JP6602566B2 - 変化する切欠きに対して繰り返して配置されたプレートを有するアブソリュート型エンコーダスケール - Google Patents

変化する切欠きに対して繰り返して配置されたプレートを有するアブソリュート型エンコーダスケール Download PDF

Info

Publication number
JP6602566B2
JP6602566B2 JP2015119651A JP2015119651A JP6602566B2 JP 6602566 B2 JP6602566 B2 JP 6602566B2 JP 2015119651 A JP2015119651 A JP 2015119651A JP 2015119651 A JP2015119651 A JP 2015119651A JP 6602566 B2 JP6602566 B2 JP 6602566B2
Authority
JP
Japan
Prior art keywords
scale
region
signal
pattern
scale element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015119651A
Other languages
English (en)
Other versions
JP2016004041A (ja
Inventor
ステイトン クック テッド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Publication of JP2016004041A publication Critical patent/JP2016004041A/ja
Application granted granted Critical
Publication of JP6602566B2 publication Critical patent/JP6602566B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2275Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/20Slide gauges
    • G01B3/205Slide gauges provided with a counter for digital indication of the measured dimension

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、一般的には精密測定機器に関し、特にノギスのような手持ち式の機器に用い得るアブソリュート型エンコーダスケールに関する。
今日、光学式、静電容量式、磁気式、電磁誘導式の変換器のような、種々の動作又は位置の変換器が利用可能である。これらの変換器は、変換器の2つの部材間の動作を測定するため、しばしば様々な幾何学的構造中に設けられた送信器及び受信機を有し、典型的にはリードヘッド及びスケールを有する。ある光学式、静電容量式及び磁気式の変換器の欠点の一つは、汚れに敏感な傾向が有ることである。よって、このような変化器を製造環境や工場環境で用いることは、非現実的である。このような変換器を工場環境で用いるには、ちり、油及び強磁性粒子による汚染から変換器を保護するため、高価でときに信頼性の低い周辺密閉、又は、他の変換器の封止法が必要である。
米国特許第6,011,389(‘389特許)は、その全体がここでの参照により本明細書に組み込まれるものであり、高精度用途に使用可能な誘導電流位置変換器を開示している。米国特許第5,973,494(‘494特許)及び6,002,250(‘250特許)は、各々その全体がここでの参照により本明細書に組み込まれるものであり、信号の生成及び処理を行う回路を有する電磁誘導式インクリメンタル型ノギス及びスケールを開示している。米国特許第5,886,519、5,841,274及び5,894,678は、各々その全体がここでの参照により本明細書に組み込まれるものであり、電磁誘導式アブソリュート型ノギスと、誘導電流変換器を用いた電気式テープ計測器とを開示している。これらの特許に開示されるように、この誘導電流変換器は、既知のプリント基板回路を用いて容易に作製される。また、この変換器システムは、一般的には強磁性粒子、油、水及びその他の流体を含む粒子による汚染の影響を受けない。
上記で指摘したように、誘導電流変換器(上述の光学式、静電容量式、磁気式の変換器も同様に)の異なる態様は、インクリメンタル型又はアブソリュート型エンコーダのいずれに実装されてもよい。一般に、インクリメンタル型エンコーダは、スケールに沿った初期位置からの変位の増分単位の蓄積によって、スケールに対するリードヘッドの変位を決定できるスケール構造を用いる。このようなエンコーダは、ある用途に適しており、特に商用電源が利用可能な場合に適している。しかし、エンコーダが低消費電力の装置で用いられるような用途では、アブソリュート型エンコーダを用いることがより望ましい。アブソリュート型エンコーダは、スケールに沿った各位置において、特有の出力信号又は信号の組み合わせを与える。それらは、位置を認識するための増分位置の蓄積を必要としない。よって、アブソリュート型エンコーダは、様々な電力保全計画を可能とする。上述したような、様々な光学式、静電容量式、磁気式及び電磁誘導式の技術を用いたアブソリュート型エンコーダの変形例が知られている。
米国特許第6,011,389号明細書 米国特許第5,973,494号明細書 米国特許第6,002,250号明細書 米国特許第5,886,519号明細書 米国特許第5,841,274号明細書 米国特許第5,894,678号明細書 米国特許第3,882,482号明細書 米国特許第5,965,879号明細書 米国特許第5,279,044号明細書 米国特許第5,237,391号明細書 米国特許第5,442,166号明細書 米国特許第4,964,727号明細書 米国特許第4,414,754号明細書 米国特許第4,109,389号明細書 米国特許第5,773,820号明細書 米国特許第5,010,655号明細書
J. Lefebvre, C. Mandache and J. Letarte, "Pulsed eddy current empirical modeling," Advances in Signal Processing for Non Destructive Evaluation of Materials, Quebec City, Canada, 2006.
上述のアブソリュート型誘導電流エンコーダのついての‘519、‘274及び‘678特許に加えて、米国特許第3,882,482、5,965,879、5,279,044、5,237,391、5,442,166、4,964,727、4,414,754、4,109,389、5,773,820及び5,010,655も、種々のエンコーダの構成、及び/又は、アブソリュート型エンコーダに関連する信号処理技術を開示しており、かつ、各々その全体がここでの参照により本明細書に組み込まれるものである。しかし、これら開示されたシステムの多くは、コンパクトなサイズ、高分解能、コスト、及び、アブソリュート型エンコーダのユーザが望む、概ね粒子(強磁性粒子、油、水及びその他の流体)による汚染の影響を受けない能力を含む構造安定性の信頼し得る組み合わせを提供する構造は教示していない。このような組み合わせを提供するアブソリュート型エンコーダの改良構成が望まれている。
この要約は、簡易化した形で概念の選択を紹介することで提供され、以下の詳細な説明においても開示されている。この要約は、クレームされた対象における重要な特徴を特定することを意図するものでなく、また、クレームされた対象の範囲を決定するのに役立つものとして用いることを意図するものでもない。
第1の部材の第2の部材に対する位置を測定軸に沿って測定するために利用可能な位置検出装置が提供される。位置検出装置は、スケールとリードヘッドとを有する。スケールは、測定軸方向に延在するスケールパターンを有する。リードヘッドは、スケールに対して測定軸方向に摺動され、スケールパターンに渦電流を誘起する誘起部と渦電流に依存して変化する位置信号を出力する信号部とを有する。渦電流の利用によって、位置検出装置は、概ね強磁性粒子、油、水及びその他の流体を含む粒子による汚染の影響を受けない。
スケールパターンは、複数の第1のスケール要素領域及び複数の第2のスケール要素領域を有する。複数の第1のスケール要素領域は、測定軸方向に周期的に配置され、かつ、第1のタイプのスケール要素を有する。第2のスケール要素領域は、測定軸方向に周期的に配置され、かつ、スケール波長Pに従って第1及び第2のスケール要素領域が測定軸方向に周期的に繰り返すように配置されるように、複数の第1のスケール要素領域と交互に配置される。第2のスケール要素領域は、アブソリュート信号範囲内でそれぞれ異なる第2タイプのスケール要素領域でのそれぞれ異なる渦電流応答を提供するために、スケールパターンに沿ってアブソリュート信号が変化する特性を有する第2タイプのスケール要素を有する。信号部は、渦電流のそれぞれに応答して、アブソリュート信号範囲内でのそれぞれの位置を一意的に示すためにアブソリュート信号範囲内で変化する信号特性を有するアブソリュート位置信号を出力する。他の実施例においては、アブソリュート信号範囲は、少なくともスケール波長Pの10倍でもよい。
種々の実施例においては、第1のタイプのスケール要素は金属板状特性部(例えば、第1のスケール要素領域のそれぞれで同じ)を有し、第2のタイプのスケール要素は非金属板状特性部(例えば、スケールパターンに沿って第2のスケール要素領域のそれぞれで変化する特性を有する)を有してもよい。代わりとして、他の実施例においては、第1タイプのスケール要素は非金属板状特性部(例えば、第1のスケール要素領域のそれぞれで同じ)を有し、第2のタイプのスケール要素は金属板状特性部(例えば、スケールパターンに沿って第2のスケール要素領域のそれぞれで変化する特性を有する)を有してもよい。いずれの場合においても、金属板状特性部は導電性領域を有し、非金属板状特性部は非導電性領域又は導電体内の切欠き領域の少なくとも1つを有してもよい。
ある実施例においては、第2のタイプのスケール要素は非金属板状特性部を有し、変化するその特性は、a)非導電性領域の広さ、b)切欠き領域の広さ、又は、c)切欠き領域の切欠き深さ、の少なくとも1つを含んでもよい。代わりとして、ある実施例においては、第2のタイプのスケール要素は金属板状特性部を有し、変化するその特性は、a)プレート領域の広さ、又は、b)プレートの高さ、の少なくとも1つを含んでもよい。いずれの場合においても(すなわち、第2のタイプのスケール要素がこのような金属板状特性部又は非金属板状特性部のいずれを有するかにかかわらず)、アブソリュート信号範囲内で変化する少なくとも1つの特性は、アブソリュート信号範囲内の関数(例えば線形関数)に従って変化してもよい。
種々の態様においては、変化する特性を有する第2タイプのスケール要素以外にも、第1タイプのスケール要素は、アブソリュート信号範囲内でそれぞれ異なる第1のスケール要素領域でそれぞれ異なる渦電流応答を提供するために、スケールパターンに沿ってアブソリュート信号範囲内で変化する特性を有してもよい。第1及び第2タイプのスケール要素はそれぞれ金属板状特性部及び非金属板状特性部を有し、あるいはその逆に、金属板状特性部及び非金属板状特性部の両方は、上述のように、スケールパターンに沿ってアブソリュート信号範囲内で変化する特性を有してもよい。
種々の態様においては、第2タイプのスケール要素は、導電性領域及び導電性領域に形成された非金属板状特性部を有してもよい。種々の態様においては、スケールパターンは、プリント回路基板、除去された領域を有するパターンが形成された薄い金属シート、変形されることで形成された切欠きを有する成形された薄い金属シート、又は、一部を除去することにより切欠きが形成された金属部材の少なくとも1つを有するスケール部に形成されてもよい。
ある態様においては、位置検出装置は、最大測定範囲及び最大測定範囲に広がるアブソリュート信号範囲を有してもよい。ある変形例においては、アブソリュート信号範囲は、最大測定範囲の第1の部分に広がる第1のアブソリュート信号範囲として示されてもよく、第2のアブソリュート信号範囲は、第1のアブソリュート信号範囲と同様に最大測定範囲の第2の部分に広がる。このような態様では、スケールは、最大測定範囲上でのアブソリュート位置を決定するアブソリュート信号範囲認識部を更に有してもよい。種々の構成においては、アブソリュート信号範囲認識部は、第2のスケールパターン又はスケールに沿った2値コード素子の少なくとも1つを有してもよい。
種々の態様においては、信号部及びスケールパターンは、少なくとも1つの出力信号がスケール波長Pの周期性を有してもよく、信号特性は、周期的な出力信号の振幅又はDCオフセットを含んでもよい。種々の態様においては、信号部及びスケールパターンは、信号特性がアブソリュート信号範囲上で線形に変化するように構成されてもよい。
種々の態様においては、リードヘッドの信号部が渦電流に依存して変化する位置信号を出力する1以上のセンサ部を有してもよい。具体的な例においては、スケール全長に沿ってP/4ずつ離れて設けられた4つのセンサ部(例えば、A、B、A’及びB’で示される出力信号用)が含まれてもよい。ある信号処理技術によれば、インクリメンタル位置信号はある数式(例えば、tan−1((A−A’)/(B−B’)))で決定できてもよく、アブソリュート位置信号は他の数式(例えば、A+B+A’+B’)で決定できてもよい。
当然のことながら、本明細書で説明するような構成を有する位置検出装置は、従来のシステムに対して種々の利点を有する。例えば、本明細書でより詳細に説明するように、このような構成は、単一のリードヘッド信号部がインクリメンタル及びアブソリュート位置信号を決定できる信号を提供することができてもよい。換言すれば、このような構成は、インクリメンタル及びアブソリュート位置信号を決定するための、第2のスケールトラック、及び、これに対応した第2のスケールトラックを読み取るための第2のリードヘッド信号部を必要としない。また、このような構成は、所要電力が低くてもよい(例えば、第2のリードヘッド信号部への電力が必要ではないため)。更に、種々の態様においては、第2の同一直線上のスケールトラックを要しないので、より狭いスケールが利用されてもよい。
図1は、スケールパターンが付されたスケールを有する手持ち型ノギスの組立分解等角図である。 図2は、スケールパターンの複数の第1及び第2のスケール要素領域のスケール要素を示す図1のスケールの一部の等角図である。 図3A〜3Cは、スケールパターンの変形例の側面図である。 図4は、スケールパターンに対する位置を検出するリードヘッドの部分の等角図である。 図5A及び5Bは、リードヘッドの変形例の種々の動作原理を示す模式図である。 図6A〜6Cは、図3A〜3Cのスケールパターンとの組み合わせに用いられるリードヘッドからの出力信号を示す図である。 図7A〜7Cは、図6A〜6Cの出力信号と図3A〜3Cのスケールパターンとに対応する、結果として生じたアブソリュート位置信号を示す図である。 図8A〜8は、図3A〜図3Cで示したものの他のスケールパターン変形例の図である。 図9A及び9Bは、図3A〜図3Cで示したものに類似するロータリー又は角度スケールパターンの実施の形態の図である。 図10は、スケールと連携して利用される2つのスケールパターンの図である。
図1は、スケールパターン170が付されたスケール102を有する手持ち型ノギス100の組立分解等角図である。図1に示すように、スケール102は、スケールパターン170が形成され又は取り付けられ、かつ、一般的に矩形断面を有する剛性又は半剛性のバーで構成される基板168を有していてもよい。横方向への一対の突出部である固定ジョウ108及び110は、スケール102の第1の端部112の近傍に一体的に形成される。対応する横方向への一対の突出部である移動ジョウ116及び118は、リードヘッド164を有するスライダアセンブリ120上に形成される。
対象物の外形寸法は、ジョウ108及び116上の一対の測定面114の間に対象物を配置することで測定される。同様に、対象物の内寸は、ジョウ110及び118を対象物内に配置することで測定される。ジョウ110及び118の測定面122は、測定対象物の表面に接するように配置される。測定面122及び114は、ジョウ108及び116の測定面114が互いに接する場合に、ジョウ110及び118の測定面122が互いに重なるように配置される。この位置、すなわちゼロ点(図示せず)では、ノギス100で測定される外形寸法及び内寸の双方がゼロとなる 。
また、ノギス100は、スライダアセンブリ120に取り付けられたデプスバー126を有する。デプスバー126は、スケール102から長手方向に突出し、測定端128で終端している。デプスバー126は、ノギス100がゼロ点にあるときに、測定端128とスケール102の第2の端部132とが丁度重なるような長さになっている。穴が形成された表面上にスケール102の第2の端部132を置き、測定端128が穴の底に接するまでデプスバー126を穴へ向けて延ばすことで、ノギス100は穴の深さを測定することができる。
測定が外側測定ジョウ108及び116、内側測定ジョウ110及び118、又はデプスバー126を用いて行われようが、測定寸法は、スライダアセンブリ120のカバー139に設けられた従来のデジタルディスプレイ138に表示される。また、一対の押しボタンスイッチ134及び136が、カバー139に設けられる。スイッチ134は、スライダアセンブリ120の信号処理/表示電気回路166をオン/オフする。スイッチ136はディスプレイ138をゼロにリセットするために用いられる。
図1に示すように、スライダアセンブリ120はガイド端142が設けられたベース140を有する。ガイド端142は、スライダアセンブリ120がスケール102をまたぐときに、スケール102のサイドエッジ146に接する。これにより、ノギス100の正確な動作が保証される。一対のねじ147は、スライダアセンブリ120とスケール102との間のあそびを除去するため、スケール102の対となるエッジに対して弾性圧力バー148を付勢する。
デプスバー126は、スケール102の下面に形成されたデプスバー溝152に挿入される。デプスバー溝152は、デプスバー126用の空間を設けるためにスケール102の下面に延在している。デプスバー126は、エンドストップ154により、デプスバー溝152内に保持される。エンドストップ154は、スケール102の第2の端部132における下面に取り付けられる。また、エンドストップ154は、動作中に第2の端部132において、スライダアセンブリ120がスケール102から不用意に脱落することを防止する。
また、スライダアセンブリ120は、スケール102上方のベース140に設けられた ピックオフアセンブリ160を有する。よって、ベース140とピックオフアセンブリ160とは、一体として動作する。ピックオフアセンブリ160は、従来のプリント回路基板のような基板162を有する。基板162は、その下側面に渦電流リードヘッド164を担持する。信号処理/表示電気回路166は、基板162の上面に設けられる。弾性シール163は、信号処理/表示電気回路166の汚染を防止するために、カバー139と基板162との間で圧縮される。リードヘッド164の下部は、薄く、高耐久性の絶縁性コーティング167(例えば、具体的例示においては、約50mmの厚みである)で覆われる。
スケール102は、測定軸方向MAに沿って延在するスケールパターン170を有する。図2について以下でより詳しく説明するように、スケールパターン170は、測定軸方向MAに沿って周期的に配置された第1及び第2のスケール要素領域を有してもよく、第1及び第2のスケール要素領域はそれぞれ第1及び第2のタイプのスケール要素を含んでもよい。保護絶縁層172(例えば、具体的例示においては、約100mmの厚みである)がスケールパターン170を覆ってもよい。保護層172は、図1に示すように、印字されたマーキングを含むことができる。
スライダアセンブリ120は、絶縁性コーティング167及び172の間のエアギャップによってスケール102から少し離れるように、リードヘッド164を駆動する。具体的例示においては、エアギャップは約0.5mmオーダーである。リードヘッド164とスケールパターン170とは、共に、ある態様においては、磁場の変化の生成により動作する渦電流変換器を構成する。以下でより詳しく説明するように、変化する磁場に置かれたスケールパターン170のスケール要素では、磁場の変化が渦電流として知られている循環電流を誘導する。
図2は、スケールパターン170の複数の第1及び第2のスケール要素領域のスケール要素を示す図1のスケール102の一部の等角図である。図2では、図示された複数の第1のスケール要素領域FZ1〜FZ7は、測定軸方向MAに沿って周期的に配置される。また、図示された複数の第2のスケール要素領域SZ1〜SZ6は、測定軸方向MAに沿って周期的に配置され、かつ、スケール波長Pに従って第1及び第2のスケール要素領域が測定軸方向MAに沿って周期的に繰り返すように、複数の第1のスケール要素領域FZ1〜FZ7と交互に配置される。図2の例では、第1及び第2のスケール要素領域のそれぞれの面積はほぼ同様であってもよく、各領域の測定軸方向MAの寸法は、スケール波長Pの1/2とほぼ等しい。当然のことながら、他の実施の形態においては、面積と第1及び第2の領域の幅とは異なってもよい。
第1のスケール要素領域のそれぞれは第1タイプのスケール要素を有し、第2のスケール要素領域のそれぞれは第2タイプのスケール要素を有する。より具体的には、図2の例では、含まれる第1タイプのスケール要素は金属板状特性部であり、図示された第1スケール要素領域FZ1〜FZ7のそれぞれは、各導電性プレート領域P1〜P7を有する。第2タイプのスケール要素は非金属板状特性部であり、図示された第2スケール要素領域SZ1〜SZ6それぞれは、各切欠き領域R1〜R6を有する。他の態様においては、非金属板状特性部の他の例として、第2スケール要素領域SZ1〜SZ6のそれぞれは、非導電性領域を含むことができる。
以下でより詳しく説明するように、切欠き領域R1〜R6は、アブソリュート信号範囲で、それぞれ異なる第2スケール要素領域SZ1〜SZ6においてそれぞれ異なる渦電流を与えるために、スケールパターンに沿ってアブソリュート信号範囲内で変化する特性を有する。より具体的には、図2に示すように、各切欠き領域R1〜R6の切欠き深さは、図示した最初の切欠き領域R1から最後の切欠き領域R6に向かって増加することが示されている。以下でより詳しく説明するように、切欠き領域の深さの相違は、異なる渦電流応答をもたらす。これに対応して、各渦電流に応答するリードヘッドの信号部は、アブソリュート信号範囲でのそれぞれの位置を一意に示すために、アブソリュート信号範囲内で変化する信号特性を有するアブソリュート位置信号を出力してもよい。
種々の態様において、スケール102及び/又はスケールパターン170は、様々な技術を利用して作製されてもよい。例えば、ある態様においては、基板168は導電性バルク材料(例えばアルミニウム)により形成されてもよい。このような場合、切欠き領域R1〜R6は漸進的に深くなる水平切削部を基板168に設けることで形成されてもよい。そして、基板168は、図1について上述した保護層172で覆われてもよい。
図3A〜3Cは、スケールパターン370A〜370Cの異なる変形例の側面図である。当然のことながら、スケールパターン370A〜370Cは、図2のスケールパターン170と同様の信頼できる特性を有し、以下に別途記載するものを除いて同様に動作するもとして理解される。図3A〜3Cに示すように、スケールパターン370A〜370Cは、それぞれ複数の第1のスケール要素領域FZ1〜FZ9と、複数の第2のスケール要素領域SZ1〜SZ8とを有する。スケールパターン170と同様に、スケールパターン370A〜370Cでは、図示された複数の第1のスケール要素領域FZ1〜FZ9と図示された複数の第2のスケール要素領域SZ1〜SZ8とは、測定軸方向に沿って周期的に配置される。また、第1及び第2のスケール要素領域は、第1及び第2のスケール要素領域がスケール波長Pに従って測定軸方向MAに沿って周期的に繰り返すように交互に配置される。第1及び第2のスケール要素領域のそれぞれの幅はほぼ同様であり、スケール波長Pの1/2とほぼ等しい。
図3Aに示すように、スケールパターン370Aでは、図示した第1のスケール要素領域FZ1〜FZ9のそれぞれは、導電性プレート領域P1A〜P9Aのそれぞれを有し、第2のスケール要素領域SZ1〜SZ8のそれぞれは、切欠き領域R1A〜R8Aのそれぞれを有する。各切欠き領域R1A〜R8Aの切欠き深さは、直線状の破線310Aで示されるように、最初の切欠き領域R1から最後の切欠き領域R8に向かって、線形関数に従って増加することが示されている。導電性プレート領域P1A〜P9Aは、第1のスケール要素領域FZ1〜FZ9のそれぞれで同様であることが示されている。以下で図6A及び7Aについてより詳しく説明するように、ある態様においては、本構成では、リードヘッドセンサ部の出力信号が、上方の信号ピークは概ね水平直線に沿うが、下方の信号ピークは曲線に概ね沿うものになる。結果として得られるアブソリュート位置信号特性もカーブする。
図3Bに示すように、スケールパターン370Bでは、図示した第1のスケール要素領域FZ1〜FZ9のそれぞれは、導電性プレート領域P1B〜P9Bのそれぞれを有し、第2のスケール要素領域SZ1〜SZ8のそれぞれは、切欠き領域R1B〜R8Bのそれぞれを有する。各切欠き領域R1B〜R8Bの切欠き深さは、曲線状の破線310Bで示されるように、最初の切欠き領域R1から最後の切欠き領域R8に向かって、曲線関数に従って増加することが示されている。導電性プレート領域P1B〜P9Bは、第1のスケール要素領域FZ1〜FZ9のそれぞれで同様であることが示されている。以下で図6B及び7Bについてより詳しく説明するように、ある態様においては、本構成では、リードヘッドセンサ部の出力信号が、上方の信号ピークは概ね水平直線に沿うが、下方の信号ピークは下方に傾く直線に概ね沿うものになる。結果として得られるアブソリュート位置信号もスケール波長Pの若干の周期性を有しながらも概ね直線となり下方に傾く。
図3Cに示すように、スケールパターン370Cでは、図示した第1のスケール要素領域FZ1〜FZ9のそれぞれは、導電性プレート領域P1C〜P9Cのそれぞれを有し、第2のスケール要素領域SZ1〜SZ8のそれぞれは切欠き領域R1C〜R8Cのそれぞれを有する。各切欠き領域R1C〜R8Cの切欠き深さは、曲線状の破線矢印310Cで示されるように、最初の切欠き領域R1Cから最後の切欠き領域R8Cに向かって、曲線関数に従って増加することが示されている。更に、この態様では、導電性プレート領域P1C〜P9Cの高さは、直線状の破線矢印309Cで示されるように、図示した最初の導電性プレート領域P1Cから最後の導電性プレート領域P9Cに向かって、ほぼ線形関数に従って減少する。しかし、当然のことながら、他の実施の形態で示すように、望ましい非線形関数を代わりに用いてもよい。当然のことながら、導電性プレート領域の高さが減少する場合でも、リードヘッドはスケールパターン370Cに対してレベルL1にて移動を継続する。例えば、リードヘッドが高さL2の導電性プレート領域P9Cの上方に有るとき、リードヘッドの距離は、通常のギャップ距離に距離DL1L2=L1−L2を足した距離になる。図6C及び図7Cについて以下でより詳細に説明するように、ある態様においては、本スケールパターン370Cの構成では、リードヘッドセンサ部からの出力信号が、上方の信号ピークが下方に傾いた直性に概ね沿い、且つ下方の信号ピークも同様に下方に傾いた直線に概ね沿うものになるので、ピーク間の差異が測定範囲内で相対的に一定の大きさになる。結果として得られるアブソリュート信号も線形且つ下方に傾く。
図4は、スケールパターン470に対する位置を検出するリードヘッド405の部分の等角図である。当然のことながら、スケールパターン470は、以下で別途記載することを除き、スケールパターン170及び370A〜370Cの1つ以上と同様の特性を有し、かつ同様に動作するものとして理解される。図4に示すように、リードヘッド405は、スケールパターン470内で渦電流を誘起するための誘起部430A及び430Bと、渦電流に依存して変化する位置信号を出力する第1及び第2のセンサ部410A及び410Bとを有する。第1及び第2のセンサ部410A及び410Bは、リードヘッド405の信号部410の一部として含まれる。ここでの説明を簡略するために、信号部410がセンサ部を2つだけ有するものとして示したが、当然のことながら、以下で図6A〜6C及び7A〜7Cについてより詳しく説明するように、他の態様においては異なる数のセンサ部を用いてもよい(例えば、P/4ずつ間隔を空けた4つのセンサチャネル)。
以下でより詳しく説明するように、リードヘッド405の第1及び第2のセンサ部410A及び410Bと誘起部430A及び430Bとは、ある態様においては、プリント回路基板の金属層に作製される同一平面上の誘導コイルで構成されてもよい(例えば、図1のスライダアセンブリ120のプリント回路基板162)。ある態様においては、プリント回路基板は、少なくとも2つの金属層を有してもよい。図4に示すように、最初の又は最上部の層は、一連のノードN1〜N4を位置検出/駆動回路に接続する配線を有してもよい(例えば、スライダアセンブリ120の信号処理/表示電気回路166に含まれてもよい)。
ノードN1は、位置信号SEN1を供給し得る信号線SL1と接続される。ノードN2は、位置信号SEN2を供給し得る信号線SL2と接続される。ノードN3A及びN3Bは互いに接続され、誘起信号DRVを受け取り得る信号線SL3に接続される共通ノードN3として参照される。ノードN4は、グランドGNDと接続される信号線SL4と接続される。
図4に更に示すように、プリント回路基板の第2又は下側の金属層は、第1及び第2のセンサ部410A及び410Bと、誘起部430A及び430Bとを有してもよい(例えば、プリントされた同一平面上の誘導コイル)。誘起部430A及び430Bは、実施例においては、一体としてリードヘッド405の単一の誘起部とみなされてもよい。図4に示すように、第1のセンサ部410Aの一端はノードN1と接続され(すなわち、位置信号SEN1を供給する)、他端はノードN4と接続される(すなわち、グランドGNDと接続される)。第2のセンサ部410Bの一端はノードN2と接続され(すなわち、位置信号SEN2を供給する)、他端はノードN4と接続される(すなわち、グランドGNDと接続される)。誘起部430Aの一端はノードN3Aと接続され(すなわち、誘起信号DRVを受け取る)、他端はノードN4と接続される(すなわち、グランドGNDと接続される)。誘起部430Bの一端はノードN3Bと接続され(すなわち、誘起信号DRVを受け取る)、他端はノードN4と接続される(すなわち、グランドGNDと接続される)。リードヘッド405の動作とスケールパターン470は、図5Aに関連して以下でより詳しく説明する。
図4に示すように、スケールパターン470は、第1のスケール要素領域のそれぞれに導電性プレート領域P1〜P3を有し、かつ、第2のスケール要素領域のそれぞれに切欠き領域R1〜R3を有する。以下で図5Aに関連してより詳細に説明するように、切欠き領域R1〜R3の1つがセンサ部410Aの下で正中する位置となるようにリードヘッド405が動く場合、各切欠き領域は位置信号SEN1に影響を及ぼす。同様に、切欠き領域R1〜R3の1つがセンサ部410Bの下で正中する位置となるようにリードヘッドが動く場合、各切欠き領域は位置信号SEN2に影響を及ぼす。以下で図5Aに関連してより詳細に設明するように、位置信号SEN1及びSEN2の間の差異を、リードヘッド405に対するスケールパターン470の位置の決定に用いてもよい。この差異は、コモンモードエラーに対する改善された線形性とロバスト性を提供し得る。
当然のことながら、図4の例は、簡略化のため、リードヘッド信号部410がスケール全長に沿ってP/2だけ離れて設けられた2つのセンサ部410A及び410Bを有するものとして示しているが、他の態様においては、異なる数(例えば、1、3、4など)のセンサ部が含まれてもよい。例えば、他の構成では、リードヘッドの信号部がスケール全長に沿ってP/4ずつ離れて設けられた4つのセンサ部(例えば、A、B、A’及びB’で示される出力信号用)を有してもよい。以下で図6A〜6C及び7A〜7Cについてより詳しく説明するように、ある信号処理技術によれば、このような構成例では、インクリメンタル位置信号はある数式(例えば、tan−1((A−A’)/(B−B’)))で決定できてもよく、アブソリュート位置信号は他の数式(例えば、A+B+A’+B’)で決定できてもよい。
図5A及び5Bは、リードヘッドの変形例の種々の動作原理を示す模式図である。図5Aは、図4のリードヘッド405の動作原理の具体例であるリードヘッド505Aの種々の動作原理を示す模式図である。図5Aに示すように、ある態様においては、リードヘッド505Aは、第1及び第2のセンサ部510A及び510Bと、誘起部530A及び530Bとを有してもよい。第1及び第2のセンサ部510A及び510Bは、信号部510の一部として含まれ、誘起部530A及び530Bは、リードヘッド505Aの誘起部530の一部として含まれてもよい。ある具体的態様の例においては、第1及び第2のセンサ部510A及び510Bと誘起部530A及び530Bとは、全てプリント回路基板(例えば、図1のスライダアセンブリ120のプリント回路基板162)上にプリントされたプレーナ型スパイラルコイルにより構成されてもよい。種々の態様においては、センサ部及び誘起部はプリント回路基板の同じ又は異なる金属層に形成されてもよい。例えば、2つの金属層を有するプリント回路基板では、センサ部及び誘起部が全て同じ金属層に(図4の構成に示されるように)形成されてもよい。他の例のように、4つの金属層を有するプリント回路基板では、センサ部及び誘起部は異なる金属層に形成されてもよい。具体的な態様例においては、複数のスケール要素570Eを有するスケールパターン570は、導電性バルク材料(例えば、アルミニウム)により形成されてもよい。
具体的な態様例においては、誘起部530A及び530Bは、選択された波形パターン(例えば、正弦波、パルス共振回路による疑似正弦波)で(例えば、ノードN3の誘起信号DRVによって)駆動されてもよい。誘起部530A及び530Bの駆動で、センサ部510A及び510Bのそれぞれで電圧が誘導されてもよい。具体的な態様例においては、スケール要素570Eでの渦電流は、スケール要素570Eの線形位置に依存して、それぞれ誘起部530A及び530Bと第1及び第2のセンサ部510A及び510Bとの誘導結合に影響してもよい。よって、第1及び第2のセンサ部510A及び510Bは、ある態様においては、可変インダクタンス要素としてみなしてもよく、そのインダクタンスはスケール要素570Eの位置に依存する。
図2〜4について上述したように、スケールパターン570は、測定軸方向MAに沿って交互に入れ替わる、第1及び第2タイプのスケール要素570E(例えば、プレート領域及び切欠き領域)を有してもよい。ここでの図示及び説明を簡略化する目的のため、図5Aでは、単一のスケール要素570Eのみが示されている(例えば、第1及び第2のセンサ部510A及び510B及び誘起部530A及び530Bに最も近いプレート領域又は切欠き領域のいずれかを表示している)。
具体的例示のように、スケール要素570Eが誘起部530A及び第1のセンサ部510Aと並んだ場合、その誘導結合に影響する。反対に、スケール要素570Eが誘起部530B及び第2のセンサ部510Bと並んだ場合、その誘導結合に影響する。それに応じて、誘導結合への影響は、位置信号SEN1及びSEN2のそれぞれの大きさに影響する。このように、位置信号SEN1及びSEN2(ノードN1及びN2で測定されるように)の差異は、スケール要素570Eの位置及び対応するスケールパターン570を示しうる。当然のことながら、このような渦電流リードヘッドを用いた構成の具体的利点は、位置検出装置が切削油、水、その他の流体、粉塵、強磁性粒子その他の汚染物質に対して概ね反応しなくなることである。更に、開示された構成は、位置検出装置として用い得る他のセンサ構成よりも、使用電力が少なく、かつ低価格とすることができる。
ある態様においては、誘起部530A及び530Bは、互いに鏡像関係で、共通電流源(例えば、ノードN3での誘起信号DRVからの)及び共通グランド(例えば、ノードN4)を共有する、隣接した同一平面上のコイルより構成される。このような態様では、電流は誘起部530A及び530Bで反対方向(すなわち、それぞれで反時計回り及び時計回り)に流れるので、全体のインダクタンスは最大となる。また、互いに鏡像関係となるように誘起部530A及び530Bを作製することで、位置信号SEN1及びSEN2が相対的に対称になることを保証するのに役立つ。また、抵抗を最小化し、かつ、これに対応して要求される駆動電力量を最小化するために、誘起部530A及び530Bはプリント回路基板の最厚の金属層に形成されてもよい。ある態様では、誘起部530A及び530Bは、動作中にスケールパターン570に最も近づく金属層に形成されてもよい。
種々の態様においては、生じ得る様々な不均衡に対応するため、スケールパターン570の幅はリードヘッド505Aの幅よりもやや大きくなるように形成されてもよい。更に、スケール要素570Eのそれぞれの長さは、応答信号(位置信号SEN1及びSEN2間の相違で決まるような)の範囲と線形性を最大化するために、リードヘッド505Aの全長のほぼ半分としてもよい。
図5Aに示す態様が、分離した信号を供給する第1及び第2のセンサ部510A及び510Bを示している一方で、当然のことながら、変形例においては、第1及び第2のセンサ部510A及び510Bは、一出力の単一コイルに統合されてもよいし、それぞれが分離した信号を出力する追加のセンサ部が含まれてもよい(例えば、4センサ部構成)。以下で図5Bについてより詳細に説明するように、他の変形例においては、単一の導電回路が誘起部及びセンサ部の両方の機能を担ってもよく、このセンサ部の複素インピーダンスの変化が位置信号を供給してもよい。
図5Bは、単一の導電回路が誘起部及びセンサ部の両方の機能を担うリードヘッド505Bの種々の動作原理を示す模式図である。種々の態様においては、リードヘッドは1以上のこのような導電回路(例えば、P/4ずつ離れた4つの導電回路)を有してもよい。図5Aと同様に、ここでの図示及び説明を簡略化する目的のため、単一のスケール要素570Eのみが示されている(例えば、単一の導電回路のみを有するもとして示されるリードヘッド505Bに最も近いプレート領域又は切欠き領域のいずれかを表示している)。 よって、図5Bに示すように、かつ、「J. Lefebvre, C. Mandache and J. Letarte, "Pulsed eddy current empirical modeling", Advances in Signal Processing for Non Destructive Evaluation of Materials, Quebec City, Canada, 2006」でより詳細に説明されるように、リードヘッド505Bとターゲットであるスケール要素570Eは、単純な2パート回路として具現化されてもよい。説明されるように、渦電流センサのインピーダンスに影響する主要な変数は、物理的寸法やセンサコイルの構成、駆動周波数(ω)、ターゲットの導電性(σ)、ターゲットの透磁率(μ)、ターゲットの異常、ターゲットに対するセンサのギャップと配置である。
図5Bに示すように、左側のリードヘッド505Bの図示した回路は、誘起部及びセンサ部の両方として機能し、インダクタンスL、抵抗Rを有し、電圧源V(t)により駆動される。右側のスケール要素570Eは、ターゲット回路として示されており、実効インダクタンスL及び抵抗Rを有する。スケール要素570Eの実効的なターゲット値は、σ、μ、ωとシステム構成に依存する。2つの回路の結合は、センサ−ターゲットの近接に依存し、かつ、相互インダクタンスMが反映される。相互インダクタンスMは、以下の式で表される。
Figure 0006602566
値kは、以下の式で表される。
Figure 0006602566
値kは、0≦k≦1であり、ギャップが減少するにつれて増加する。スケール要素570Eとの結合によるリードヘッド505Bの複素インピーダンスの変化は、スケール要素570E及び対応するスケールパターン570に対するリードヘッド505Bの位置を決定するために用い得る、対応する位置信号を与えてもよい。
図6A〜6Cは、それぞれ図3A〜3Cのスケールパターンの組み合わせに用いられるリードヘッドからの出力信号を示す図である。図7A〜7Cは、結果として生じたアブソリュート位置信号を示す図である。図6A〜6Cの出力信号の特性をよりよく示すため、図3A〜3Cのスケールパターンの拡大版に対する信号を示している。より具体的には、図3A〜3Cについて、上述と同じ特性に応じてスケールパターンが連続し、それぞれが第1及び第2のスケール要素領域FZ及びSZを有するスケール波長Pを50個分覆うスケールパターンのバージョンが示されている。 具体的例示のように、このようなスケールパターンを利用する位置検出装置は、アブソリュート信号範囲が広がる50スケール波長の最大測定範囲を有するものとして定義されてもよい。当然のことながら、他の態様においては、スケールパターンと対応する最大測定範囲は、スケール波長数よりも大きくても小さくてもよい。
他の態様においては、図6A〜6Cの出力信号はリードヘッドの信号部の1つのセンサ部の出力を代表するものであってもよい。図4について上述したように、リードヘッドの信号部は、渦電流によって変化する位置信号を出力する1以上のセンサ部を有してもよい。ある具体的例示のように、リードヘッドの信号部がスケール全長に沿ってP/4ずつ離れて設けられた4つのセンサ部(例えば、A、B、A’及びB’で示される出力信号用)を有してもよい。これに対応して、図6A〜6Cの信号は1つのセンサ部からの3つの出力信号の1つを示してもよい。
ある信号処理技術によれば、このような構成例では、インクリメンタル位置信号はある数式(例えば、tan−1((A−A’)/(B−B’))で決定できてもよく、アブソリュート位置信号は他の数式(例えば、A+B+A’+B’)で決定できてもよい。当然のことながら、このような数式は、いかなる信号処理の組み合わせ及び物理的回路の組み合わせ(例えば、信号の和であるアブソリュート位置信号は、信号処理及び/信号線の物理的回路の組み合わせから決定されてもよい)によって組み込まれてもよい。
図6Aに、リードヘッド出力信号600Aを示し、図7Aに図3Aのスケールパターン370Aに対応する対応アブソリュート位置信号700Aを示す。図3Aについて上述したように、スケールパターン370Aでは、切欠き領域R1A〜R8Aのそれぞれの切欠き深さは、図示した最初の切欠き領域R1から最後の切欠き領域R8に向かって、線形関数に従って増加する。一方、導電性プレート領域P1A〜P9Aは同じままで維持される。図6Aに示すように、本構成は、ギャップの増大に対するリードヘッド信号の非線形応答に依存して、上方の信号ピーク(例えば、各導電性プレート領域の上方で正中しているリードヘッドセンサ部に対応するもの)は概ね水平直線に沿い、下方の信号ピーク(例えば、各切欠き領域の上方で正中しているリードヘッドセンサ部に対応するもの)は概ね曲線に沿う、リードヘッド信号部からの出力信号600A(例えば、リードヘッド信号部のセンサ部からのもの)になる。また、図7Aに示すように、結果として得られたアブソリュート位置信号700Aは、スケールパターン370Aの端部近傍でなだらかになるスロープ状に曲がり、それに応じて、スケールパターン370Aの端部近傍でのアブソリュート位置を正確に決定することが難しくなる。
図6Bに、リードヘッド出力信号600Bを示し、図7Bに図3Bのスケールパターン370Bに対応する対応アブソリュート位置信号700Bを示す。図3Bについて上述したように、スケールパターン370Bでは、切欠き領域R1B〜R8Bのそれぞれの切欠き深さは、図示した最初の切欠き領域R1から最後の切欠き領域R8に向かって、曲線関数に従って増加する。一方、導電性プレート領域P1B〜P9Bは同じままで維持される。図6Bに示すように、本構成は、ギャップの増大に対するリードヘッド信号の非線形反応答に依存して、上方の信号ピーク(例えば、各導電性プレート領域の上方で正中しているリードヘッドセンサ部に対応するもの)は概ね水平直線に沿い、下方の信号ピーク(例えば、各切欠き領域の上方で正中しているリードヘッドセンサ部に対応するもの)は概ね下方に傾いた直線に沿う、リードヘッド信号部からの出力信号600Bになる。また、図7B(信号特性をよりよく示すために、X軸が3つのスケール波長Pの分までに減少されている)に示すように、結果として得られたアブソリュート位置信号700Bは、同様に下方に傾斜するものの、スケール波長Pの若干の周期性を有する。当然のことながら、アブソリュート位置信号700Bは、アブソリュート位置信号700Aと比べて、相対的に一貫性がある(すなわち、信号700B全体として、スケールパターン370Bの端部近傍で著しく減少するスロープを有していない)。
図6Cに、リードヘッド出力信号600Cを示し、図7Cに図3Cのスケールパターン370Cに対応する対応アブソリュート位置信号700Cを示す。図3Cについて上述したように、スケールパターン370Cでは、切欠き領域R1C〜R8Cのそれぞれの切欠き深さは、図示した最初の切欠き領域R1から最後の切欠き領域R8にかけて曲線関数に従って増加し、導電性プレート領域P1C〜P9Cの高さは、図示した最初の導電性プレート領域P1Cから最後の導電性プレート領域P9Cに向かって、ほぼ線形関数に従って、又は必要に応じて非線形関数に従って減少する。図6Cに示すように、本構成は、ギャップの増大に対するリードヘッド信号の非線形反応答に依存して、上方の信号ピーク(例えば、各導電性プレート領域の上方で正中しているリードヘッドセンサ部に対応するもの)は概ね下方に傾く直線に沿い、下方の信号ピーク(例えば、例えば、各切欠き領域の上方で正中しているリードヘッドセンサ部に対応するもの)も概ね同様に下方に傾いた直線に沿い、これによりピーク間の差異が測定範囲内で相対的に一定の大きさであるリードヘッド信号部からの出力信号600Cになる。また、図7Cに示すように、結果として得られるアブソリュート位置信号700Cは、概ね線形であり、かつ、下方に傾いている。
当然のことながら、インクリメンタル及びアブソリュート位置信号の両者を決定できる信号を提供するという単一のリードヘッド信号部の能力は、ここで説明する位置検出装置の更なる有利点である。より具体的には、インクリメンタル及びアブソリュート位置信号を決定するために、ここで述べるような構成は、第2のスケールトラック、及び、これに対応した第2のスケールトラックを読み取るための第2のリードヘッド信号部を必要としない。また、このような構成は、所要電力が低くてもよい(例えば、第2のリードヘッド信号部への電力が必要ではないため)。更に、種々の態様においては、第2の同一直線上のスケールトラックを要しないので、より狭いスケールが利用されてもよい。
当然のことながら、上述の変形例のように、他のリードヘッド、回路、信号処理をここで開示された種々のスケールに用いてもよい。例えば、ここで開示された原理に従ってインクリメンタル及びアブソリュート信号を提供するために、先に組み込んだ参照特許‘494及び389’に開示された種々のリードヘッドを、ここで開示された種々のスケール構成に連動させるように適応させてもよい。したがって、当然のことながら、上述の回路及び信号処理は、例示に過ぎず、これに限定されるものではない。
図8A〜8Gは、それぞれ図3A〜図3Cについて上述したもの以外のスケールパターン870A〜870Gの変形例の図である。スケールパターン870A〜870Gのそれぞれは、第1スケール要素領域FZ及び第2スケール要素領域SZのそれぞれを有する。図8Aに、スケールパターン870Aの側面図が示されている。スケールパターン870Aでは、第1スケール要素領域FZのそれぞれは、スケールパターン870Aの全体にわたって相対的に同じ高さの各導電性プレート領域を有する。第2スケール要素領域SZのそれぞれは、各切欠き領域を有する。各切欠き領域の切欠き深さは、図3Aの構成と同様に、線形関数に従って、スケールパターンに沿って左側から右側に向けて増加する。
図8Bに、スケールパターン870Bの側面図が示されている。スケールパターン870Bでは、第1スケール要素領域FZのそれぞれは、スケールパターン870Bの全体にわたって相対的に底部までの切欠き深さが同じ各切欠き領域を有する。第2スケール要素領域SZのそれぞれは、各導電性プレート領域を有する。導電性プレート領域のそれぞれの高さは、線形関数に従って、スケールパターンに沿って左側から右側に向けて増加する。当然のことながら、上述したある他のスケールパターンは、変化する第2タイプのスケール要素として非金属板状特性部(例えば、切欠き領域)を有する一方で、スケールパターン870Bは、第2タイプのスケール要素がプレート高さが変化する金属板状特性部であるのに対して第1のスケール要素が一定で維持される非金属板状特性部を示す。
図8C〜図8Gは、それぞれスケールパターン870C〜870Gの平面図である。スケールパターン870C〜870Gのそれぞれは、センサ/スケールトラック幅W1C〜W1Gと関連して示されている。スケールパターン870C〜870Gのそれぞれでは、態様に依存して、暗い領域は変化しているプレート又は切欠き領域を示している。例えば、種々の態様においては、暗い領域は、金属ブロックの放電加工、PCBのエッチング、薄い金属シートプレス加工などで形成される穴を示していてもよい。他の例のように、種々の態様において、暗い領域は、他の部位が非導電性になるようにPCB上に形成された、又は、くぼみとなるような残し加工、プレス加工、若しくはエッチングなどによる、導電性プレート領域を示してもよい。
図8Cに示すように、スケールパターン870Cでは、スケール要素領域FZ及びSZの両方で変化するプレート及び/又は切欠き領域が示され、同時に、変化する領域はスケールパターンに沿って左側から右側に向けて振幅が増加する正弦波状関数に従って示される。図8D及び8Eに示すように、スケールパターン870D及び870Eでは、変化するプレート及び/又は切欠き領域は各第2のスケール要素領域SZ内に示され、第1スケール要素領域FZは、一定で維持される。スケールパターン870Dでは、変化する領域は、いくつかの同様の大きさで水平方向を長手方向とする長円形によって示され、形状の個数はスケールパターンに沿って左側から右側に向けて増加する。スケールパターン870Eでは、変化する領域は、スケールパターンに沿って左側から右側に向けて高さが増加する、垂直方向を長手方向とする長円形で示される。
図8Fに示すように、スケールパターン870Fでは、スケール要素領域FZ及びSZの両方で変化するプレート及び/又は切欠き領域が示され、変化する領域はスケールパターンに沿って左側から右側に向けて振幅が増加する正弦波状関数に従って示される。図8Gに示すように、スケールパターン870Gでは、各第1のスケール要素領域FZは同じであり、各第2のスケール要素領域SZは、各導電性プレート領域を有する。図示するように、各導電性プレート領域の面積は一定だが、渦電流に対する実効抵抗が細分割数に基づき変化するように、細分割してもよい。当然のことながら、このような構成では、各プレート導電性領域の追加の再分割は一般的に抵抗を増加させ、渦電流とこれにともなう信号の貢献(すなわち、減算)を減少させる。
図9A〜9Bは、他に、既述した図3C〜3C及び/又は8Aもしくは8Bの類似した線形スケールと同様に機能するものとして理解できるロータリー又は角度スケールパターンの実施の形態を示す図である。よって、ここでは、顕著な差異点及び/又は主要な要素のみを説明する。スケールパターン970A及び970Bのそれぞれは、第1のスケール要素領域FZ及び第2のスケール要素SZを有する。本実施の形態では、領域は角度領域であり、角度周期又は波長Pに従って配置される。図9Aに示すように、スケールパターン970Aの側面図が示されており、スケールパターン970Aを有するスケールは回転測定軸方向MAを有し、中心回転軸RAに対して回転又は変位する。スケールパターン970Aでは、第1のスケール要素領域FZのそれぞれは、スケールパターン970Aの全体にわたって同じ高さ(半径)の各導電性プレート領域を有する。第2のスケール要素領域SZのそれぞれは、半径方向の各切欠き領域を有する。各切欠き領域の半径方向の切欠き深さは、図3Aの構成と類似して、第2のスケール要素領域SZ1から始まって第2のスケール要素領域SZ8で終わるように、スケールパターンの時計回り方向に増加する。必要であれば、SZ8及びSZ1の間のステップ変化で生じる不明確性を解決するために、(例えば)SZ8、FZ1及びSZ1の間の信号の遷移のトラックを維持するために信号処理が用いられてもよい。上述と類似の(又は、先に挙げた‘389特許の図18及び19に関連する開示事項と類似の)リードヘッドは、先に述べた原理と類似の態様でインクリメンタル及びアブソリュート信号を検出するために、スケールパターン970Aの外周に沿って、又は、外周の周りに配置されてもよい。
図9Bに示すように、スケールパターン970Bの等角図が示されており、パターン970Bを有するスケールは回転測定軸方向MAを有し、中心回転軸RAに対して回転又は変位する。スケールパターン970Bは、センサ/スケールトラック幅W1Rと関連して示されている。スケールパターン970Bでは、第1のスケール要素領域FZのそれぞれは、同じ軸高の各導電性プレート領域(例えば、導電性プレート領域は回転軸RAに対して同一平面上で垂直である)を有する。第2のスケール要素領域SZのそれぞれは、軸方向の各切欠き領域を有する。各切欠き領域の軸方向の切欠き深さは、図9Aの構成と類似して、第2のスケール要素領域SZ1などから始まるように、スケールパターンの時計回り方向に増加するものとして示されている。必要であれば、隣接する切欠き間のステップ変化で生じる不明確性を解決するために、導電性プレート領域P1とその隣接切欠き近傍での信号の遷移のトラックを維持するために信号処理が用いられてもよい。上述と類似の(又は、先に挙げた‘389特許の図16及び17に関連する開示事項と類似の)プレーナ型リードヘッドは、先に述べた原理と類似の態様でインクリメンタル及びアブソリュート信号を検出するために、スケールパターン970Aの一部に、トラック幅W1R内でスケールパターン970Bと軸方向で面するように配置されてもよい。
図10は、アブソリュート位置を決定するためにスケール1002と連携して利用される2つのスケールパターン1070A及び1070Bを示す図である。図10に示すように、スケールパターン1070Aは、3つのスケールパターン部SPP、SPP’及びSPP’’を有する。種々の態様においては、スケールパターン部SPP、SPP’及びSPP’’のそれぞれは、既述したスケールパターン(例えば、図3Aのスケールパターン370A)のいずれかと同様でもよい。スケールパターン部SPP、SPP’及びSPP’’のそれぞれは、第1のスケール要素領域FZ及び第2のスケール要素領域SZのそれぞれを有する。
第1のスケール要素領域FZのそれぞれは、スケールパターン1070Aの全体にわたって同じ高さの各導電性プレート領域を有する。より具体的には、スケールパターン部SPP、SPP’及びSPP’’の第1のスケール要素領域FZは、導電性プレート領域P1〜P8、P1’〜P8’及びP1’’〜P8’’をそれぞれ有する。第2のスケール要素領域SZのそれぞれは、各切欠き領域を有する。より具体的には、スケールパターン部SPP、SPP’及びSPP’’の第2のスケール要素領域SZは、切欠き領域R1〜R8、R1’〜R8’及びR1’’〜R8’’をそれぞれ有する。各切欠き領域の切欠き深さは、図3Aの構成と同様に、各スケールパターン部SPP、SPP’及びSPP’’に沿って左から右に向かって増加する。
スケールパターン1070Aは、最大測定範囲MMR上に広がるように示されている。スケールパターン部SPP、SPP’及びSPP’’のぞれぞれは、各最大信号範囲MMR上に広がるように示されている。より具体的には、スケールパターン部SPPは、最大測定範囲MMRの第1の部分に広がる第1のアブソリュート信号範囲ASR上に広がっている。これに対応して、スケールパターン部SPP’は最大測定範囲MMRの第2の部分に広がる第2のアブソリュート信号範囲ASR’上に広がり、スケールパターン部SPP’’は最大測定範囲MMRの第3の部分に広がる第3のアブソリュート信号範囲ASR’’上に広がっている。
また、種々の態様においては、スケールパターン1070Bは、既述したスケールパターン(例えば、図3Aのスケールパターン370A)のいずれかと同様でもよい。スケールパターン1070Bは、第1のスケール要素領域FZ及び第2のスケール要素領域S Zを有し、第1のスケール要素領域FZのそれぞれはスケールパターン1070Bの全体にわたって同じ高さの各導電性プレート領域P1M〜P9Mを有し、第2のスケール要素領域SZのそれぞれは、各切欠き領域R1M〜R8Mを有する。切欠き領域R1M〜R8Mのそれぞれの切欠き深さは、図3Aの構成と同様に、線形関数に従ってスケールパターンの左から右に向かって増加するものとして示される。
図10の実施の形態では、スケールパターン1070Bは、アブソリュート信号範囲ASR、ASR’及びASR’’の中で位置信号と関連するものを決定できるアブソリュート信号範囲認識部として機能してもよい。このように、スケールパターン1070Bは、本質的に「粗い」スケールパターンとして機能でき、スケールパターン1070Aのスケールパターン部SPP、SPP’及びSPP’’は、それぞれ「中間の」又は「細かい」スケールパターンとして機能できる。変形例においては、第2のスケールパターン1070Bよりも、アブソリュート信号範囲認識部として他のメカニズムを用いてもよい(例えば、2値コード素子をスケール1002に適用してもよい)。
ある実施例においては、アブソリュート信号範囲認識部用の2値コード素子(又は、孤立したスケールパターン)は、他のスケール素子と同様の技術を用いて作製されてもよい。例えば、2値コードは、複数のリードヘッドが読み取りに用いられるスケールの2値コード列に配置される、導電性プレート及び切欠き領域のような2つの深さのスケール要素の列を用いて形成されてもよい。他の例のように、更に高次のコード(例えば、3+変化 )を適用するために、更なる導電性プレート領域の高さ及び切欠き領域の深さの変化を利用してもよい。
当然のことながら、これらの例は、例に過ぎず、これに限られない。上述した他のコンポーネントは、この開示に基づいて当業者により理解されるように、他の配置としてもよいし、上述とは異なる他の形状をとってもよい。例えば、上述のスケールパターンのいくつかが切欠き領域を有する一方で、他のタイプの非金属板状特性部(例えば、非導電性領域)を代わりに用いてもよい。一般に、非金属板状特性部は、変化し得る特性として、非導電性領域の広さ、切欠き領域の広さ、切欠き領域の切欠き深さなどを含んでもよい。金属板状特性部には、変化し得る特性として、プレート領域の広さ、プレート高さなどが含まれてもよい。
他の例のように、あるスケールパターンはバルク材料(例えば、アルミニウム)を漸進的に深くなるように切削することで形成できる一方、 他の態様では、他の作製技術を用いてもよい。より具体的には、種々の態様において、あるスケールパターンは、少なくともプリント回路基板、除去された領域を有するパターンが形成された薄い金属シート、薄い金属シートを変形させることで形成された切欠きを有する成形された金属シート、金属部材を除去することで形成された切欠きを有する金属部材などを有するスケール部に形成されてもよい。
上述の種々の実施の形態は、更なる実施の形態を提供するために組み合わせることができる。この明細書において参照される全ての米国特許及び米国特許出願は、その全体が参照により本明細書に取り込まれる。さらなる実施の形態を提供するために種々の特許及び出願を取り入れるのに必要であれば、実施の形態の態様は変更することが可能である。
上記の詳細な説明に照らして、これらの及び他の変更を実施の形態に行うことができる。一般に、以下のクレームにおいて使用される用語は、クレーム及び明細書に開示された特定の実施の形態に制限されると解釈されるべきではなく、そのようなクレームの権利範囲と等価な全範囲にわたってとりうるすべての実施の形態を包含するものとして解釈されるべきである。

Claims (19)

  1. 第1の部材の第2の部材に対する位置を測定軸に沿って測定するために利用可能な位置検出装置であって、
    前記測定軸方向に延在するスケールパターンを有する部分を含むスケールと、
    前記スケールに対して前記測定軸方向に摺動され、前記スケールパターンに渦電流を誘起する誘起部と前記渦電流に依存して変化する位置信号を出力する信号部と、を有するリードヘッドと、を備え、
    前記スケールパターンは、
    前記測定軸方向に周期的に配置される複数の第1のスケール要素領域と、
    前記測定軸方向に周期的に配置され、かつ、前記複数の第1のスケール要素領域と交互に配置される複数の第2のスケール要素領域と、を備え、
    前記第1のスケール要素領域は、第1タイプのスケール要素を有し、
    前記第2のスケール要素領域は、スケール波長Pに従って前記第1及び第2のスケール要素領域が前記測定軸方向に周期的に繰り返すように配置され、
    前記第2のスケール要素領域は、アブソリュート信号範囲内のそれぞれ異なる第2のスケール要素領域でそれぞれ異なる渦電流応答を提供するために、前記スケールパターンに沿って前記アブソリュート信号範囲内で変化する特性を有する第2タイプのスケール要素を有し、
    前記第1のスケール要素領域の前記第1タイプのスケール要素は、前記アブソリュート信号範囲内のそれぞれ異なる前記第1のスケール要素領域でそれぞれ異なる渦電流応答を提供するために、前記スケールパターンに沿って前記アブソリュート信号範囲内で変化する特性を有し、
    前記信号部は、前記渦電流のそれぞれに応答して、前記アブソリュート信号範囲内でのそれぞれの位置を一意的に示すために、前記アブソリュート信号範囲内で変化する信号特性を有するアブソリュート位置信号を出力する、
    位置検出装置。
  2. 前記アブソリュート信号範囲は、少なくとも前記スケール波長Pの10倍である、
    請求項1に記載の位置検出装置。
  3. 前記第1タイプのスケール要素は金属板状特性部を有し、前記第2タイプのスケール要素は非金属板状特性部を有する、
    請求項1に記載の位置検出装置。
  4. 前記金属板状特性部は、前記第1のスケール要素領域のそれぞれで同じである、
    請求項3に記載の位置検出装置。
  5. 前記金属板状特性部は導電性プレート領域を有し、前記非金属板状特性部は少なくとも1つの非導電性領域又は導電体内の切欠き領域を有する、
    請求項3に記載の位置検出装置。
  6. 前記スケールパターンに沿った前記アブソリュート信号範囲内で変化する前記第2タイプのスケール要素の特性は、a)前記非導電性領域の広さ、b)前記切欠き領域の広さ、又は、c)前記切欠き領域の切欠き深さ、の少なくとも1つを含む、
    請求項5に記載の位置検出装置。
  7. 前記アブソリュート信号範囲内で変化する少なくとも1つの特性は、前記アブソリュート信号範囲内の線形関数として変化する、
    請求項6に記載の位置検出装置。
  8. 前記第2タイプのスケール要素は導電性領域を有し、前記非金属板状特性部は前記導電性領域に形成される、
    請求項3に記載の位置検出装置。
  9. 前記スケールパターンは、プリント回路基板、除去された領域を有するパターンが形成された薄い金属シート、変形されることで形成された切欠きを有する成形された薄い金属シート、又は、一部を除去することにより切欠きが形成された金属部材の少なくとも1つを有するスケール部に形成される、
    請求項8に記載の位置検出装置。
  10. 当該位置検出装置は最大測定範囲を有し、前記アブソリュート信号範囲は前記最大測定範囲に広がる、
    請求項1に記載の位置検出装置。
  11. 当該位置検出装置は、最大測定範囲を有し、前記アブソリュート信号範囲は、前記最大測定範囲の第1の部分に広がる第1のアブソリュート信号範囲で示されてもよく、第2のアブソリュート信号範囲は、前記第1のアブソリュート信号範囲と同様に、前記最大測定範囲の第2の部分に広がり、
    前記スケールは、前記最大測定範囲上でのアブソリュート位置を決定するアブソリュート信号範囲認識部を更に備える、
    請求項1に記載の位置検出装置。
  12. 前記アブソリュート信号範囲認識部は、第2のスケールパターン又は前記スケールに沿った2値コード素子の少なくとも1つを有する、
    請求項11に記載の位置検出装置。
  13. 前記第1タイプのスケール要素は前記第1のスケール要素領域のそれぞれで同じ非金属板状特性部を有し、前記第2タイプのスケール要素は金属板状特性部を有し、前記スケールパターンに沿って前記アブソリュート信号範囲内で変化する前記第2タイプのスケール要素の特性は、a)プレートの広さ、又は、b)プレートの高さ、の少なくとも1つを含む、
    請求項1に記載の位置検出装置。
  14. 前記信号部及び前記スケールパターンは、前記信号特性が前記アブソリュート信号範囲に渡り線形に変化するように構成される、
    請求項1に記載の位置検出装置。
  15. 前記信号部及び前記スケールパターンは、少なくとも1つの出力信号がスケール波長Pの周期性を有するように構成され、
    前記信号特性は、周期的な前記出力信号の振幅又はDCオフセットを含む、
    請求項1に記載の位置検出装置。
  16. 前記第1のスケール要素領域のそれぞれの面積は、前記第2のスケール要素領域のそれぞれの面積と略同じである、
    請求項1に記載の位置検出装置。
  17. 第1の部材の第2の部材に対する位置を測定軸に沿って測定するために利用可能な位置検出装置で用いられるスケールであって、
    前記測定軸方向に延在し、スケールパターンに渦電流を誘起する誘起部と前記渦電流に依存して変化する位置信号を出力する信号部と、を有する渦電流リードヘッドに応答するスケールパターンを備え、
    前記スケールパターンは、
    前記測定軸方向に周期的に配置される複数の第1のスケール要素領域と、
    前記測定軸方向に周期的に配置され、かつ、前記複数の第1のスケール要素領域と交互に配置される複数の第2のスケール要素領域と、を備え、
    前記第1のスケール要素領域は、第1タイプのスケール要素を有し、
    前記第2のスケール要素領域は、スケール波長Pに従って前記第1及び第2のスケール要素領域が前記測定軸方向に周期的に繰り返すように配置され、
    前記第2のスケール要素領域は、アブソリュート信号範囲内のそれぞれ異なる第2タイプのスケール要素領域でそれぞれ異なる渦電流応答を提供するために、前記スケールパターンに沿ってアブソリュート信号が変化する特性を有する第2タイプのスケール要素を有し、
    前記第1のスケール要素領域の前記第1タイプのスケール要素は、前記アブソリュート信号範囲内のそれぞれ異なる前記第1のスケール要素領域でそれぞれ異なる渦電流応答を提供するために、前記スケールパターンに沿って前記アブソリュート信号範囲内で変化する特性を有する、
    前記スケールパターンは、前記渦電流リードヘッドの前記信号部に、前記渦電流のそれぞれに応答して、前記アブソリュート信号範囲内でのそれぞれの位置を一意的に示すために、前記アブソリュート信号範囲内で変化する信号特性を有するアブソリュート位置信号を出力させるように構成される、
    スケール。
  18. 前記第1タイプのスケール要素は金属板状特性部を有し、前記第2タイプのスケール要素は非金属板状特性部を有する、
    請求項17に記載のスケール。
  19. 前記金属板状特性部は導電性プレート領域を有し、前記非金属板状特性部は、非導電性領域又は導電体内の切欠き領域を有し、前記スケールパターンに沿った前記アブソリュート信号範囲内で変化する前記第2タイプのスケール要素の特性は、a)前記非導電性領域の広さ、b)前記切欠き領域の広さ、又は、c)前記切欠き領域の切欠き深さ、の少なくとも1つを含む、
    請求項18に記載のスケール。
JP2015119651A 2014-06-12 2015-06-12 変化する切欠きに対して繰り返して配置されたプレートを有するアブソリュート型エンコーダスケール Active JP6602566B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/303,266 US9267819B2 (en) 2014-06-12 2014-06-12 Absolute position encoder scale having plates alternating with varying recesses
US14/303,266 2014-06-12

Publications (2)

Publication Number Publication Date
JP2016004041A JP2016004041A (ja) 2016-01-12
JP6602566B2 true JP6602566B2 (ja) 2019-11-06

Family

ID=54707002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119651A Active JP6602566B2 (ja) 2014-06-12 2015-06-12 変化する切欠きに対して繰り返して配置されたプレートを有するアブソリュート型エンコーダスケール

Country Status (4)

Country Link
US (1) US9267819B2 (ja)
JP (1) JP6602566B2 (ja)
CN (1) CN105300260B (ja)
DE (1) DE102015209288B4 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172561A2 (ko) * 2012-05-15 2013-11-21 한국표준과학연구원 절대 위치 측정 방법, 절대 위치 측정 장치, 및 스케일
US20150289590A1 (en) * 2014-04-09 2015-10-15 Nike, Inc. Footwear System With Removable Inserts
ITUB20154066A1 (it) * 2014-10-03 2017-04-01 Ers Soc A Responsabilita Limitata Encoder assoluto capacitivo.
US9612136B1 (en) 2015-09-30 2017-04-04 Mitutoyo Corporation Absolute position encoder including a redundant spatial phase signal
ES2701307T3 (es) * 2016-06-07 2019-02-21 Heidenhain Gmbh Dr Johannes Medida materializada así como dispositivo de medición de posición
US9958294B2 (en) * 2016-06-30 2018-05-01 Mitutoyo Corporation Absolute position encoder including scale with varying spatial characteristic and utilizing Fourier transform or other signal processing
US9772202B1 (en) * 2016-07-01 2017-09-26 Mitutoyo Corporation Absolute position encoder combining signals of two widely separated wavelengths
US10775199B2 (en) * 2016-08-24 2020-09-15 Mitutoyo Corporation Winding and scale configuration for inductive position encoder
US10520335B2 (en) * 2016-08-24 2019-12-31 Mitutoyo Corporation Winding configuration for inductive position encoder
US10612943B2 (en) * 2016-08-24 2020-04-07 Mitutoyo Corporation Winding and scale configuration for inductive position encoder
EP3299771B1 (en) 2016-09-22 2020-04-29 Sagentia Limited Inductive sensor arrangement
DE102017222676A1 (de) * 2016-12-29 2018-07-05 Robert Bosch Gmbh Wegsensor
GB2561606B (en) 2017-04-21 2021-01-13 Weatherford Tech Holdings Llc Downhole Valve Assembly
US10641842B2 (en) * 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
GB201713556D0 (en) * 2017-08-23 2017-10-04 Paragon Inspection Ltd Connector assembly evaluation tool and method of use
EP3531076B1 (en) * 2018-02-23 2021-07-14 Allegro MicroSystems, LLC Angle sensor using eddy currents
US10551217B2 (en) * 2018-06-29 2020-02-04 Mitutoyo Corporation Receiver line spacing in inductive position encoder
DE102018214600A1 (de) * 2018-08-29 2020-03-05 Robert Bosch Gmbh Verfahren zum Bereitstellen von Sensordaten eines Sensors sowie Sensorsystem
CN109827597A (zh) * 2019-03-08 2019-05-31 溱者(上海)智能科技有限公司 一种编码承载器件及位置编码器装置
US11181395B2 (en) 2020-03-23 2021-11-23 Mitutoyo Corporation Transmitter and receiver configuration for inductive position encoder
US11169008B2 (en) * 2020-03-23 2021-11-09 Mitutoyo Corporation Transmitter and receiver configuration for inductive position encoder
US11067414B1 (en) 2020-03-23 2021-07-20 Mitutoyo Corporation Transmitter and receiver configuration for inductive position encoder
US11713983B2 (en) 2021-06-30 2023-08-01 Mitutoyo Corporation Sensing winding configuration for inductive position encoder
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
JP2023060708A (ja) * 2021-10-18 2023-04-28 株式会社リコー 読取装置及び画像形成装置

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882482A (en) 1969-09-12 1975-05-06 Sperry Rand Corp Optical radiant energy encoding and correlating apparatus
US4109389A (en) 1976-03-08 1978-08-29 Cetec Corporation Shaft angle transducer
US4414754A (en) 1982-03-04 1983-11-15 The Laitram Corporation High resolution compass card position decoder
US4717874A (en) 1984-02-10 1988-01-05 Kabushiki Kaisha Sg Reluctance type linear position detection device
IE55855B1 (en) 1984-10-19 1991-01-30 Kollmorgen Ireland Ltd Position and speed sensors
JP2554465B2 (ja) 1985-08-09 1996-11-13 株式会社 エスジー アブソリユ−ト位置検出装置
JPH0665967B2 (ja) * 1985-08-27 1994-08-24 株式会社エスジー アブソリュート回転位置検出装置
JPH0518643Y2 (ja) * 1986-10-30 1993-05-18
US5055784A (en) 1987-12-07 1991-10-08 American Research Corporation Of Virginia Bridgeless system for directly measuring complex impedance of an eddy current probe
US5237391A (en) 1988-11-23 1993-08-17 The Boeing Company Multitrack multilevel sensing system
US4964727A (en) 1988-11-23 1990-10-23 The Boeing Company Multi-track analog optical sensing system and method
AT395071B (de) 1989-02-09 1992-09-10 Rieder & Schwaiger Sentop Inkrementales messsystem
JPH03103716A (ja) 1989-09-19 1991-04-30 Okuma Mach Works Ltd 位置検出装置
JPH0833307B2 (ja) 1989-09-28 1996-03-29 株式会社小松製作所 位置センサ軸
US5279044A (en) 1991-03-12 1994-01-18 U.S. Philips Corporation Measuring device for determining an absolute position of a movable element and scale graduation element suitable for use in such a measuring device
CA2068795A1 (en) 1991-08-23 1993-02-24 Samuel William Glass Iii Rotational position sensor
US5442166A (en) 1993-11-15 1995-08-15 Hughes Aircraft Company Linear absolute position sensor
US5541510A (en) 1995-04-06 1996-07-30 Kaman Instrumentation Corporation Multi-Parameter eddy current measuring system with parameter compensation technical field
EP0743508A2 (en) 1995-05-16 1996-11-20 Mitutoyo Corporation Induced current position transducer
FR2735225B1 (fr) 1995-06-12 1997-09-05 Motorola Semiconducteurs Capteur de position optoelectronique et systeme de compensation pour un tel capteur
CH690933A5 (fr) 1996-01-24 2001-02-28 Hans Ulrich Meyer Capteur inductif de déplacement.
US6002250A (en) 1996-05-13 1999-12-14 Mitutoyo Corporation Electronic linear scale using a self-contained, low-power inductive position transducer
US5973494A (en) 1996-05-13 1999-10-26 Mitutoyo Corporation Electronic caliper using a self-contained, low power inductive position transducer
US5939879A (en) * 1996-07-23 1999-08-17 Dynamics Research Corporation Magnetic encoder for sensing position and direction via a time and space modulated magnetic field
US5894678A (en) 1997-01-29 1999-04-20 Mitutoyo Corporation Electronic linear tape measure using a low power induced current position transducer
US5841274A (en) 1997-01-29 1998-11-24 Mitutoyo Corporation Induced current absolute position transducer using a code-track-type scale and read head
US5886519A (en) 1997-01-29 1999-03-23 Mitutoyo Corporation Multi-scale induced current absolute position transducer
US5965879A (en) 1997-05-07 1999-10-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for ultra-high-sensitivity, incremental and absolute optical encoding
US5998990A (en) 1997-08-25 1999-12-07 Mitutoyo Corporation Pitch-compensated induced current position transducer
JPH11223505A (ja) * 1997-12-03 1999-08-17 Mitsutoyo Corp 誘導型位置測定装置
US6384752B1 (en) * 1998-07-23 2002-05-07 Kabushiki Kaisha Yaskawa Denki Absolute encoder
US6157188A (en) 1998-08-31 2000-12-05 Mitutoyo Corporation Compact, long-range absolute position transducer with an extensible compact encoding
CH693188A5 (fr) 1999-03-11 2003-03-27 Csem Ct Suisse D Electronique Sa Capteur inductif optimisé.
US6271661B2 (en) 1999-03-16 2001-08-07 Mitutoyo Corporation Absolute position transducer having a non-binary code-track-type scale
US6335618B1 (en) 1999-10-05 2002-01-01 Mitutoyo Corporation Position transducer having position-dependent amplitude encoding applying first and second modulations
US6346807B1 (en) 1999-10-22 2002-02-12 Bently Nevada Corporation Digital eddy current proximity system: apparatus and method
EP1164358B1 (de) * 2000-06-16 2005-08-24 AMO Automatisierung Messtechnik Optik GmbH Induktives Längenmesssystem
US6642711B2 (en) 2001-01-24 2003-11-04 Texas Instruments Incorporated Digital inductive position sensor
CN100436847C (zh) 2001-11-22 2008-11-26 日本精工株式会社 带传感器的滚动轴承
KR20040102113A (ko) * 2002-04-18 2004-12-03 콘티넨탈 테베스 아게 운트 코. 오하게 국부적인 변위 및 회전을 검출하는 방법 및 장치
JP2004053589A (ja) * 2002-05-29 2004-02-19 Nsk Ltd 回転状態検出装置および転動装置
US6781694B2 (en) 2002-07-16 2004-08-24 Mitutoyo Corporation Two-dimensional scale structures and method usable in an absolute position transducer
US6867412B2 (en) 2002-11-12 2005-03-15 Mitutoyo Corporation Scale structures and methods usable in an absolute position transducer
US7239130B1 (en) 2006-07-24 2007-07-03 Mitutoyo Corporation Compact pitch-compensated inductive displacement transducer
EP1965177B1 (en) 2007-02-27 2019-10-02 Senstronic, S.A. Inductive presence or position sensor
US7973941B2 (en) 2007-07-24 2011-07-05 Mitutoyo Corporation Reference signal generating configuration for an interferometric miniature grating encoder readhead using fiber optic receiver channels
US20090091318A1 (en) 2007-09-11 2009-04-09 Benoit Lepage Phased scan eddy current array probe and a phased scanning method which provide complete and continuous coverage of a test surface without mechanical scanning
US7999536B2 (en) * 2007-10-22 2011-08-16 The Timken Company Absolute position magnetic encoder with binary and decimal output
US7530177B1 (en) 2007-11-08 2009-05-12 Mitutoyo Corporation Magnetic caliper with reference scale on edge
CN102301205B (zh) * 2009-01-27 2014-07-09 瑞尼斯豪公司 磁性编码器装置
GB0903961D0 (en) * 2009-01-27 2009-04-22 Renishaw Plc Magnetic encoder scale
US8222891B2 (en) * 2009-05-01 2012-07-17 Hewlett-Packard Development Company, L.P. Compensating for position errors in displacement transducers
US8309906B2 (en) 2010-06-10 2012-11-13 Mitutoyo Corporation Absolute optical encoder with long range intensity modulation on scale

Also Published As

Publication number Publication date
US20150362336A1 (en) 2015-12-17
CN105300260B (zh) 2018-10-09
DE102015209288A1 (de) 2015-12-17
DE102015209288B4 (de) 2022-10-27
JP2016004041A (ja) 2016-01-12
US9267819B2 (en) 2016-02-23
CN105300260A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6602566B2 (ja) 変化する切欠きに対して繰り返して配置されたプレートを有するアブソリュート型エンコーダスケール
JP6727721B2 (ja) 冗長空間位相信号を含むアブソリュート型エンコーダ
JP6967376B2 (ja) エンコーダ、測定方法、及び測定システム
JP3169212B2 (ja) 誘導型絶対位置測定装置
JP6537931B2 (ja) 積層構造中のレイヤを有するアブソリュート型位置エンコーダ用スケール
US5841274A (en) Induced current absolute position transducer using a code-track-type scale and read head
US9417094B2 (en) Displacement sensor for force indicating caliper
JP2020003486A (ja) 電磁誘導式エンコーダにおける受信線間隔
JP7300324B2 (ja) 電磁誘導式エンコーダのためのスケール構成
JP2018031777A (ja) 電磁誘導式エンコーダの巻線構成
JP6791741B2 (ja) 電子式アブソリュート型エンコーダ
JPH09329407A (ja) 電子ノギス
JPH09325002A (ja) 電子スケール
US10422666B2 (en) Electronic position encoder and method for reducing short range errors
US9772202B1 (en) Absolute position encoder combining signals of two widely separated wavelengths
CN109959399B (zh) 用于感应式位置编码器的绕组和刻度构造
TWI432705B (zh) 具有傾斜感測器之位置檢測器
US7576532B2 (en) Motion transducer for motion related to the direction of the axis of an eddy-current displacement sensor
WO2016171630A1 (en) Incremental magnetic motion or rotation encoder with a reference pulse
TWI388800B (zh) 併用數位與類比感應的磁性式位置感測裝置
JP2006047135A (ja) 静電エンコーダ
KR20220152588A (ko) 위치 인코더
JPH0460530B2 (ja)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250