JP6598507B2 - 撮像装置、撮像システム、信号処理方法 - Google Patents

撮像装置、撮像システム、信号処理方法 Download PDF

Info

Publication number
JP6598507B2
JP6598507B2 JP2015096831A JP2015096831A JP6598507B2 JP 6598507 B2 JP6598507 B2 JP 6598507B2 JP 2015096831 A JP2015096831 A JP 2015096831A JP 2015096831 A JP2015096831 A JP 2015096831A JP 6598507 B2 JP6598507 B2 JP 6598507B2
Authority
JP
Japan
Prior art keywords
pixel
pixels
stroke element
ninth
correlation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015096831A
Other languages
English (en)
Other versions
JP2016213715A (ja
JP2016213715A5 (ja
Inventor
智也 大西
紀之 海部
藤雄 川野
寿士 高堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015096831A priority Critical patent/JP6598507B2/ja
Priority to US15/147,263 priority patent/US9883152B2/en
Priority to EP16168793.4A priority patent/EP3093819B1/en
Priority to CN201610308087.8A priority patent/CN106161890B/zh
Publication of JP2016213715A publication Critical patent/JP2016213715A/ja
Priority to US15/847,605 priority patent/US10021358B2/en
Publication of JP2016213715A5 publication Critical patent/JP2016213715A5/ja
Application granted granted Critical
Publication of JP6598507B2 publication Critical patent/JP6598507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/03Circuitry for demodulating colour component signals modulated spatially by colour striped filters by frequency separation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4015Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4007Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/135Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on four or more different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/042Picture signal generators using solid-state devices having a single pick-up sensor
    • H04N2209/045Picture signal generators using solid-state devices having a single pick-up sensor using mosaic colour filter
    • H04N2209/046Colour interpolation to calculate the missing colour values

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮像装置、撮像システム、信号処理方法に関する。
撮像素子では、カラー画像を得るために、素子表面に各画素単位で特定の波長成分、たとえばレッド、グリーン、ブルーのそれぞれの色の光を透過させるカラーフィルタ(以下、CFと表記する)を設けている。以下、レッド、グリーン、ブルーをR、G、Bと表記する。また、RのCFが配された画素を赤画素、GのCFが配された画素を緑画素、BのCFが配された画素を青画素と表記する。また、赤画素、緑画素、青画素を纏めて表記する場合にはRGB画素と表記する。
撮像素子の感度を向上するために、輝度の情報を得やすい画素の割合を増やす構成が提案されている。その中でも、可視光域の光を広く透過するホワイト画素(以下、W画素と表記する)を用いることで、感度が向上しS/N比の高い画像を得ることができる。
特許文献1には、RGB画素とW画素とを有するRGBW配列を有する撮像素子の出力信号に、補間処理を行うことが開示されている。
特許文献1には、注目画素の近傍の画素を用いて、複数の方向のそれぞれの相関性を得る。この方向別の相関性を、注目画素の補間方法を決定する判定基準とすると記載されている。さらに、特許文献1には、この相関性を求めるために、異なる色の画素が間に設けられた同色の画素同士の画素データを用いること、あるいは、異なる色で隣り合う画素同士の画素データを用いることが記載されている。
特開2014−072658号公報
特許文献1に記載の技術では、補間処理において、同色の画素同士の画素データを用いる場合には、異なる色の画素を挟んで設けられた同色の画素同士の画素データを用いていた。よって、離れた同色の画素同士の画素データを用いることによる、補間精度の低下が生じていた。一方、隣接した画素同士の画素データを用いて補間処理を行う場合には、色の異なる画素同士の画素データを用いることとなるため、補間精度の低下が生じていた。
本発明は、上記の課題を鑑みて為されたものであり、一の態様は、各々が光電変換部を有する第1素、第2素、第3素、第4素、第5素、第6素、第7、第8画素、第9画素、第10画素、第11画素、第12画素、第13画素、第14画素、第15画素、第16画素、第17画素と、信号処理部とを有し、前記第1素の前記光電変換部が光電変換する光の波長帯域は第1長帯域であり、前記第2〜第13画素の各々の前記光電変換部が光電変換する光の波長帯域は前記第1長帯域を含むとともに前記第1長帯域よりも広い波長帯域である第2長帯域であり、前記第1素に、前記第2〜第画素の各々が隣接し、第1方向において、前記第2素と前記第3画素との間に前記第1素があり、前記第1方向とは異なる第2方向において、前記第4画素と前記第5画素との間に前記第1素があり、前記第1方向および前記第2方向とは異なる第3方向において、前記第6画素と前記第7画素との間に前記第1素があり、前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、前記信号処理部は、前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素の各々の信号から第1関値を得て、前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素の各々の信号から第2関値を得て、前記第14画素、前記第4画素、前記第3画素、前記第13画素、前記第10画素、前記第2画素、前記第5画素、前記第17画素の各々の信号から第3相関値を得て、前記第12画素、前記第2画素、前記第4画素、前記第16画素、前記第15画素、前記第5画素、前記第3画素、前記第11画素の各々の信号から第4相関値を得て、前記信号処理部は、前記第1関値、前記第2関値、前記第3相関値、前記第4相関値を比較することによって、関性の高い方向を得て、前記信号処理部はさらに、前記第2〜第17の画素のうち前記相関性の高い方向に沿って設けられた素の信号を用いて、前記第1素における前記第2長帯域に相当する信号を補間することを特徴とする撮像装置である。
他の態様は、各々が光電変換部を有する第1素、第2素、第3素、第4素、第5素、第6素、第7、第8画素、第9画素、第10画素、第11画素、第12画素、第13画素、第14画素、第15画素、第16画素、第17画素が出力する信号を処理する信号処理方法であって、前記第1素の前記光電変換部が光電変換する光の波長帯域は第1長帯域であり、前記第2〜第13画素の各々の前記光電変換部が光電変換する光の波長帯域は前記第1長帯域を含むとともに前記第1長帯域よりも広い波長帯域である第2長帯域であり、前記第1素に、前記第2〜第画素の各々が隣接し、第1方向において、前記第2素と前記第3画素との間に前記第1素があり、前記第1方向とは異なる第2方向において、前記第4画素と前記第5画素との間に前記第1素があり、前記第1方向および前記第2方向とは異なる第3方向において、前記第6画素と前記第7画素との間に前記第1素があり、前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、前記信号処理方法は、前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素の各々の信号から第1関値を得るステップと、前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素の各々の信号から第2関値を得るステップと、前記第14画素、前記第4画素、前記第3画素、前記第13画素、前記第10画素、前記第2画素、前記第5画素、前記第17画素の各々の信号から第3相関値を得るステップと、前記第12画素、前記第2画素、前記第4画素、前記第16画素、前記第15画素、前記第5画素、前記第3画素、前記第11画素の各々の信号から第4相関値を得るステップと、前記第1関値、前記第2関値、前記第3相関値、前記第4相関値を比較することによって、関性の高い方向を得るステップと、前記第2〜第17の画素のうち前記相関性の高い方向に沿って設けられた素の信号を用いて、前記第1画素における前記第2長帯域に相当する信号を補間するステップとを有することを特徴とする信号処理方法である。
本発明により、補間処理の精度を向上させることができる。
撮像装置の信号処理を示した図 撮像素子のCF配列の一例を示した図と、信号処理を示した図 撮像素子の露光パターンの一例を示した図と、信号処理を示した図と、比較例における撮像素子のCF配列と、比較例の信号処理を示した図 撮像素子の露光パターンの一例を示した図と、画素データを示した図 撮像素子の構成の一例を示した図 撮像素子の構成の一例を示した図 撮像素子のCF配列の一例を示した図 撮像素子のCF配列の一例を示した図 撮像装置の信号処理を示した図 撮像装置の信号処理を示した図 撮像装置の信号処理を示した図 撮像装置の構成を示した図 撮像装置の信号処理の一例を示した図
以下、図面を参照しながら説明する。
図1は、撮像装置の構成と、撮像装置の外部に設けられた画像処理部203と、撮像装置が行う信号処理とを示した図である。撮像装置は、撮像素子201、信号処理部202を有する。信号処理部202は、前段処理部204、補間部205、変換部206を有する。信号処理部202は、撮像素子201が出力する出力信号に対し、補間処理およびアップコンバート処理を行ったデータを生成する。信号処理部202はさらにそのデータに対してモザイク画像を生成するモザイク処理を行い、画像処理部203にデータを出力する。画像処理部203に入力される所定のデータは、本実施形態ではベイヤ配列としている。また、図1では、補間部205、変換部206、画像処理部203のそれぞれが生成するデータを併せて示している。図1に示しているデータは、各部が処理を行った結果、生成するデータを示している。例えば、画像処理部203において示しているデータは、変換部206が出力するデータを、画像処理部203がデモザイク処理した結果、生成したデータである。
撮像素子201は、CMOSイメージセンサやCCDイメージセンサを用いることができる。本実施形態では、このうちCMOSイメージセンサを用いる。
本実施形態の撮像素子201は、複数の画素を有する。複数の画素の各々は、光透過部を有する。複数の画素のうちの一部の画素は、レッド(R)、グリーン(G)、ブルー(B)のいずれか一つの色に対応する波長の光を透過するカラーフィルタ(CF)を有する。カラーフィルタは、光透過部の一例である。複数の画素の各々は、入射光に基づく電荷を生成する光電変換部を有する。尚、入射光に基づく電荷が生成するように設けられた画素を有効画素と表記する。撮像素子201が有する有効画素数を、本実施形態では、水平方向に1920画素、垂直方向に1080画素とする。
図1の撮像素子201では、各画素について、R、G、B、Wを付して示している。これは、各々の画素の光透過部が透過する光の波長に対応した色を示している。Rはレッド、Gはグリーン、Bはブルー、Wはホワイトである。尚、W画素の光透過部は、透過する光の波長帯域を狭める部材を有しない樹脂とすることができる。W画素にはCFが配されていないと言うこともできる。従って、W画素の光電変換部が受ける光の波長帯域は、RGB画素のそれぞれの光電変換部が受ける光の波長帯域よりも広い。
本実施形態の撮像素子201は、RGBW12配列と呼ぶCF配列を有している。尚、W画素にはCFは配されていないが、複数の画素の光透過部の配列パターンを表記する際には、CF配列として表記することとする。この配列では、4×4の16画素のうちR:G:B:W=1:2:1:12の比で表される個数比で各画素が配置されている。このRGBW12配列では、カラー画素である赤画素、緑画素、青画素のいずれの画素も、平面視において垂直方向、水平方向、斜め方向のそれぞれにおいてW画素が隣接して配置されている。つまり、第1の画素であるカラー画素は平面視における上方向、下方向、右方向、左方向、右斜め上方向、左斜め下方向、左斜め上方向、右斜め下方向において、第2の画素であるW画素が隣接している。第1方向は、第1の画素に対し、平面視における上方向に隣接する第2の画素から当該第1の画素を見た方向である。第2方向は、第1の画素に対し、平面視における左方向に隣接する第2の画素から当該第1の画素を見た方向である。第3方向は、第1の画素に対し平面視における右斜め上方向に隣接する第2の画素から当該第1の画素を見た方向である。第4方向は、第1の画素に対し平面視における左斜め上方向に隣接する第2の画素から当該第1の画素を見た方向である。すなわち、第1の画素であるカラー画素は、複数の第2の画素のW画素に囲まれている。より具体的には、複数の第2の画素のうちのA画素は、平面視における上方向に第1の画素に隣接する画素である。複数の第2の画素のうちのB画素は、平面視における下方向に第1の画素に隣接する画素である。A画素からB画素に至る向きが第1方向である。この第1方向において、A画素とB画素との間に第1の画素がある。複数の第2の画素のうちのC画素は、平面視における左方向に第1の画素に隣接する画素である。複数の第2の画素のうちのD画素は、平面視における右方向に第1の画素に隣接する画素である。C画素からD画素に至る向きが第2方向である。この第2方向において、C画素とD画素との間に第1の画素がある。複数の第2の画素のうちのE画素は、平面視における右斜め上方向に第1の画素に隣接する画素である。複数の第2の画素のF画素は、平面視における左斜め下方向に第1の画素に隣接する画素である。E画素からF画素に至る向きが第3方向である。この第3方向において、E画素とF画素との間に第1の画素がある。複数の第2の画素のうちのG画素は、平面視における左斜め上方向に第1の画素に隣接する画素である。複数の第2の画素のうちのH画素は、平面視における右斜め下方向に第1の画素に隣接する画素である。G画素からH画素に至る向きが第4方向である。この第4方向において、G画素とH画素との間に第1の画素がある。C画素とF画素は、第1方向と平行な方向で隣り合っている。また、A画素とE画素は、第2方向と平行な方向で隣り合っている。
また、RGBW12配列では、W画素の比率が全画素数の3/4の数となっている。なお、撮像素子201には、有効画素以外に、オプティカルブラック画素、ダミー画素などの画像に直接出力されない画素を有する場合もある。なお、W画素はCFを有さない画素としている。これにより、W画素が感度を有する波長帯域は赤画素、緑画素、青画素の各々が感度を有する波長帯域の全てを包含するものとなる。よって、W画素はRGB画素と比べ、分光感度特性が広いため、RGB画素よりも感度が高い。
このようなRGBW12配列を用いた場合、カラー画素がW画素で周囲を囲まれている為に、後述するように、補間精度の向上の効果が得られる。
信号処理部202では、撮像素子201が出力する出力信号に対して信号処理を行う。信号処理部202は、前段処理部204、補間部205、変換部206を有する。
撮像素子201からの出力信号は、信号処理部202の前段処理部204に入力される。前段処理部204は各信号のオフセット補正、ゲイン補正等の補正を行う。
補間部205では、前段処理部204が出力するデータに対し、補間処理を行う。また、補間部205はデモザイク処理を行う。本実施形態のデモザイク処理は、RGB画素の各々の信号から、バイリニア法によって、Rデータ、Gデータ、Bデータを得る処理である。本実施形態のデモザイク処理は、Rデータにおいては、W画素の位置に赤画素が位置していると想定した場合に得られると推定される値であるR成分を補間している。同様に、本実施形態のデモザイク処理は、B成分、G成分のそれぞれについてもR成分と同じように補間してBデータ、Gデータをそれぞれ生成する。
RGBW12配列では、解像情報を得ることができるW画素の単位面積当たりの画素数が、W画素を市松模様で配置した場合よりも多い。これにより、W画素を市松模様で配置した場合に対し、空間周波数の高い(つまりピッチが細かい)解像情報を取得することができる。つまり、信号処理部202は、RGBW12配列の撮像素子201が出力する出力信号を用いることによって、W画素が市松模様で配された撮像素子が出力する出力信号に比して、解像感の高いデータを生成することができる。
変換部206では、補間部205が出力するデータを用いてアップコンバート処理及びモザイク処理を行う。アップコンバート処理とは、処理前の第1の解像度のデータから、第1の解像度よりも高い第2の解像度のデータを生成する、解像度の増加処理である。本実施形態においては、撮像素子201から出力される出力信号は1920×1080、いわゆる2K1Kの解像度である。この2K1Kの入力データに対し、信号処理部202が出力するデータはアップコンバートされた3840×2160、いわゆる4K2Kの解像度とする。つまり、本実施形態の変換部206は、補間部205が出力する1つの画素信号を用いて、4つの画素信号を生成する処理を行う。
アップコンバート処理の手法としては、最近傍内挿(ニアレストレイバー)法、バイリニア法、バイキュービック法等を用いることができる。尚、本実施形態の変換部206は、アップコンバート処理後に後述するモザイク処理を行う。この場合には、最近傍内挿法を用いることで、データ処理誤差の蓄積を防ぐことができる。
本実施形態の変換部206はモザイク処理を行う。本実施形態の変換部206が行うモザイク処理は、Rデータ、Gデータ、Bデータのそれぞれのカラーデータを用いて、ベイヤデータを生成する処理である。このベイヤデータとは、単板イメージセンサにおいてRGB画素をベイヤ配置とした場合に得られるデータである。
画像処理部203では、信号処理部202が出力するデータを用いて、撮影画像を生成する。画像処理部203では、デモザイク処理、カラーマトリクス演算、ホワイトバランス処理、デジタルゲイン、ガンマ処理、ノイズリダクション処理、等が適時実施される。これらの処理のうち、撮影画像の解像情報に対して、デモザイク処理が他の処理よりも大きく関わる。本実施形態では、変換部206が、アップコンバート処理を行った上で、モザイク処理を行っている。このため、変換部206が出力する2×2のデータ(1つのR信号、2つのG信号、1つのB信号)のうち、1つのR信号を用いて、画像処理部203は、Rデータの1つのR信号を生成することができる。この画像処理部203の他の色のGデータ、Bデータについても、Rデータの生成と同じ処理によって生成できる。
補間部205では、前段処理部204からの信号を補間する。RGBW12配列では、解像度情報を得るためのW画素が多いため、W画素を市松模様に配列した場合に対し、空間周波数の高い(つまりピッチが細かい)解像度データを取得できる特徴を有する。
この隣接したW画素を用いることで、1画素単位で平面視における上下方向、左右方向、斜め方向に対する相関性(方向性)を推測することができる。ここで言う相関性(方向性)は、複数の画素同士の信号の差分である。また、この差分を画素の重心間の距離で除算した勾配としても良い。相関性(方向性)の他の例は、被写体のエッジの有無、孤立点有無の判定結果が挙げられる。以下では、この相関性を、複数の画素同士の信号の差分によって得る例を説明する。
たとえば赤画素において、他の色(たとえばW)に相当する値を補間する場合には、相関性が高い(すなわち差分が小さい)方向のデータを参照して、補間値を算出する。これにより、相関性が低い(すなわち差分が大きい)方向のデータを参照して補間値を算出する場合に比べて、赤画素におけるWの値を高精度に補間することができる。また、方向性の算出処理は、さらに分散を求める処理を行ってもよい。相関性を導くための、各方向の相関値の算出ならびに補間についての詳細な説明を次で述べる。
図2(a)〜(e)のそれぞれは、RGBW12配列と、青画素の相関性(方向性)を検出する方法を示した図である。図2(a)では、画素にアドレスを明記している。ここでは、画素を表す場合には、CFの色(X座標値、Y座標値)で表すとする。たとえばX=3、Y=3に位置する画素はB(3,3)として表される。このB(3,3)を中心とした5画素×5画素の領域を切り出して、相関性(方向性)を求める方法を説明する。
図2(b)は、横方向の相関値を求める際に計算に用いる画素を矢印で示している。
相関値(横)=|W(2,2)−W(3,2)|×2
+|W(3,2)−W(4,2)|×2
+|W(2,4)−W(3,4)|×2
+|W(3,4)−W(4,4)|×2
図2(c)は、縦方向の相関値を求める際に計算に用いる画素を矢印で示している。
相関値(縦)=|W(2,2)−W(2,3)|×2
+|W(2,3)−W(2,4)|×2
+|W(4,2)−W(4,3)|×2
+|W(4,3)−W(4,4)|×2
図2(d)は、左斜方向の相関値を求める際に計算に用いる画素を矢印で示している。それぞれの差分に距離の重みづけを行い、相関値(左斜)として差分の絶対値の総和を求める。
相関値(左斜)=|W(1,2)−W(2,3)|
+|W(2,3)−W(3,4)|×2
+|W(3,4)−W(4,5)|
+|W(2,1)−W(3,2)|
+|W(3,2)−W(4,3)|×2
+|W(4,3)−W(5,4)|
図2(e)は、右斜方向の相関値を求める際に計算に用いる画素を矢印で示している。それぞれの差分に距離の重みづけを行い、相関値(右斜)として差分の絶対値の総和を求める。
相関値(右斜)=|W(1,4)−W(2,3)|
+|W(2,3)−W(3,2)|×2
+|W(3,2)−W(4,1)|
+|W(2,5)−W(3,4)|
+|W(3,4)−W(4,3)|×2
+|W(4,3)−W(5,2)|
なお、この4つの相関値を求める際には、差分の項の係数の合計が8になっている。係数にて、計算上の差分をとる場所に関する重みづけを近くすることと、4つの相関値同士の重みづけを同等にすることが目的である。また、差分をとる位置(矢印)は、B(3,3)に対して、線対称に配置されている。これは、相関値を求める際に対称性をよくすることで、相関値のエラーを少なくするためである。また、斜め方向の相関値を求める場合には、注目画素に近接する画素同士の差については2を乗じ、当該近接する画素同士よりも注目画素から離れた画素同士の差については1倍の差分としている。このように、注目画素からの距離に応じた差分の重み付けを行うことにより、相関値の精度を高めることができる。
以上で求めた4つの、相関値(横)、相関値(縦)、相関値(左斜)、相関値(右斜)のうち最も小さい値を持つ方向が、差分の小さい、すなわち相関性が高いことを示す。
図3(a)に、相関値(横)が小さい画像が生成される場合のイメージセンサの露光パターンを示す。図3(a)は、具体的には、横方向に延在する線がイメージセンサに露光された場合の、各画素に対応するデータの信号強度を模式的に示した図である。
図3(b)は、図3(a)の画像をRGBW12配列で撮像した場合の信号強度を示している。図中の?はW以外の色の画素(R,G,B)であり、Wと記載された画素はW画素である。図中のW画素の濃淡は、データの信号強度を表している。?の画素は、W画素以外の画素が配置されている。
図3(b)中、座標(3,3)で示される「?」の画素に対し、相関性を求めると、差分が小さい方向では、相関性が高くなる。この図では横方向の細線であるため、相関値(横)が最も小さくなる。図3(c)では、横方向の相関があることから、座標(3,3)の補間値を、W(2,3)およびW(4,3)のデータを平均した値とする。このように、信号処理部202が有する補間部205は、注目画素(3,3)の近傍のW画素の方向毎の相関値を比較し、当該比較の結果として差分が小さい方向を得る。そして補間部205は、比較の結果として得られた補間方向を用いて、注目画素(3,3)の隣のW画素から、注目画素(3,3)のWデータを推測し補間を行う。この様に補間することで、1画素単位での差分の情報をもとに補間処理を実行することができるため、解像度が向上する。
一方、図3(d)に示すようなRGBW画素配列において、図3(a)に示す横方向の細線をイメージセンサが露光された場合について述べる。この場合、相関値を求めようとすると、図3(e)に示すように、他の色の画素を挟むように配されたW画素同士の信号を用いて相関値を得ることになる。図3(e)で分かる通り、他の色の画素を挟むように配されたW画素同士の信号を用いて得た相関値を見ると、以下の横方向、縦方向の相関値は同じになる。
相関値(横)=|W(2,2)−W(4,2)|+|W(2,4)−W(4,4)|
相関値(縦)=|W(2,2)−W(2,4)|+|W(4,2)−W(4,4)|
相関値が同じになると、細線が縦線であるか、横線であるかの見分けができないため、補間エラーが生じる。つまり、W画素のサンプリング周期よりも小さい周期の被写体のパターンは検出が困難であることを示す。
上述のようにして、算出した相関値を用いて補間値を求めることにより、補間処理の精度を高めることができる。また、相関値を求める際に、被写体の情報である、例えば被写体のエッジ情報、形状情報を用いることによって、方向性をさらに高精度に求めることもできる。この場合、被写体の情報を用いずに相関値を求めて補間処理を行うよりもシャープな画像(つまり解像感が高い画像)が得られる場合がある。
上述した補間処理を行うことにより、ある色の画素(たとえば赤画素)における、他の色(たとえばG、B、W)の補間値を高精度に求めることができる。すなわち、偽色の発生を減ずることができる。さらに偽色の発生を減ずるには、局所的な色の変化は輝度の変化と強い相関を持つという特徴を利用して、複数の画素データのRGBデータ比およびWデータ比を求め、その比にWのデータを乗じる。W画素の解像度分の色データを補間する。この補間処理について、図4を用いて説明する。
図4(a)は、縦方向に延在する緑青の線が、イメージセンサに露光された場合の信号強度を示している。X=1、3、5の列の画素には、高輝度の緑青の線が露光され、X=2、4、6の列の画素には低輝度の緑青の線が露光されている。
図4(b)は、図4(a)の強度分布を、X方向の座標に対する強度分布を表記したグラフである。緑青の線の明暗が交互に繰り返している為、W画素で露光した場合、明暗の繰り返しパターンが露光され、データ化される。この線のパターンを図4(c)に示すRGBW12配列で露光した場合について考える。図4(d)は、図4(c)のY座標=3の部分におけるX方向座標に対する強度分布を示す。図4(d)中のプロットは、凡例にある通り、丸印がW(2,3)、W(4,3)におけるW画素の強度である。破線丸印が座標(1,3)、(3,3)、(5,3)における補間したWの強度予測値で、iWg(1,3)、iWb(3,3)、iWg(5,3)と示す。これらの値は、縦の細線であることから、W(3,2)、W(3,4)と同等のデータであることが推測される。三角印がB(3,3)における青画素の強度である。W画素の感度は青画素より高いため、X座標3におけるWの補間値iW(3,3)は、青画素の値B(3,3)よりも大きくなる。
補間されたiWb(3,3)と、B(3,3)のデータから色の比を求めると、この近傍の青色の変化は、色の比B(3,3)/iWb(3,3)にWのデータをかけ合わせることで表現することができる。この色の比が精度の高いiWb(3,3)を用いることで、偽色を補正することができる。
この偽色の補正は次のような計算にて求めることができる。局所的な色の比は、すなわちこのiWとRGBの比であり、この比を以下のように表わすことができる。
Figure 0006598507
ここで、iWrは赤画素のW補間値、iWgrはGr画素のW補間値、iWgbはGb画素のW補間値、iWbは青画素のW補間値、である。ここでiWrとiWgrとiWgbとiWbの値が大きく異なると、RGBのどれかの色が強調される場合がある。そのため、以下のように、RGBそれぞれの色比の合計で規格化した式を用いることもできる。
Figure 0006598507
このように求めた色比RGB_ratioと、Wないしは補間値iWr・iWgr・iWgb・iWbのデータを用いて、各画素のRGBの値を以下のように求めることができる。
Figure 0006598507
ただしここで
Figure 0006598507
とする。以上のようにして、RGBW12のデータから補間、偽色補正を行ったRGBの画像を形成することができる。
変換部206では、補間部205からの信号を用いてアップコンバート及びリモザイクを行う。アップコンバートとは、解像度変換の一種で、元の解像度からより高い解像度の画像を作成することの総称である。
画像処理部203では、信号処理部202からの出力を用いて、出力画像を作成する部分であり、RGBの画像を作ることからRGB信号処理部と呼ぶこともできる。画像処理部203では、センサからの出力をカラー画像にするために、デモザイク処理、カラーマトリクス演算、ホワイトバランス処理、デジタルゲイン、ガンマ処理、ノイズリダクション処理、等が適時実施される。これらの処理の内、解像度情報にとっては、特にデモザイク部分が重要であり、ベイヤ配列のCFを想定して高度な補間処理がなされる。
特殊なCF配置の撮像素子の場合に、専用の画像処理部を新たに製造すると、コストと時間の増大につながる。したがって、この画像処理部は、通常のベイヤ配列を処理するものを流用することが大きなメリットとなる。したがって、前述したリモザイクを実施することで特殊CF配列を低コストで利用することができる。
以上より、本発明の特徴であるRGBW12配列などの解像度情報を多く得られる撮像素子を用いた場合に、空間周波数が2画素より小さいパターンにおける相関値を得る。これにより、空間周波数が2画素より小さいパターン(細線など)での補間エラーを減らし、解像度を向上し、かつ偽色の発生を減ずることができる。
(実施例1)
以下、図面を参照しながら本実施例の撮像装置を説明する。尚、必要に応じて、図1の撮像装置を参照しながら説明する。
図5は、本実施例の撮像素子201の一例を示した図である。本実施例の撮像素子201は、画素100が行列状に配された画素アレイを有する撮像領域1と、垂直走査回路2と、列増幅部3と、水平走査回路4と、出力部5とを有する。垂直走査回路2は、画素100のトランジスタをオン(導通状態)又はオフ(非導通状態)に制御するための制御信号を、画素100のトランジスタに供給する。撮像領域1には、画素100からの信号を列ごとに読み出すための垂直信号線6が配されている。水平走査回路4は、各列の列増幅部3のスイッチと、該スイッチをオン又はオフに制御するための制御信号を供給する水平走査回路4を有する。水平走査回路4による走査によって、列増幅部3の各列から出力部5に信号が順次出力される。列増幅部3から出力部5を介して出力される信号は、図1で述べた通り、撮像素子201の外部の信号処理部202に入力される。
なお、撮像素子201が出力する出力信号がアナログ信号である例を説明したが、撮像素子201がデジタル信号を出力するようにしても良い。その場合には、信号処理部202が行うアナログデジタル変換は省略できる。
ここから、図6を参照しながら図5の撮像装置を説明する。垂直走査回路2は、画素100に供給する信号PTX、信号PRES、信号PSELの信号レベルを制御することによって、撮像領域1の画素100を行単位での走査である垂直走査を行う。この垂直走査回路2による垂直走査によって、各画素100は光電変換信号をPDOUT端子から垂直信号線6に出力する。電流源7は垂直信号線6を介して画素100に電流を供給する。スイッチ8は列増幅部3への入力を制御する。
列増幅部3は、列増幅部3の増幅率を決める為の容量C0、容量C1、容量C2、スイッチ9、スイッチ10、スイッチ11、ならびに増幅回路12を有する。また、列増幅部3はサンプルホールドする為のスイッチ13、スイッチ14、保持容量CTN、保持容量CTS、水平転送線に接続するためのスイッチ15、スイッチ16を有する。
水平走査回路4は、増幅回路12が設けられた列毎に、スイッチ15、スイッチ16の導通状態と非導通状態を順次制御する。これにより、水平走査回路4は、列増幅部3の列単位の走査である水平走査を行う。
水平走査回路4がスイッチ15、スイッチ16を導通状態とすると、容量素子CTN、容量素子CTSに保持された信号が出力アンプに入力される。出力アンプ17は入力された信号を増幅した信号を、撮像素子の外部に出力する。
さらに図6を用いて撮像素子201の詳細を説明する。画素100は、フォトダイオード18、トランジスタ19、浮遊拡散容量20、トランジスタ21、トランジスタ22、トランジスタ23を有する。
フォトダイオード(FDと表記する場合もある)18は、入射光に基づく電荷を蓄積する光電変換部である。
トランジスタ19は、一方の端子をフォトダイオード18が接続され、他方の端子に浮遊拡散容量20が接続されている。浮遊拡散容量(FDと表記する場合もある)20は、トランジスタ19のドレイン端子を兼ねた構造であり、トランジスタ19を介してフォトダイオード18から転送(TXと表記される場合もある)される電荷を保持可能である。フォトダイオード18に蓄積された電荷は、垂直走査回路2からトランジスタ19のゲート端子に入力される信号PTXがHighレベル(Hレベルと表記する場合もある)となることで行われる。
トランジスタ21は、垂直走査回路2から入力される信号PRESがHレベルとなると、浮遊拡散容量20の電位を電源電圧VDDに基づく電位にリセット(RESと表記される場合もある)する。
トランジスタ22は、入力ノードが浮遊拡散容量20に電気的に接続されている。トランジスタ22は一方の主ノードに、垂直信号線6を介して接続される電流源7からバイアス電流が供給され、他方の主ノードに電源電圧VDDが供給されることでソースフォロワ(SFと表記する場合もある)を構成する。
トランジスタ23は、垂直走査回路2から入力される信号PSELがHレベルとなると、トランジスタ22が出力する信号を垂直信号線6に出力する。トランジスタ23が垂直信号線6に信号を出力するノードがノードPDOUTである。トランジスタ22が出力する信号は、浮遊拡散容量20の保持する電荷に基づく信号である。
次に列増幅部3の動作に関して説明を行う。
スイッチ8は、画素100が出力する信号を増幅回路12へ入力する制御を行っている。
容量C0、容量C1、容量C2は増幅回路12の増幅をおこなうための容量であり、スイッチ9、スイッチ10を制御することによりC0/C1もしくはC0/C2もしくはC0/(C1+C2)の容量比にて入力電圧の増幅をおこなう。
スイッチ11は容量C1、容量C2のリセットの制御を行なう。
増幅回路12から出力された信号は、スイッチ13、スイッチ14を制御することにより容量CTNとCTSにサンプルホールドされる。画素100が出力する信号のうち、浮遊拡散容量20がリセットレベルにあるときの出力信号(N信号と表記する場合もある)を、スイッチ13をONすることで容量CTNにサンプルホールドする。また、画素100からの出力信号のうち、浮遊拡散容量20に電荷が転送されたときの出力信号(S信号と表記する場合もある)を、スイッチ14をONすることで容量CTSにサンプルホールドする。
スイッチ15、スイッチ16は、水平走査回路4から信号φHnをHレベルにすることにより、サンプルホールドされた容量CTN、容量CTSの出力を出力アンプ17に順次接続する。
上述の撮像素子を用いることで、撮像素子に入力された光信号を、電気信号として読み出すことが可能となる。
図7(a)〜(d)のそれぞれの図は、カラー画素としてRGB画素を用いているCF配置の例を示した図である。図7(a)はベイヤ配置であり、CFの比率がR:G:Bが1:2:1になる。ここで緑画素が他の色の画素に比べて多く配置されているのは、人間の視覚特性がGの波長に感度が高く、かつ解像度も有するためであり、緑画素が多いことにより解像感を得られるためである。ベイヤ配列では、赤画素あるいは青画素に対し、緑画素は平面視における上方向、下方向、右方向、左方向のそれぞれで隣接している。一方、平面視における右斜め上、右斜め下、左斜め上、左斜め下のそれぞれの方向には緑画素は隣接していない。この場合の赤画素あるいは青画素におけるG成分の補間は、上、下、右、左の各方向の相関値の算出に他の色の画素が間に介在した緑画素同士の画素データを用いることとなる。あるいは隣接した画素同士の画素データを使用するのであれば、異なる色の画素同士の画素データを用いることとなる。これにより相関値の算出精度の低下が生じ、偽色が生じやすくなる。
図7(c)は、RGBW8配列を示した図である。この配列において、RGB画素のそれぞれは、平面視における上、下、右、左の各方向においてW画素が隣接して配置されている。一方、RGB画素のそれぞれは、平面視における右斜め上、右斜め下、左斜め上、左斜め下の各方向においてはW画素とは異なる色の画素が隣接して配置されている。この配列においてもまた、先の図7(a)のベイヤ配列の場合と同じく、相関値の算出精度の低下が生じ、偽色が生じやすくなる。
図7(b)はRGBW12配列を示した図である。この配列では、4×4の画素配列中、各CFがR:G:B:W=1:2:1:12の比で配置されている。配列の特徴としては、カラー画素であるRGB画素のいずれの画素もW画素で囲まれている。この「囲まれている」とは、平面視における上、下、右、左、右斜め上、右斜め下、左斜め上、左斜め下の全ての方向においてW画素が配置されていることを表す。この配列では、W画素の比率が全有効画素の3/4を占める。カラー画素がW画素で周囲を囲まれていることによって、上述した実施形態の補間処理において説明したように、横方向、縦方向、右斜め方向、左斜め方向のそれぞれの相関値を好適に求めることができる。これにより、RGBW12配列の撮像素子を用いた高精度の補間処理が実現される。また、RGBW12配列は、ベイヤ配列、RGBW8配列に比べてW画素の画素数が多いため、撮像素子201の感度が向上する効果が得られる。
図7(d)にRGBG12と表記したCF配列を示す。この配列ではRGBW12のWの部分をGに置き換えており、4×4の画素配列中、各CFがR:G:B=2:12:2の比で配置されている。配列の特徴としては、赤画素と青画素が緑画素で囲まれており、緑画素の比率が全画素の3/4配置されている。赤画素と青画素の各々は、上、下、右、左、右斜め上、右斜め下、左斜め上、左斜め下の各方向において、緑画素が隣接している。すなわち、赤画素と青画素の各々は緑画素に囲まれている。このため、先の図7(b)のRGBW12配列の例と同じく、隣り合う2つ以上の緑画素の画素データを用いて、縦、横、右斜め、左斜めの各方向の相関値を求めることができる。これにより、RGBG12配列の撮像素子を用いた高精度の補間処理が実現される。また、緑画素の値を輝度の値とすれば全画素の位置で高解像度の輝度値が得られる。また、赤画素と青画素に対して感度の高い緑画素の割合がベイヤ配列に比べて高いため、ベイヤ配列の場合に比べてRGBG配列は感度が向上する。
図8(a)〜(d)のそれぞれの図は、補色であるC(シアン)・M(マゼンダ)・Y(イエロー)のCFを用いた場合の画素配置の例を示した図である。図8(a)はベイヤ配置であり、CFの比率がC:M:Yが1:1:2である。図8(b)は、CMYW12配列を示した図である。この配列では、4×4の画素のうち各CFは、C:M:Y:W=1:1:2:12の比で配列されている。図8(c)は、CMYW8配列を示した図である。この配列では、4×4の画素配列中、各CFがC:M:Y:W=2:2:4:8の比で配列されている。図8(d)は、CMYY12配列を示した図である。これらの補色のCFの配列の場合も、図7(a)〜(d)の場合と同じく、解像度データを出力する画素が、カラーデータを出力する画素を囲んでいる配列において、上述した実施形態の補間処理を好適に行うことができる。つまり、図8(b)、図8(d)の配列において、上述した実施形態の補間処理を好適に行うことができる。
上述のように、CFは各種の配置が取りうる。単板イメージセンサで解像度をより高くした画像を作成するためには、解像度データを生成する画素(ベイヤ配列では緑画素であり、W画素を有する撮像素子であればW画素である)をより多く配置することが好ましい。ベイヤ配列では解像度データを生成する緑画素が市松模様状に配置されており、補間エラーが生じる場合があった。本発明では、解像度データを生成する画素を、市松模様状よりも多く配置することで、当該補間エラーを小さくできることを見出した。したがって、説明したCF配置の内、図7(b)RGBW12、図7(d)RGBG12、図8(b)CMYW12、図8(d)CMYY12、の各配列に示されるようなCF配置の撮像素子を用いた場合に、本発明の効果が顕著に表れる。なぜなら、図7(b)RGBW12、図7(d)RGBG12、図8(b)CMYW12、図8(d)CMYY12の場合、高精度の補間が必要な画素位置には、4方向でなく8方向に輝度が取得できる輝度画素があるためである。この場合、前述したように4つの、相関値(横)、相関値(縦)、相関値(左斜)、相関値(右斜)が得られる。この相関値の比較によって、4方向の差分の情報が得られる。この差分の情報を得ることによって、補間部205は、さらに高精度の補間を行うことができる。これにより、補間部205は、カラー画素位置における輝度値を高精度に得ることができる。このように、幾何学的に見て、色を取得するカラー画素の4辺の各々に接した、輝度を取得する複数の輝度画素と、カラー画素の4つの頂点をそれぞれ共有する複数の輝度画素とが配列されている。これにより、カラー画素位置における輝度情報を、高精度の補間で得ることができる。
本実施例においては画素を四角形とし、平面視における上、下、右、左、右斜め上、右斜め下、左斜め上、左斜め下の8方向に輝度が取得できる輝度画素が隣接している例を説明した。本発明はこの例に限定されるものではなく、画素が六角形で、この六角形の6辺のそれぞれに輝度画素が隣接して配置されている場合にも適用できる。この場合にも、隣り合う2つ以上の同色の画素データを用いて縦方向、横方向、右斜め方向、左斜め方向の4方向の相関値を求め、その相関値の比較によって差分の情報を得る。これにより、実施形態で述べた補間処理を好適に行うことができる。
図9は、図1に示した補間部205が行う処理を示した図である。尚、図9は、撮像素子201のCF配列がRGBW12配列である場合を示している。
図9(a)は、前述の前段処理部204から入力されるデータである。前段処理部204では、入力信号Dinのオフセット(OFFSET)補正、ゲイン(GAIN)補正、等の補正を適宜実施して、補正後の出力Doutを作成する。この処理は、典型的には以下の式で表わされる。
Figure 0006598507
この補正は、さまざまな単位で行うことを採用しうる。例として、画素毎に補正を行う場合、列増幅器毎に補正を行う場合、アナログデジタル変換部(ADC)部毎に行う場合、出力増幅器毎に補正を行う場合、等である。補正を行うことで、いわゆる固定パターンノイズを低減することができ、より高品質な画像を得ることができる。
補間部205は、前段処理部204から出力されたデータを、Wデータとカラーデータ(G信号、R信号、B信号)とをそれぞれ分離する「データ分離」処理を行う。
Wデータは、図9(b)に示す通り、4×4の画素のうち、RGB画素が配置されていた画素の信号は不明(図中では?で示している)となる。また、カラーデータは、図9(d)で示す通り、4×4のうち2×2画素であり、解像度の低い(空間的に粗い)データとなる。
次に、補間部205は、「?」で示した信号を周囲の信号を用いて補間する処理を行う。補間の処理は、さまざまな方法を採用しうる。例として、周囲8画素平均を行う場合、上下左右の4画素の平均を行う(バイリニア法)手法と、周囲の画素のエッジを検出しエッジ方向に垂直な方向で補間する手法と、細線などのパターンを検出しその方向で補間する手法等がある。ここでは、以下のように補間処理を行う。
補間の方法を説明するために、図9(c)にはX座標Y座標を付記してある。たとえばiWbと表記した信号は、Wデータにおける(3,3)の座標の信号であるためiWb(3,3)と表記する。入力信号の状態ではiWbは不明であるため、補間が必要である。たとえば、iWb(3,3)を周囲8画素平均で補間する場合、iWb(3,3)は以下のように求められる。
Figure 0006598507
本実施例ではこのように、信号値が不明な画素の信号を、周囲の画素の信号値から補間する処理を行う。なお、4×4の画素群を表記しているが、このパターンが繰り返されるため、iWr、iWgなども周囲8画素の情報から補間を行うことができる。
次に、補間部205は、補間したWデータ、ならびに抽出したカラーデータを用いて、Rデータ、Gデータ、Bデータのカラーデータを生成する。Rデータ、Gデータ、Bデータの生成における色の算出には、さまざまな方法が採用されうる。例として、カラーデータを規格化して色の比を求める方法がある。この方法では、以下の式で色の比を算出する。
Figure 0006598507
ただしここで
Figure 0006598507
である。
また、カラーデータと、補間したiWr、iWg、iWbとの比をとる方法を利用することも出来る。この場合には、以下の式で色の比を算出する。
Figure 0006598507
本実施例では、カラーデータと、補間したiWr・iWgr・iWgb・iWbとの比をとる方法を用いる。
このように求めた色の比であるRGB_ratioと、W信号あるいは補間値iWr・iWgr・iWgb・iWbの信号を用いて、各画素におけるR、G、Bのそれぞれの色に対応する信号値を以下のように求めることができる。
Figure 0006598507
ただしここで
Figure 0006598507
であり、先ほど求めた色の算出データを用いる。
この補間部205の処理によって、各々が4×4の16画素を有する、Rデータ、Gデータ、Bデータを得る。この補間部205が生成するRデータ、Gデータ、Bデータは、解像データとカラーデータとを合成することによって生成される第1のデータである。
次に、図10を参照しながら、変換部206が行う処理について説明する。
図10は、カラーデータに対して、アップコンバート処理とモザイク処理を行い、ベイヤデータを出力する信号処理を示した図である。
図10(a)は前述の補間部205から入力されるデータである。まずこのデータを、図10(b)に示すように、Rデータ、Gデータ、Bデータのそれぞれに分離する。
色分離されたそれぞれのカラーデータは、それぞれアップコンバート処理によって垂直方向および水平方向のそれぞれで2倍の解像度に変換される。アップコンバートの方法を説明するために、図10(b)および図10(c)および図10(d)にはX座標Y座標を付記してある。たとえば、左上のRと表記した画素は(1,1)の座標のRのデータであるため、R(1,1)と表記する。図10(c)のR(1,1)は、図10(b)のR(1,1)の画素をそのまま用いている。図10(c)中、画素(1,2)、(2,1)、(2,2)はいずれも信号値が不明である。本実施例では、不明の信号値を補間する方法として、最近傍内挿法を用いる。よって、図10(c)の(2,1)、(1,2)、(2,2)の信号値をR(1,1)と同じ値とする。
このようにして、図10(d)に示すように、垂直方向および水平方向でそれぞれ2倍ずつ解像度が向上したRデータ、Gデータ、Bデータのそれぞれが生成される。このアップコンバート処理によって得られたデータは、補間部205が生成した第1のデータをアップコンバート処理した第2のデータである。
次にモザイク処理をするために、図10(d)のうちハッチがかかっている画素を抽出する。図10(d)のRデータでは、2×2の信号のうち、X座標値およびY座標値が最小の信号を用いる。つまり、R(1,1),R(3,1),R(5,1),R(7,1),R(3,1)・・・・の信号を用いる。Gデータでは、ベイヤ配列と同じ様に、市松模様状にデータを抽出する。Bデータでは、2×2の信号のうち、X座標値およびY座標値が最大の信号を用いる。つまり、B(2、2),B(4,2),B(6,2),B(8,1),B(4,2)・・・・の信号を用いる。
このようにして、変換部206は、図10(e)に示すモザイクデータを得る。変換部206は、モザイクデータを画像処理部203に出力する。このモザイクデータは、画像処理部203による画像の生成に用いられるデータである。本実施例では、画像処理部203に入力されるデータの配列は、ベイヤ配列である。
画像処理部203は、図1を参照しながら説明した動作を行う。これにより、画像処理部203は、被写体の撮影画像を生成する。
以上の処理を行う撮像装置を用いて評価撮影を行った。解像感を評価するために解像度チャートを用いてTV解像度の評価を行った。また、他の例として、図13に示すように、変換部206に図10の処理の内、アップコンバート処理を行わずにモザイクデータを生成させた。そして、比較例では、このモザイクデータを用いて画像処理部203が撮影画像を生成した。
以上のような方法で比較した結果、本実施例の図10に示した処理によって得られた撮影画像では、TV水平解像度が1000本以上であった。一方で、他の例の撮影画像ではTV水平解像度が900本であった。よって、アップコンバート処理を行ってモザイクデータを生成して得た画像の方が、良好な解像度を得ることができた。
上記の画素信号数は、撮像素子の画素数の場合もあるが、撮像素子の信号出力する領域を限定(部分読み出し、クロップなどと呼ばれる場合もある)することや、撮像素子201の内部で加算(ビニングと呼ばれる場合もある)する。これにより、撮像素子201の画素数よりも少ない画素信号を出力することがある。本実施例で述べた処理では、出力された画素信号をアップコンバートすることで発揮されるものであり、撮像素子201の総画素数にはよらない。
本実施例の信号処理部202、画像処理部203のそれぞれは半導体基板に実装された集積回路とすることができる。
また、本実施例の撮像装置は、信号処理部202が形成された半導体基板と撮像素子201が形成された半導体基板とを積層した積層型センサとして利用することができる。
尚、本実施例では画像処理部203が撮像装置の外部に設けられた例を説明した。他の例として、撮像装置が画像処理部203を含むようにしても良い。
本実施例では、リモザイクしたデータを画像処理部203に出力し、画像を形成する形態について説明を行った。本実施例はこれに限定されるわけではなく、信号処理部202からRGBデータを画像処理部に出力する形態や、信号処理部202から直接映像データを出力する形態であってもよい。
以上の処理を行った撮像装置を用いて評価撮影を行った。画像の評価項目としては、解像度感を得るためにTV解像度の評価を行った。
図3(d)、図3(e)に示した比較例では、方向性を検出するために、第2の色の画素が介在した第1の色の画素同士の画素データを用いて取得する。このため、本実施例に比べて、方向性の算出精度が低下する。また、第1の色が隣接して並んだ列、あるいは行が比較例では存在しないために、線状の被写体の検出精度が本実施例の場合と比べて低下する。これにより、線状の被写体における、方向性の検出精度が比較例では本実施例の場合と比べて低下する。
以上のような方法で比較した結果、本実施形態の出力データでは、TV水平解像度が1000本以上であった。一方、比較例の出力データではTV水平解像度が900本であった。
また、本実施形態の信号処理では、画像処理部203の設計を、本実施形態のようなW画素を有する撮像素子201ではなく、RGB画素のベイヤ配列の撮像素子201が出力する出力信号を処理する設計と同じとすることができる。よって、本実施形態の信号処理は、W画素を有する撮像素子201のために画像処理部203を別途設計するコストを低減することができる。つまり、本実施形態の信号処理は、撮像装置と画像処理部203との親和性の低下を抑制している。よって、本実施形態の信号処理では、撮像装置と画像処理部203との親和性の低下を抑制しながら、色ノイズを低減した撮影画像を生成できる。
本実施形態で述べた信号処理部202、画像処理部203は、信号処理方法がプログラミングされたソフトウェアを実行するコンピュータなどのハードウェアであっても良い。CD−ROM、DVD−ROM等の記録媒体あるいは通信によって配信されるプログラムに、本実施形態で信号処理部202、画像処理部203が行った信号処理方法がプログラミングされていても良い。
尚、図9では、(b)、(d)に示したWデータ、カラーデータの取得は、撮像素子201が出力する複数フレームのWデータ、カラーデータを平均化したものであっても良い。また、Nフレーム(Nは1以上の数)のWデータを平均化し、Nフレームよりも多いフレーム数のMフレームのカラーデータを平均化するようにしても良い。この場合には、解像感の低下を抑えながら、色ノイズを低減した画像を生成することができる。また、被写体に動体が含まれることを検出した場合には、Wデータの平均化を行わず、1フレームのWデータと、複数フレームのカラーデータとを用いて画像を生成するようにしても良い。この場合には、被写体のブレを抑えながら、色ノイズを低減した画像を得ることができる。また、被写体に動体が含まれていないことが検出された場合には、画像処理部203は、Wデータ、カラーデータをそれぞれ複数フレームずつ平均化して画像を生成する。一方、被写体に動体が含まれていることが検出された場合には、画像処理部203が、1フレームずつのWデータ、カラーデータから画像を生成するようにしても良い。
(実施例2)
本実施例の撮像装置について、実施例1とは異なる点を中心に説明する。
本実施例の撮像装置は、相関値を算出する画素同士の距離に応じた重みづけを行って相関値を求める。
本実施例の撮像素子201が有する画素は、2次元の格子状の配置であり、略正方形の画素配置になっている。したがって、ある補間される画素を中心とした場合、差分をとる相手の画素までの距離が縦方向において隣接する画素との距離に対し、斜め方向において隣接する画素との距離の方が大きい。
図11に注目画素と差分をとる相手の画素との距離についての説明を示す。図11(a)は、B(3,3)画素に関する相関値を取得する際の注目画素B(3,3)から、差分を取得する隣接画素までの距離を示す図である。距離を算出する際は、差分をとる2つの画素の重心を基準に、注目画素の重心から、差分を得る相手の画素の重心までの距離を、単演算距離と定義する。この重心とは、例えば、1つの画素に対応して設けられた1つのマイクロレンズの重心を、画素が設けられた半導体基板に投影した位置とすることができる。他の重心の例として、光電変換部を1つのみ有する画素では、重心を光電変換部の重心とすることができる。
図11(a)中の縦方向の差分|W(2,2)−W(2,3)|とB(3,3)との単演算距離101は、一画素のピッチを2として単演算距離101=√3となる。また、図11(a)中の縦方向の差分|W(2,1)−W(2,2)|とB(3,3)との単演算距離202は、一画素のピッチを2として単演算距離102=√13である。また、図11(a)中の斜め方向の差分|W(3,2)−W(4,3)|とB(3,3)との単演算距離103は、単演算距離103=√2である。また、図11(a)中の斜め方向の差分|W(4,3)−W(5,4)|とB(3,3)との単演算距離104は、単演算距離104=√10である。
上記の単演算距離に対し、相関値を計算する際の各差分に対する係数と、それぞれの単演算距離を乗算し、それらの総和を求めたものを演算距離と定義する。たとえば、実施例1で示した相関値を求める際の縦方向の演算距離(縦)は、以下のように計算される。
演算距離(縦)=2×√3+2×√3+2×√3+2×√3=8√3
同様に、他の方向に関して計算すると
演算距離(横)=8√3
演算距離(右斜め)=4√2+4√10
演算距離(左斜め)=4√2+4√10
縦横方向の演算距離は約13.8、斜め方向の演算距離は約18.3であり、その比は1.3倍程度である。
演算距離が異なる、すなわち注目画素から差分をとる画素までの距離が異なるということは、空間的な方向性を見る距離が異なるということである。これが相関値をとるそれぞれの方向で異なると、方向性を検出する際のエラーとなってしまうため、できるだけ演算距離が同等であることが好ましく、演算距離の最大値と最小値の比が2以下であると好ましい。
本実施例では、図11(b)、図11(c)、図11(d)、図11(e)の矢印で示す隣接画素で差分を取得し、相関値を得る。相関値はそれぞれ以下のように求める。
相関値(横)=|W(1,2)−W(2,2)|
+|W(2,2)−W(3,2)|×3
+|W(3,2)−W(4,2)|×3
+|W(4,2)−W(5,2)|
+|W(1,4)−W(2,4)|
+|W(2,4)−W(3,4)|×3
+|W(3,4)−W(4,4)|×3
+|W(4,4)−W(5,4)|
相関値(縦)=|W(2,1)−W(2,2)|
+|W(2,2)−W(2,3)|×3
+|W(2,3)−W(2,4)|×3
+|W(2,4)−W(2,5)|
+|W(4,1)−W(4,2)|
+|W(4,2)−W(4,3)|×3
+|W(4,3)−W(4,4)|×3
+|W(4,4)−W(4,5)|
相関値(左斜)=|W(1,2)−W(2,3)|×2
+|W(2,3)−W(3,4)|×2
+|W(3,4)−W(4,5)|×2
+|W(2,1)−W(3,2)|×2
+|W(3,2)−W(4,3)|×2
+|W(4,3)−W(5,4)|×2
相関値(右斜)=|W(1,4)−W(2,3)|×2
+|W(2,3)−W(3,2)|×2
+|W(3,2)−W(4,1)|×2
+|W(2,5)−W(3,4)|×2
+|W(3,4)−W(4,3)|×2
+|W(4,3)−W(5,2)|×2
また、それぞれの演算距離は
演算距離(横)=4√13+12√3
演算距離(縦)=4√13+12√3
演算距離(左斜)=8√10+8√2
演算距離(右斜)=8√10+8√2
縦横方向の演算距離は約35.2、斜め方向の演算距離は約36.6であり、その比は1.04倍程度である。
以上のような方法で比較した結果、本実施形態の出力データでは、TV水平解像度が1050本以上であり、実施例1に比べさらに解像度が向上した。
(実施例3)
本実施例は、実施形態、実施例1〜2で述べた撮像装置を適用した撮像システムについて述べる。撮像システムは撮像装置を用いて画像、動画等を取得する装置であり、その一例としては、デジタルスチルカメラ、デジタルカムコーダー、監視カメラなどがある。図12に、撮像システムの例としてデジタルスチルカメラに実施形態、実施例1〜2の撮像装置を適用した場合のブロック図を示す。
図12において、撮像システムは被写体の光学像を撮像装置301に結像させるレンズ302、レンズ302の保護のためのバリア303及びレンズ302を通った光量を調整するための絞り304を有する。また、撮像システムは撮像装置301より出力される出力信号の処理を行う出力信号処理部305を有する。出力信号処理部305は、実施形態、実施例1〜2で説明した画像処理部203を有する。出力信号処理部305は、撮像装置301が形成された半導体基板とは別の半導体基板に形成されている。
出力信号処理部305はデジタル信号処理部を有し、撮像装置301から出力される信号を、必要に応じて各種の補正、圧縮を行って信号を出力する動作を行う。
また、撮像システムは、画像データを一時的に記憶する為のバッファメモリ部306、記録媒体への記録又は読み出しを行うための記憶媒体制御インターフェース(I/F)部307を有する。さらに撮像システムは、撮像データの記録又は読み出しを行うための半導体メモリ等の、着脱可能な、又は撮像システムに内蔵された、記録媒体309を有する。さらに、撮像システムは、外部のコンピュータ等と通信するための外部インターフェース(I/F)部308、各種演算とデジタルスチルカメラ全体を制御する全体制御・演算部310を有する。さらに撮像システムは、出力信号処理部305に、各種タイミング信号を出力するタイミングジェネレータ311を有する。なお、タイミング信号などの制御信号はタイミングジェネレータ311ではなく外部から入力されてもよい。すなわち、撮像システムは少なくとも撮像装置301と、撮像装置301から出力された出力信号を処理する出力信号処理部305とを有すればよい。
以上のように、本実施例の撮像システムは、実施形態、実施例1〜2で述べた撮像装置301を適用して撮像動作を行うことが可能である。
201 撮像素子
202 信号処理部
203 画像処理部
204 前段処理部
205 補間部
206 変換部

Claims (7)

  1. 各々が光電変換部を有する第1素、第2素、第3素、第4素、第5素、第6素、第7、第8画素、第9画素、第10画素、第11画素、第12画素、第13画素、第14画素、第15画素、第16画素、第17画素と、信号処理部とを有し、
    前記第1素の前記光電変換部が光電変換する光の波長帯域は第1長帯域であり、
    前記第2〜第13画素の各々の前記光電変換部が光電変換する光の波長帯域は前記第1長帯域を含むとともに前記第1長帯域よりも広い波長帯域である第2長帯域であり、
    前記第1素に、前記第2〜第画素の各々が隣接し、
    第1方向において、前記第2素と前記第3画素との間に前記第1素があり、
    前記第1方向とは異なる第2方向において、前記第4画素と前記第5画素との間に前記第1素があり、
    前記第1方向および前記第2方向とは異なる第3方向において、前記第6画素と前記第7画素との間に前記第1素があり、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、
    前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記信号処理部は、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素の各々の信号から第1関値を得て、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素の各々の信号から第2関値を得て、
    前記第14画素、前記第4画素、前記第3画素、前記第13画素、前記第10画素、前記第2画素、前記第5画素、前記第17画素の各々の信号から第3相関値を得て、
    前記第12画素、前記第2画素、前記第4画素、前記第16画素、前記第15画素、前記第5画素、前記第3画素、前記第11画素の各々の信号から第4相関値を得て、
    前記信号処理部は、前記第1関値、前記第2関値、前記第3相関値、前記第4相関値を比較することによって、関性の高い方向を得て、
    前記信号処理部はさらに、前記第2〜第17の画素のうち前記相関性の高い方向に沿って設けられた素の信号を用いて、前記第1素における前記第2長帯域に相当する信号を補間することを特徴とする撮像装置。
  2. 各々が光電変換部を有する第1素、第2素、第3素、第4素、第5素、第6素、第7、第8画素、第9画素、第10画素、第11画素、第12画素、第13画素、第14画素、第15画素、第16画素、第17画素と、信号処理部とを有し、
    前記第1素の前記光電変換部が光電変換する光の波長帯域は赤と青のいずれかの色に対応する第1長帯域であり、
    前記第2〜第13画素の各々の前記光電変換部が光電変換する光の波長帯域は緑の色に対応する第2長帯域であり、
    前記第1素に、前記第2〜第画素の各々が隣接し、
    第1方向において、前記第2素と前記第3画素との間に前記第1素があり、
    前記第1方向とは異なる第2方向において、前記第4画素と前記第5画素との間に前記第1素があり、
    前記第1方向および前記第2方向とは異なる第3方向において、前記第6画素と前記第7画素との間に前記第1素があり、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、
    前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、 前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記信号処理部は、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素の各々の信号から第1関値を得て、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素の各々の信号から第2関値を得て、
    前記第14画素、前記第4画素、前記第3画素、前記第13画素、前記第10画素、前記第2画素、前記第5画素、前記第17画素の各々の信号から第3相関値を得て、
    前記第12画素、前記第2画素、前記第4画素、前記第16画素、前記第15画素、前記第5画素、前記第3画素、前記第11画素の各々の信号から第4相関値を得て、
    前記信号処理部は、前記第1関値、前記第2関値、前記第3相関値、前記第4相関値を比較することによって、関性の高い方向を得て、
    前記信号処理部はさらに、前記第2〜第17の画素のうち前記相関性の高い方向に沿って設けられた素の信号を用いて、前記第1素における前記第2長帯域に相当する信号を補間することを特徴とする撮像装置。
  3. 前記信号処理部は、前記第1、第2、第3、第4関値のそれぞれを、前記第1素の重心からの、前記第2〜第17画素の各々の重心までの距離に応じた重み付けを行って取得することを特徴とする請求項1または2に記載の撮像装置。
  4. 光が入射する領域であって、前記第1〜第17画素と、前記第2波長帯域の光を光電変換する前記光電変換部を有する複数の画素をさらに有する撮像領域を有し、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素が第1行に配され、
    前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素が第2行に配され、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素が第1列に配され、
    前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素が第2列に配され、
    前記撮像領域において、前記第1行、前記第2行、前記第1列、前記第2列に前記第2波長帯域の光を光電変換する前記光電変換部を有する前記画素が連続して設けられていることを特徴とする請求項1〜3のいずれか1項に記載の撮像装置。
  5. 請求項1〜のいずれか1項に記載の撮像装置と、前記撮像装置が出力する信号を用いて画像を生成する画像処理部とを有することを特徴とする撮像システム。
  6. 各々が光電変換部を有する第1素、第2素、第3素、第4素、第5素、第6素、第7、第8画素、第9画素、第10画素、第11画素、第12画素、第13画素、第14画素、第15画素、第16画素、第17画素が出力する信号を処理する信号処理方法であって、
    前記第1素の前記光電変換部が光電変換する光の波長帯域は第1長帯域であり、
    前記第2〜第13画素の各々の前記光電変換部が光電変換する光の波長帯域は前記第1長帯域を含むとともに前記第1長帯域よりも広い波長帯域である第2長帯域であり、
    前記第1素に、前記第2〜第画素の各々が隣接し、
    第1方向において、前記第2素と前記第3画素との間に前記第1素があり、
    前記第1方向とは異なる第2方向において、前記第4画素と前記第5画素との間に前記第1素があり、
    前記第1方向および前記第2方向とは異なる第3方向において、前記第6画素と前記第7画素との間に前記第1素があり、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、
    前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素は、この順に前記第1方向に平行な方向に沿って隣り合うように設けられており、 前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素は、この順に前記第2方向に平行な方向に沿って隣り合うように設けられており、
    前記信号処理方法は、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素、前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素の各々の信号から第1関値を得るステップと、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素、前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素の各々の信号から第2関値を得るステップと、
    前記第14画素、前記第4画素、前記第3画素、前記第13画素、前記第10画素、前記第2画素、前記第5画素、前記第17画素の各々の信号から第3相関値を得るステップと、
    前記第12画素、前記第2画素、前記第4画素、前記第16画素、前記第15画素、前記第5画素、前記第3画素、前記第11画素の各々の信号から第4相関値を得るステップと、
    前記第1関値、前記第2関値、前記第3相関値、前記第4相関値を比較することによって、関性の高い方向を得るステップと、
    前記第2〜第17の画素のうち前記相関性の高い方向に沿って設けられた素の信号を用いて、前記第1画素における前記第2長帯域に相当する信号を補間するステップとを有することを特徴とする信号処理方法。
  7. 光が入射する領域であって、前記第1〜第17画素と、前記第2波長帯域の光を光電変換する前記光電変換部を有する画素をさらに有する撮像領域を有し、
    前記第10画素、前記第8画素、前記第4画素、前記第7画素、前記第11画素が第1行に配され、
    前記第12画素、前記第6画素、前記第5画素、前記第9画素、前記第13画素が第2行に配され、
    前記第14画素、前記第8画素、前記第2画素、前記第6画素、前記第15画素が第1列に配され、
    前記第16画素、前記第7画素、前記第3画素、前記第9画素、前記第17画素が第2列に配され、
    前記撮像領域において、前記第1行、前記第2行、前記第1列、前記第2列に前記第2波長帯域の光を光電変換する前記光電変換部を有する前記画素が連続して設けられていることを特徴とする請求項6に記載の信号処理方法。
JP2015096831A 2015-05-11 2015-05-11 撮像装置、撮像システム、信号処理方法 Active JP6598507B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015096831A JP6598507B2 (ja) 2015-05-11 2015-05-11 撮像装置、撮像システム、信号処理方法
US15/147,263 US9883152B2 (en) 2015-05-11 2016-05-05 Imaging apparatus, imaging system, and signal processing method
EP16168793.4A EP3093819B1 (en) 2015-05-11 2016-05-09 Imaging apparatus, imaging system, and signal processing method
CN201610308087.8A CN106161890B (zh) 2015-05-11 2016-05-11 成像装置、成像系统以及信号处理方法
US15/847,605 US10021358B2 (en) 2015-05-11 2017-12-19 Imaging apparatus, imaging system, and signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096831A JP6598507B2 (ja) 2015-05-11 2015-05-11 撮像装置、撮像システム、信号処理方法

Publications (3)

Publication Number Publication Date
JP2016213715A JP2016213715A (ja) 2016-12-15
JP2016213715A5 JP2016213715A5 (ja) 2018-06-21
JP6598507B2 true JP6598507B2 (ja) 2019-10-30

Family

ID=55963191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096831A Active JP6598507B2 (ja) 2015-05-11 2015-05-11 撮像装置、撮像システム、信号処理方法

Country Status (4)

Country Link
US (2) US9883152B2 (ja)
EP (1) EP3093819B1 (ja)
JP (1) JP6598507B2 (ja)
CN (1) CN106161890B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999750B2 (ja) * 2011-08-25 2016-09-28 ソニー株式会社 撮像素子、撮像装置及び生体撮像装置
JP6584131B2 (ja) * 2015-05-08 2019-10-02 キヤノン株式会社 撮像装置、撮像システム、および信号処理方法
JP6598507B2 (ja) * 2015-05-11 2019-10-30 キヤノン株式会社 撮像装置、撮像システム、信号処理方法
EP3429197B1 (en) * 2016-03-09 2020-05-06 Sony Corporation Image processing apparatus, imaging apparatus, image processing method, and program
JP6980492B2 (ja) * 2017-11-13 2021-12-15 キヤノン株式会社 撮像装置及び撮像システム
JP2020043435A (ja) 2018-09-07 2020-03-19 ソニーセミコンダクタソリューションズ株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2020088464A (ja) * 2018-11-19 2020-06-04 キヤノン株式会社 撮像装置、画像処理装置、および画像処理方法
JP2020108061A (ja) 2018-12-28 2020-07-09 キヤノン株式会社 撮像装置及び撮像システム
CN109905681B (zh) * 2019-02-01 2021-07-16 华为技术有限公司 图像传感器、从其获取图像数据的方法及摄像设备
KR102709671B1 (ko) * 2019-08-08 2024-09-26 에스케이하이닉스 주식회사 이미지 센서, 이미지 신호 프로세서 및 이들을 포함하는 이미지 처리 시스템
US20220368867A1 (en) * 2019-09-26 2022-11-17 Sony Semiconductor Solutions Corporation Imaging device
CN111355937B (zh) * 2020-03-11 2021-11-16 北京迈格威科技有限公司 图像处理方法、装置和电子设备
CN113452968B (zh) * 2020-03-25 2022-04-26 杭州海康威视数字技术股份有限公司 图像处理方法
WO2022011506A1 (zh) * 2020-07-13 2022-01-20 深圳市汇顶科技股份有限公司 图像处理的方法和图像处理装置
KR20220053067A (ko) 2020-10-21 2022-04-29 삼성전자주식회사 왜곡을 발생시키는 렌즈를 갖는 카메라 시스템에서 이미지 해상도를 개선하는 장치 및 그 동작 방법
JP2023010159A (ja) * 2021-07-09 2023-01-20 株式会社ソシオネクスト 画像処理装置および画像処理方法
CN115866423A (zh) * 2021-09-22 2023-03-28 华为技术有限公司 一种图像传感器、摄像头模组、电子设备及图像处理方法
WO2024162659A1 (ko) * 2023-01-31 2024-08-08 삼성전자 주식회사 이미지 센서, 이미지 센서를 포함하는 전자 장치 및 그 동작 방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382976A (en) 1993-06-30 1995-01-17 Eastman Kodak Company Apparatus and method for adaptively interpolating a full color image utilizing luminance gradients
JP5151075B2 (ja) 2005-06-21 2013-02-27 ソニー株式会社 画像処理装置及び画像処理方法、撮像装置、並びにコンピュータ・プログラム
US8139130B2 (en) * 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US7978240B2 (en) * 2005-10-03 2011-07-12 Konica Minolta Photo Imaging, Inc. Enhancing image quality imaging unit and image sensor
JP2007208885A (ja) * 2006-02-06 2007-08-16 Konica Minolta Photo Imaging Inc 撮像ユニットおよび撮像装置
JP4497233B2 (ja) * 2007-07-30 2010-07-07 カシオ計算機株式会社 画素補間回路、およびプログラム
TWI422020B (zh) * 2008-12-08 2014-01-01 Sony Corp 固態成像裝置
JP4760915B2 (ja) * 2009-01-08 2011-08-31 ソニー株式会社 固体撮像素子
JP5326943B2 (ja) * 2009-08-31 2013-10-30 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP5724185B2 (ja) 2010-03-04 2015-05-27 ソニー株式会社 画像処理装置、および画像処理方法、並びにプログラム
JP5935237B2 (ja) * 2011-03-24 2016-06-15 ソニー株式会社 固体撮像装置および電子機器
JP5702892B2 (ja) * 2012-07-06 2015-04-15 富士フイルム株式会社 カラー撮像素子および撮像装置
DE112013003464B4 (de) * 2012-07-06 2016-05-19 Fujifilm Corporation Farbbildgebungselement und Bildgebungsvorrichtung
JP5755814B2 (ja) * 2012-08-27 2015-07-29 富士フイルム株式会社 画像処理装置、方法、プログラム及び撮像装置
JP6012375B2 (ja) * 2012-09-28 2016-10-25 株式会社メガチップス 画素補間処理装置、撮像装置、プログラムおよび集積回路
JP6308760B2 (ja) * 2012-12-20 2018-04-11 キヤノン株式会社 光電変換装置および光電変換装置を有する撮像装置
JP5877931B2 (ja) * 2013-05-23 2016-03-08 富士フイルム株式会社 画素補間装置およびその動作制御方法
JP6239358B2 (ja) * 2013-12-02 2017-11-29 株式会社メガチップス 画素補間装置、撮像装置、プログラムおよび集積回路
JP6276580B2 (ja) * 2013-12-20 2018-02-07 株式会社メガチップス 画素補間処理装置、撮像装置、プログラムおよび集積回路
KR102219199B1 (ko) * 2014-04-29 2021-02-23 삼성전자주식회사 이미지 센서의 픽셀 어레이 및 이미지 센서
JP6598507B2 (ja) * 2015-05-11 2019-10-30 キヤノン株式会社 撮像装置、撮像システム、信号処理方法

Also Published As

Publication number Publication date
EP3093819A2 (en) 2016-11-16
EP3093819A3 (en) 2016-12-07
EP3093819B1 (en) 2019-05-08
JP2016213715A (ja) 2016-12-15
US20180109769A1 (en) 2018-04-19
CN106161890A (zh) 2016-11-23
US9883152B2 (en) 2018-01-30
US10021358B2 (en) 2018-07-10
US20160337623A1 (en) 2016-11-17
CN106161890B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
JP6598507B2 (ja) 撮像装置、撮像システム、信号処理方法
JP6628497B2 (ja) 撮像装置、撮像システム、および画像処理方法
WO2022007469A1 (zh) 图像获取方法、摄像头组件及移动终端
US10368041B2 (en) Imaging device, imaging system, and image processing method
JP6584131B2 (ja) 撮像装置、撮像システム、および信号処理方法
US20180352199A1 (en) Image sensor including phase detection pixel
US10734424B2 (en) Image sensing device
WO2012117583A1 (ja) カラー撮像装置
WO2010089817A1 (ja) 固体撮像素子、カメラシステムおよび固体撮像素子の駆動方法
JP6622481B2 (ja) 撮像装置、撮像システム、撮像装置の信号処理方法、信号処理方法
US20160173794A1 (en) Systems and methods for pixel-level dark current compensation in image sensors
US10855959B2 (en) Image sensing device
TWI547169B (zh) 影像處理方法與模組
WO2022036817A1 (zh) 图像处理方法、图像处理系统、电子设备及可读存储介质
US8582006B2 (en) Pixel arrangement for extended dynamic range imaging
JP2019106576A (ja) 撮像装置及び撮像システム
JP2016213740A (ja) 撮像装置及び撮像システム
JP5607265B2 (ja) 撮像装置、撮像装置の制御方法、及び制御プログラム
JP2019091994A (ja) 撮像装置及び撮像システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R151 Written notification of patent or utility model registration

Ref document number: 6598507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151