JP6621038B2 - 光学部材およびマイクロレンズアレイ - Google Patents

光学部材およびマイクロレンズアレイ Download PDF

Info

Publication number
JP6621038B2
JP6621038B2 JP2017544201A JP2017544201A JP6621038B2 JP 6621038 B2 JP6621038 B2 JP 6621038B2 JP 2017544201 A JP2017544201 A JP 2017544201A JP 2017544201 A JP2017544201 A JP 2017544201A JP 6621038 B2 JP6621038 B2 JP 6621038B2
Authority
JP
Japan
Prior art keywords
light
incident
pitch
diffractive lenses
diffractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017544201A
Other languages
English (en)
Other versions
JPWO2017061119A1 (ja
Inventor
正人 山名
正人 山名
真太郎 林
真太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2017061119A1 publication Critical patent/JPWO2017061119A1/ja
Application granted granted Critical
Publication of JP6621038B2 publication Critical patent/JP6621038B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Description

本発明は、光学部材およびマイクロレンズアレイに関する。
LED(Light Emitting Diode)またはレーザーを用いた照明がある。このような照明では、LEDやレーザーが発する青色光を蛍光体に照射することで白色光を作り出す。具体的には、蛍光体は照射された青色光および青色光により励起された黄色光などの光を散乱することで白色光を作り出す。蛍光体から出射された白色光はコリメートレンズと集光レンズとの組み合わせによって制御される。
一方、このような照明では、蛍光体から出射した白色光のうち高角度の白色光はコリメートレンズに入射されずに損失光となってしまう。さらに、コリメートレンズおよび集光レンズの配置位置に位置ずれが生じているときには、損失光が増加する。
そのため、このような損失光を抑制することができる技術が開示されている(例えば特許文献1)。特許文献1では、蛍光体上にマイクロレンズまたはマイクロプリズムを用いたレンズアレイを備えた光学部材を配置することにより、蛍光体から出射する高角度の白色光を集光レンズ(投影レンズ)に入射させることができる。
特開2008−305802号公報
しかしながら、上記の従来技術では、蛍光体から出射する白色光を十分に集光することができない。そのため、集光レンズを配置する必要がある。さらに、集光レンズを配置しても、集光レンズの配置位置に位置ずれが生じているときには、損失光が発生してしまう。
本発明は、上述の課題を鑑みてなされたもので、蛍光体から出射される光の集光効率をより高くすることができる光学部材およびマイクロレンズアレイを提供することを目的とする。
上記目的を達成するために本発明の一態様に係る光学部材は、入射面に入射された光源からの光の一部を波長変換する蛍光体を含む蛍光体層と、前記蛍光体層で波長変換された前記光の一部と前記蛍光体層を透過した前記光の他部とを出射面から出射する回折型のマイクロレンズアレイとを備え、前記マイクロレンズアレイの出射面には、波長変換された前記光の一部と透過した前記光の他部とを回折して出射するための複数の回折レンズが設けられており、前記複数の回折レンズのピッチは、所定の区域ごとに異なる。
また、上記目的を達成するために本発明の一態様に係るマイクロレンズアレイは、入射面に入射された光源からの光の一部を波長変換する蛍光体を含む蛍光体層で波長変換された前記光の一部と、前記蛍光体層を透過した前記光の他部とを出射面から出射する回折型のマイクロレンズアレイであって、前記出射面には、波長変換された前記光の一部と透過した前記光の他部とを回折して出射するための複数の回折レンズが設けられており、前記複数の回折レンズのピッチは、所定の区域ごとに異なる。
本発明の一態様に係る光学部材では、蛍光体から出射される光の集光効率を高くすることができる。
また、本発明の一態様に係るマイクロレンズアレイでは、蛍光体から出射される光の集光効率を高くすることができる。
図1は、実施の形態における光学部材が用いられる装置の一例を示す図である。 図2は、実施の形態における光源部の一例を示す図である。 図3は、実施の形態における光学部材の断面図の一例である。 図4は、図3に示す光学部材の上面図である。 図5は、実施の形態における光学部材の断面図である。 図6は、実施例1におけるシミュレーションモデルを説明するための図である。 図7は、実施例1におけるシミュレーション結果を示す図である。 図8は、比較例1におけるシミュレーション結果を概観的に示す図である。 図9は、実施例2におけるシミュレーション結果を示す図である。 図10は、実施例3におけるシミュレーションモデルを説明するための図である。 図11は、実施例3におけるシミュレーション結果を示す図である。 図12は、変形例における光学部材の断面図の一例である。 図13は、変形例における光学部材の断面図の一例である。 図14は、変形例における光学部材の断面図の一例である。
以下、実施の形態について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本発明の一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態、並びに、ステップ(工程)およびステップの順序等は、一例であって本発明を限定するものではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意に付加可能な構成要素である。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。
(実施の形態)
[照明装置]
まず、本実施の形態における光学部材が用いられる照明装置の一例について説明する。
図1は、実施の形態における光学部材10が用いられる照明装置4の一例を示す図である。図2は、実施の形態における光源部1の一例を示す図である。図3は、実施の形態における光学部材10の断面図の一例である。図4は、図3に示す光学部材10の上面図の一例である。
図1に示される照明装置4は、例えば内視鏡、ファイバースコープなどであり、光源部1と、光ファイバ2と、灯具3とを備える。
光ファイバ2は、離れた場所に光を伝える伝送路である。光ファイバ2は、例えば直径125μm程度の線材であり、直径100μmの高屈折率のコアを直径110μmのコアより低屈折率のクラッド層が包んだ二重構造で構成される。コアおよびクラッド層はともに光に対して透過率が非常に高い石英ガラスまたはプラスチックからなる。
灯具3は、光ファイバ2を介して伝送された光源部1からの光を、観察対象物に照射するために用いられる。灯具3は、例えば、ステンレス製のファイバカップリング、ステンレス製のフェルール、ガラス製のレンズ、アルミ製のホルダー、およびアルミ製の外郭で構成される。
光源部1は、LEDまたはレーザーを用いた照明であり、光ファイバ2に光を入射する。光源部1は、図2に示すように、光学部材10と光源16とで構成される。
光源16は、LEDまたはレーザーであり、本実施の形態では直径1mm程度の青色光を発する。
光学部材10は、詳細は後述するが、図2に示すように、蛍光体層11と、マイクロレンズアレイ12とを備え、光源16が発する青色光から白色光を作り出し、作り出した白色光を光ファイバ2に入射する。マイクロレンズアレイ12は、蛍光体層11で波長変換された光の一部と蛍光体層11を透過した当該光の他部とを出射面から出射する回折型のマイクロレンズアレイである。本実施の形態では、マイクロレンズアレイ12は、例えば図3に示すように、基材13と回折型レンズアレイ14とを備える。
[光学部材]
次に、本実施の形態における光学部材の詳細について図3〜図7を用いて説明する。
(蛍光体層11)
蛍光体層11は、入射面111に入射された光源16からの光の一部を波長変換する蛍光体を含んでいる。ここで例えば、光源16は、青色光を発し、蛍光体層11は、青色光の一部を、黄色を示す波長帯域に波長変換する。
より具体的には、蛍光体層11は、図3に示す入射面111から入射された光の一部を波長変換する機能を有する。本実施の形態では、蛍光体層11は、光源16から例えば青色光が入射され、入射された青色光の一部により励起された黄色光を出射する。また、蛍光体層11は、入射された青色光の他部を出射(透過)する。蛍光体層11では、これら青色光および黄色光が混色されて出射されるので、蛍光体層11は白色光を出射する。
蛍光体層11は、例えば直径1mm程度の円板状に形成される。蛍光体層11は、蛍光体と樹脂とで構成されており、例えば、蛍光体をシリコン、エポキシ等の樹脂で覆って形成される。
なお、波長変換に伴う損失は熱に変わり、蛍光体層11は温度が高くなると波長変換効率が下がるため、蛍光体層11の放熱は非常に重要である。ここでは特に図示しないが、蛍光体層11は、例えばAlなどの高熱伝導率を持つ材料で形成された放熱プレートで支持されることが望ましい。また、蛍光体層11を形成する樹脂に熱伝導率の高い材料、例えばZnO等の無機酸化物を混合することで放熱性を高めてもよい。また、蛍光体層11の入射面111に微小構造を設け、蛍光体層11に光が入射しやすいように、または入射面111から放熱されやすいようにしてもよい。
(基材13)
基材13は、マイクロレンズアレイ12の基材である。本実施の形態では、例えば図3に示すように、基材13は、蛍光体層11上に、例えば直径1mm程度の円板状に形成されている。そして、基材13上には、回折型レンズアレイ14が形成される。
基材13を形成する材料としては、例えば、ガラス、プラスチックなど任意のものを用いることができる。ここで、ガラスとしては、例えば、ソーダガラス、無アルカリガラスなどを用いることができる。また、プラスチックとしては、例えば、ポリカーボネート、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)などを用いることができる。
なお、基材13の材料は、蛍光体層11で述べたように耐熱性を考慮して選ぶ必要がある。さらに、基材13は、蛍光体層11からの光が入射しやすいように蛍光体層11と同程度の屈折率の材料で形成されていることが好ましい。ここで、同程度の屈折率とは両者の屈折率差が±0.2以下であることを意味する。また、蛍光体層11と基材13との間は、特に図示していないが、両者と同程度の屈折率を持つ接着層で接着されることが好ましい。接着層の材料としてはアクリル樹脂やエポキシ樹脂などが挙げられる。また、基材13および接着層は、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
(回折型レンズアレイ14)
回折型レンズアレイ14は、例えば図3に示すようにマイクロレンズアレイ12の出射面に設けられる複数の回折レンズの一例である。回折型レンズアレイ14は、蛍光体層11で波長変換された光の一部と蛍光体層11を透過した光の他部とを出射面から出射する。回折型レンズアレイ14のピッチは、所定の区域(ゾーン)ごとに異なる。また、回折型レンズアレイ14のピッチは、回折型レンズアレイ14の中心から周辺に向かって狭くなっている。なお、図3に示す例では、回折型レンズアレイ14の中心は、X軸とY軸との交点で示されている。また、回折型レンズアレイ14の中心から周辺に向かう方向は、X軸からY軸に沿ってX軸から離れる方向で示されている。
本実施の形態では、回折型レンズアレイ14は、例えば図4に示すように、出射面において同心円状に設けられており、例えば図3に示すように出射面に垂直な面における回折レンズの断面は、鋸歯状であるとして説明する。
図5は、本実施の形態におけるマイクロレンズアレイ12に入射される光の回折の様子を示す図である。図5では、所定の区域の一例として、回折レンズが設けられない中心区域を除いた同心円の5つの区域(区域1、区域2、区域3、区域4および区域5)が示されている。
回折型レンズアレイ14(複数の回折レンズ)は、例えば図5に示すように、光源16の青色光および蛍光体層11で青色光が波長変換された黄色光を回折させて、予め定めた領域である集光領域15に集光させるように設けられている。
より具体的には、回折型レンズアレイ14のピッチは、波長変換された当該光の一部または当該光の他部を、回折させて予め定められた領域(集光領域15)に集光するように、所定の区域毎に一定に設けられている。図5に示す例では、区域1〜区域5それぞれにおいて、回折型レンズアレイ14のピッチは一定である。また、回折型レンズアレイ14のピッチは、区域1よりも区域2、区域2よりも区域3というように回折型レンズアレイ14の中心から周辺に向かう区域(ゾーン)ほど、狭くなる。
ここで、回折型レンズアレイ14のピッチが、例えば当該光の一部すなわち青色光を集光するように設けられる場合でも、回折型レンズアレイ14は、蛍光体層11で波長変換された黄色光のうちの大部分を回折させて、集光領域15に集光させることができる。そのため、結果として、回折型レンズアレイ14は、蛍光体層11を透過した青色光および蛍光体層11で波長変換された黄色光すなわち白色光を回折させて、集光領域15に集光させることができる。同様に、複数の回折レンズのピッチが、例えば当該光の他部の一部すなわち蛍光体層11で波長変換された黄色光を集光するように設けられる場合でも、回折型レンズアレイ14は、蛍光体層11を透過する青色光の大部分を回折させて、集光領域15に集光させることができる。そのため、結果として、回折型レンズアレイ14は、蛍光体層11を透過した青色光および蛍光体層11で波長変換された黄色光すなわち白色光を回折させて、集光領域15に集光させることができる。
なお、複数の回折レンズのうち、所定の区域の一部の区域における複数の回折レンズのピッチは、光源16の波長帯域を示す当該光の他部を、回折させて予め定められた領域(集光領域15)に集光するように、当該一部の区域それぞれで一定に設けられており、複数の回折レンズのうち、前記所定の区域の残部の区域における複数の回折レンズのピッチは、波長変換された当該光の一部を、回折させて予め定められた領域(集光領域15)に集光するように、当該残部の区域それぞれで一定に設けられているとしてもよい。図5に示す例では、区域1〜区域5のうちの一部の区域では、当該光の他部の一部すなわち蛍光体層11で波長変換された黄色光を集光するように設けられ、例えば区域1〜区域5のうちの残部の区域では、当該光の一部すなわち青色光を集光するように設けられる。区域1、区域2、区域3、区域4および区域5それぞれにおいて、回折型レンズアレイ14のピッチは一定であり、回折型レンズアレイ14のピッチは、回折型レンズアレイ14の中心から周辺に向かう区域(ゾーン)ほど、狭くなる点は上記と同様である。
このように構成されることにより、回折型レンズアレイ14は、蛍光体層11を透過した青色光および蛍光体層11で青色光が波長変換された黄色光すなわち白色光を回折させて、集光領域15に集光させることができる。
次に、上述した回折型レンズアレイ14のピッチの算出方法について説明する。
回折型レンズアレイ14を構成する複数の回折レンズそれぞれの出射角θは、入射角θ、波長λ、ピッチd、マイクロレンズアレイの屈折率nなどのパラメータを用いて、回折の式として知られる次の式1により算出することができる。
sinθ+(mλ)/d=nsinθ (式1)
ここで、式1において、mは回折次数であり、正負の整数である。また、nは複数の回折レンズから出射される領域の屈折率であり、ここでは空気であるため1である。
例えば、図5に示すマイクロレンズアレイ12に入射された光を集光領域15に集光させたい場合は、複数の回折レンズそれぞれに入射される光の角度である入射角θと集光領域15との幾何学的な位置関係から出射角θを決定することができる。それにより、上記式1を用いてピッチdを算出することができる。
本実施の形態では、区域1〜区域5それぞれにおいて、入射角θと集光領域15との幾何学的な位置関係から出射角θを決定することで、回折型レンズアレイ14における区域1〜区域5それぞれのピッチdを算出することができる。
具体的な算出結果の例は後述するが、ピッチdは、回折により集光領域15に集光させることができる範囲として例えば0.2μm〜20μmであると算出できる。
なお、回折型レンズアレイ14の材料は、回折型レンズアレイ14の形成方法や耐熱性、屈折率によって選択される。回折型レンズアレイ14の形成方法としては、ナノインプリント、印刷、フォトリソ、EBリソ、粒子配向などが挙げられる。
回折型レンズアレイ14の材料は、回折型レンズアレイ14を、例えばナノインプリントや印刷により形成する場合、UV硬化樹脂としてエポキシ樹脂やアクリル樹脂など、熱可塑性樹脂としてポリメタクリル酸メチル(PMMA)などを選択すればよい。また、回折型レンズアレイ14の材料は、耐熱性を考慮して、ガラスや石英を選択し、フォトリソやEBリソにより回折型レンズアレイ14を形成してもよい。
また、回折型レンズアレイ14は、基材13からの光が入射しやすいように基材13と同程度の屈折率の材料で形成されていることが好ましい。さらに、回折型レンズアレイ14は、基材13と同様に、光の吸収が無く透明であることが好ましく、消衰係数がほぼ0の材料で形成されていることが好ましい。
[光学部材の光学シミュレーション]
以上のように構成された光学部材10の効果を確認するために、回折型レンズアレイ14のピッチを所定の区域(ゾーン)ごとに異ならせて光学シミュレーションを行った。実施例として以下説明する。なお、回折型レンズアレイ14(マイクロレンズアレイ12)の集光効率(回折効率)を決定するパラメータは、回折型レンズアレイ14(マイクロレンズアレイ12)の高さ、断面形状などがある。この集光効率は、マイクロレンズアレイ12を実際に作成せずに、光学シミュレーションを行うことで知ることができる。
(実施例1)
図6は、実施例1におけるシミュレーションモデルを説明するための図である。図7は、実施例1におけるシミュレーション結果を示す図である。図8は、比較例1におけるシミュレーション結果を概観的に示す図である。
図6には、図5に示す光学部材10をモデル化したシミュレーションモデルが示されている。図6に示すシミュレーションモデルでは、蛍光体層11上にマイクロレンズアレイ12が配置され、マイクロレンズアレイ12から所定の距離離れた場所に集光領域15が設置されている。入射光101〜入射光110はそれぞれ、回折型レンズアレイ14の区域(図でゾーン)に入射角0degで入射する入射光をモデル化したものである。入射光101および入射光106は、回折型レンズアレイ14のゾーン1に入射する入射光のモデルであり、入射光102および入射光107は、回折型レンズアレイ14のゾーン2に入射する入射光のモデルであり、入射光103および入射光108は、回折型レンズアレイ14のゾーン3に入射する入射光のモデルである。同様に、入射光104および入射光109は、回折型レンズアレイ14のゾーン4に入射する入射光のモデルであり、入射光105および入射光110は、回折型レンズアレイ14のゾーン5に入射する入射光のモデルである。
そして、上述した算出方法を用いて、入射光101〜入射光110それぞれの座標(入射位置)と集光領域15の座標とから、出射角すなわち各入射光101〜入射光110から集光領域15へ出射される角度を算出し、算出した出射角を有するように設計されたピッチを有する回折型レンズアレイ14の回折効率をシミュレーションする。
なお、図6に示すシミュレーションモデルでは、y座標において回折型レンズアレイ14と集光領域15とが重なる場所(図でxy座標の交点近傍の場所)は、入射角0degの光が直接集光領域15に入るため、回折レンズは形成していない。
上述したシミュレーションモデルを用いて、下記のシミュレーション条件下で光学シミュレーションを行った。そのシミュレーション結果は図7に示されている。
シミュレーション手法は、RCWA法であり、シミュレーションソフトは回折光学素子設計・解析ソフトウェアDiffractMOD(Synopsis社)を用い、以下のパラメータで光学シミュレーションを行った。
入射光101〜入射光110の入射角は0deg、入射波長450nm、回折型レンズアレイ14の屈折率は1.5、消衰係数は0であるとし、集光領域15の径は100μm、回折型レンズアレイ14と集光領域15との距離は5.54mmであるとした。
入射光101および入射光106の位置は、マイクロレンズアレイ12の中心部(図でy=0)から0.1mmであり、入射光101および入射光106の出射角は1.0degであるとし、ゾーン1における回折型レンズアレイ14のピッチdは式1より24.8μmであるとした。
また、入射光102および入射光107はマイクロレンズアレイ12の中心部(図でy=0)から0.2mmであり、入射光102および入射光107の出射角は2.1degであるとし、ゾーン2における回折型レンズアレイ14のピッチdは式1より12.4μmであるとした。
また、入射光103および入射光108はマイクロレンズアレイ12の中心部(図でy=0)から0.3mmであり、入射光103および入射光108の出射角は3.1degであるとし、ゾーン3における回折型レンズアレイ14のピッチdは式1より8.3μmであるとした。
また、入射光104および入射光109はマイクロレンズアレイ12の中心部(図でy=0)から0.4mmであり、入射光104および入射光109の出射角は4.2degであるとし、ゾーン4における回折型レンズアレイ14のピッチdは式1より6.2μmであるとした。
また、入射光105および入射光110はマイクロレンズアレイ12の中心部(図でy=0)から0.5mmであり、入射光105および入射光110の出射角は5.2degであるとし、ゾーン5における回折型レンズアレイ14のピッチdは式1より5μmであるとした。
なお、比較例1のマイクロレンズアレイ92のピッチは入射光101〜入射光110の位置に関わらず、5μmであるとした。また、本実施例のマイクロレンズアレイ12および比較例のマイクロレンズアレイの高さは0.2μm〜10μmで変化させ、最も高い回折効率のものを選択した。
図7において示される実施例1のマイクロレンズアレイ12の集光効率4.54は、比較例1のマイクロレンズアレイの集光効率を1としたときの相対値である。図7に示すシミュレーション結果により、実施例1のマイクロレンズアレイ12の集光効率は、比較例1のマイクロレンズアレイの集光効率より上回っていることがわかる。
したがって、図8に示される比較例1におけるマイクロレンズアレイ92に入射される光の回折の様子からわかるように、比較例1におけるマイクロレンズアレイ92では、回折型レンズアレイ94のピッチが一定であるため、蛍光体層11から出射される光を集光領域15に十分に集光することができない。一方、実施例1のマイクロレンズアレイ12では、回折型レンズアレイ14のピッチを所定の区域毎(ゾーン1〜ゾーン5)で異ならせているので、蛍光体層11から出射される光を集光領域15に十分に集光することができる。
(実施例2)
実施例1では、入射波長450nmすなわち蛍光体層11を透過した光源16の青色光を集光領域15に集光するよう設計した場合のシミュレーション結果について示したが、それに限らない。実施例2では、図6に示すシミュレーションモデルを用いて、入射波長550nmすなわち蛍光体層11で波長変換された黄色光を集光領域15に集光するよう設計した場合のシミュレーション結果について説明する。
図9は、実施例2におけるシミュレーション結果を示す図である。
すなわち、実施例1で説明したシミュレーションモデル、シミュレーション手法およびシミュレーションソフトを用いて、以下のパラメータで光学シミュレーションを行った。そのシミュレーション結果は図9に示されている。
入射光101〜入射光110の入射角は0deg、入射波長550nm、回折型レンズアレイ14の屈折率は1.5、消衰係数は0であるとし、集光領域15の径は100μm、回折型レンズアレイ14と集光領域15との距離は5.54mmであるとした。
入射光101および入射光106の位置は、マイクロレンズアレイ12の中心部(図でy=0)から0.1mmであり、入射光101および入射光106の出射角は1.0degであるとし、ゾーン1における回折型レンズアレイ14のピッチdは式1より30.5μmであるとした。
また、入射光102および入射光107はマイクロレンズアレイ12の中心部(図でy=0)から0.2mmであり、入射光102および入射光107の出射角は2.1degであるとし、ゾーン2における回折型レンズアレイ14のピッチdは式1より15.2μmであるとした。
また、入射光103および入射光108はマイクロレンズアレイ12の中心部(図でy=0)から0.3mmであり、入射光103および入射光108の出射角は3.1degであるとし、ゾーン3における回折型レンズアレイ14のピッチdは式1より10.2μmであるとした。
また、入射光104および入射光109はマイクロレンズアレイ12の中心部(図でy=0)から0.4mmであり、入射光104および入射光109の出射角は4.2degであるとし、ゾーン4における回折型レンズアレイ14のピッチdは式1より7.6μmであるとした。
また、入射光105および入射光110はマイクロレンズアレイ12の中心部(図でy=0)から0.5mmであり、入射光105および入射光110の出射角は5.2degであるとし、ゾーン5における回折型レンズアレイ14のピッチdは式1より6.1μmであるとした。
なお、比較例2のマイクロレンズアレイのピッチは入射光101〜入射光110の位置に関わらず、6.1μmであるとした。また、本実施例のマイクロレンズアレイ12および比較例2のマイクロレンズアレイの高さは0.5μm〜1.5μmで変化させ、最も高い回折効率のものを選択した。
図9において示される実施例2のマイクロレンズアレイ12の集光効率4.54は、比較例2のマイクロレンズアレイの集光効率を1としたときの相対値である。図9に示すシミュレーション結果により、実施例2のマイクロレンズアレイ12の集光効率は、比較例2のマイクロレンズアレイの集光効率より上回っていることがわかる。
(実施例3)
実施例1および2では、入射波長450nmまたは入射波長550nmすなわち蛍光体層11を透過した光源16の青色光または蛍光体層11で波長変換された黄色光を集光領域15に集光するよう設計した場合のシミュレーション結果について示したが、それに限らない。実施例3では入射波長450nmまたは入射波長550nmをゾーン(所定の区域)ごとに集光領域15に集光するよう設計した場合のシミュレーション結果について説明する。
図10は、実施例3におけるシミュレーションモデルを説明するための図である。図11は、実施例3におけるシミュレーション結果を示す図である。
図10には、図6に示すシミュレーションモデルに入射光201〜入射光208が追加されている。具体的には、図10に示すシミュレーションモデルでは、蛍光体層11上にマイクロレンズアレイ12aが配置され、マイクロレンズアレイ12aから所定の距離離れた場所に集光領域15が設置されている。入射光101〜入射光110、入射光201〜入射光208はそれぞれ、回折型レンズアレイ14aの区域(図でゾーン)に入射角0degで入射する入射光をモデル化したものである。入射光101および入射光106は、回折型レンズアレイ14aのゾーン1に入射する入射光のモデルであり、入射光102および入射光107は、回折型レンズアレイ14aのゾーン3に入射する入射光のモデルであり、入射光103および入射光108は、回折型レンズアレイ14aのゾーン5に入射する入射光のモデルである。同様に、入射光104および入射光109は、回折型レンズアレイ14aのゾーン7に入射する入射光のモデルであり、入射光105および入射光110は、回折型レンズアレイ14aのゾーン9に入射する入射光のモデルである。
また、入射光201および入射光205は、回折型レンズアレイ14aのゾーン2に入射する入射光のモデルであり、入射光202および入射光206は、回折型レンズアレイ14aのゾーン4に入射する入射光のモデルであり、入射光203および入射光207は、回折型レンズアレイ14aのゾーン6に入射する入射光のモデルである。同様に、入射光204および入射光208は、回折型レンズアレイ14aのゾーン8に入射する入射光のモデルである。
そして、実施例1で説明したシミュレーション手法およびシミュレーションソフトを用いて、以下のパラメータで光学シミュレーションを行った。そのシミュレーション結果は図11に示されている。
入射光101〜入射光110の入射角は0deg、入射波長550nm、回折型レンズアレイ14aの屈折率は1.5、消衰係数は0であるとし、集光領域15の径は100μm、回折型レンズアレイ14aと集光領域15との距離は5.54mmであるとした。
入射光101〜入射光110の入射角は0deg、入射波長550nmとし、入射光201〜入射光208の入射角は0deg、入射波長450nmとした。また、回折型レンズアレイ14aの屈折率は1.5、消衰係数は0であるとし、集光領域15の径は100μm、回折型レンズアレイ14aと集光領域15との距離は5.54mmであるとした。
入射光101および入射光106の位置は、マイクロレンズアレイ12aの中心部(図でy=0)から0.1mmであり、入射光101および入射光106の出射角は1.0degであるとし、ゾーン1における回折型レンズアレイ14aのピッチd11は式1より24.8μmであるとした。
また、入射光102および入射光107はマイクロレンズアレイ12aの中心部(図でy=0)から0.2mmであり、入射光102および入射光107の出射角は2.1degであるとし、ゾーン3における回折型レンズアレイ14aのピッチd12は式1より12.4μmであるとした。
また、入射光103および入射光108はマイクロレンズアレイ12aの中心部(図でy=0)から0.3mmであり、入射光103および入射光108の出射角は3.1degであるとし、ゾーン5における回折型レンズアレイ14aのピッチd13は式1より8.3μmであるとした。
また、入射光104および入射光109はマイクロレンズアレイ12aの中心部(図でy=0)から0.4mmであり、入射光104および入射光109の出射角は4.2degであるとし、ゾーン7における回折型レンズアレイ14aのピッチd14は式1より6.2μmであるとした。
また、入射光105および入射光110はマイクロレンズアレイ12aの中心部(図でy=0)から0.5mmであり、入射光105および入射光110の出射角は5.2degであるとし、ゾーン9における回折型レンズアレイ14aのピッチd15は式1より5μmであるとした。
なお、入射光101〜入射光110の位置に対応するマイクロレンズアレイ12aの高さは0.9μmとした。
一方、入射光201および入射光205の位置は、マイクロレンズアレイ12aの中心部(図でy=0)から0.15mmであり、入射光201および入射光205の出射角は1.6degであるとし、ゾーン2における回折型レンズアレイ14aのピッチd21は式1より20.3μmであるとした。
また、入射光202および入射光206の位置は、マイクロレンズアレイ12aの中心部(図でy=0)から0.25mmであり、入射光202および入射光206の出射角は2.6degであるとし、ゾーン4における回折型レンズアレイ14aのピッチd22は式1より12.2μmであるとした。
また、入射光203および入射光207の位置は、マイクロレンズアレイ12aの中心部(図でy=0)から0.35mmであり、入射光203および入射光207の出射角は3.6degであるとし、ゾーン6における回折型レンズアレイ14aのピッチd23は式1より8.7μmであるとした。
また、入射光204および入射光208の位置は、マイクロレンズアレイ12aの中心部(図でy=0)から0.45mmであり、入射光204および入射光208の出射角は4.6degであるとし、ゾーン8における回折型レンズアレイ14aのピッチd24は式1より6.8μmであるとした。
なお、入射光201〜入射光208の位置に対応するマイクロレンズアレイ12aの高さは1.2μmとした。
また、比較例3のマイクロレンズアレイのピッチは入射光101〜入射光110、入射光201〜入射光208の位置に関わらず、6.1μmであるとした。また、比較例3のマイクロレンズアレイの高さは0.5μm〜1.5μmで変化させ、最も高い回折効率のものを選択した。
図11において示される実施例3のマイクロレンズアレイ12aの集光効率8.61は、比較例3のマイクロレンズアレイの集光効率を1としたときの相対値である。図11に示すシミュレーション結果により、実施例3のマイクロレンズアレイ12aの集光効率は、比較例3のマイクロレンズアレイの集光効率より上回っていることがわかる。このように実施例3のマイクロレンズアレイ12aでは、回折型レンズアレイ14aのピッチを所定の区域毎(ゾーン1〜ゾーン9)で異ならせているので、蛍光体層11から出射される光を集光領域15に十分に集光することができる。
[効果等]
以上のように、本実施の形態の光学部材10およびマイクロレンズアレイ12等によれば、蛍光体層11上に集光効率の高いマイクロレンズアレイ12等が配置されるため、蛍光体層11から出射される光の集光効率をより高くすることができる。また、本実施の形態の光学部材10およびマイクロレンズアレイ12等では、所望の領域(集光領域15)に光を集光させるためにさらなる投影レンズを構成する必要がない。そのため、投影レンズの位置ずれによる損失も発生しない。
より詳細には、特許文献1に開示されるマイクロレンズアレイ92は、例えば図8に示したように決まった断面形状を周期的に並べた構造である。そのため、ある入射角で入射された入射光のマイクロレンズアレイ92からの配光は一様となり、十分に集光ができず配光を制御する投影レンズを構成しないと所望の領域(集光領域15)に光りを集光することができない。そのため、投影レンズの位置ずれによる損失光により集光効率はさらに低下し得る。
一方、本実施の形態の光学部材10およびマイクロレンズアレイ12等では蛍光体層11上に所定の区域ごとに、ある入射角で入射された入射光を出射させたい角度によってピッチを異ならせる。それにより、所望の領域(集光領域15)に光を集光させることができるので、投影レンズをさらに構成する必要がない。つまり、投影レンズの位置ずれによる損失も発生しない。
より具体的には、本発明の一態様に係る光学部材は、入射面に入射された光源16からの光の一部を波長変換する蛍光体を含む蛍光体層11と、蛍光体層11で波長変換された光の一部と蛍光体層11を透過した光の他部とを出射面から出射する回折型のマイクロレンズアレイ12とを備え、マイクロレンズアレイ12の出射面には、波長変換された光の一部と透過した光の他部とを回折して出射するための複数の回折レンズ(回折型レンズアレイ14)が設けられており、複数の回折レンズ(回折型レンズアレイ14)のピッチは、所定の区域ごとに異なる。
これにより、蛍光体層11から出射される光の集光効率をより高くすることができる光学部材を実現することができる。
ここで、例えば、複数の回折レンズ(回折型レンズアレイ14)のうち、所定の区域の一部の区域における複数の回折レンズのピッチは、光源16の波長帯域を示す光の他部を、回折させて予め定められた領域に集光するように、当該一部の区域それぞれで一定に設けられており、複数の回折レンズのうち、所定の区域の残部の区域における複数の回折レンズのピッチは、波長変換された光の一部を、回折させて予め定められた領域に集光するように、当該残部の区域それぞれで一定に設けられている。
これにより、複数の回折レンズ(回折型レンズアレイ14)は、蛍光体層を透過した青色光および蛍光体層11で波長変換された黄色光すなわち白色光を回折させて、集光領域15に集光させることができる。
また、例えば、複数の回折レンズ(回折型レンズアレイ14)のピッチは、波長変換された当該光の一部または前記光の他部を、回折させて予め定められた領域に集光するように、前記所定の区域毎に一定に設けられている。
これにより、複数の回折レンズ(回折型レンズアレイ14)は、蛍光体層11を透過した青色光および蛍光体層11で波長変換された黄色光すなわち白色光を回折させて、集光領域15に集光させることができる。
ここで、例えば、複数の回折レンズのピッチ(回折型レンズアレイ14)は、マイクロレンズアレイ12の中心から周辺に向かって狭くなる。
また、例えば、複数の回折レンズは、出射面において同心円状に設けられている。
また、例えば、当該出射面に垂直な面における複数の回折レンズの断面は、鋸歯状である。
また、例えば、光源16は、当該光として、青色光を発し、蛍光体層11は、当該光の一部を、黄色を示す波長帯域に波長変換する。
(変形例)
上記の実施の形態では、回折型レンズアレイ14は、同心円状に設けられているとして説明したが、それに限らない。矩形状に設けられていても良いし、複数の領域それぞれに同心円状または矩形状に設けられるとしてもよい。
上記の実施の形態では、出射面に垂直な面における回折型レンズアレイ14の断面は、鋸歯状であるとして説明したがそれに限らない。
図12〜図14は、変形例における光学部材の断面図の一例である。図3等と同様の要素には同一の符号を付しており、詳細な説明は省略する。
すなわち、図12に示すマイクロレンズアレイ12bのように、出射面に垂直な面における回折型レンズアレイ14bの断面は、三角形状であってもよい。また、図13に示すマイクロレンズアレイ12cのように、出射面に垂直な面における回折型レンズアレイ14cの断面は、矩形状であってもよい。また、図14に示すマイクロレンズアレイ12dのように、出射面に垂直な面における回折型レンズアレイ14dの断面は、半円状であってもよい。この場合、図14に示すマイクロレンズアレイ12dは半球状の回折レンズにより構成される。
なお、実施の形態における鋸歯状は限定された入射角、波長に対して回折効率が高くできる。一方、広範囲の入射角、波長に対しては半円状、三角形状または矩形状が好ましい。
(他の実施の形態等)
上述した実施の形態は一例にすぎず、各種の変更、付加、省略等が可能であることは言うまでもない。
また、上述した実施の形態で示した構成要素および機能を任意に組み合わせることで実現される形態も本発明の範囲に含まれる。その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。
例えば、蛍光体層11から回折型レンズアレイ14等に光が入射しやすいように、蛍光体層11に直接マイクロレンズアレイ12を形成してもよい。換言すると、蛍光体層11は、マイクロレンズアレイ12と一体構成である。複数の回折レンズから構成される回折型レンズアレイ14等は、蛍光体層11における入射面と反対側の表面に設けられており、表面は、出射面である。この場合は、蛍光体層11を構成する樹脂によってマイクロレンズアレイを形成してもよいし、蛍光体層11と同程度の屈折率を持つ材料で形成してもよい。
また、例えば、上記実施の形態における光学部材10のみならず、マイクロレンズアレイ12単体も本発明に含まれる。すなわち、入射面に入射された光源16からの光の一部を波長変換する蛍光体を含む蛍光体層11で波長変換された当該光の一部と、蛍光体層11を透過した当該光の他部とを出射面から出射する回折型のマイクロレンズアレイであって、当該出射面には、波長変換された当該光の一部と透過した当該光の他部とを回折して出射するための回折型レンズアレイ14が設けられており、回折型レンズアレイ14のピッチは、所定の区域ごとに異なるマイクロレンズアレイも本発明に含まれる。
その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。
11 蛍光体層
12、12a、12b、12c、12d マイクロレンズアレイ
14、14a、14b、14c、14d 回折型レンズアレイ
16 光源
111 入射面

Claims (11)

  1. 入射面に入射された光源からの光の一部を波長変換する蛍光体を含む蛍光体層と、
    前記蛍光体層で波長変換された前記光の一部と前記蛍光体層を透過した前記光の他部とを出射面から出射する回折型のマイクロレンズアレイとを備え、
    前記マイクロレンズアレイの出射面には、波長変換された前記光の一部と透過した前記光の他部とを回折して出射するための複数の回折レンズが設けられており、
    前記複数の回折レンズのピッチは、所定の区域ごとに異なり、
    前記複数の回折レンズのうち、前記所定の区域の一部の区域における複数の回折レンズのピッチは、前記光源の波長帯域を示す前記光の他部を、回折させて予め定められた領域に集光するように、当該一部の区域それぞれで一定に設けられており、
    前記複数の回折レンズのうち、前記所定の区域の残部の区域における複数の回折レンズのピッチは、波長変換された前記光の一部を、回折させて前記予め定められた領域に集光するように、当該残部の区域それぞれで一定に設けられており、
    当該一部の区域それぞれの回折レンズのピッチと、当該残部の区域それぞれの回折レンズのピッチとは異なり、
    前記所定の区域の数は3以上であり、
    前記所定の区画、前記一部の区域および、前記残部の区域のそれぞれには、2以上の回折レンズが含まれる、
    光学部材。
  2. 前記複数の回折レンズのピッチは、波長変換された前記光の一部または前記光の他部を、回折させて予め定められた領域に集光するように、前記所定の区域毎に一定に設けられている、
    請求項1に記載の光学部材。
  3. 前記複数の回折レンズのピッチは、
    前記マイクロレンズアレイの中心から周辺に向かって狭くなる、
    請求項1またはに記載の光学部材。
  4. 前記複数の回折レンズは、前記出射面において同心円状に設けられている、
    請求項またはに記載の光学部材。
  5. 前記出射面に垂直な面における前記複数の回折レンズの断面は、
    鋸歯状である、
    請求項1〜4のいずれか1項に記載の光学部材。
  6. 前記出射面に垂直な面における前記複数の回折レンズの断面は、
    矩形状である、
    請求項1〜4のいずれか1項に記載の光学部材。
  7. 前記出射面に垂直な面における前記複数の回折レンズの断面は、
    三角形状である、
    請求項14のいずれか1項に記載の光学部材。
  8. 前記出射面に垂直な面における前記複数の回折レンズの断面は、
    半円状である、
    請求項14のいずれか1項に記載の光学部材。
  9. 前記光源は、前記光として、青色光を発し、
    前記蛍光体層は、前記光の一部を、黄色を示す波長帯域に波長変換する、
    請求項1〜8のいずれか1項に記載の光学部材。
  10. 前記蛍光体層は、前記マイクロレンズアレイと一体構成であり、
    前記複数の回折レンズは、前記蛍光体層における前記入射面と反対側の表面に設けられており、
    前記表面は、前記出射面である、
    請求項1〜9のいずれか1項に記載の光学部材。
  11. 入射面に入射された光源からの光の一部を波長変換する蛍光体を含む蛍光体層で波長変換された前記光の一部と、前記蛍光体層を透過した前記光の他部とを出射面から出射する回折型のマイクロレンズアレイであって、
    前記出射面には、波長変換された前記光の一部と透過した前記光の他部とを回折して出射するための複数の回折レンズが設けられており、
    前記複数の回折レンズのピッチは、所定の区域ごとに異なり、
    前記複数の回折レンズのうち、前記所定の区域の一部の区域における複数の回折レンズのピッチは、前記光源の波長帯域を示す前記光の他部を、回折させて予め定められた領域に集光するように、当該一部の区域それぞれで一定に設けられており、
    前記複数の回折レンズのうち、前記所定の区域の残部の区域における複数の回折レンズのピッチは、波長変換された前記光の一部を、回折させて前記予め定められた領域に集光するように、当該残部の区域それぞれで一定に設けられており、
    当該一部の区域それぞれの回折レンズのピッチと、当該残部の区域それぞれの回折レンズのピッチとは異なり、
    前記所定の区域の数は3以上であり、
    前記所定の区画、前記一部の区域および、前記残部の区域のそれぞれには、2以上の回折レンズが含まれる
    マイクロレンズアレイ。
JP2017544201A 2015-10-09 2016-10-06 光学部材およびマイクロレンズアレイ Active JP6621038B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015201562 2015-10-09
JP2015201562 2015-10-09
PCT/JP2016/004499 WO2017061119A1 (ja) 2015-10-09 2016-10-06 光学部材およびマイクロレンズアレイ

Publications (2)

Publication Number Publication Date
JPWO2017061119A1 JPWO2017061119A1 (ja) 2018-07-26
JP6621038B2 true JP6621038B2 (ja) 2019-12-18

Family

ID=58487391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544201A Active JP6621038B2 (ja) 2015-10-09 2016-10-06 光学部材およびマイクロレンズアレイ

Country Status (6)

Country Link
US (1) US10174909B2 (ja)
EP (1) EP3361293B1 (ja)
JP (1) JP6621038B2 (ja)
CN (1) CN108139517B (ja)
TW (1) TW201725341A (ja)
WO (1) WO2017061119A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6485656B2 (ja) * 2017-04-25 2019-03-20 パナソニックIpマネジメント株式会社 照明導光装置及び内視鏡装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231738A (ja) 1983-06-14 1984-12-26 Mitsubishi Electric Corp 光ピツクアツプ
US5257132A (en) * 1990-09-25 1993-10-26 The United States Of America As Represented By The United States Department Of Energy Broadband diffractive lens or imaging element
JP3507632B2 (ja) 1996-09-17 2004-03-15 株式会社東芝 回折格子レンズ
US6104446A (en) * 1996-12-18 2000-08-15 Blankenbecler; Richard Color separation optical plate for use with LCD panels
JP2000171613A (ja) 1998-12-02 2000-06-23 Kuraray Co Ltd フレネルレンズシート
US6618106B1 (en) * 1999-07-23 2003-09-09 Bae Systems Information And Electronics Systems Integration, Inc Sunlight viewable color liquid crystal display using diffractive color separation microlenses
TW200522387A (en) * 2003-12-26 2005-07-01 Ind Tech Res Inst High-power LED planarization encapsulation structure
TWI241043B (en) * 2003-12-26 2005-10-01 Ind Tech Res Inst Planar package structure for high power light emitting diode
JP4470622B2 (ja) 2004-07-06 2010-06-02 凸版印刷株式会社 光学装置
CN101228580B (zh) * 2005-07-28 2011-05-11 松下电器产业株式会社 光学头及光盘装置
CN1948822A (zh) * 2005-10-14 2007-04-18 株式会社东芝 照明系统
JP2007155882A (ja) * 2005-12-01 2007-06-21 Oki Electric Ind Co Ltd 赤外線回折レンズ
CN101978293A (zh) 2008-03-18 2011-02-16 积水化学工业株式会社 光学元件、包括该光学元件的光源单元以及液晶显示装置
KR20100127286A (ko) 2008-03-21 2010-12-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 발광 장치
JP2008305802A (ja) 2008-07-16 2008-12-18 Stanley Electric Co Ltd Led灯具
WO2010140419A1 (ja) 2009-06-05 2010-12-09 コニカミノルタオプト株式会社 発光装置
JP5481223B2 (ja) 2010-02-18 2014-04-23 ミネベア株式会社 照明装置、およびレンズシート
JP5556256B2 (ja) 2010-03-11 2014-07-23 パナソニック株式会社 照明装置および投写型画像表示装置
JP6057272B2 (ja) 2010-11-05 2017-01-11 国立大学法人三重大学 光学部材およびこれを使用した照明装置
EP2458268B1 (en) 2010-11-26 2016-04-20 LG Innotek Co., Ltd. Phosphor plate and lighting device
JP2012209142A (ja) 2011-03-30 2012-10-25 Stanley Electric Co Ltd 照明灯具
JP6006547B2 (ja) 2011-07-06 2016-10-12 ミネベア株式会社 照明装置及びこれに用いるレンズシート
JP5552573B2 (ja) 2011-07-12 2014-07-16 パナソニック株式会社 光学素子及びそれを用いた半導体発光装置
US10024517B2 (en) 2011-08-12 2018-07-17 Citizen Electronics Co., Ltd. Lens member and light-emitting device using same
US8529077B2 (en) * 2011-08-24 2013-09-10 Minebea Co., Ltd. Illuminator using a combination of pseudo-white LED and lens sheet
JP5641544B2 (ja) 2011-11-15 2014-12-17 マイクロコントロールシステムズ株式会社 配光分散制御型led照明デバイス、装置及び照明方法
JP5939849B2 (ja) * 2012-03-15 2016-06-22 ミネベア株式会社 照明装置
JP2013229145A (ja) * 2012-04-24 2013-11-07 Minebea Co Ltd 照明装置
US20140055784A1 (en) * 2012-08-23 2014-02-27 Logos Technologies, Llc Camera system for capturing two-dimensional spatial information and hyper-spectral information

Also Published As

Publication number Publication date
EP3361293A4 (en) 2018-10-31
JPWO2017061119A1 (ja) 2018-07-26
TW201725341A (zh) 2017-07-16
EP3361293A1 (en) 2018-08-15
US10174909B2 (en) 2019-01-08
WO2017061119A1 (ja) 2017-04-13
US20180283651A1 (en) 2018-10-04
CN108139517B (zh) 2020-08-18
CN108139517A (zh) 2018-06-08
EP3361293B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP5646748B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
TWI705214B (zh) 照明裝置
JP2011113755A (ja) 発光装置
US10912452B2 (en) Illumination light guiding device and endoscope device
JP6621038B2 (ja) 光学部材およびマイクロレンズアレイ
JP6316940B2 (ja) 波長選択性を有する光学素子及びこれを用いた灯具装置
JP6459104B2 (ja) 波長変換装置及び照明装置
JP6604473B2 (ja) 照明器具、及び、照明装置
JP4525539B2 (ja) バックライト装置
JP6761991B2 (ja) 波長変換装置及び照明装置
TW201224623A (en) Display device
JP6692032B2 (ja) 波長変換装置及び照明装置
RU120747U1 (ru) Светоизлучающий диодный модуль
RU115963U1 (ru) Светоизлучающий диодный модуль
JP6946632B2 (ja) 回折光学素子、回折光学素子及び保持具のセット部材、光照射装置
JP2017162578A (ja) 照明器具、及び、照明装置
JP2017162583A (ja) 照明器具、及び、照明装置
JP2019078867A (ja) 光学シート、光照射装置

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20180221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R151 Written notification of patent or utility model registration

Ref document number: 6621038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151