JP6615632B2 - ターボ冷凍機及びその起動制御方法 - Google Patents

ターボ冷凍機及びその起動制御方法 Download PDF

Info

Publication number
JP6615632B2
JP6615632B2 JP2016030062A JP2016030062A JP6615632B2 JP 6615632 B2 JP6615632 B2 JP 6615632B2 JP 2016030062 A JP2016030062 A JP 2016030062A JP 2016030062 A JP2016030062 A JP 2016030062A JP 6615632 B2 JP6615632 B2 JP 6615632B2
Authority
JP
Japan
Prior art keywords
water pump
turbo compressor
cooling water
condenser
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016030062A
Other languages
English (en)
Other versions
JP2017146069A (ja
Inventor
明正 横山
泰士 長谷川
直樹 八幡
泰弘 池野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016030062A priority Critical patent/JP6615632B2/ja
Publication of JP2017146069A publication Critical patent/JP2017146069A/ja
Application granted granted Critical
Publication of JP6615632B2 publication Critical patent/JP6615632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本発明は、ターボ冷凍機及びその起動制御方法に関するものである。
ターボ圧縮機によって冷媒を圧縮する冷凍機として、ターボ冷凍機が知られている。このターボ圧縮機の回転軸を支持する軸受としては、特許文献1に示されたような油潤滑や冷媒潤滑による軸受が知られている。さらに回転抵抗が少ない軸受として、特許文献2に示されたような磁気軸受が知られている。
特開平10−132395号公報 特開2013−139836号公報
ターボ冷凍機の起動制御は、以下の順番で行われる。
(1)冷凍機起動ボタンON
(2)冷却水ポンプ及び冷水ポンプ起動
(3)冷却水ポンプ流量及び冷水ポンプ流量確立
(4)ターボ圧縮機を起動し、定格回転数まで昇速
しかし、上記の起動制御では、ターボ圧縮機の起動前にターボ圧縮機が冷媒差圧によって回転(遊転)してしまうことがある。具体的には、上記(4)のターボ圧縮機の起動前に、上記(2)のように冷却水ポンプ及び冷水ポンプを起動すると、冷却水温度と冷水温度との間に差があると、凝縮器と蒸発器との間に差圧が生じる。この差圧が大きいと、ターボ圧縮機の羽根車の前後の冷媒差圧によってターボ圧縮機が回転してしまう。このような事象は、特に冬期に多い。冬期は、冷却水側は外気に曝されているので外気温度相当となる一方で、冷水側は設備側(例えばビル側や工場側)に接続されているので、設備側の環境温度に冷水が保持されている。このような場合、冷却水温度は外気温相当なので低温となり、冷水は外気温よりも高い温度となる。そうすると、比較的高い温度の冷水が蒸発器に導かれると、ターボ冷凍機の停止時には蒸発器内に液冷媒が溜まり込んでいるので、多くの冷媒が蒸発して蒸発器内の圧力が高くなる。これに対して、凝縮器では外気温相当の冷却水が流れるので冷却水温度の低い飽和圧力に凝縮器内圧力が保たれる。したがって、蒸発器と凝縮器との差圧が大きくなり、ターボ圧縮機が回転(遊転)するという事象が生じる。
そして、ターボ圧縮機を回転駆動する電動機として同期電動機を採用した場合、ターボ圧縮機の起動前にターボ圧縮機が回転していると同期発電機において同期がとれなくなり圧縮機の回転数を適切に制御できずに起動が困難となる場合がある。
本発明は、このような事情に鑑みてなされたものであって、同期発電機で駆動されるターボ圧縮機を備えている場合であっても、安定した起動制御を行うことができるターボ冷凍機及びその起動制御方法を提供することを目的とする。
上記課題を解決するために、本発明のターボ冷凍機及びその起動制御方法は以下の手段を採用する。
すなわち、本発明にかかるターボ冷凍機は、冷媒を圧縮するターボ圧縮機と、該ターボ圧縮機を回転駆動する同期電動機と、前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、前記ターボ圧縮機、前記冷却水ポンプ及び前記冷水ポンプの起動を制御する制御部とを備え、前記制御部は、前記ターボ圧縮機を起動した後に、前記冷却水ポンプ及び前記冷水ポンプの起動を行うことを特徴とする。
ターボ圧縮機を同期電動機によって回転駆動する場合、起動前にターボ圧縮機が回転していると同期がとれなくなりターボ圧縮機の起動が適切に行われない場合がある。
そこで、ターボ圧縮機を起動した後に、冷却水ポンプ及び冷水ポンプを起動することによって、凝縮器と蒸発器との間の差圧が所定値以下とされた状態でターボ圧縮機を起動することとした。これにより、凝縮器と蒸発器との間の圧力差によって起動前にターボ圧縮機が回転(遊転)することを回避することができ、同期電動機において同期を取ることで確実にターボ圧縮機の起動を行うことができる。
また、本発明のターボ冷凍機は、冷媒を圧縮するターボ圧縮機と、該ターボ圧縮機を回転駆動する同期電動機と、前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、前記ターボ圧縮機、前記冷却水ポンプ及び前記冷水ポンプの起動を制御する制御部とを備え、前記制御部は、前記冷水ポンプを起動した後に前記ターボ圧縮機を起動し、次に前記冷却水ポンプを起動することを特徴とする。
ターボ圧縮機を同期電動機によって回転駆動する場合、起動前にターボ圧縮機が回転していると同期がとれなくなりターボ圧縮機の起動が適切に行われない場合がある。ターボ圧縮機を起動する前に冷却水ポンプから凝縮器に冷却水を供給すると、凝縮器内に冷却水が流通することとなるので、凝縮器内の冷媒圧力が冷却水温度の飽和圧力に依存することになる。そうすると、凝縮器内の冷媒圧力が冷却水温度に依存した一定値となるので、凝縮器と蒸発器との間で冷媒が循環しても差圧は小さくならない。
そこで、ターボ圧縮機を起動した後に、冷却水ポンプを起動することとし、ターボ圧縮機を起動する前に凝縮器に冷却水を流さずに、凝縮器内の冷媒圧力を冷却水温度に依存させないこととした。これにより、凝縮器と蒸発器との間を循環する冷媒によって凝縮器と蒸発器との間の圧力差を可及的に小さくすることができ、ターボ圧縮機の起動が可能となる。
また、冷水ポンプを起動した後にターボ圧縮機を起動することとした。これにより、蒸発器に冷水を流さずにターボ圧縮機を起動したときに、蒸発器内で滞留する冷水が凍結してしまうことを回避できる。
さらに、本発明のターボ冷凍機では、前記制御部は、前記ターボ圧縮機を起動する前に、前記凝縮器と前記蒸発器との間の差圧を取得し、該差圧が所定値を超えた場合には、該ターボ圧縮機を起動停止とすることを特徴とする。
ターボ圧縮機を起動する前に、凝縮器と蒸発器との間の差圧を取得し、この差圧が所定値を超えた場合には、ターボ圧縮機を起動させないことで、ターボ圧縮機の起動が困難となるおそれを事前に検出することとした。これにより、同期電動機にて同期が取れずにターボ圧縮機の起動を失敗する事態を未然に防止することができる。
さらに、本発明のターボ冷凍機では、前記制御部は、前記起動停止を行った後、前記差圧が所定値以下となるまで待機させた後に、前記ターボ圧縮機を起動させることを特徴とする。
ターボ冷凍機の起動停止後にターボ冷凍機を停止したまま待機させることで、凝縮器と蒸発器との間で冷媒を圧力差で循環させて差圧を小さくすることとした。そして、差圧が所定値以下となった後に、ターボ圧縮機の起動を行うことで、ターボ圧縮機の起動を確実に行うことができる。
さらに、本発明のターボ冷凍機では、前記制御部は、前記ターボ圧縮機の起動を行い定格回転数未満の所定回転数まで昇速した後に、起動された前記冷却水ポンプ及び前記冷水ポンプの起動を確立させることを特徴とする。
ターボ圧縮機を起動させて、定格回転数未満の所定回転数まで昇速した後に、起動された冷却水ポンプ及び冷水ポンプの起動を確立させることとした。これにより、凝縮器と蒸発器との間の差圧が所定値以下とされた状態でターボ圧縮機を起動することができるので、同期電動機の同期を確実にとることができる。
冷却水ポンプと冷水ポンプの起動が確立された後に、ターボ圧縮機はさらに定格回転数まで昇速される。
なお、定格回転数未満の所定回転数とは、同期電動機が同期を確実にとれる回転数を意味し、例えば定格回転数の1/3以下、好ましくは1/10程度とされる。
さらに、本発明のターボ冷凍機では、前記ターボ圧縮機の回転軸は、磁気軸受によって支持されていることを特徴とする。
ターボ圧縮機の回転軸が磁気軸受によって支持されていると、回転軸の回転に対する抵抗が小さいため、ターボ圧縮機の前後の冷媒圧力差が比較的小さい場合であっても羽根車が回転しやすい。そこで、上記のような制御を行ってターボ圧縮機を起動することが好ましい。
また、本発明のターボ冷凍機の起動制御方法は、冷媒を圧縮するターボ圧縮機と、該ターボ圧縮機を回転駆動する同期電動機と、前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、を備えたターボ冷凍機の起動制御方法であって、前記ターボ圧縮機を起動した後に、前記冷却水ポンプ及び前記冷水ポンプの起動を行うことを特徴とする。
また、本発明のターボ冷凍機の起動制御方法は、冷媒を圧縮するターボ圧縮機と、該ターボ圧縮機を回転駆動する同期電動機と、前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、該凝縮器から導かれた液冷媒を膨張させる膨張弁と、該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、を備えたターボ冷凍機の起動制御方法であって、前記冷水ポンプを起動した後に前記ターボ圧縮機を起動し、次に前記冷却水ポンプを起動することを特徴とする。
凝縮器と蒸発器との間の差圧が所定値以下とされた状態でターボ圧縮機を起動することとしたので、同期発電機で駆動されるターボ圧縮機を備えているターボ冷凍機であっても、安定した起動制御を行うことができる。
本発明の一実施形態に係るターボ冷凍機を示した概略構成図である。 第1実施形態に係るターボ冷凍機の起動制御を示したフローチャートである。 第2実施形態に係るターボ冷凍機の起動制御を示したフローチャートである。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について説明する。
図1に示すように、ターボ冷凍機1は、2段圧縮2段膨張サブクールサイクルを実現する構成となっている。ただし、本発明は、2段圧縮2段膨張サブクールサイクルに限定されるものではなく、蒸気圧縮式の冷凍サイクルを行うものであれば良い。
ターボ冷凍機1は、冷媒を圧縮するターボ圧縮機31と、ターボ圧縮機31によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器32と、凝縮器32にて凝縮された液冷媒に対して過冷却を与えるサブクーラ33と、サブクーラ33からの液冷媒を膨張させる高圧膨張弁34と、高圧膨張弁34に接続されるとともにターボ圧縮機31の中間段および低圧膨張弁35に接続される中間冷却器37と、低圧膨張弁35によって膨張させられた液冷媒を蒸発させる蒸発器36とを備えている。
ターボ圧縮機31は、遠心式の2段圧縮機であり、インバータ38によって回転数制御された同期電動機39によって駆動されている。インバータ38は、制御部10によってその出力が制御されている。ターボ圧縮機31の冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(以下「IGV」という。)40が設けられており、ターボ冷凍機1の容量制御が可能となっている。ターボ圧縮機31の羽根車31aを回転させる回転軸31b及び同期電動機39の回転軸39aは、図示しない磁気軸受によって支持されている。
凝縮器32には、凝縮冷媒圧力Pcを計測するための圧力センサ51が設けられている。圧力センサ51の出力は、制御部10に送信される。
サブクーラ33は、凝縮器32の冷媒流れ下流側に、凝縮された冷媒に対して過冷却を与えるように設けられている。
凝縮器32及びサブクーラ33には、これらを冷却するための冷却伝熱管41が挿通されている。冷却水流量F2は流量センサ54により、冷却水出口温度Tcoutは温度センサ55により、冷却水入口温度Tcinは温度センサ56により計測されるようになっている。これらセンサ54,55,56の出力は、制御部10に送信される。
凝縮器32に導かれる冷却水は、冷却水ポンプ13によって送水され、図示しない冷却塔において外部へと排熱された後に、再び凝縮器32及びサブクーラ33へと導かれるようになっている。冷却水ポンプ13は、制御部10によって制御される。
蒸発器36には、蒸発圧力Peを計測するための圧力センサ58が設けられている。蒸発器36において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器36には、図示しない外部負荷へ供給される冷水を冷却するための冷水伝熱管42が挿通されている。冷水流量F1は流量センサ59により、冷水出口温度Toutは温度センサ60により、冷水入口温度Tinは温度センサ61により計測されるようになっている。これらセンサ59,60,61の出力は、制御部10に送信される。
蒸発器36に導かれる冷水は、冷水ポンプ15によって送水され、外部負荷と蒸発器36との間を循環する。冷水ポンプ15は、制御部10によって制御される。
凝縮器32の気相部と蒸発器36の気相部との間には、ホットガスバイパス管43が設けられている。ホットガスバイパス管43には、ホットガスバイパス管43内を流れる冷媒の流量を制御するためのホットガスバイパス弁44が設けられている。ホットガスバイパス弁44によってホットガスバイパス流量を調整することにより、IGV40では制御が十分でない非常に小さな領域の容量制御が可能となっている。
制御部10は、ターボ冷凍機1の制御を行い、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。
次に、制御部10によって行われるターボ冷凍機1の起動制御について説明する。
図2に示すように、先ず、ターボ冷凍機1の起動を開始するときに、ターボ冷凍機1に設けられた起動ボタンをONにする(ステップS1)。
そして、凝縮器32と蒸発器36との間の差圧ΔPの確認を行う(ステップS2)。差圧ΔPは、凝縮圧力Pcを計測する圧力センサ51の出力と、蒸発圧力Peを計測する圧力センサ58の出力とを制御部10が受信し、制御部10にてこれらの差分を演算して差圧ΔPを得る。
制御部10は、差圧ΔPが所定値以下と判断した場合には、ターボ圧縮機31に対して起動指令を出力する(ステップS3)。この差圧ΔPの所定値は、同期電動機39において同期が取れる回転数以下となる差圧として設定される。
一方、差圧ΔPが所定値を超えていた場合には、制御部10はターボ圧縮機31に対して起動指令を出力せずに、待機する。これにより、ターボ圧縮機31は停止したままとされ、凝縮器32と蒸発器36との間の差圧ΔPに基づいて冷媒が循環する。このとき、冷却水ポンプ13及び冷水ポンプ15は停止したままとされているので、時間が経過するにつれて、凝縮器32内の圧力と蒸発器36内の圧力が均圧していく。所定時間待機することによって、差圧ΔPが所定値以下になると、制御部10がターボ圧縮機31に対して起動指令を出力する(ステップS3)。
制御部10からターボ圧縮機31に起動指令が伝達されると、インバータ38の指令によって同期電動機39が起動され、同期を取りながら回転数を上げていく。これに伴いターボ圧縮機31の回転軸31bの回転数も増加し、定格回転数未満の所定回転数まで昇速される(ステップS4)。この所定回転数は、同期電動機39が同期を確実にとれる回転数を意味し、例えば定格回転数の1/3以下、好ましくは1/10程度とされる。
そして、制御部10の指令により、冷却水ポンプ13及び冷水ポンプ15を起動する(ステップS5)。これにより、凝縮器32には冷却水が供給され、蒸発器36には冷水が供給される。凝縮器32内の圧力は冷却水温度の飽和圧力程度になり、蒸発器36内の圧力は冷水温度の飽和圧力程度になるが、仮に圧力差ΔPが生じていても、既にターボ圧縮機31は所定回転数まで昇速されているので、同期電動機39の回転数制御に影響を及ぼすことはない。
そして、制御部10の指令により、冷却水ポンプ13及び冷水ポンプ15の流量を定格流量まで増加させていき、起動を確立する(ステップS6)。
冷却水ポンプ13及び冷水ポンプ15の起動が確立した後に、制御部10の指令により、ターボ圧縮機31をさらに定格回転数まで昇速させる(ステップS7)。
以上により、ターボ冷凍機1の起動制御が終了する。
本実施形態によれば、以下の作用効果を奏する。
ターボ圧縮機31を起動(ステップS3)した後に、冷却水ポンプ13及び冷水ポンプ15を起動する(ステップS5)ことによって、凝縮器32と蒸発器36との間の差圧ΔPが所定値以下とされた状態でターボ圧縮機31を起動することとした。これにより、凝縮器32と蒸発器36との間の圧力差によって起動前にターボ圧縮機31が回転(遊転)することを回避することができ、同期電動機39において同期を取ることで確実にターボ圧縮機の起動を行うことができる。
また、ターボ圧縮機31を起動する前に、凝縮器32と蒸発器36との間の差圧ΔPを取得し(ステップS2)、この差圧ΔPが所定値を超えた場合には、ターボ圧縮機31を起動させないことで、ターボ圧縮機31の起動が困難となるおそれを事前に検出することとした。これにより、同期電動機39にて同期を取れずにターボ圧縮機31の起動を失敗する事態を未然に防止することができる。
また、差圧ΔPが所定値を超え、ターボ圧縮機31の起動を停止した後に、ターボ冷凍機31を停止したまま待機させることで、凝縮器32と蒸発器36との間で差圧ΔPによって冷媒を循環させることで、差圧ΔPを小さくすることとした。そして、差圧ΔPが所定値以下となった後に、ターボ圧縮機31の起動を行うことで、ターボ圧縮機31の起動を確実に行うことができる。
また、ターボ圧縮機31を起動させて(ステップS3)、定格回転数未満の所定回転数まで昇速し(ステップS4)、その後、起動された冷却水ポンプ13及び冷水ポンプ15の起動を確立させる(ステップS6)こととした。これにより、凝縮器32と蒸発器36との間の差圧ΔPが所定値以下とされた状態でターボ圧縮機31を起動することができるので、同期電動機39の同期を確実にとることができる。
また、ターボ圧縮機31の回転軸31bや同期電動機39の回転軸39aが磁気軸受によって支持されており、回転軸31b,39aの回転に対する抵抗が小さいため、ターボ圧縮機31の前後の冷媒圧力差が比較的小さい場合であっても羽根車31aが回転しやすい。本実施形態では、上記のような起動制御を行うので、磁気軸受によって回転軸31b,39aが支持されている場合であっても、ターボ冷凍機1を確実に起動することができる。
[第2実施形態]
次に、本発明の第2実施形態について、図3を用いて説明する。
本実施形態は、第1実施形態に対して、ターボ冷凍機1の構成は同様であるが、起動制御が一部異なる。したがって、同一の構成および制御ステップについては同一符号を付し、その説明を省略する。
本実施形態も第1実施形態と同様に、図1に示した構成のターボ冷凍機1とされている。
本実施形態のターボ冷凍機1の起動制御は、第1実施形態の起動制御に対して、以下の点が異なる。すなわち、ターボ圧縮機31が起動する(ステップS3)前に、冷水ポンプ15を起動させる(ステップS11)。この時の冷水ポンプ15の流量は、定格流量よりも少ない流量とされる。
上記制御を行う理由は以下の通りである。
蒸発器36に冷水を流さずにターボ圧縮機31を起動すると、蒸発器36内の圧力が低下し、蒸発器36内で滞留する冷水が凍結してしまうおそれがある。そこで、本実施形態では、冷水ポンプ15を起動した後にターボ圧縮機31を起動することにより、蒸発器36内に冷水の流れを形成することで蒸発器36における冷水の凍結を防止する。
ただし、冷却水ポンプ13の起動は、第1実施形態と同様に、ターボ圧縮機31を所定回転数まで昇速した後に行う(ステップS12)。その理由は以下の通りである。
ターボ圧縮機31を起動する前に冷却水ポンプ13から凝縮器32に冷却水を供給すると、凝縮器32内に冷却水が流通することとなるので、凝縮器32内の冷媒圧力が冷却水温度の飽和圧力に依存することになる。そうすると、凝縮器32内の冷媒圧力が冷却水温度に依存した一定値となるので、凝縮器32と蒸発器36との間で冷媒が循環しても差圧は小さくならない。特に、上述したように、冬期では、起動時に、外部負荷を流通する冷水の温度が外気温度(冷却水温度と同等)よりも高くなる場合があるので、差圧ΔPが大きくなるおそれがある。
したがって、ターボ圧縮機31を起動した後に、冷却水ポンプ13を起動することとし、ターボ圧縮機31を起動する前に凝縮器32に冷却水を流さずに、凝縮器32内の冷媒圧力を冷却水温度に依存させないことが有効である。これにより、凝縮器32と蒸発器36との間を循環する冷媒によって凝縮器32と蒸発器36との間の圧力差ΔPを可及的に小さくすることができ、ターボ圧縮機31の起動、ひいてはターボ冷凍機1の起動が可能となる。
冷水ポンプ15は、ターボ圧縮機31の起動前に起動されるが、冷水ポンプ15の起動確立は、第1実施形態と同様に、冷却水ポンプ13とともに行う(ステップS6)。すなわち、ターボ圧縮機31に先立ち冷水ポンプ15を起動するが、蒸発器36にて冷水が凍結しない程度に冷水が流れていれば足りるので、冷水流量を増大させて流量を確立させるのは、冷却水ポンプ13の流量確立と同じタイミングでよい。
なお、冷水入口温度Tinを温度センサ61で検出し、この冷水入口温度Tinが所定値以下であれば本実施形態の通り冷水ポンプ15をターボ圧縮機31よりも先に起動させるが、冷水入口温度Tinが所定値を超えていた場合には、ステップS2において差圧ΔPが所定値よりも大きくなることが予想されるので、ステップS11を省略して、第1実施形態と同様にターボ圧縮機31の起動後に冷水ポンプ15を起動させることとしてもよい。
1 ターボ冷凍機
10 制御部
13 冷却水ポンプ
15 冷水ポンプ
31 ターボ圧縮機
31a 羽根車
31b 回転軸
32 凝縮器
36 蒸発器
39 同期電動機
39a 回転軸

Claims (8)

  1. 冷媒を圧縮するターボ圧縮機と、
    該ターボ圧縮機を回転駆動する同期電動機と、
    前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器から導かれた液冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、
    前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、
    前記ターボ圧縮機、前記冷却水ポンプ及び前記冷水ポンプの起動を制御する制御部と、
    を備え、
    前記制御部は、前記ターボ圧縮機を起動した後に、前記冷却水ポンプ及び前記冷水ポンプの起動を行うことを特徴とするターボ冷凍機。
  2. 冷媒を圧縮するターボ圧縮機と、
    該ターボ圧縮機を回転駆動する同期電動機と、
    前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器から導かれた液冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、
    前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、
    前記ターボ圧縮機、前記冷却水ポンプ及び前記冷水ポンプの起動を制御する制御部と、
    を備え、
    前記制御部は、前記冷水ポンプを起動した後に前記ターボ圧縮機を起動し、次に前記冷却水ポンプを起動することを特徴とするターボ冷凍機。
  3. 前記制御部は、前記ターボ圧縮機を起動する前に、前記凝縮器と前記蒸発器との間の差圧を取得し、該差圧が所定値を超えた場合には、該ターボ圧縮機を起動停止とすることを特徴とする請求項1又は2に記載のターボ冷凍機。
  4. 前記制御部は、前記起動停止を行った後、前記差圧が所定値以下となるまで待機させた後に、前記ターボ圧縮機を起動させることを特徴とする請求項3に記載のターボ冷凍機。
  5. 前記制御部は、前記ターボ圧縮機の起動を行い定格回転数未満の所定回転数まで昇速した後に、起動された前記冷却水ポンプ及び前記冷水ポンプの起動を確立させることを特徴とする請求項1から4のいずれかに記載のターボ冷凍機。
  6. 前記ターボ圧縮機の回転軸は、磁気軸受によって支持されていることを特徴とする請求項1から5のいずれかに記載のターボ冷凍機。
  7. 冷媒を圧縮するターボ圧縮機と、
    該ターボ圧縮機を回転駆動する同期電動機と、
    前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器から導かれた液冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、
    前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、
    を備えたターボ冷凍機の起動制御方法であって、
    前記ターボ圧縮機を起動した後に、前記冷却水ポンプ及び前記冷水ポンプの起動を行うことを特徴とするターボ冷凍機の起動制御方法。
  8. 冷媒を圧縮するターボ圧縮機と、
    該ターボ圧縮機を回転駆動する同期電動機と、
    前記ターボ圧縮機によって圧縮された冷媒を凝縮させる凝縮器と、
    該凝縮器から導かれた液冷媒を膨張させる膨張弁と、
    該膨張弁によって膨張された冷媒を蒸発させる蒸発器と、
    前記凝縮器にて熱交換を行う冷却水を供給する冷却水ポンプと、
    前記蒸発器にて熱交換を行う冷水を供給する冷水ポンプと、
    を備えたターボ冷凍機の起動制御方法であって、
    前記冷水ポンプを起動した後に前記ターボ圧縮機を起動し、次に前記冷却水ポンプを起動することを特徴とするターボ冷凍機の起動制御方法。
JP2016030062A 2016-02-19 2016-02-19 ターボ冷凍機及びその起動制御方法 Active JP6615632B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016030062A JP6615632B2 (ja) 2016-02-19 2016-02-19 ターボ冷凍機及びその起動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030062A JP6615632B2 (ja) 2016-02-19 2016-02-19 ターボ冷凍機及びその起動制御方法

Publications (2)

Publication Number Publication Date
JP2017146069A JP2017146069A (ja) 2017-08-24
JP6615632B2 true JP6615632B2 (ja) 2019-12-04

Family

ID=59682154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030062A Active JP6615632B2 (ja) 2016-02-19 2016-02-19 ターボ冷凍機及びその起動制御方法

Country Status (1)

Country Link
JP (1) JP6615632B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109764586B (zh) * 2018-12-04 2020-04-28 珠海格力电器股份有限公司 一种适应变流量的机组开机控制方法及装置
JP2024011843A (ja) * 2022-07-15 2024-01-25 三菱重工業株式会社 ターボ冷凍機の起動シーケンス生成装置、起動シーケンス生成方法、及びプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246556A (ja) * 1985-04-25 1986-11-01 株式会社荏原製作所 冷凍機の運転方法
JP4764222B2 (ja) * 2006-03-13 2011-08-31 三菱重工業株式会社 熱源システムおよびその制御方法
JP5881282B2 (ja) * 2010-09-30 2016-03-09 三菱重工業株式会社 ターボ冷凍装置、その制御装置及びその制御方法

Also Published As

Publication number Publication date
JP2017146069A (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6736357B2 (ja) ターボ冷凍機及びその起動制御方法
JP5244470B2 (ja) 冷凍機
JP6454564B2 (ja) ターボ冷凍機
JP5881282B2 (ja) ターボ冷凍装置、その制御装置及びその制御方法
JP5449266B2 (ja) 冷凍サイクル装置
JP2009092337A (ja) 空気調和機
JP5412193B2 (ja) ターボ冷凍機
JP6615632B2 (ja) ターボ冷凍機及びその起動制御方法
JP4167190B2 (ja) 冷凍システムおよびその運転方法
WO2018025935A1 (ja) ヒートポンプ装置及びその制御方法
JP2007218460A (ja) 冷凍サイクル装置および保冷庫
JP6938321B2 (ja) ターボ冷凍機及びその起動制御方法
JP5119513B2 (ja) 二元冷凍機
JP5279105B1 (ja) 二元冷凍装置の立ち上げ制御方法
JP5836844B2 (ja) 冷凍装置
JP6495053B2 (ja) 冷凍システム、冷凍システムの運転方法及び冷凍システムの設計方法
JP5713570B2 (ja) 冷凍機ユニットおよびその制御方法
US20200173693A1 (en) Control device of refrigerating cycle, heat source device, and control method therefor
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
JP2002364937A (ja) 冷蔵庫
WO2015104822A1 (ja) 冷凍サイクル装置
JP6150907B2 (ja) 冷凍サイクル装置
JP2004293870A (ja) 冷凍サイクル装置
JP2009168258A (ja) 二元冷凍機
JP2011141078A (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R150 Certificate of patent or registration of utility model

Ref document number: 6615632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150