JP6584131B2 - 撮像装置、撮像システム、および信号処理方法 - Google Patents

撮像装置、撮像システム、および信号処理方法 Download PDF

Info

Publication number
JP6584131B2
JP6584131B2 JP2015095406A JP2015095406A JP6584131B2 JP 6584131 B2 JP6584131 B2 JP 6584131B2 JP 2015095406 A JP2015095406 A JP 2015095406A JP 2015095406 A JP2015095406 A JP 2015095406A JP 6584131 B2 JP6584131 B2 JP 6584131B2
Authority
JP
Japan
Prior art keywords
pixel
frames
pixels
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015095406A
Other languages
English (en)
Other versions
JP2016213650A (ja
JP2016213650A5 (ja
Inventor
寿士 高堂
寿士 高堂
紀之 海部
紀之 海部
川野 藤雄
藤雄 川野
智也 大西
智也 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015095406A priority Critical patent/JP6584131B2/ja
Priority to US15/143,724 priority patent/US20160330414A1/en
Priority to CN201610285786.5A priority patent/CN106131460A/zh
Publication of JP2016213650A publication Critical patent/JP2016213650A/ja
Publication of JP2016213650A5 publication Critical patent/JP2016213650A5/ja
Application granted granted Critical
Publication of JP6584131B2 publication Critical patent/JP6584131B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • H04N1/648Transmitting or storing the primary (additive or subtractive) colour signals; Compression thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6002Corrections within particular colour systems
    • H04N1/6008Corrections within particular colour systems with primary colour signals, e.g. RGB or CMY(K)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • H04N2209/046Colour interpolation to calculate the missing colour values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Description

本発明は撮像装置、撮像システム、および信号処理方法に関する。
単板式の固体撮像装置では、カラー画像を得るために、特定の波長成分、たとえば赤(R)、緑(G)、青(B)のそれぞれの色の光を透過させるカラーフィルタ(CF)が所定のパターンで画素上に配列されている。CFのパターンとして、いわゆるベイヤ配列を持つものが多く利用されている。以下、RのCFが配された画素をR画素、GのCFが配された画素をG画素、BのCFが配された画素をB画素と表記し、CFが配されていない画素をW画素と表記する。W画素は、白画素、あるいはホワイト画素とも呼ばれる。さらに、R画素、G画素、B画素を纏めてRGB画素またはカラー画素と表記することがある。
単板式の固体撮像装置の各画素からは、いずれかの色成分の信号が出力されるため、出力された信号に対して色補間処理を行い、全ての色成分の信号を生成する必要がある。例えば、ベイヤ配列においては、被写体の空間周波数が高い場合、色補間処理を施すことによってモアレ、偽色が発生し得る。特許文献1には、モアレや偽色の発生を抑えつつ、動画像における解像感の低下を防止する技術が開示されている。
特開2013−197613号公報
特許文献1に記載の撮像装置においては、動画の間引きによる偽色の影響を緩和するために、空間的に色毎の加重加算の位置をずらす処理が行われている。しかしながら、RGB画素の空間配置の周期が粗いCF配列においては、偽色を十分に改善することは困難である。また、動画像を撮像する際には、被写体が動くことにより、偽色の空間的パターンが時間とともに変化する。そのため、偽色がちらつきとなって現れ、画質低下を招いていた。
本発明の撮像装置は、緑に対応する波長帯域を少なくとも含む第1の波長帯域の光に基づく第1の画素信号を各々が出力する複数の画素を有する第1の画素群、および前記第1の波長帯域よりも狭い波長帯域の光、あるいは、前記第1の波長帯域とは別の波長帯域の光に基づく第2の画素信号を各々が出力する複数の画素を有する第2の画素群を備える撮像素子からの画素信号を信号処理する処理部とを有する撮像装置であって、前記処理部は、前記第1の画素群から出力された1フレームの前記第1の画素信号を用いて、前記第2の画素群における前記第1の波長帯域に相当する画素信号を補間した補間データを生成する処理を、各フレームの前記第1の画素信号に実行することによって複数フレームのそれぞれの前記補間データを得る第1の処理と、複数フレームのそれぞれの前記第2の画素群からの第2の画素信号を用いて複数フレームのそれぞれデータを得る第2の処理と、前記複数フレームの前記データと、前記複数フレームの前記補間データとを用いて、色比情報を得る第3の処理と、前記第1の画素群の各々の前記第1の画素信号と、前記色比情報とを用いて1枚の画像に対応する画像データを得る第4の処理とを行う
本発明の信号処理方法は、緑に対応する波長帯域を少なくとも含む第1の波長帯域の光に基づく第1の画素信号を各々が出力する複数の画素を有する第1の画素群、および前記第1の波長帯域よりも狭い波長帯域の光、あるいは、前記第1の波長帯域とは別の波長帯域の光に基づく第2の画素信号を各々が出力する複数の画素を有する第2の画素群を備える撮像素子からの画素信号を信号処理する信号処理方法であって、前記第1の画素群から出力された1フレームの前記第1の画素信号を用いて、前記第2の画素群における前記第1の波長帯域に相当する画素信号を補間した補間データを生成する処理を、各フレームの前記第1の画素信号に実行することによって複数フレームのそれぞれの前記補間データを生成する第1のステップと、複数フレームのそれぞれの前記第2の画素群からの第2の画素信号を用いて複数フレームのそれぞれのデータを生成する第2のステップと、前記複数フレームの前記データと、前記複数フレームの前記補間データとを用いて、色比情報を得る第3のステップと、前記第1の画素群の各々の前記第1の画素信号と、前記色比情報とを用いて1枚の画像に対応する画像データを得る第4のステップとを有する
本発明によれば、画像におけるモアレ、偽色による画質低下を低減した撮像装置、撮像システム、および画像処理方法を提供することができる。
第1の実施形態に係る撮像装置のブロック図である。 第1の実施形態に係る撮像素子のブロック図である。 第1の実施形態に係る撮像素子および列増幅部の回路図である。 RGBを用いたカラーフィルタ配列の例を示す図である。 補色を用いたカラーフィルタ配列の例を示す図である。 第1の実施形態に係る撮像装置における信号処理部のブロック図である。 第1の実施形態に係るフレーム間処理の一例を示す図である。 第1の実施形態に係るフレーム間処理の作用を説明するための図である。 第1の実施形態に係る撮像装置の評価結果を示した図である。 第2の実施形態に係る撮像装置の信号処理部のブロック図である。 第2の実施形態に係る撮像装置の評価結果を示す図である。 第3の実施形態に係る撮像装置の信号処理部のブロック図である。 第4の実施形態に係る撮像装置の信号処理部のブロック図である。 第5の実施形態に係る撮像装置の信号処理部のブロック図である。 第6の実施形態に係る撮像装置の信号処理部のブロック図である。 第7の実施形態に係る撮像装置の信号処理部のブロック図である。 第8の実施形態に係る撮像システムの構成の一例を示した図である。
以下、図面を参照しながら各実施形態の撮像装置について説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る撮像装置のブロック図である。撮像装置は、撮像素子1と信号処理部2を備える。撮像素子1は、CMOSイメージセンサ、またはCCDイメージセンサ上にカラーフィルタが配置された、いわゆる単板式のカラーセンサである。単板のカラーセンサでカラー画像を形成する際には、後述するように補間を行う必要がある。たとえば、R画素の部分にはG、Bの情報(画素値)がない。このため、R画素の周囲のG、Bの画素値に基づき、R画素の部分におけるG、Bの画素値が補間処理により生成される。撮像素子1は、行列状に配列された複数の画素を備え、例えば列方向に1920画素、行方向に1080画素の合計2073600画素を備える。撮像素子1の画素数は限定されず、より多い画素数、若しくはより少ない画素数でもよい。撮像素子1および信号処理部2は同一チップに設けられても良く、または別のチップ、装置に設けられても良い。さらに、撮像装置は、必ずしも撮像素子1を備えなくても良く、撮像素子1からの画素信号(RAWデータ)を処理する信号処理部2を備えていれば良い。
本実施形態のCFは、図1に示されたRGBW12配列を備えている。RGBW12配列においては、4×4の画素配列が繰り返されており、各色の画素数の比は、R:G:B:W=1:2:1:12である。RGBW12配列においては、カラー画素であるR、G、Bの各画素が8個のW画素で囲まれており、W画素の比率が全画素の3/4を占めている。換言すると、RGBW12配列は、第1の画素群としてW画素を有し、第2の画素群としてカラー画素(RGB画素)を有している。第1の画素群の画素数の総和は第2の画素群の画素数の総和の3倍以上(2倍より多い)であり、第2の画素群は第1の画素群よりも解像度情報が少ない。なお、撮像素子1には、有効な画素以外に、オプティカルブラック画素、光電変換部を有さないダミー画素などのように画像を出力しない画素が含まれ得る。但し、これらのオプティカルブラック画素、ダミー画素は第1の画素群、第2の画素群には含まれない。W画素はRGB画素と比べて広い分光感度特性および高い感度を有している。W画素は、緑に対応する波長帯域を少なくとも含み、さらに赤、青の波長帯域も含む第1の波長帯域の光に基づく第1の画素信号を出力する。RGB画素は、第1の波長帯域よりも狭い波長帯域の光に基づく第2の画素信号を出力する。また、第2の画素群はRGBの画素を含むことから、光の波長帯域が互いに異なる画素を含むといえる。
RGBW12配列においては、RGB画素のそれぞれの周囲にはW画素が配されているため、RGB画素におけるWの画素値を高精度に補間することができる。また、W画素が全画素の3/4を占めているため、感度を向上させることが可能となる。本実施形態は、解像度情報を得るための画素が全画素の半数以上を占める撮像素子1に特に有効である。
信号処理部2は、前段処理部203、第1の信号処理部としての輝度信号処理部204、第2の信号処理部としての色信号処理部205、信号合成部206を備える。撮像素子1からの画素信号は前段処理部203に入力される。前段処理部203は画素信号のオフセット補正、ゲイン補正を含む様々な補正を実行する。撮像素子1から出力された画素信号がアナログ信号である場合には、A/D変換を前段処理部203で実行してもよい。
前段処理部203は、入力された画素信号Dinのオフセット(OFFSET)補正、ゲイン(GAIN)補正等の補正を適宜実施し、補正後の画素信号Doutを生成する。この処理は、典型的には以下の式で表わされる。
Figure 0006584131
この補正は様々な回路単位で行い得る。例えば、画素毎に補正を行ってもよく、さらには、列増幅器、アナログデジタル変換部(ADC)、出力増幅器のそれぞれの回路毎に補正を行ってもよい。補正を行うことで、いわゆる固定パターンノイズが低減され、より高品質な画像を得ることができる。前段処理部203は、解像度情報のためのWの画素信号(輝度信号)と色情報のためのRGBの画素信号(色信号)を分離し、輝度信号を輝度信号処理部204に出力し、色信号を色信号処理部205に出力する。
輝度信号処理部204はRGBW12配列において輝度信号を高精度に補間することができる。すなわち、RGBW12配列においては、解像度情報を得るためのW画素が多いため、市松模様のCF配列に比べて、空間周波数の高い、すなわちピッチの細かい情報を得ることができる。以下、補間により生成されたW画素をiWと表記する。
補間の信号処理後のiWの画素値は色信号処理部205に入力される。色信号処理部205は、RGB画素のフレーム間平均処理、偽色補正を行い、輝度信号と色信号との合成に用いられる色比情報を生成する。偽色補正は、RGBの画素値と、輝度信号処理部204によって処理された画素値、すなわち、補間されたiWの画素値を用いて行われる。信号合成部206は、輝度信号処理部204によって生成された輝度信号と色信号処理部205によって生成された色信号とを合成し、各画素をRGBの画素値で表した画像信号を生成する。
図2は本実施形態に係る撮像素子1のブロック図である。撮像素子1は、撮像領域101、垂直走査回路102、列増幅部103、水平走査回路104、出力部105を有する。撮像領域101は上述したように画素100が行列状に配されており、輝度信号のための第1の画素群、色信号のための第2の画素群を備える。垂直走査回路102は、画素100のトランジスタをオン(導通状態)またはオフ(非導通状態)に制御するための制御信号を供給する。垂直信号線106は、画素100の各列に設けられ、画素100からの信号を列ごとに読み出す。水平走査回路104は、各列の増幅器に接続されたスイッチと、該スイッチをオンまたはオフに制御するための制御信号を供給する。出力部105はバッファアンプ、差動増幅器などから構成され、列増幅部103からの画素信号を撮像素子1の外部の信号処理部2に出力する。出力された画素信号は信号処理部2によって、アナログ/デジタル変換、入力データの補正などの処理が行われる。なお、撮像素子1はアナログ/デジタル変換の回路を備えたいわゆるデジタルセンサであっても良い。画素100には、分光感度特性を制御するためにCFが設けられており、本実施形態においてはRGBW12のCFが配置されている。
図3は本実施形態に係る撮像素子1の画素100、列増幅部103の回路図である。ここでは、説明を容易にするため、列増幅部103のうちの1列分の回路と、1つの画素100とが示されている。画素100はフォトダイオードPD、浮遊拡散容量FD、転送トランジスタM1、リセットトランジスタM2、増幅トランジスタM3、選択トランジスタM4を備える。なお、画素100は、複数のフォトダイオードPDが浮遊拡散容量FD、リセットトランジスタM2、増幅トランジスタM3、選択トランジスタM4を共有する構成を備えていても良い。また、トランジスタM2〜M4はNチャネルMOSに限定されず、PチャネルMOSによって構成されても良い。
フォトダイオードPDは照射された光を電子(電荷)に光電変換する。転送トランジスタM1のゲートには信号TXが供給され、信号TXがハイレベルになると、転送トランジスタM1はフォトダイオードPDに発生した電荷を浮遊拡散容量FDに転送する。浮遊拡散容量FDは、転送トランジスタM1のドレイン端子を兼ねており、転送トランジスタM1を介してフォトダイオードPDから転送される電荷を保持可能である。リセットトランジスタM2のゲートには信号RESが供給され、信号RESがハイレベルになると、リセットトランジスタM2は浮遊拡散容量FDの電圧をリセット電圧VDDにリセットする。転送トランジスタM1とリセットトランジスタM2を同時にオンにさせることにより、フォトダイオードPDの電子がリセットされる。増幅トランジスタM3のゲートは、浮遊拡散容量FDに接続される。
増幅トランジスタM3のソースは、選択トランジスタM4を介して列ごとに共通の垂直信号線106のノードPDOUTに電気的に接続され、ソースフォロアを構成する。選択トランジスタM4のゲートには信号SELが印加され、信号SELがハイレベルとなると、垂直信号線106と増幅トランジスタM3が電気的に接続される。これにより、選択された画素100から画素信号が読み出される。
画素100に供給される信号TX、信号RES、信号SELは垂直走査回路102から出力される。垂直走査回路102はこれらの信号レベルを制御することによって、画素100を行単位で走査する。電流源107は垂直信号線106を介して画素100に電流を供給し、垂直信号線106は信号PLによって駆動されるスイッチSW0を介して列増幅部103に接続されている。
列増幅部103は、列増幅器112、入力容量C0、帰還容量C1、C2、スイッチSW1〜SW7、容量CTN、CTSを有する。列増幅器112は反転入力ノード、非反転入力ノード、出力ノードを備える差動増幅回路から構成されている。列増幅器112の反転入力ノードは入力容量C0を介して垂直信号線106に電気的に接続され、非反転入力ノードには基準電圧VREFが印加されている。反転入力ノードと出力ノードとは並列接続された3つの帰還回路を介して互いに接続されている。第1の帰還回路は直列に接続されたスイッチSW1および帰還容量C1から構成され、第2の帰還回路は直列に接続されたスイッチSW2および帰還容量C2から構成され、第3の帰還回路はスイッチSW3から構成されている。スイッチSW1〜SW3のオン、オフを適宜制御することにより、列増幅器112の増幅率を変更することができる。すなわち、スイッチSW1のみがオンとなると、増幅率はC0/C1となり、スイッチSW2のみがオンとなると、増幅率はC0/C2となる。また、スイッチSW1、SW2がオンとなると、増幅率はC0/(C1+C2)となり、スイッチSW3のみがオンとなると、列増幅器112はボルテージフォロアとして動作する。スイッチSW1〜SW3は信号φC1〜φC3によってそれぞれ制御される。
列増幅器112の出力ノードは、信号φCTNによって制御されるスイッチSW4を介して容量CTNに接続されている。同様に、列増幅器112の出力ノードは、信号φCTSによって制御されるスイッチSW5を介して容量CTSに接続されている。浮遊拡散容量FDのリセット時において、スイッチSW4がオン、スイッチSW5がオフとなり、リセット時の画素信号(N信号)が容量CTNにサンプルホールドされる。光電変換された電荷が浮遊拡散容量FDに転送された後、スイッチSW4がオフ、スイッチSW5がオンとなり、光電変換された電荷に基づく画素信号(S信号)が容量CTSにサンプルホールドされる。
容量CTNはスイッチSW6を介して出力部105の第1入力ノードに接続され、容量CTSはスイッチSW7を介して出力部105の第2入力ノードに接続されている。水平走査回路104が各列の信号φHnを順にハイレベルとすることにより、水平走査が行われる。すなわち、信号φHnがハイレベルとなると、スイッチSW6は容量CTNに保持されたN信号を出力部105の第1入力ノードに出力し、スイッチSW7は容量CTSに保持されたS信号を出力部105の第2入力ノードに出力する。
出力部105は差動増幅回路から構成されており、入力されたS信号、N信号の差分を増幅および出力することにより、リセット時のノイズ成分が除去された画素信号を出力する。なお、N信号、S信号をアナログ/デジタル変換した後に、相関二重サンプリングを行っても良い。
上述のように、撮像素子1に入力された光信号は、電気信号として読み出される。また、RGBW12のCF配列に応じた分光強度の2次元情報が得られる。本実施形態はRGBW12のCF配列に限定されることなく、様々なCF配列に適用可能である。以下、本実施形態において適用可能なCF配列の例を示す。
図4にカラー画素としてRGBを用いたカラーフィルタ配列の例を示す。図4(a)はベイヤ配列のCFを示し、CFの数の比率がR:G:B=1:2:1となっている。ここで、G画素(第1の画素)がRB画素(第2の画素)に比して多く配置されているのは、人間の視覚特性が赤色、青色に比して、緑色の波長に対して高い感度を有し、画像の解像感も、赤色、青色に比して、緑色の波長の輝度に強く依存するからである。
図4(b)はRGBW12のCF配列を示している。上述したように、この配列では、4×4の画素配列中、各CFがR:G:B:W=1:2:1:12の比で配置されている。カラー画素であるRGBの各画素(第2の画素)に対して、平面視において上下方向、左右方向、斜め方向のそれぞれにW画素(第1の画素)が隣接して配されている。すなわち、RGB画素の各々は8つのW画素に囲まれている。W画素は、全画素の3/4の比率を占めている。カラー画素であるRGB画素の各々がW画素によって囲まれているため、図4(a)のCF配列に比して、RGB画素におけるW画素の信号を高精度に補間することができる。
図4(c)はRGBW8のCF配列を示している。4×4の画素配列中、各CFがR:G:B:W=2:4:2:8の比で配列されている。W画素(第1の画素)は市松模様に配置されており、W画素の間にRGB画素(第2の画素)が配置されている。W画素の比率は全画素の1/2である。W画素はベイヤ配列のG画素と同様に市松模様に配置されているため、ベイヤ配列のG画素の補間の方法をそのまま用いることができる。また、W画素が配列されているため、感度を向上させることができる。
図4(d)はRGBG12のCF配列を示している。この配列ではRGBW12のW画素がG画素(第1の画素)に置き換えられており、4×4の画素配列中、各色のCFがR:G:B=2:12:2の比で配置されている。RB画素(第2の画素)のそれぞれがG画素で囲まれており、G画素の比率が全画素の3/4を占めている。RB画素がG画素で囲まれているため、カラー画素のGの値の補間の精度が向上する。また、RB画素に比較して感度の高いG画素の割合が高いため、感度を向上させることができる。
図5に、カラー画素として補色であるC(シアン)・M(マゼンダ)・Y(イエロー)を用いたCF配列の例を示す。図5(a)はベイヤ配列であり、各色のCFの比率がC:M:Yが1:1:2になる。ここで、Y画素(第1の画素)が多く配列されているのは、G画素と同様にY画素の感度が高いからである。
図5(b)はCMYW12のCF配列を示している。4×4の画素配列中、各色のCFがC:M:Y:W=1:1:2:12の比で配列されている。配列の特徴としては、カラー画素であるC、M、Yの画素(第2の画素)はW画素(第1の画素)で囲まれており、W画素の比率が全画素の3/4を占める。CMY画素がW画素で囲まれているため、CMY画素の位置におけるW画素値の補間の精度を向上させることができる。また、W画素が配列されているため、感度が向上する。
図5(c)はCMYW8のCF配列を示している。4×4の画素配列中、各色のCFがC:M:Y:W=2:2:4:8の比で配列されている。W画素(第1の画素)が市松模様に配置されており、CMY画素(第2の画素)はW画素に囲まれている。W画素の比率が全画素の1/2である。W画素はベイヤ配列のG画素と同様に市松模様に配列されているため、ベイヤ配列のG画素の補間の方法をそのまま用いることができる。また、W画素が配列されていることにより、感度が向上する。
図5(d)はCMYY12のCF配列を示している。CMYW12のW画素がY画素(第1の画素)に置き換えられており、4×4の画素配列中、各CFがC:M:Y=2:2:12の比で配列されている。配列の特徴としては、C画素、M画素(第2の画素)がY画素で囲まれており、Y画素の比率が全画素の3/4配置されている。C画素、M画素がY画素によって囲まれているため、C画素、M画素の位置におけるYの画素値の補間の精度を向上させることができる。また、C画素とM画素に対し比較的感度の高いY画素の割合が高いため、感度が向上する。
上述のように、本実施形態において各種CF配列を採用し得るが、高解像度の画像を生成するためには、解像度に寄与する割合の高い画素(第1の画素)をより多く配置することが好ましい。第1の画素群は第2の画素群と比較して解像度情報を多く含むとともに、第2の画素群は分光感度の異なる2種以上の画素を備えることが望ましい。また、第1の画素群は第2の画素群と比較して輝度への寄与度が高いことが望ましい。いずれのCF配列においても、第1の画素群は緑に対応する波長帯域を少なくとも含む第1の波長帯域の光に基づく第1の画素信号を出力し、第2の画素群は第1の波長帯域よりも狭い波長帯域の光、あるいは、第1の波長帯域とは別の波長帯域の光に基づく第2の画素信号を出力する。
なお、ベイヤ配列においては、解像度に寄与するG画素が市松模様に配置されており、補間のエラーが生じ易い。発明者らは、市松模様に比べて高い解像度を作りだすCF配列を用いることで、補間エラーを極力小さくできることを見出した。従って、図4(b)のRGBW12、図4(d)のRGBG12、図5(b)のCMYW12、図5(d)のCMYY12に例示されるCF配列を用いた場合に、本発明の効果が特に顕著となる。
図6は、本実施形態に係る撮像装置の信号処理部2のブロック図である。信号処理部2は輝度信号処理部204、色信号処理部205、信号合成部206を備え、撮像素子1からの画素信号3aをデモザイク処理し、各画素がRGBの情報を有する画像信号3gを生成する。信号処理部2は画像処理プロセッサなどのハードウェアによって構成され得るが、汎用のプロセッサまたはコンピュータ上のソフトウェアを用いて同様の構成を実現することも可能である。
輝度信号処理部204には、RGBW12のCF配列を有するとともに、デジタルデータで表された画素信号3aが入力される。図6において、CF配列の繰り返しの1単位となる4×4画素が示されているが、実際の画素信号3aにおいては4×4画素の配列が繰り返されている。入力された画素信号3aは図示されていない前段処理部203によって、Wの画素信号3bとRGBの画素信号3eとに分離され、それぞれ輝度信号処理部204、色信号処理部205に出力される。
Wの画素信号3bにおいてRGB画素を分離した位置にはWの画素値は存在せず、図中、この位置は”?”と表記されている。補間処理部211は”?”の位置の画素値を周囲のWの画素値に基づき補間し、iWr、iWg、iWbの画素値を補間により生成する。例えば、画素信号3bにおける座標(3,3)にはW画素が存在しないため、次式で表されるように、周囲の8個のW画素値の平均値から、座標(3,3)におけるiWb(3,3)の画素値が求められる。
Figure 0006584131
なお、図6には4×4の画素配列が記載されているが、実際には画素配列が繰り返されており、座標(1,1)のR画素、座標(3,1)のG画素、座標(1,3)のG画素のそれぞれは8個のW画素に囲まれている。よって、iWr、iWgの画素値も同様に周囲の8個のWの画素値を用いて補間により生成することができる。補間処理法としては、上述した方法の他、バイリニア法、バイキュービック法、縦、横、斜めの方向において変化率の少ない画素の平均を求める方法等を適宜用いることができる。このため、高い空間周波数を有する高精細な被写体においても、高精度な補間が可能となる。
色信号処理部205はフレーム間処理部212、色比生成部213を備えている。フレーム間処理部212は、輝度信号処理部204によって補間された画素信号3dと、RGB画素からなる画素信号3eとを用いて色情報を生成する。すなわち、フレーム間処理部212は、輝度信号処理部204が複数フレームの第1のデータの生成に用いた各フレームにおける第2の画素信号を用いて、複数フレームの第2のデータを生成する。画素信号3dは、1フレーム期間に、第1の画素群が出力する第1の波長帯域に対応する画素信号を用いて第2の画素群における第1の波長帯域に相当する画素信号を補間した第1のデータである。画素信号3eは、第2の画素群から1フレーム期間に出力された第2の画素信号を用いて生成した第2のデータである。また、第2のデータは、第2の画素群の画素の各々における第1のデータと第2の画素信号の比の情報を含む。第1の画素群が一般に、RGB画素の存在しない局所領域において、色相はほぼ一定に保たれ、また、強い色相関がある。よって、本実施形態においては、RGB画素値の存在する領域における色比がRGB画素の存在しない周囲の色比と同じであるとみなし、RGB画素の存在しない領域にRGB画素の色比を割り当てる処理を行っている。
フレーム間処理部212はフレームメモリを備え、補間を行ったiWの画素信号3d、およびRGB画素の画素信号3eのそれぞれのフレーム間処理(平均化処理)を行う。本実施形態の撮像素子1には、W画素が設けられていることから、RGBの画素数の和は、図4(a)で示したベイヤ配列のRGBの画素数の和に比して少なくなっている。このため、RGB画素のランダムノイズ、フォトショットノイズがベイヤ配列に比して目立ち易くなり得る。以下、ランダムノイズ、フォトショットノイズを総称して色ノイズと表記する。この色ノイズを低減するために、本実施形態の撮像装置は、時間的に連続した複数のフレームに含まれる色信号を用いて、ノイズリダクション(NR:noise reduction)を行う。以下、フレーム間処理を用いたノイズリダクションの方法を説明する。
図7にフレーム間処理の一例を示す。図7(a)は、画素信号3dの座標(3,3)における補間画素iWbの平均化処理を示している。フレーム間処理部212は、いわゆるIIRフィルタ(巡回型フィルタ)を含み、現在のフレーム、および時刻の異なる他のフレームのそれぞれの画素信号の重み付け加算を行う。フレーム間処理部212は、フレームメモリに蓄積されたiWbの画素値に係数(n−1)/nを乗じた値と、現在のiWbの画素値に係数1/nを乗じた値とを加算して、フレーム間処理後のn_iWbの画素値を得る。図7(b)は、画素信号3eの座標(3,3)におけるB画素の画像情報の平均化処理を示している。B画素に対しても前述のフレーム間の平均化処理が行われる。フレーム間処理部212は、フレームメモリに蓄積されたBの画素値に係数(n−1)/nを乗じた値と、現在のBの画素値に係数1/nを乗じた値を加算し、フレーム間処理されたn_Bの画素値を得る。他のiWr、iWg、R、Gの各画素値についても同様にフレーム間処理が行われる。本実施形態において、補間画素のフレーム間処理におけるフレーム数nとRGB画素のフレーム間処理におけるフレーム数nは同一であり、フレームの重み付けは等しい。また、補間画素のフレーム間処理におけるn個のフレームの各々とRGB画素のフレーム間処理におけるn個のフレームの各々は同一フレームである。
以下、フレーム間処理部212の動作を詳細に説明する。まず、フレーム間処理部212は第1フレームのRGBの画素信号を予めフレームメモリに格納する。ここでは、第1フレームの画素信号には、後に説明する乗算、除算の処理は行われない。フレーム間処理部212は、第2フレームのRGBの画素値に係数1/nを乗じる。例えば、nが2である場合、RGBの画素値は1/2となる。そして、色信号処理部205は、フレームメモリに格納された第1フレームのRGBの画素信号に、係数(n−1)/nを乗じる。nは2であるため、第1フレームのR、G、Bの画素値は、それぞれ1/2となる。フレーム間処理部212は、1/2倍された第1フレームのRGBの画素信号と、1/2倍された第2フレームの画素値とを加算する。これにより、第1フレームと第2フレームのそれぞれのRGBの画素値を平均化したn_R、n_G、n_Bの画素値を取得することができる。続いて、次のフレームにおいて、先行するフレームのn_R、n_G、n_Bの画素値を1/2倍した値がさらに加算される。このようにして、先行するフレームの画素値が次のフレームの画素値にフィードバックされ、加算平均される。なお、nが3以上の場合には、フレーム間処理部212は、第1フレームと第2フレームの画素値を平均化した画素値を2/3倍し、この乗算結果と、最終フレームである第3フレームの画素値を1/3倍した画素値とを加算する。これにより、第3フレームに含まれる画素信号を平均化したデータを取得する。
色比生成部213は、第2の画素群の画素の各々における第1のデータと第2の画素信号の色比情報を算出する。すなわち、Rの色比情報は、座標(1,1)におけるn_R/n_iWrで表され、Bの色比情報は座標(3,3)におけるn_B/n_iWbで表される。また、Gの色比情報は、座標(3,1)における画素値n_G/n_iWgと、座標(1,3)における画素値n_G/n_iWgとの平均値で表される。従って、各色の色比情報RGB_ratioは次式で表される。
Figure 0006584131
信号合成部206は、それぞれの色比が4×4の領域で一定であるとみなして、画素毎にRGBの各色の情報を含む画像信号3gを生成する。すなわち、信号合成部206は、輝度信号処理部204によって生成されたW、iWの画素信号3cと、色信号処理部205によって生成された色比情報RGB_ratioとを用いて、各画素のRGBの値を求め、画像信号3gを生成する。画素信号3cの画素がWである場合には、RGBの画素値は次式で求められる。
Figure 0006584131
また、画素信号3cの画素がiWである場合には、RGBの画素値は次式で求められる。
Figure 0006584131
この処理により、各画素におけるRGBの各色の情報を含む画像信号3gが得られる。本実施形態においては、色情報を推定するために、局所領域においては輝度と色相の相関が強いと仮定して処理を行う。つまり、色情報は局所的に一定とみなすことができる。人間の視覚特性においては、解像度(輝度)と色(色相)のそれぞれの分解能は異なり、色の分解能は輝度の分解能に比べて低い。高解像感を得るためには、輝度信号の解像度を高めることが望ましい。本実施形態によれば、高解像度かつ高輝度のW画素と、4×4のブロック毎の色情報を用いることで、高解像感のカラー動画像を得ることができる。本実施形態において、4×4のブロックにおいて色比が一定であるとみなして処理したが、隣接するブロックの情報を用いて各画素における色比情報を補正してもよい。
図8は本実施形態に係るフレーム間処理の作用を説明するための図である。図8(a)〜(d)は白:黒=3:1の縞模様がフレーム毎に水平方向に動く場合の画素信号を示している。図8(e)は、各フレームにおける座標(5,1)のR画素の信号、および、フレーム間平均処理後の画素信号を示す。第(N−3)フレームから第(N−1)フレームにおいては、座標(5,1)に白のパターンが存在するので、補間画素iWrとR画素との色比情報に基づき色信号を推定できる。一方、Nフレームにおいては座標(5,1)に黒のパターンが存在するので、R画素の信号値が小さくなり、色比の推定が困難となる。このため、図8(a)〜(d)のような被写体においては、第Nフレームにおいて偽色が発生してしまう。
フレーム間の平均化処理を行った場合の第Nフレームの画素信号を、図8(e)のn_iWrとn_Rに示す。フレーム間の平均化処理を行わない場合はRの画素とiWrの画素の情報量が少ないため、色推定の精度が低下する。本実施形態によれば、フレーム間処理を行うことで、第(N−3)フレームから第(N−1)フレームの白パターンの情報を参照することができるので、色推定精度を向上させることが可能となる。
図8においては、特定の被写体パターンを例示して説明したが、その他の縦、横、斜めの周期パターンなどの空間周波数の高いパターンにおいても本発明の効果を奏することは言うまでもない。また、被写体または撮像装置を意図的に動かす場合だけでなく、撮像装置の意図しないブレ、大気の揺らぎなどによる画像のブレが存在する場合においても、同様の効果が得られる。
なお、本実施形態においては、各画素当たりRGB値を出力しているが、後段の信号処理部2との親和性に鑑みて、ベイヤ配列にリモザイクした画像信号を出力してもよい。
図9に本実施形態に係る撮像装置の評価結果を示す。画像の評価項目として、動画撮影時の偽色による妨害感を用いた。動画像の偽色による妨害感を、優れた評価から順に、「A」(ほぼなし)、「B」(許容できる)、「C」(不快)と表記した。評価条件として、明るさ、フレーム数n1、n2、n3を変化させ、評価を行った。ここで、フレーム数n1、n2、n3は、フレーム間処理における係数1/n、(n−1)/nのフレーム数nを表し、本実施形態においてはn1、n2、n3は等しい。フレーム数nが大きいほど、フレーム間処理における他のフレームの重み付けが大きくなる。
条件No1として、周囲明るさを1[lx]とし、フレーム数n=1とした。この条件においては、高周波の被写体パターンが動いた場合の偽色が多く、動画像における偽色のちらつきも非常に悪かった。よって、偽色による妨害感は不快なレベル「C」となった。条件No2として、周囲明るさを1[lx]とし、フレーム数n=2とした。この条件において、高周波の被写体パターンが動いた場合の偽色とちらつきも低減した。偽色は視認できるが、許容できるレベルであった。よって、偽色による妨害感は許容可能なレベル「B」となった。さらに、条件No3として、周囲明るさを1[lx]とし、フレーム数n=4とした。高周波の被写体パターンが動いた場合の偽色とちらつきは、ほぼ気にならないレベルであった。よって、偽色による妨害感はほぼ無いレベル「A」となった。
なお、色信号処理部205は、フレーム間処理を行った後、色比情報を算出しているが、本実施形態はこの方法に限定されない。例えば、色比情報を算出した後、フレーム間処理を行ってもよい。つまり、色比情報R/iWr、B/iWb、G/iWgの値をフレームメモリに格納し、色比情報のフレーム間の平均処理を行ってもよい。また、フレーム間処理は、IIRフィルタに限定されるものではなく、非巡回型フィルタ(FIR)を用いても良く、フレーム間移動平均を用いても良い。また、フレーム間のメディアンフィルタを用いてもよい。本実施形態においては、フレーム間処理のフレーム数nを1、2、4として説明したが、nの値を被写体の環境(明るさやコントラストや移動速度)に応じて変更する適応型フィルタを用いてもよい。
本実施形態によれば、W画素を用いることで、高感度、高解像度の撮像装置を提供することが可能となる。また、カラー画素の位置における輝度信号を高精度に補間することで、色信号の推定精度を向上させることができる。さらに、補間したW画素と色画素のフレーム間処理を行うことで、動画像における偽色を抑制することができる。尚、本実施形態において、補間画素のフレーム間処理におけるフレーム数nとRGB画素のフレーム間処理におけるフレーム数nは同一としたが、この例に限定されるものではない。補間画素のフレーム間処理におけるフレーム数が2以上であり、RGB画素のフレーム間処理におけるフレーム数が2以上であれば良い。
(第2の実施形態)
図10は、本実施形態に係る撮像装置の信号処理部2のブロック図である。以下、第2実施形態の撮像装置について、第1の実施形態とは異なる点を中心に説明する。本実施形態の色信号処理部205は、RGBの各色のフレーム間処理部212R、212G、212Bを備えている点において第1実施形態と異なる。このように、フレーム間処理部212R、212G、212BによってRGBの色毎にフレーム間処理におけるフレーム数を変えることができる。
フレーム間処理部212RはR画素とその位置におけるiWrの画素のフレーム間処理を行い、フレーム間処理部212BはB画素とその位置におけるiWbの画素のフレーム間処理を行う。フレーム間処理部212GはG画素とその位置におけるiWgの画素フレーム間処理を行う。また、フレーム間処理部212R、212G、212Bは処理スルーモードを備えており、フレーム間処理をしない設定も可能である。
RGBW12のCF配列において、R:G:Bの画素比率は1:2:1である。従って、画素数の少ないR、B画素のフレーム間処理のフレーム数を多くする(重み付けを大きくする)ことで、偽色抑制の効果を高めることができる。一方、相対的に画素数の多いG画素については、フレーム間処理を行なわず、または、フレーム間処理のフレーム数を少なくする(重み付けを小さくする)ことで、回路規模を低減しつつ、動画像の偽色抑制の効果を得ることができる。
また、撮影時の光源の色温度(分光感度特性)に応じて、フレーム間処理のフレーム数を色毎に変更しても良い。光源の色温度によって固体撮像素子からの出力は変化し、例えば、白熱電球の光源は、太陽光に比べて、長波長(R画素)の出力が相対的に大きく、短波長(B画素)の出力が相対的に小さいという特性を有している。長波長が強く、短波長が弱い光源を使用する場合には、B画素のフレーム処理数をG画素、R画素と比較して多くすることで、偽色低減の効果を高めることができる。色比生成部213は、各画素位置における色比を演算することで、色比情報RGB_ratioを算出する。すなわち、第2のデータは、第2の画素群の画素の各々における複数の第1のデータの平均と第2の画素信号の比の情報を含む。
Figure 0006584131
信号合成部206は、それぞれの色比が4×4の領域で一定であるとみなして、画素毎にRGBの各色の情報を含む画像信号3gを生成する。すなわち、信号合成部206は、複数フレームの第1のデータである画素信号3dと、複数フレームの第2のデータである画素信号3eとを合成して画像信号3gを生成する。なお、第1実施形態において述べたように、隣接するブロックの情報を用いて補正処理を行い、各座標における色比情報を算出してもよい。信号合成部206は、輝度信号処理部204によって生成されたW、iWの画素信号3cと、色比情報RGB_ratioとを用いて、各画素のRGBの画素値を以下のように求める。当該画素がW、iWのそれぞれの場合に応じて、RGBの画素値は次式で求められる。
Figure 0006584131

Figure 0006584131
図11に本実施形態に係る撮像装置の評価結果を示す。画像の評価項目として、動画撮影時の偽色による妨害感を用いた。動画像の偽色による妨害感を、優れた評価から順に「B」(許容できる)、「B’」(我慢できる)、「C」(不快)と表記した。明るさ、光源、フレーム数n、m、kを評価条件として変化させ、評価を行った。標準光源としてD65光源、A光源を用いた。D65光源は色温度6504Kであって自然な昼光に近い光源であり、A光源は色温度2854Kを有する白熱タングステン電球の光源である。すなわち、A光源は、D65光源と比較して、短波長(B画素)の強度が弱く、長波長(R画素)の強度が強いという特性を有している。フレーム数n、m、kはRGBの各画素のフレーム間処理の係数1/n、(n−1)/nのフレーム数nに相当し、それぞれの値を変化させて評価を行った。
条件No1において、光源をD65光源とし、周囲明るさを1[lx]とし、フレーム数をn=m=k=1とした。評価結果は、高空間周波数の被写体パターンが動いた場合の偽色の程度が悪く、動画像における偽色のちらつきも非常に悪いものであった。よって、偽色による妨害感が不快なレベル「C」と評価された。
条件No2において、光源をD65光源とし、周囲明るさを1[lx]とし、フレーム数をn=m=2、k=1とした。高空間周波数の被写体パターンが動いた際に、G画素の偽色がやや目立つものの、RB画素の偽色が低減し、動画像における偽色は我慢できる程度となった。G画素は画素配置の空間周波数が、RB画素の2倍であるため、G画素のフレーム処理数を少なくしても、偽色が目立たなくなったと考えられる。よって、評価結果は、偽色による妨害感が我慢できるレベル「B’」となった。
条件No3において、光源をD65光源とし、周囲明るさを1[lx]とし、フレーム数をn=m=4、k=2とした。高空間周波数の被写体パターンが動いた際に、偽色は目立たなくなり、許容できる程度となった。よって、評価結果は、偽色による妨害感が許容できるレベル「B」となった。
条件No4において、光源をA光源とし、周囲明るさを1[lx]とし、フレーム数をn=m=4、k=2とした。高空間周波数の被写体パターンが動いた際に、B画素の偽色がやや目立つものの、我慢できる程度となった。これは、A光源はD65光源と比較して、短波長(B画素)の強度が弱く、長波長(R画素)側の強度が強い特性を有するため、B画素の出力が低下し、偽色が発生し易くなったためと考えられる。よって、評価結果は、偽色による妨害感が我慢できるレベル「B’」となった。
条件No5として、光源をA光源とし、周囲明るさを1[lx]とし、フレーム数をn=2,m=6、k=2とした。高空間周波数の被写体パターンが動いた際に、偽色は目立たなくなり、許容できる程度となった。短波長の強度が弱いA光源が用いられているために、B画素の出力は小さくなる。ところが、B画素のフレーム処理数を増やし、出力の大きいR画素のフレーム処理数を減らすことで、良行な色バランスが得られたと考えられる。よって、評価結果は、偽色による妨害感が許容できるレベル「B」となった。
本実施形態においても第1実施形態と同様の効果を奏することができる。すなわち、W画素を用いることで、高感度、高解像度の撮像装置を得ることができる。また、カラー画素の位置における輝度信号を高精度に補間することで、色信号の推定精度を向上させるとともに、補間したW画素と色画素にフレーム間の平均化処理を行うことで、動画像における偽色を抑制することができる。さらに、本実施形態においては、RGB画素のそれぞれの配置の違いを考慮してフレーム間処理を行うとともに、撮影条件を考慮して色毎にフレーム数(重み付け)を変えることで、偽色をさらに低減することができる。また、フレーム数を低減することにより、低消費電力化も同時に実現することが可能となる。
なお、低照度下においては、ノイズリダクション効果を得るために、輝度信号処理部204においてW画素のフレーム間処理を行ってもよい。その際、解像感を保つため、W画素のフレーム間処理のフレーム数は色信号のフレーム間処理のフレーム数より少ないことが望ましい。
(第3の実施形態)
図12は、本実施形態に係る撮像装置の信号処理部2のブロック図である。以下、本実施形態の撮像装置について、第1の実施形態とは異なる点を中心に説明する。本実施形態は、色信号処理部205が色差生成部233を備える点、信号合成部236が色差情報に基づき画像信号3gを生成する点において、第1実施形態と異なる。フレーム間処理部212は、輝度信号処理部204によって補間された画素信号3dと、RGB画素からなる画素信号3eとのそれぞれのフレーム間処理を行う。色差生成部233は、フレーム間処理されたRGBの画素n_R、n_G、n_Bと、フレーム間処理されたRGBの補間画素n_iWr、n_iWg、n_iWbの信号の色差情報RGB_diffを算出する。すなわち、第2のデータは、第2の画素群の画素の各々における複数の第1のデータの平均と第2の画素信号との差を含む。
Figure 0006584131
信号合成部236は、それぞれの色差が4×4の領域で一定であるとみなして、色差情報を用いてRGBの画素値を含む画像信号3gを生成する。すなわち、信号合成部236は、W、iWの画素信号3cと、色差情報RGB_diffとを用いて、各画素のRGBの値を以下のように求め、画像信号3gを生成する。
Figure 0006584131
ここで、各座標における色差情報の算出方法は上述の処理に限定されず、隣接するブロックの情報を用いて各画素の色差情報を補正してもよい。前述したように、局所領域においては輝度と色相の相関が強いことから、色情報は局所的に一定とみなすことができる。また、人間の視覚特性においては、輝度と色(色相)のそれぞれの分解能が異なり、色の分解能は輝度の分解能より低い。従って、高解像感を得るためには、輝度信号の解像度を高くすることが望ましい。本実施形態によれば、高解像度かつ高輝度のWの輝度信号と、4×4のブロック毎の色信号とを用いることで、高解像感のあるカラー動画像を得ることができる。
(第4の実施形態)
図13は本実施形態に係る撮像装置の信号処理部2のブロック図である。以下、本実施形態において、第1の実施形態と異なる点を中心に説明する。本実施形態では、撮像素子1は図4(c)に表わされるRGBW8配列を備えており、信号処理部2はRGBW8配列の画素信号4aを処理する。RGBW8の配列のW画素はRGBW12に比べて少ないため、感度が低下し易い。一方、各W画素の周囲にRGBの画素が存在するため、偽色が発生し難くなる。
図13に示されるように、撮像素子1からの画素信号4aは、輝度信号であるWの画素信号4bと、色信号であるRGBの画素信号4eとに分離される。輝度信号処理部204は、画素信号4bにおいてRGB画素を分離した部分の画素値を補間処理によって求め、補間後の画素信号4cを生成する。
色信号処理部205は、補間を行ったiWの画素値と、RGBの画素値を用いて色比情報を生成する。フレーム間処理部212は、補間を行ったiWの画素値と、RGBの画素値のそれぞれについて、複数フレームを用いた平均化処理を行う。ここでのフレーム間処理は第1実施形態と同様である。よって、色比情報RGB_ratioは画素毎に以下のように表される。
Figure 0006584131
信号合成部206は、W、iWの画素信号4cと、色比情報RGB_ratioとを用いて、各画素のRGBの値を求め、画像信号4gを生成する。第1実施形態と同様に、画素がW、iWのそれぞれの場合について、RGBの画素値は次式で表される。
Figure 0006584131

Figure 0006584131
本実施形態においては、RGBW8の配列を用いることにより、第1の実施形態に比べて、画像の感度、解像度が低くなったが、被写体の絵柄によっては動画像の偽色を低減することができた。
(第5の実施形態)
図14は本実施形態に係る撮像装置の信号処理部2のブロック図である。本実施形態の撮像装置について、第1の実施形態と異なる点を中心に説明する。撮像素子1は図4(d)で表わされるRGBG12配列のCFを用いている。RGBG12の配列においては、RGBW12のW画素をG画素に置き換えているため、感度が低下し易い。しかしながら、Wの画素はRGB画素に対して感度が高いため、高輝度の被写体を撮像した際に、W画素が飽和し、ダイナミックレンジが低下し得る。本実施形態において、RGBG12配列のCFを用いることにより、信号の飽和と感度のバランスを取ることができる。この例では、G画素は、緑に対応する波長帯域を含む第1の波長帯域の光に基づく第1の画素信号を出力する。RB画素は、第1の波長帯域とは別の波長帯域に基づく第2の画素信号を出力する。
画素信号5aはGの画素信号5bとRBの画素信号5eとに分離される。輝度信号処理部204は画素信号5bにおいてGの画素値が存在しない部分の補間処理を行い、画素値iGを生成する。色信号処理部205は、補間されたiGの画素値、およびRBの画素値を用いて色比情報を生成する。
フレーム間処理部212は、補間されたiGの画素値、およびRBの画素値のそれぞれについて、複数フレームを用いた平均化処理を行う。ここでのフレーム間処理は第1実施形態と同様である。色比生成部213は、各画素における色比を演算することで、色比情報RB_ratioを算出する。
Figure 0006584131
信号合成部206は第1実施形態と同様に、それぞれの色比が4×4の領域で一定であるとみなして、G、iGの画素信号5cと、色比情報RB_ratioとを用いて、各画素のRGBの値を求める。画素がG、iGのそれぞれの場合について、RGBの画素値は以下のように求められる。
Figure 0006584131

Figure 0006584131
撮影した画像において、第1の実施形態に比べ、感度、解像度が低くなったが、RGB画素を用いることにより、飽和を抑えるとともに、動画撮影時の偽色を低減することが可能となった。このように、輝度信号は第1の実施形態のようにW画素の信号に限定されず、視覚特性において輝度情報が多く含まれる画素(本実施形態におけるG画素)の情報であればよい。また、色信号は、相対的に輝度情報の少ない画素(本実施形態におけるR画素、B画素)の信号であればよい。さらに、本実施形態は、画素信号5aをGの画素信号5bとRBの画素信号5eに分離しているが、輝度情報が多く含まれるデータと輝度情報の少ないデータとを演算によって分けても同様の効果を奏することができる。
(第6の実施形態)
図15は本実施形態に係る撮像装置の信号処理部2のブロック図である。本実施形態の撮像装置について、第1の実施形態と異なる点を中心に説明する。本実施形態において、撮像素子1は、図4(a)で表わされるベイヤ(RGB)配列のCFを用いている。輝度信号処理部204はGの画素値を輝度信号として処理を行い、色信号処理部205はRBの画素値を色信号として処理を行う。ベイヤ配列においては、W画素を用いたCFに比べると感度が低く、また、輝度信号のための画素数が少ないことから解像感も劣る。しかしながら、色信号に用いる画素数が多いため、偽色を低減する効果が得られる。また、補間した輝度信号と色信号のフレーム処理数を一致させることで、色信号を算出する際の精度が良くなり、動画撮影時の偽色をさらに低減させることが可能となる。
図15において、ベイヤ(RGB)配列の画素信号6aは、Gの画素信号6bと、R、Bの画素信号6eとに分離される。補間処理部211は、画素信号6bにおいてRB画素が分離された部分を補間処理し、iGの画素値を生成する。色信号処理部205は、輝度信号処理部204で補間を行ったiGの画素値と、RBの画素値とを用いて色比情報を生成する。フレーム間処理部212は、iGの画素値と、RBの画素値のそれぞれについて、複数フレームを用いた平均化処理を行う。ここでのフレーム間処理は第1実施形態と同様である。色比生成部213は、各画素位置における色比を演算することで、色比情報を算出する。
Figure 0006584131
また、第1実施形態と同様に、信号合成部206は、それぞれの色比が4×4の領域で一定であると仮定して、Wの画素信号6c、色比情報RB_ratioを用いて、各画素のRGBの画素値を求める。画素がG、iGのそれぞれの場合に応じて、RGBの画素値は次式で求められる。
Figure 0006584131

Figure 0006584131
本実施形態における撮影結果において、第1の実施形態に比べると感度、解像度が低くなった。ところが、フレーム間処理を行わないベイヤ配列の動画像と比較すると、動画撮影時の偽色を低減する効果が得られた。
(第7の実施形態)
図16は本実施形態に係る撮像装置の信号処理部2のブロック図である。本実施形態の撮像装置について、第1の実施形態とは異なる点を中心に説明する。本実施形態の撮像素子1は、図5(b)で表わされるCMYW12配列を用いている。CMYW12配列は感度の高い補色(C,M,Y)の画素に加えてさらにWの画素を用いていることから、感度を向上させることができる。
図16において、撮像素子1からの画素信号7aは、Wの画素信号7bと、C、M、Yの画素信号7eとに分離される。輝度信号処理部204は、画素信号7bにおいてC、M、Yの画素が分離された部分を補間処理し、iWの画素値を生成する。色信号処理部205は、補間されたiWの画素値と、CMYの画素値とを用いて色比情報を生成する。フレーム間処理部212は、補間されたiWの画素値と、CMYの画素値のそれぞれについて、複数フレームを用いた平均化処理を行う。ここでのフレーム間処理は第1実施形態と同様である。各画素における色比情報CMY_ratioは次式で表される。
Figure 0006584131
信号合成部206は、それぞれの色比が4×4の領域で一定であるとみなして、Wの画素信号7c、色比情報CMY_ratioとを用いて、各画素のCMYの値を求める。画素がW、iWのそれぞれの場合に応じて、CMYの画素値は次式で求められる。
Figure 0006584131

Figure 0006584131
CMY/RGB変換部287は、信号合成部206から出力されたCMYの画素値をRGBの画素値に変換し、画像信号7gを出力する。以上の処理を行った撮像装置を用いて評価撮影を行った。一部画像パターンにおいて色再現性が劣るものの、第1の実施形態に比べて感度が高くなり、動画撮影時の偽色が抑制された。なお、信号合成部206の処理をCMY/RGB変換部287の処理の後に実行してもよく、また、2つの処理を一体として実行してもよい。
(第8の実施形態)
第8の実施形態に係る撮像システムを説明する。上述した第1〜第7の実施形態の撮像装置は種々の撮像システムに適用可能である。撮像システムは撮像装置を用いて画像、動画を取得する装置であり、その一例としては、デジタルスチルカメラ、デジタルカムコーダー、監視カメラ、携帯端末などがある。図17に、撮像システムの例としてデジタルスチルカメラに第1〜第7の実施形態の撮像装置を適用したシステムのブロック図を示す。
図17において、撮像システムは、被写体の光学像を撮像装置301に結像させるレンズ302、レンズ302の保護のためのバリア303およびレンズ302を通った光量を調整するための絞り304を有する。また、撮像システムは撮像装置301より出力される出力信号の処理を行う出力信号処理部305を有する。
出力信号処理部305はデジタル信号処理部を有し、撮像装置301から出力される信号を、必要に応じて各種の補正、圧縮を行って信号を出力する。撮像装置301から出力される信号がアナログ信号である場合、出力信号処理部305はアナログ/デジタル変換回路をデジタル信号処理部の前段に備えてもよい。
また、撮像システムは、バッファメモリ部306、記録媒体制御インターフェース(I/F)部307、外部インターフェース(I/F)部308、記録媒体309、全体制御・演算部310、タイミング発生部311を備え得る。バッファメモリ部306は出力信号処理部305からの画像データを一時的に記憶する。記憶媒体制御I/F部307は記録媒体309への画像データの記録または読み出しを行う。記録媒体309は例えば半導体メモリによって構成され、撮像システムに着脱、若しくは内蔵され得る。外部I/F部308は外部のコンピュータ、ネットワークと通信することが可能である。全体制御・演算部310は、各種演算処理、デジタルスチルカメラ全体を制御する機能を備える。タイミング発生部311は出力信号処理部305に各種タイミング信号を出力する。なお、タイミング信号などの制御信号はタイミング発生部311ではなく外部から入力されてもよい。以上のように、本実施形態の撮像システムは、第1〜第7の実施形態で述べた撮像装置301を適用して撮像動作を行うことが可能である。
(他の実施形態)
以上、本発明に係る撮像装置を説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜修正および変形することを妨げるものではない。例えば、上述の第1〜第8実施形態の構成を組み合わせることも可能である。また、撮像装置は必ずしも撮像素子を備えなくても良く、撮像素子から出力された画素信号を処理するコンピュータなどの画像処理システムであっても良い。
1 撮像素子
2 信号処理部
100 画素
204 輝度信号処理部
205 色信号処理部
206 信号合成部

Claims (20)

  1. 緑に対応する波長帯域を少なくとも含む第1の波長帯域の光に基づく第1の画素信号を各々が出力する複数の画素を有する第1の画素群、および前記第1の波長帯域よりも狭い波長帯域の光、あるいは、前記第1の波長帯域とは別の波長帯域の光に基づく第2の画素信号を各々が出力する複数の画素を有する第2の画素群を備える撮像素子からの画素信号を信号処理する処理部とを有する撮像装置であって、
    前記処理部は、
    前記第1の画素群から出力された1フレームの前記第1の画素信号を用いて、前記第2の画素群における前記第1の波長帯域に相当する画素信号を補間した補間データを生成する処理を、各フレームの前記第1の画素信号に実行することによって複数フレームのそれぞれの前記補間データを得る第1の処理と、
    複数フレームのそれぞれの前記第2の画素群からの第2の画素信号を用いて複数フレームのそれぞれデータを得る第2の処理と、
    前記複数フレームの前記データと、前記複数フレームの前記補間データとを用いて、色比情報を得る第3の処理と、
    前記第1の画素群の各々の前記第1の画素信号と、前記色比情報とを用いて1枚の画像に対応する画像データを得る第4の処理とを行うことを特徴とする撮像装置。
  2. 前記第3の処理が、前記複数フレームの前記データの平均である平均データと、前記複数フレームの前記補間データの平均である平均補間データとを得て、
    前記平均データと、前記平均補間データとによって、前記色比情報を得ることを特徴とする請求項1に記載の撮像装置。
  3. 前記第3の処理が、前記複数フレームのそれぞれの前記データと、前記複数フレームのそれぞれの前記補間データとを用いて、前記複数フレームのそれぞれの前記色比情報を得て、前記複数フレームのそれぞれの前記色比情報の平均を得る処理である請求項1に記載の撮像装置。
  4. 前記第4の処理が、前記複数フレームよりも少ないフレーム数であって2以上のフレームの前記補間データの平均と、前記色比情報とを用いて1枚の画像に対応する画像データを得る処理であることを特徴とする請求項1〜3のいずれか1項に記載の撮像装置。
  5. 前記複数フレームのそれぞれの前記データが、非巡回型フィルタを用いて得られることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
  6. 前記複数フレームのそれぞれの前記データが、巡回型フィルタを用いて得られることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
  7. 前記複数フレームのそれぞれの前記データが、移動平均を用いて得られることを特徴とする請求項1〜4のいずれか1項に記載の撮像装置。
  8. 前記第4の処理において、各画素の信号をR、G、Bの各値で表した画素信号を生成するデモザイク処理を行うことを特徴とする請求項1〜7のいずれか1項に記載の撮像装置。
  9. 前記第1の画素群は前記第2の画素群よりも輝度への寄与度が高いことを特徴とする請求項1〜8のいずれか1項に記載の撮像装置。
  10. 前記第2の画素群は、第2の画素信号が基づく光の波長帯域が互いに異なる画素を含むことを特徴とする請求項1〜9のいずれか1項に記載の撮像装置。
  11. 前記第1の画素群の前記複数の画素の各々が白画素であることを特徴とする請求項1〜10のいずれか1項に記載の撮像装置。
  12. 前記第2の画素群の前記複数の画素の各々は、R画素、G画素、B画素のいずれかであることを特徴とする請求項1〜11のいずれか1項に記載の撮像装置。
  13. 前記第3の処理に用いる前記データのフレーム数が、前記R画素、前記G画素、前記B画素である3つの画素のうちの1つの画素が他の2つの画素とは異なるフレーム数であることを特徴とする請求項12に記載の撮像装置。
  14. 前記第2の画素群の前記複数の画素の各々は、C画素、M画素、Y画素のいずれかであることを特徴とする請求項1〜12のいずれか1項に記載の撮像装置。
  15. 前記第1の画素群の画素数は、前記第2の画素群の画素数より多いことを特徴とする請求項1〜14のいずれか1項に記載の撮像装置。
  16. 前記第1の画素群の画素数は、前記第2の画素群の画素数の3倍以上であることを特徴とする請求項1〜15のいずれか1項に記載の撮像装置。
  17. 請求項1〜16のいずれか1項に記載の撮像装置と、前記撮像装置が出力する信号を処理する出力信号処理部と、
    を有することを特徴とする撮像システム。
  18. 緑に対応する波長帯域を少なくとも含む第1の波長帯域の光に基づく第1の画素信号を各々が出力する複数の画素を有する第1の画素群、および前記第1の波長帯域よりも狭い波長帯域の光、あるいは、前記第1の波長帯域とは別の波長帯域の光に基づく第2の画素信号を各々が出力する複数の画素を有する第2の画素群を備える撮像素子からの画素信号を信号処理する信号処理方法であって、
    前記第1の画素群から出力された1フレームの前記第1の画素信号を用いて、前記第2の画素群における前記第1の波長帯域に相当する画素信号を補間した補間データを生成する処理を、各フレームの前記第1の画素信号に実行することによって複数フレームのそれぞれの前記補間データを生成する第1のステップと、
    複数フレームのそれぞれの前記第2の画素群からの第2の画素信号を用いて複数フレームのそれぞれのデータを生成する第2のステップと、
    前記複数フレームの前記データと、前記複数フレームの前記補間データとを用いて、色比情報を得る第3のステップと、
    前記第1の画素群の各々の前記第1の画素信号と、前記色比情報とを用いて1枚の画像に対応する画像データを得る第4のステップとを有することを特徴とする信号処理方法。
  19. 前記第3のステップが、前記複数フレームの前記データの平均である平均データと、前記複数フレームの前記補間データの平均である平均補間データとを得て、
    前記平均データと、前記平均補間データとによって、前記色比情報を得る処理であることを特徴とする請求項18に記載の信号処理方法。
  20. 前記第3のステップが、前記複数フレームのそれぞれの前記データと、前記複数フレームのそれぞれの前記補間データとを用いて、前記複数フレームのそれぞれの前記色比情報を得て、前記複数フレームのそれぞれの前記色比情報の平均を得る処理である請求項18に記載の信号処理方法。
JP2015095406A 2015-05-08 2015-05-08 撮像装置、撮像システム、および信号処理方法 Active JP6584131B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015095406A JP6584131B2 (ja) 2015-05-08 2015-05-08 撮像装置、撮像システム、および信号処理方法
US15/143,724 US20160330414A1 (en) 2015-05-08 2016-05-02 Imaging apparatus, imaging system, and signal processing method
CN201610285786.5A CN106131460A (zh) 2015-05-08 2016-05-03 成像装置、成像系统和信号处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095406A JP6584131B2 (ja) 2015-05-08 2015-05-08 撮像装置、撮像システム、および信号処理方法

Publications (3)

Publication Number Publication Date
JP2016213650A JP2016213650A (ja) 2016-12-15
JP2016213650A5 JP2016213650A5 (ja) 2018-06-28
JP6584131B2 true JP6584131B2 (ja) 2019-10-02

Family

ID=57222944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095406A Active JP6584131B2 (ja) 2015-05-08 2015-05-08 撮像装置、撮像システム、および信号処理方法

Country Status (3)

Country Link
US (1) US20160330414A1 (ja)
JP (1) JP6584131B2 (ja)
CN (1) CN106131460A (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628497B2 (ja) 2015-05-19 2020-01-08 キヤノン株式会社 撮像装置、撮像システム、および画像処理方法
JP6758859B2 (ja) 2016-03-01 2020-09-23 キヤノン株式会社 撮像装置、撮像システム、および画像処理方法
JP6722883B2 (ja) * 2016-04-01 2020-07-15 国立大学法人浜松医科大学 画像取得装置および画像取得方法
US9832401B1 (en) * 2016-09-21 2017-11-28 Northrop Grumman Systems Corporation Minimization of fixed pattern noise in images of moving scenes
JP6436953B2 (ja) 2016-09-30 2018-12-12 キヤノン株式会社 固体撮像装置及びその駆動方法、並びに撮像システム
JP6732625B2 (ja) 2016-10-07 2020-07-29 キヤノン株式会社 撮像装置および撮像システム
US20180188427A1 (en) * 2016-12-29 2018-07-05 Uber Technologies, Inc. Color Filter Array for Image Capture Device
JP6865589B2 (ja) 2017-01-10 2021-04-28 キヤノン株式会社 撮像装置
EP3644832A1 (en) * 2017-06-29 2020-05-06 Carestream Dental Technology Topco Limited Intraoral oct with color texture
JP7039237B2 (ja) * 2017-09-29 2022-03-22 キヤノン株式会社 撮像装置、撮像システム、移動体、回路チップ
JP6980492B2 (ja) * 2017-11-13 2021-12-15 キヤノン株式会社 撮像装置及び撮像システム
JP6938352B2 (ja) * 2017-12-08 2021-09-22 キヤノン株式会社 撮像装置及び撮像システム
JP6953297B2 (ja) 2017-12-08 2021-10-27 キヤノン株式会社 撮像装置及び撮像システム
JP7157529B2 (ja) 2017-12-25 2022-10-20 キヤノン株式会社 撮像装置、撮像システム、および撮像装置の駆動方法
JP7260990B2 (ja) 2018-10-26 2023-04-19 キヤノン株式会社 撮像装置及び撮像システム
JP7297433B2 (ja) 2018-12-11 2023-06-26 キヤノン株式会社 光電変換装置および撮像システム
JP2020108061A (ja) 2018-12-28 2020-07-09 キヤノン株式会社 撮像装置及び撮像システム
JP7374630B2 (ja) 2019-07-09 2023-11-07 キヤノン株式会社 撮像装置及びその駆動方法
WO2021065367A1 (ja) * 2019-10-03 2021-04-08 パナソニックIpマネジメント株式会社 撮像装置、撮像システムおよび撮像方法
CN111131798B (zh) * 2019-10-18 2021-06-01 华为技术有限公司 图像处理方法、图像处理装置以及摄像装置
CN111613176B (zh) * 2020-05-18 2021-07-13 维沃移动通信有限公司 环境光检测方法及电子设备
JP2022034409A (ja) * 2020-08-18 2022-03-03 キヤノン株式会社 画像符号化装置及びその制御方法及びプログラム
JP2022051134A (ja) 2020-09-18 2022-03-31 キヤノン株式会社 撮像装置及び撮像システム
JP2022114353A (ja) 2021-01-26 2022-08-05 キヤノン株式会社 撮像装置、電子機器、および、画像生成装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663661A (en) * 1985-05-23 1987-05-05 Eastman Kodak Company Single sensor color video camera with blurring filter
US5216493A (en) * 1992-02-19 1993-06-01 Eastman Kodak Company Multipoint digital automatic white balance for a video system
US6879731B2 (en) * 2003-04-29 2005-04-12 Microsoft Corporation System and process for generating high dynamic range video
US8139130B2 (en) * 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
JP5106870B2 (ja) * 2006-06-14 2012-12-26 株式会社東芝 固体撮像素子
US8160381B2 (en) * 2006-08-30 2012-04-17 Micron Technology, Inc. Method and apparatus for image noise reduction using noise models
US8237830B2 (en) * 2007-04-11 2012-08-07 Red.Com, Inc. Video camera
JP4377428B2 (ja) * 2007-12-12 2009-12-02 アキュートロジック株式会社 固体撮像素子及びそれを用いた撮像装置
TWI422020B (zh) * 2008-12-08 2014-01-01 Sony Corp 固態成像裝置
US8472712B2 (en) * 2009-10-20 2013-06-25 Apple Inc. System and method for applying lens shading correction during image processing
CN102263885B (zh) * 2010-05-27 2016-08-03 于培宁 一种图像序列的降噪方法
JP5500193B2 (ja) * 2012-03-21 2014-05-21 ソニー株式会社 固体撮像装置、撮像装置、撮像及び信号処理方法
JP5935876B2 (ja) * 2012-03-27 2016-06-15 ソニー株式会社 画像処理装置、撮像素子、および画像処理方法、並びにプログラム
US9105078B2 (en) * 2012-05-31 2015-08-11 Apple Inc. Systems and methods for local tone mapping
CN104488259B (zh) * 2012-07-26 2018-07-06 德普伊辛迪斯制品公司 使用单色传感器的宽动态范围
CN102938843B (zh) * 2012-11-22 2014-12-03 华为技术有限公司 图像处理方法、装置以及成像设备
JP6622481B2 (ja) * 2015-04-15 2019-12-18 キヤノン株式会社 撮像装置、撮像システム、撮像装置の信号処理方法、信号処理方法
JP6598507B2 (ja) * 2015-05-11 2019-10-30 キヤノン株式会社 撮像装置、撮像システム、信号処理方法
JP6628497B2 (ja) * 2015-05-19 2020-01-08 キヤノン株式会社 撮像装置、撮像システム、および画像処理方法

Also Published As

Publication number Publication date
CN106131460A (zh) 2016-11-16
JP2016213650A (ja) 2016-12-15
US20160330414A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6584131B2 (ja) 撮像装置、撮像システム、および信号処理方法
JP6628497B2 (ja) 撮像装置、撮像システム、および画像処理方法
CN112261391B (zh) 图像处理方法、摄像头组件及移动终端
US10021358B2 (en) Imaging apparatus, imaging system, and signal processing method
US7777804B2 (en) High dynamic range sensor with reduced line memory for color interpolation
JP6758859B2 (ja) 撮像装置、撮像システム、および画像処理方法
US10136107B2 (en) Imaging systems with visible light sensitive pixels and infrared light sensitive pixels
US8405750B2 (en) Image sensors and image reconstruction methods for capturing high dynamic range images
JPWO2013145487A1 (ja) 画像処理装置、撮像素子、および画像処理方法、並びにプログラム
US10229475B2 (en) Apparatus, system, and signal processing method for image pickup using resolution data and color data
US8582006B2 (en) Pixel arrangement for extended dynamic range imaging
JP2004282552A (ja) 固体撮像素子および固体撮像装置
JP2016213740A (ja) 撮像装置及び撮像システム
JP7332302B2 (ja) 撮像装置及びその制御方法
US20220150450A1 (en) Image capturing method, camera assembly, and mobile terminal
CN108432239B (zh) 固体摄像装置、固体摄像装置的驱动方法以及电子设备
JP6545013B2 (ja) 画像形成方法、画像形成装置、および画像形成プログラム
WO2022088310A1 (zh) 图像处理方法、摄像头组件及移动终端
KR20070064840A (ko) 노출 시간이 서로 다른 화상 신호를 합성하는 방법 및 장치
JP2009038483A (ja) 撮像装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190903

R151 Written notification of patent or utility model registration

Ref document number: 6584131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151