる一例であり、液滴100が放出されたか否か、およびその時期を判断するために使用できる技術は、他にも存在すると解すべきである。
また、液滴化によってではなくブロッティングによって、すなわち、液滴100をマイクロタイタープレート1200’へ送るために重力ではなくメニスカス力を利用して、液滴をマイクロタイタープレート1200’へ送ることも可能であることが理解できるはずである。かかる実施形態では、液滴100がマイクロタイタープレート1200’の表面に接触するまで、マイクロタイタープレート1200’をロボット手段1500によって垂直方向に上昇させることができる。この時点において、液滴100に作用するメニスカス力が液滴化部122から液滴100をマイクロタイタープレート1200または1200’へ逃がすのを促進することができる。移送の完了は、上述の技術のいずれかによって確認することができる。
また、液滴100をマイクロタイタープレート1200へ放出するためにMEMSバルブ1および/またはインターポーザ1400の構成要素を振ることも可能である。かかる実施形態では、MEMSバルブ1を振動ステージ(図示されていない)上に取り付け、液滴の放出を促進するためにMEMSバルブ1を振動させることができる。その振動周波数は、送信領域200と関連する検出装置と抵触する振動周波数外になるように選択することができる。
図8は、本明細書に記載されている粒子単離システム10,10’および10’’において使用できる、微細製造された細胞ソート機構、MEMSバルブ1の概略図である。MEMSバルブ1およびその製造の詳細については、2013年10月1日に出願された同時係属中の米国特許出願第13/998095号(以下「’095出願」という)に記載されており、その記載内容は参照により本願の開示内容に含まれることとする。MEMSバルブ1の独特の特徴には、細胞ソートバルブ110の動きが当該バルブの製造平面に対して平行であるという特徴がある。さらに廃棄流路140は、サンプル供給流路20およびソート排出流路22に対して実質的に直交し、かつ、上述の平面に対して直交している。かかる構成により、速度、精度、バルブ流量およびマイクロ流体分取のしやすさの観点において、顕著な利点を奏することができる。ソート流路22は、テーパ付きの液滴化構造部122に接続することができ、この液滴化構造部122から液滴100が形成し得る。
図8の平面図では、上述の新規のMEMSバルブ1が静止(非作動)位置にある。MEMSバルブ1は、微細製造された流体バルブまたは可動構造部110と、複数の微細製造された流路20,22および140と、を備えることができる。流体可動構造部110および微細製造された流路20,22および140は、MEMSリソグラフィ製造技術を用いて適切な基板に、たとえばシリコン基板に形成することができる。これについては、’095出願において非常に詳細に記載されている。この製造基板は、デバイスが形成される製造平面であって、可動部材110が運動する製造平面を有することができる。
サンプル供給流路20によって、下記にて説明するインターポーザ1400を介して上述の微細製造された流体可動構造部110へ、サンプル流を導入することができる。サンプル流体は、流体可動構造部110による分取の前に、取り外し可能なカートリッジに設けられたサンプル貯蔵部2に貯蔵することができる。これについても以下説明する。サンプル流体は、少なくとも1つの所望の標的粒子と複数の他の不所望の非標的粒子とを含む粒子の混合物を含み得る。かかる粒子は、希釈または緩衝用の流体または媒液中に懸濁させることができる。たとえば標的粒子は、たとえば幹細胞、癌細胞、受精体、タンパク質、T細胞、細菌、血液成分、DNAフラグメント等の生体物質を、塩水等の緩衝流体中に懸濁させたものとすることができる。
供給流路20は、その流体の流れが実質的に、可動構造部110の製造平面と同一の製造平面内になるように、当該同一の製造平面内に形成することができる。可動構造部110の運動も、この製造平面内となる。特定の粒子を分取/保存または破棄/廃棄するとの決定は、任意の数の判別信号に基づくことができる。一実施例ではこの決定は、粒子から放出された蛍光信号に基づいて行われ、これは、粒子に付された蛍光標識を照射レーザにより励起することに基づく。レーザ送信領域200は、マイクロ流体通路の一部であって、標的粒子を流体サンプルの他の成分から区別するために当該標的粒子に照射レーザまたは送光レーザを当てる一部である。この検出メカニズムについての詳細は、文献において周知となっている。しかし、粒子の形態に基づき得る散乱光もしくは側方散乱光、または、粒子が標的粒子であると同定して分取または保存し、もしくは、非標的粒子であると同定して拒絶もしくは他の態様で破棄することができる任意の数の機械的、化学的、電気的もしくは磁気的作用を含めた、他の種類の判別信号も可能となり得る。
可動構造部110が図示の位置にある状態では、供給流は妨害されることなく排出オリフィス流路140まで通過する。この排出オリフィス流路140は供給流路20の平面外にあり、ひいてはMEMSバルブ1の製造平面外にある。具体的には、流れは供給流路20から排出オリフィス140へ向かっていき、この排出オリフィス140から、供給流路20に対して実質的に垂直に、ひいては直交方向に流れる。排出オリフィス140は平面外の流路に接続されており、この流路は、図8の紙平面に対して垂直とすることができる。より一般的には、排出流路140は供給流路20またはソート流路22の平面と、可動構造部110の製造平面とのうち少なくとも1つに対して平行ではない。以下、偏向面112と、可動物110上のパーマロイ挿入材116について説明する。
排出オリフィス140は、製造基板に形成された孔、または、製造基板に接合されたカバー基板に形成された孔とすることができる。さらに、可動構造部110は曲面の偏向面112を有することができ、これは、供給流の流れ方向をソート排出流中に向かう方向に変化できるものである。オリフィス140の輪郭は、供給流路20およびソート流路22の一部と重複するが全部とは重複しないようにすることができる。供給流路と重複する輪郭140を有することにより、可動構造部またはバルブ110が非作動廃棄位置にあるときに供給流が廃棄オリフィス140内に直接流れるための経路が形成されることとなる。廃棄流路140は、非標的物質を回収できる廃棄貯蔵部40に接続することができる。MEMSバルブ1の製造に関する設計誤差および製造誤差に起因して、可動構造部110の位置にかかわらず、サンプル供給流路20と廃棄流路140およびソート流路22との間に懸濁流体の漏れも生じることがある。
MEMSバルブ1の特徴サイズは、流路が50ミクロンの深さでありかつ25ミクロンの幅である場合、300〜400ミクロンのオーダの幅とすることができる。廃棄排出オリフィス140への開口部の幅は、約50〜100ミクロンとすることができる。
図9は、作動位置にあるときのMEMSバルブ1の平面図である。かかる位置では、可動構造部110は図9に示された位置に向かって上方向に反っている。偏向面112は、供給流路20の流れの方向をソート排出流路22内に向かう方向に変えるソート輪郭である。ソート流路22内の流れも、供給流路20内の流れと実質的に同一平面内となるように、排出流路22を、供給流路20と実質的に同一平面内にすることができる。供給流路20とソート流路22との間に角度が存在することができる。この角度は、最大90°までの任意の値とすることができる。一実施形態では、供給流路20およびソート流路22内の各流れが実質的に逆平行となるように、供給流路20とソート流路22との間の角度は約180°である。
可動構造部110の駆動は、力生成装置400によって生成された力により生じ得る。この力生成装置400は、図9において一般化して示されている。一部の実施形態では力生成装置は、以下説明するように電磁石とすることができる。しかし力生成装置は、可動構造部110を第1の位置(図8)から第2の位置(図9)へ移動させる力を可動構造部110に加えるための静電式、圧電式または何らかの他の手段とすることもできると解すべきである。ソート流路22は、テーパ付きの液滴化構造部122に接続することができ、この液滴化構造部122から液滴が形成し得る。
一部の実施形態では力生成装置400は、磁界を生成するコイルを備えることができ、この磁界は可動部材と相互作用する。可動部材がかかる電磁力に対して応答するようにするためには、可動部材は透磁性材料を有することができ、この透磁性材料は可動構造部110に挿入されている。この材料の外延は、図8および図9に示された110の外郭線のエッジまでであるが外郭線のぎりぎり内側までとすることができる。
「透磁性材料」とは、当該透磁性材料内部における磁界の形成を支援することができるあらゆる材料を指すこととする。換言すると、材料の透磁率は、加えられた磁界に応答して当該材料が示す磁化度である。
ここで使用される「透磁性材料」または「高透磁率の材料」との用語は、空気または真空の透磁率と比較して大きい透磁率を有する材料をいう。具体的には、透磁性材料または高透磁率の材料とは、(空気または真空との比較における)比透磁率が少なくとも約100である材料、すなわち、約1.26×10−6H・m−1である空気または真空の透磁率の100倍の透磁率を有する材料である。透磁性材料の例は多数存在し、クロム(Cr)、コバルト(Co)、ニッケル(Ni)および鉄(Fe)合金を含む。広く普及している透磁性材料の1つに、「パーマロイ」として知られているものがある。これは、約60%から約90%までの間のNiと、40%から10%までの間の鉄との組成を有するものである。最も一般的な組成は、80%のNiおよび20%のFeであり、その比透磁率は約8,000である。これにより可動バルブ110は、パーマロイ材料を可動要素110に挿入した後に平坦化することによって可動バルブの表面性状を平坦なままにしたもの116を有することができる。かかる透磁性要素の製造についての更なる詳細は、本願に包含されている’095出願に記載されている。
静磁気学から、透磁性材料によって実現される経路のリラクタンスを磁束まで引き下げるため、磁束線が集中する領域に透磁性材料を引き出すことが周知である。これにより、挿入された透磁性材料116が存在することによって、磁界の勾配が、磁束密度が高い領域に向かって可動部材110の運動を推進する。すなわち、透磁性材料116が挿入された可動部材110が、磁束の正の勾配の方向に引き出されることとなる。
バルブまたは可動部材110が図8のように非作動状態である場合、供給流路20の流れは、可動部材またはバルブ110を越えて、その周囲または脇を通過することによって、廃棄流路140内に直接流入することができる。バルブまたは可動部材110の頂部の領域は、この流れに対応する間隙を成すようにレリーフ加工することにより、所望の場合にはその漏れ流量を上昇させることができる。よって、可動部材が非作動状態である場合、流れは廃棄流路へ直接送られる。可動部材が作動されている場合には、液が依然としてこの可動部材の上下において流れるにもかかわらず、流体の大部分はソート流路へ送られることとなる。MEMS可動部材110はいずれの位置においても、懸濁流体が原則として廃棄流路140およびソート流路22の双方に漏流できるように漏流することができる。かかる構成はとりわけ、図5に示された実施形態において有利となり得る。
図10は、使い捨て可能なカートリッジ1000の一例の分解斜視図であり、これは、図13に示されており以下図13を参照して説明される粒子ソートシステムにおいて、使用することができるものである。使い捨て可能カートリッジ1000は、たとえば上部分1120およびベース1130等の複数の組立可能な部品を含むことができる。使い捨て可能カートリッジ1000は、MEMSバルブ1とインターポーザ1400との双方を備えたMEMSベースの粒子単離デバイス10を保持することができる。インターポーザ1400については、以下詳細に説明する。
使い捨て可能カートリッジ1000は、それに含まれ得る複数の流体貯蔵部での複数の流体の貯蔵を提供することもできる。これにより使い捨て可能カートリッジ1000のベース1130は、ここに形成された複数の空隙または区画を有することができ、これはサンプル流体貯蔵部2、キャリア流体貯蔵部4および廃棄貯蔵部40を含む。以下詳細に説明するように、分取対象のサンプルはサンプル貯蔵部2に、キャリア流体はキャリア貯蔵部4に、廃棄液は廃棄貯蔵部40に貯蔵することができる。これらの空隙間の流路はすべて、インターポーザ1400および/またはMEMSバルブ1に配置することができる。
上部分1120とベース1130との間には、サンプルをコンタミネーションまたは断片から保護するための複数のフィルタ1180を配置することができる。これらのフィルタ1180はたとえば、20ミクロンの滅菌フィルタとすることができる。フィルタ1180は、複数の流体貯蔵部2,4および40の上方に直接配置することができる。
サンプル貯蔵部2内において、磁化式プロペラ1150とニードル1160とを上部分1120とベース1130との間に挟むことができ、このニードル1160は、磁化式プロペラ1150用のシャフトとして機能し得るものである。循環磁界にさらされると、磁化式プロペラ1150はシャフト1160において回転することができ、これにより、サンプル貯蔵部2の内容物が混合または均一化される。最後に、キャリア流体貯蔵部4の上方に0.20ミクロンのフィルタ1170を配置することにより、その内容物を周囲環境からのコンタミネーションから保護することができる。
サンプル流体は、ピペットを用いて、またはシリンジとプランジャ(図示されていない)とを用いて、図示の導入ポート1111を介してサンプル貯蔵部に導入することができ、その後、つまみねじ1110を用いてカートリッジを封止することができる。これに代えて、カートリッジ内に既にサンプル流体が装填された状態で、カートリッジを発送することも可能である。マイクロタイタープレート1200または他の受け部は、図10に示されているようにインターポーザ1400およびMEMSバルブ1の下方に位置決めすることができる。このようにして、排出液滴化部は液滴を、次に図11に示されているように受け部1200内にディスペンスすることができる。
図11は、組み立てられた使い捨て可能カートリッジ1000の側面図であり、同図は、サンプル流体貯蔵部2とキャリア流体貯蔵部4と廃棄貯蔵部40とを示している。この組立図には、カートリッジベース1130に対するMEMSバルブ1およびインターポーザ1400の相対位置が示されている。ここで留意すべき点は、図10中ではカートリッジの左手側に示されているサンプル貯蔵部2が図11では、これに関連する流路、攪拌器等と同様に右手側に位置するように、図11は図10を反転したものであることである。図11には、タイタープレート受け部1200の相対位置決めと、ロボット1500によるその位置決めも示している。図11は、個別粒子液滴100の見かけを実際よりも、他の構成要素に対して相対的に格段に大きく図示しているので、実寸の比率通りに描画されていないと解すべきである。
MEMSバルブ1の非常に緻密に微細製造された要素と、格段に大きな流体容積のカートリッジ1000の貯蔵部2,4および40と、の間に接続領域を設けるため、インターポーザ1400を設けることができる。このインターポーザ1400は、たとえば射出成形によりプラスチックから形成することができ、その中間誤差は±10mmのオーダとすることができる。インターポーザ1400の目的は、MEMSバルブ1の非常に小さい構造と、カートリッジ1000および貯蔵部2,4および40の肉眼で視認できる巨視的構造と、の接続部を提供すること、および、ソート流路22に対応する液滴化構造部122を提供することである。
インターポーザ1400は、合理的な微細度の誤差(±10mm)で作製できるので、インターポーザ流路への開口部が約300ミクロンのオーダである場合、インターポーザ1400の通路をMEMSチップの通路とアライメントすることができる。可動構造部110へ繋がる流路および可動構造部110から出ている流路の幅は、150ミクロンのオーダと格段に小さくなり得ると同時に、当該流路へ流体を導入する開口部は、かかるスケール付近で作製することができる。その孔は、図12aおよび図12bに示されている。
これによればインターポーザは、当該インターポーザに形成された通路1120,1122および1140を有することができる。これらは図12aにて示されており、図8および図9に示されたMEMSバルブ1の流路20,22および140に対応することができる。具体的には、通路1120はMEMSバルブ1上の通路20と係合することにより、サンプル貯蔵部2から当該MEMSバルブ1上のサンプル供給流路20までの流路を成すことができる。インターポーザ1400はまた、可動構造部110から(図1および図3に示されているチップ上の)キャリア流路24および(インターポーザ上の)1122を経由して(カートリッジの)キャリア貯蔵部4までの流路を成すこともできる。またインターポーザ1400は、可動バルブ110から(図8および図9に示されているチップ上の)廃棄流路140および(インターポーザ上の)1140を経由して(カートリッジの)廃棄貯蔵部40までの流路を成すこともできる。
インターポーザのもう1つの目的は、レリーフ加工された液滴領域1450から、個別標的粒子を含む液滴をディスペンスするための液滴化構造部122を提供することである。この液滴領域1450は、図12bに示されている。
とりわけ、ここで留意すべき点は、液滴領域1450床部の高さがソート流路1122の底部より低いことである。これにより、液滴100は重力とメニスカス力とに支援されるので、MEMSバルブ1から液滴化構造部122へ流れて、下方に位置決めされたマイクロタイタープレート1200へ落下することができる。かかる液滴形成は、非常に小さい流路の小さい容積により生じ得る毛細管力を相殺するのに役立ち得る。
図12aおよび図12bから分かるように、インターポーザ1400はMEMSバルブ1からの少量の分量の物質をソート流路1122内へ排出することができる。この物質はこの流路において、液滴領域1450またはソート流路1122への開口部を介してキャリア流体と組み合わせることができる。廃棄流路1140は、使い捨て可能カートリッジ1000の廃棄貯蔵部40またはマイクロタイタープレート1200の廃棄ウェル1210’へ、非標的物質を送ることができる。
インターポーザ1400は、射出成形、エンボス加工、レーザ機械加工または3Dプリンティングによって、ポリカーボネート、ポリメチルメタクリレート(PMMA)または環状オレフィンポリマー(COP)から作製することができる。インターポーザ1400の通路における誤差は、約100ミクロンから400ミクロンまでの全径において約±1〜10ミクロンとなり得る。MEMSバルブ1の対応する通路は、約50ミクロンから150ミクロンまでとすることができる。図10に示されたチップ空洞1470内にMEMSバルブ1を収容することにより、当該MEMSバルブ1をインターポーザに接着することができる。空洞1470は、上記にて述べたようにMEMSバルブ1の通路がインターポーザ1400の通路と大体重なるのに十分な精度で形成することができる。許容される不整合は最大約20ミクロンとなることができ、容易に達成可能であり、かつ漏れを防止するのに適したものとなり得る。プリント回路板製造において周知であるピックアンドプレイス機は、この役割に適し得る。アラインメント後、MEMSバルブ1をその場で空洞1470内に接着することができる。
その後、接着材またはセメントを用いて、インターポーザ1400の孔1410をカートリッジ本体1000の対応する柱部に対して配置することにより、インターポーザ1400をカートリッジベース1130に接着することができる。この接着材またはセメントは水密性である必要があるが、未だ通路1120,1122または1140に干渉しないので、一部の要素は図12aおよび図12bに示されているように、かかる通路を囲う接着材ダム1460として形成することができる。この接着材ダム1460は、液体、未硬化の接着材が、小さい流路1120,1122および1140内に侵入するのを防止するように機能することができる。要素1460は、プラスチック材料の隆起したリッジ部であって、液体が流路または他の凹部に侵入するのを防止するリッジ部とすることができる。とりわけ、インターポーザ1400とカートリッジ本体1000の他の残りの部分との界面に接近できるようにするためのポート内に、接着材を注入することができる。接着材はこの領域の周囲に逃げるが、図12aに示されたマイクロ流路1120,1140および1122を包囲する接着材ダム1460によって、マイクロ流路1120,1140および1122内に侵入しないようにすることができる。接着材ダムによって、インターポーザ1400とカートリッジ本体1000の他の残りの部分との間の界面の厚さを約5乃至10μmから0.2乃至2μmに低減することができ、これによって毛細管作用が生じ、この毛細管作用により、接着材がダムを越えてマイクロ流路内に流入するのを防止することができる。これらの寸法は単なる一例であり、その具体的寸法は用途の特性に依存すると解すべきである。使用される接着材の種類に依存して、この液体の接着材を熱、圧力またはUV光露光等によって硬化することができる。
図12bは、インターポーザ1400の観察側の簡略的な斜視図である。この側は、MEMSバルブ1の収容領域1470を含む。MEMSバルブ1は、収容領域1470の要素に接着するか、または他の手法により接合することができる。同図にはまた、液滴化領域1450の排出オリフィスも示されている。
使い捨て可能カートリッジ1000の各構成要素およびインターポーザ1400の寸法例は、以下の通りである:
インターポーザの長さは16mm、幅は6mm、高さは1mmとすることができる。
廃棄貯蔵部およびサンプル貯蔵部の直径は20mmとすることができる。
サンプル流路1120、キャリア流路1122および廃棄流路1140の各幅は、300ミクロンとすることができる。
接着材ダムの高さは、約20〜50ミクロンとすることができる。
図13はMEMSベースの粒子単離システム2000の概略図であり、このMEMSベース粒子単離システム2000は、MEMSベースの粒子単離デバイス10をインターポーザ1400と共に使い捨て可能カートリッジ1000に収容したものを使用することができる。次に、当該システムの他の幾つかの構成要素について、および、これらの構成要素がMEMSベース粒子単離デバイス10とどのように相互作用するかについて説明する。とりわけ図13は、送信領域200用の照射レーザの光路と、当該システムにおける流体流の制御と、MEMSベース粒子単離デバイス10の制御と、を示している。
図13に示されているように、微細製造されたMEMSバルブ1およびインターポーザ1400を、上記のように使い捨て可能カートリッジ1000に収容することができる。使い捨て可能カートリッジ1000を可動ステージ上に装着して、使い捨て可能カートリッジ1000の向きを、粒子単離システム2000の検出光学系および照射レーザ2400に対して設定することができる。その後、上記にて図10〜図12を参照して説明したように、同様に使い捨て可能カートリッジ1000内に収容されている流体貯蔵部から流体がMEMSバルブ1を介してインターポーザ1400の通路を通って流れる。
システム2000の通常動作時には、標的粒子を、蛍光マーカが付された特定の細胞、たとえば幹細胞または癌細胞とすることができる。このマーカは、所定の波長で動作するレーザ2400によって照射されると、特定のエネルギーを有する光子を放出する。よって、かかる細胞ソートシステムでは図8および図9に示されているように、レーザ光源2400を回転ミラー2250によって、検出/集光光学系2100を通ってレーザ送信領域200へ送光することができる。検出/集光光学系2100の光軸およびレーザ光源2400の光軸は、その光路の少なくとも一部分において同一直線上とすることができる。よって、かかる光軸に沿ったレーザ照射および光検出の向きは、基板製造平面に対して垂直方向もしくは直交方向、可動バルブ110の運動平面に対して直交方向、かつ、検出領域を通るサンプル流体の流れに対して直交方向とすることができる。
照射された粒子から放出された蛍光は、検出/集光光学系2100によって成形してダイクロイックミラー2200によって分離し、受光素子2300のバンクに送ることができる。複数の受光素子が、たとえばマルチパラメトリック検出のために、複数の波長の放出光を受光することができる。受光素子2300から出力された信号は、レーザ送信領域200における標的粒子の有無を示す。この信号はコントローラ2900へ送信することができる。コントローラ2900は、MEMSベース粒子単離システム2000の各構成要素の相対的タイミングを管理し、データを収集するものである。コントローラ2900は、汎用コンピュータまたは専用回路またはASICとすることができる。標的粒子が検出されると、力生成装置または磁束生成装置400に通電する信号が、コントローラ2900によって生成される。
コントローラ2900はまた、1つまたは複数の空気式、液圧式、ピストン方式または機械的力方式の機構を介して、MEMSバルブ1またはX1およびキャリア流体バルブX2への流れ制御を行うこともできる。かかる機構は、まとめて流体制御手段2500によって示されている。流体制御手段2500は、バルブX1およびX2を開閉弁するための機構を備えることができる。図13において一般化して示されている「流体制御手段」とは、液滴化部122の端部において所定分量の流体の形成を検出する液滴検出手段2510を含むものと解することができる。この液滴検出手段は、たとえばタイタープレート1200,1200’等の受け部にブロッティングするのに適したサイズの液滴が形成されたこと、または、液滴が受け部1200,1200’へ放出されたことを検出することができる。液滴検出手段は、液滴が液滴化部122からディスペンスしそうであること、またはディスペンスされたことを検出することができ、また、たとえば重量測定、振動測定または光学的測定に基づくことができる。液滴が検出された率をコントローラ2900によってモニタリングすることができ、コントローラ2900は上述の流体制御手段2500を維持し、ひいては、キャリア流体貯蔵部4からのキャリア流体の流量を維持することができる。
力生成装置400は、可動構造部を動かすべく、可動構造部110自体に力を生じさせる装置である。力生成装置400は、図13にて破線で示されているように、MEMS粒子操作デバイス10に機械的に直接結合しなくてもよい。たとえば力生成装置400は、上記のように、MEMS可動バルブ110に挿入された透磁性材料116に静磁気力を生じさせる磁束の供給源となり得る。よって磁束生成装置400は、磁気コアと巻線とを有する電磁石とすることができる。かかる力は、図8および図9に示されているように、可動バルブ110を力生成装置400に向かって引きつけて、液滴化構造部122を開放し、廃棄流路140を閉鎖することができる。ここで重要なのは、力生成装置400はMEMSバルブ1にではなく、MEMSベースの粒子単離システム2000内に設置し得ることである。既に述べたように、このことによって、システム1の使い捨て部分1000に収容され得るMEMSバルブ1のコストおよび複雑性を緩和することができる。
細胞ソートシステム2000に第2の光路を設けるため、他のオプションのレーザ2410を備えることも可能である。
検出領域200を通過すると、受光素子2300によって、送信領域200に標的粒子が存在することを示す信号が生成される。既知の遅延の後、検出された標的粒子を流体流中の他の成分から分離するため、分取ゲートすなわち可動バルブ110を開弁すべきことを指示する信号が、コントローラ2900によって生成される。可動MEMSバルブ110は上記のように、磁界の存在下で当該可動MEMSバルブ110に磁気力が生じるように、透磁性材料116を含むことができる。上記の信号がコントローラ2900によって生成されると、可動バルブ110を力生成装置400に引きつける力が、埋め込まれた透磁性材料116に発生する。かかる運動により、廃棄流路140を閉鎖して、標的粒子の方向を液滴化構造部122に向かう方向に変えることができる。分取されたこのサンプルは、次に、ソート貯蔵部から液滴化構造部122の端部へ収集され、当該端部はこの分取されたサンプルを保持する。上記にて述べたように、コントローラ2900は、分取イベントが記録される率に基づいて流量を制御することもできる。
標的粒子は、流体流から分離されるとソート流路22内に流れ、ここで、上記のように流体キャリア流路24からのキャリア流体と混合することができる。この流体は最終的に、テーパ付きの液滴化構造部122に流入し、この液滴化構造部122から液滴としてマイクロタイタープレート1200に落下またはブロッティングすることができる。マイクロタイタープレートは、ロボットによって位置決めすることができる(図13では示されていない)。
流体制御手段2500は、MEMSバルブ1の流路を流れる、サンプル流体およびキャリア流体を含めた流体の方向および流速を制御することができる。見やすくするため、その制御線およびバルブ機構は、図13には示されていない。さらに図13は、MEMSベースの粒子単離システム2000に暗黙的に含まれる他の多くの信号線や制御線を省略している場合がある。
コントローラ2900は、キャリアバルブX2と、ロボット手段1500と、レーザ送信手段2400と、MEMSバルブ1と、を含む、MEMSベースの粒子単離システム2000の多くの観点を制御することができる。上記にて述べたようにコントローラ2900は、複数の異なるバルブを開閉弁することにより、かつ、マイクロタイタープレート1200または1200’の位置決めを制御するロボット手段を駆動することにより、図2および図4に示された時系列を実施することができる。その制御アルゴリズムをどのように具現化できるかについての詳細は、当業者であれば明らかである。見やすさを維持するため、図13では多くの接続部および関連付けが示されていない場合があり、簡素化のため、図面では細かい多くの詳細および構成を省略している場合がある。
上記にて概説した実施例を参照して種々の詳細事項を説明したが、上記の開示内容を参酌すれば、種々の代替態様、修正、変形態様、改良態様および/または本質的な等価的構成が、既知であるか否かまたは現在予測されるものか否かにかかわらず明らかとなる。上記のシステムおよび方法は、たとえば細胞等の生体物質の単離を対象としているが、たとえば塗料またはスラリー等の、流体中に懸濁している他の種類の不活性粒子の分離にも適用することができる。また上記では、システムおよび方法について、個別の粒子または細胞の1つずつの分離に関連して説明したが、複数の細胞または粒子も分離できると理解すべきである。よって、上記にて記載した実施例は詳解のためであって、権利範囲を制限するものではない。

Claims (19)

  1. 粒子単離デバイスであって、
    サンプル供給流路とソート流路とを含み、1つまたは複数の標的粒子と非標的物質とを含むサンプル流体が流れる複数のマイクロ流路と、
    流体流中の非標的物質から前記1つまたは複数の標的粒子の区別がなされる送信領域であって、前記サンプル供給流路内に配置された送信領域と、
    前記1つまたは複数の標的粒子を分離して、前記1つまたは複数の標的粒子を前記ソート流路内に送るように構成された、微細製造された流体バルブと、
    前記1つまたは複数の標的粒子を一分量のキャリア流体によって包囲するためにキャリア流体を供給するキャリア流体供給部と、
    複数の個別分量のキャリア流体と前記1つまたは複数の標的粒子とを受け部にディスペンスする排出構造部と、
    を備えており、
    前記キャリア流体供給部は、前記微細製造された流体バルブより下流に配置されており、
    前記複数の個別分量のキャリア流体は、液滴としてディスペンスされ、
    前記受け部は、タイタープレートであり、
    前記タイタープレートは、前記タイタープレートに形成された複数のウェルを有する、粒子単離デバイス。
  2. 前記キャリア流体供給部は、前記ソート流路に結合されており、
    前記キャリア流体供給部はさらに、前記ソート流路内へのキャリア流体の流れを制御するバルブを備えている、
    請求項1記載の粒子単離デバイス。
  3. 前記排出構造部は、インターポーザに形成された液滴化部であり、
    前記インターポーザはさらに、前記微細製造された流体バルブも保持しており、
    前記液滴化部は、一個別分量のキャリア流体と前記1つまたは複数の標的粒子とをそれぞれ含む液滴を形成する、
    請求項1記載の粒子単離デバイス。
  4. 前記インターポーザはさらに、前記微細製造された流体バルブをサンプル貯蔵部とキャリア流体貯蔵部と廃棄貯蔵部とに連通させる前記複数のマイクロ流路を備えている、
    請求項3記載の粒子単離デバイス。
  5. 前記粒子単離デバイスはさらに、前記液滴を受けるための、前記複数のウェルを有する前記タイタープレートを位置決めするロボット手段を備えている、
    請求項1記載の粒子単離デバイス。
  6. 各液滴を別個のウェルに回収するため、前記タイタープレートは、ロボットによって位置決めされる、
    請求項1記載の粒子単離デバイス。
  7. 前記タイタープレートは、比較的大きい少なくとも1つの廃棄ウェルと、より小さい複数の標的粒子ウェルと、を有する、
    請求項1記載の粒子単離デバイス。
  8. 前記粒子単離デバイスはさらに、各液滴が前記液滴化部からディスペンスされそうであること、または、ディスペンスされたことを検出するための検出手段を備えている、
    請求項3記載の粒子単離デバイス。
  9. 前記キャリア流体供給部は、前記サンプル供給流路に結合されている、
    請求項1記載の粒子単離デバイス。
  10. 前記サンプル貯蔵部および前記廃棄貯蔵部、前記インターポーザおよび前記微細製造された流体バルブは、使い捨て可能である取り外し可能なカートリッジに包含されている、
    請求項4記載の粒子単離デバイス。
  11. 前記微細製造された流体バルブは、
    基板に形成された、微細製造された可動部材であって、第1の偏向面を有し、前記微細製造された可動部材に加えられた力に応答して第1の位置から第2の位置への移動を行い、前記移動は実質的に、前記基板の表面に対して平行な平面内である、微細製造された可動部材と、
    前記基板に形成された前記サンプル供給流路であって、前記サンプル供給流路内に、少なくとも1つの標的粒子と非標的物質とを含む前記サンプル流体が流れ、前記サンプル供給流路内における流れは実質的に、前記表面に対して平行である、前記サンプル供給流路と、
    複数の排出流路と、
    を備えており、
    前記微細製造された可動部材は、流体を前記排出流路内に偏向し、
    前記排出流路のうち少なくとも1つの排出流路内の流れは、前記平面に対して平行ではなく、
    少なくとも1つの排出流路は、前記微細製造された可動部材の移動の少なくとも一部にわたって、前記微細製造された可動部材の少なくとも一部の直接下方に位置する、
    請求項1記載の粒子単離デバイス。
  12. 前記複数の排出流路は、前記ソート流路と廃棄流路とを含み、
    前記ソート流路における流れは、前記サンプル供給流路における流れに対して実質的に逆平行であり、
    前記廃棄流路における流れは、前記サンプル供給流路および前記ソート流路における流れに対して実質的に直交する、
    請求項11記載の粒子単離デバイス。
  13. 前記粒子単離デバイスはさらに、
    前記可動部材に挿入された第1の透磁性材料と、
    前記基板上に配置された第1の定置透磁性要素と、
    前記可動部材および前記可動部材が形成された基板の外部にある第1の磁束源と、
    を備えている、
    請求項11記載の粒子単離デバイス。
  14. 前記第1の磁束源が作動されると、前記可動部材は、前記第1の位置から前記第2の位置へ移動する、
    請求項13記載の粒子単離デバイス。
  15. 前記力は、磁気力、静磁気力および圧電力のうち少なくとも1つである、
    請求項11記載の粒子単離デバイス。
  16. 前記標的粒子は、幹細胞、癌細胞、T細胞、受精体、血液成分、タンパク質、DNAフラグメントおよび細菌のうち少なくとも1つを含む、
    請求項1記載の粒子単離デバイス。
  17. 粒子単離システムであって、
    レーザ光を生成する少なくとも1つのレーザ光源と、
    請求項1の粒子単離デバイスを収容する、取り外し可能である使い捨て可能なカートリッジと、
    前記レーザ光を送信領域へ送光するレンズ光学系と、
    排出部において1つまたは複数の液滴が形成されたことを検出するように構成された流体制御手段と、
    前記1つまたは複数の液滴を貯蔵するための、インデックス動作がなされる受け部と、
    を備えている粒子単離システム。
  18. サンプル流から1つまたは複数の標的粒子を単離する方法であって、
    前記1つまたは複数の標的粒子を複数のマイクロ流路のうち1つのマイクロ流路内に分離するように構成された、微細製造された流体バルブを設けるステップと、
    前記1つまたは複数の標的粒子を一分量のキャリア流体によって包囲するため、前記マイクロ流路のうち少なくとも1つに、一分量のキャリア流体をキャリア流体供給部によって加えるステップと、
    複数の個別分量のキャリア流体と前記1つまたは複数の標的粒子とを液滴として受け部にディスペンスするステップと、
    を有し、
    前記キャリア流体供給部は、前記微細製造された流体バルブより下流に配置されており、
    前記受け部は、タイタープレートであり、
    前記タイタープレートは、前記タイタープレートに形成された複数のウェルを有する、
    方法。
  19. 1つまたは複数の異なる標的粒子を含む次の一個別分量のキャリア流体を受容するため、前記受け部を新たな位置へ移動させるステップをさらに含む、
    請求項18記載の方法。
JP2016567572A 2014-03-05 2015-05-11 Memsベースの粒子単離システム Active JP6629237B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461948493P 2014-03-05 2014-03-05
US14/275,974 US9453787B2 (en) 2014-03-05 2014-05-13 MEMS-based single particle separation system
US14/275,974 2014-05-13
PCT/IB2015/053444 WO2015173710A2 (en) 2014-03-05 2015-05-11 Mems-based single particle separation system

Publications (2)

Publication Number Publication Date
JP2017524338A JP2017524338A (ja) 2017-08-31
JP6629237B2 true JP6629237B2 (ja) 2020-01-15

Family

ID=52630362

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016555709A Active JP6625547B2 (ja) 2014-03-05 2015-03-05 微細加工コンポーネントを用いた細胞分別システム
JP2016555715A Active JP6584422B2 (ja) 2014-03-05 2015-03-05 電磁ソレノイドを用いた細胞分別システム
JP2016555710A Active JP6732656B2 (ja) 2014-03-05 2015-03-05 ヌクレアーゼを用いた微細加工コンポーネントによる細胞分別方法
JP2016567572A Active JP6629237B2 (ja) 2014-03-05 2015-05-11 Memsベースの粒子単離システム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016555709A Active JP6625547B2 (ja) 2014-03-05 2015-03-05 微細加工コンポーネントを用いた細胞分別システム
JP2016555715A Active JP6584422B2 (ja) 2014-03-05 2015-03-05 電磁ソレノイドを用いた細胞分別システム
JP2016555710A Active JP6732656B2 (ja) 2014-03-05 2015-03-05 ヌクレアーゼを用いた微細加工コンポーネントによる細胞分別方法

Country Status (8)

Country Link
US (2) US9453787B2 (ja)
EP (4) EP3113883B1 (ja)
JP (4) JP6625547B2 (ja)
CN (4) CN106457239B (ja)
DK (1) DK3113883T3 (ja)
ES (3) ES2887978T3 (ja)
PL (1) PL3113883T3 (ja)
WO (4) WO2015132317A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190143329A1 (en) * 2013-10-01 2019-05-16 Owl biomedical, Inc. Microfabricated droplet dispensing device
US9453787B2 (en) * 2014-03-05 2016-09-27 Owl biomedical, Inc. MEMS-based single particle separation system
US9873858B2 (en) 2014-06-02 2018-01-23 Miltenyi Biotec, Gmbh Mixing device for homogenization of cell suspensions
US20170113222A1 (en) * 2015-10-22 2017-04-27 Owl biomedical, Inc. Particle manipulation system with spiral focusing channel
EP3922716A1 (en) * 2016-03-17 2021-12-15 Berkeley Lights, Inc. Selection and cloning of t lymphocytes in a microfluidic device
DE102016211038A1 (de) 2016-06-21 2017-12-21 Cytena Gmbh Vorrichtung und Verfahren zum Detektieren von Zellen oder Partikeln in einem Fluidbehälter
WO2018022025A1 (en) 2016-07-26 2018-02-01 Hewlett-Packard Development Company, L.P. Microfluidic apparatuses
US11226278B2 (en) 2016-11-08 2022-01-18 Kennesaw State University Research And Service Foundation, Inc. Leukocyte quantitation microfluidic method and device
JP7019303B2 (ja) * 2017-03-24 2022-02-15 東芝テック株式会社 液滴分注装置
GB2561587B (en) * 2017-04-19 2021-05-19 The Technology Partnership Plc Apparatus and method for sorting microfluidic particles
US10544413B2 (en) 2017-05-18 2020-01-28 10X Genomics, Inc. Methods and systems for sorting droplets and beads
EP4215616A1 (en) 2017-05-18 2023-07-26 10X Genomics, Inc. Methods and systems for sorting droplets and beads
US20180340882A1 (en) * 2017-05-25 2018-11-29 Owl biomedical, Inc. Filter for capturing and analyzing debris in a microfluidic system
US10499485B2 (en) * 2017-06-20 2019-12-03 Asml Netherlands B.V. Supply system for an extreme ultraviolet light source
EP3435059A1 (en) * 2017-07-27 2019-01-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO A particle detection device and a method for detecting airborne particles
US10610865B2 (en) 2017-08-22 2020-04-07 10X Genomics, Inc. Droplet forming devices and system with differential surface properties
WO2019083852A1 (en) 2017-10-26 2019-05-02 10X Genomics, Inc. MICROFLUIDIC CHANNEL NETWORKS FOR PARTITIONING
US11040347B2 (en) * 2018-06-14 2021-06-22 Owl biomedical, Inc. Microfabricated droplet dispensor with immiscible fluid
EP3830255A1 (en) 2018-07-30 2021-06-09 Miltenyi Biotec B.V. & Co. KG Non-specific nucleases from the genus pseudomonas
JP2020082047A (ja) * 2018-11-30 2020-06-04 シスメックス株式会社 分離成否判定方法、粒子検出方法および粒子分離装置
CN113438974B (zh) * 2018-12-28 2023-07-25 阿斯特拉维斯公司 用于处理颗粒悬浮液的设备和方法
GB2584163B (en) * 2019-05-22 2022-05-11 Cirrus Logic Int Semiconductor Ltd Packaging for a MEMS transducer
EP3821979A1 (en) 2019-11-18 2021-05-19 Miltenyi Biotec B.V. & Co. KG Enhanced process for sorting cells with a microfabricated valve
US11860180B2 (en) 2020-02-10 2024-01-02 Funai Electric Co., Ltd. Removable maintenance fluid holder
JP7414325B2 (ja) 2020-02-26 2024-01-16 アライドフロー株式会社 カートリッジ及び粒子分別装置
JP7458894B2 (ja) * 2020-05-15 2024-04-01 東芝テック株式会社 液滴分注装置
NL2026393B1 (en) 2020-09-01 2022-05-04 Lumicks Ca Holding B V Sorting of cellular bodies based on force spectroscopy
NL2026628B1 (en) 2020-10-05 2022-06-03 Lumicks Ca Holding B V Determining physical properties of cellular bodies based on acoustic force spectroscopy
EP4202034A4 (en) * 2020-10-19 2024-04-10 Sony Group Corp SAMPLE PREPARATION SYSTEM AND SAMPLE PREPARATION PROCEDURES
CN117897604A (zh) * 2021-10-05 2024-04-16 索尼集团公司 生物样品分析装置及异常判定方法
EP4173706A1 (en) * 2021-10-27 2023-05-03 OWL Biomedical, Inc. Particle manipulation system with cytometric capability and feedback loop
CN116355725B (zh) * 2023-03-07 2024-04-05 广州市艾贝泰生物科技有限公司 分配器、分配装置及分配方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101124A (ja) * 1993-09-30 1995-04-18 Kyocera Corp サーマルプリンタ
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
US20030180936A1 (en) * 2002-03-15 2003-09-25 Memarzadeh Bahram Eric Method for the purification, production and formulation of oncolytic adenoviruses
US20040021073A1 (en) * 2002-04-12 2004-02-05 California Institute Of Technology Apparatus and method for magnetic-based manipulation of microscopic particles
US7220594B2 (en) 2002-07-08 2007-05-22 Innovative Micro Technology Method and apparatus for sorting particles with a MEMS device
US7229838B2 (en) 2002-07-08 2007-06-12 Innovative Micro Technology MEMS actuator and method of manufacture for MEMS particle sorting device
US6838056B2 (en) 2002-07-08 2005-01-04 Innovative Micro Technology Method and apparatus for sorting biological cells with a MEMS device
US6941005B2 (en) 2002-11-01 2005-09-06 Coulter International Corp. Monitoring and control of droplet sorting
EP1668355A4 (en) 2003-08-28 2011-11-09 Celula Inc METHODS AND APPARATUS FOR SORTING CELLS USING AN OPTICAL SWITCH IN A MICROFLUIDIC CHANNEL NETWORK
GB0503836D0 (en) * 2005-02-24 2005-04-06 Axis Shield Asa Method
US7246524B1 (en) * 2005-05-02 2007-07-24 Sandia Corporation MEMS fluidic actuator
US20070178529A1 (en) * 2006-01-13 2007-08-02 Micronics, Inc. Electromagnetically actuated valves for use in microfluidic structures
US8691164B2 (en) 2007-04-20 2014-04-08 Celula, Inc. Cell sorting system and methods
JP2008282830A (ja) * 2007-05-08 2008-11-20 Opt Design:Kk プリント基板構造
WO2009089466A2 (en) * 2008-01-09 2009-07-16 Keck Graduate Institute System, apparatus and method for material preparation and/or handling
CN101909893B (zh) * 2008-01-09 2012-10-10 惠普开发有限公司 流体喷出盒、其制造方法和流体喷出方法
JP2009267078A (ja) * 2008-04-25 2009-11-12 Honda Motor Co Ltd 電磁アクチュエータのアーマチュア
JP2010029178A (ja) * 2008-07-01 2010-02-12 Osaka Univ 細胞ピッキングシステム、スクリーニング方法および哺乳類細胞を取得する方法
US20110154890A1 (en) * 2008-10-08 2011-06-30 Foss Analytical A/S Separation of particles in liquids by use of a standing ultrasonic wave
US9364831B2 (en) 2009-08-08 2016-06-14 The Regents Of The University Of California Pulsed laser triggered high speed microfluidic switch and applications in fluorescent activated cell sorting
EP2316565A1 (en) * 2009-10-26 2011-05-04 Fei Company A micro-reactor for observing particles in a fluid
US9458489B2 (en) * 2010-03-04 2016-10-04 Massachusetts Institute Of Technology Microfluidics sorter for cell detection and isolation
US8871500B2 (en) * 2011-01-21 2014-10-28 Innovative Micro Technology MEMS particle sorting actuator and method of manufacturing
US8993311B2 (en) 2011-01-21 2015-03-31 Innovative Micro Technology Multi-stage cartridge for MEMS particle storing system
US8822207B2 (en) * 2011-01-21 2014-09-02 Owl biomedical, Inc. Cartridge for MEMS particle sorting system
CA2844056A1 (en) * 2011-08-04 2013-02-07 Sage Science, Inc. Systems and methods for processing fluids
CN102703300B (zh) * 2012-05-16 2013-10-09 西北工业大学 一种用于细胞分选的多分选区结构及其使用方法
US9194786B2 (en) * 2012-08-01 2015-11-24 Owl biomedical, Inc. Particle manipulation system with cytometric capability
US9372144B2 (en) * 2013-10-01 2016-06-21 Owl biomedical, Inc. Particle manipulation system with out-of-plane channel
CN103075573A (zh) * 2012-12-31 2013-05-01 苏州汶颢芯片科技有限公司 一种基于微流控芯片的电场响应微阀及其制备方法
US9404838B2 (en) * 2013-10-01 2016-08-02 Owl biomedical, Inc. Particle manipulation system with out-of-plane channel and focusing element
US9453787B2 (en) * 2014-03-05 2016-09-27 Owl biomedical, Inc. MEMS-based single particle separation system

Also Published As

Publication number Publication date
ES2881296T3 (es) 2021-11-29
JP6732656B2 (ja) 2020-07-29
EP3113883B1 (en) 2021-02-24
WO2015132319A1 (en) 2015-09-11
ES2887978T3 (es) 2021-12-29
JP2017513462A (ja) 2017-06-01
CN106061610A (zh) 2016-10-26
CN106536052B (zh) 2020-03-17
JP2017524338A (ja) 2017-08-31
CN106536052A (zh) 2017-03-22
EP3113884A1 (en) 2017-01-11
PL3113883T3 (pl) 2021-09-06
CN106413894A (zh) 2017-02-15
CN106413894B (zh) 2020-04-21
CN106061610B (zh) 2020-04-21
CN106457239A (zh) 2017-02-22
EP3113885A1 (en) 2017-01-11
US10018541B2 (en) 2018-07-10
WO2015132318A1 (en) 2015-09-11
JP2017512064A (ja) 2017-05-18
DK3113883T3 (da) 2021-05-25
EP3113883A1 (en) 2017-01-11
WO2015173710A3 (en) 2016-01-14
US9453787B2 (en) 2016-09-27
EP3113885B1 (en) 2021-04-21
EP3142789A2 (en) 2017-03-22
US20150253223A1 (en) 2015-09-10
JP6625547B2 (ja) 2019-12-25
US20170059458A1 (en) 2017-03-02
JP2017510263A (ja) 2017-04-13
EP3113884B1 (en) 2019-06-12
EP3142789B1 (en) 2018-12-12
WO2015132317A1 (en) 2015-09-11
ES2736125T3 (es) 2019-12-26
JP6584422B2 (ja) 2019-10-02
WO2015173710A2 (en) 2015-11-19
CN106457239B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
JP6629237B2 (ja) Memsベースの粒子単離システム
ES2539047T3 (es) Aparato y método para dispensar células o partículas confinadas en una gota en vuelo libre
JP2022191270A (ja) システムおよび方法
JP5487638B2 (ja) 微小粒子分取のための装置及びマイクロチップ
US9604214B2 (en) Cell sorting system using microfabricated components
US8822207B2 (en) Cartridge for MEMS particle sorting system
US20200070167A1 (en) Processing systems for isolating and enumerating cells or particles
US11850592B2 (en) Particle manipulation system with multisort valve
JP2021527798A (ja) 非混和性の流体を有する微細加工液滴ディスペンサ
JP2018510360A (ja) 音響場を用いて整列された自由飛行液滴中の粒子を分配するための装置および方法
US20190143329A1 (en) Microfabricated droplet dispensing device
JP6525609B2 (ja) 湿潤状態維持アルゴリズムを備えた粒子操作システム
CN112646701B (zh) 一步式单细胞分离分配系统
US12005453B2 (en) Particle manipulation system with multisort valve and focusing element
EP3821979A1 (en) Enhanced process for sorting cells with a microfabricated valve
US10737269B2 (en) Particle manipulation system with multisort valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190408

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6629237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250