JP6577542B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP6577542B2
JP6577542B2 JP2017170626A JP2017170626A JP6577542B2 JP 6577542 B2 JP6577542 B2 JP 6577542B2 JP 2017170626 A JP2017170626 A JP 2017170626A JP 2017170626 A JP2017170626 A JP 2017170626A JP 6577542 B2 JP6577542 B2 JP 6577542B2
Authority
JP
Japan
Prior art keywords
control device
learning
power
unit
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170626A
Other languages
English (en)
Other versions
JP2019046324A (ja
Inventor
裕亮 杉山
裕亮 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2017170626A priority Critical patent/JP6577542B2/ja
Priority to US16/119,131 priority patent/US11048216B2/en
Priority to DE102018006992.4A priority patent/DE102018006992B4/de
Priority to CN201811032419.XA priority patent/CN109421072B/zh
Publication of JP2019046324A publication Critical patent/JP2019046324A/ja
Application granted granted Critical
Publication of JP6577542B2 publication Critical patent/JP6577542B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/029Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and expert systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34315Power supply turning on or shutting off
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Description

本発明は制御装置に関し、特にユーザによる電源切断のタイミングを予測し、データ退避処理等を前記タイミングまでに予め実施しておくことで、電源切断処理の所要時間を短縮する制御装置に関する。
従来の制御装置は、ユーザによる電源切断の指令に応じて、保存すべきデータを揮発性メモリから不揮発性メモリに退避させる処理(ハイバネーションやバックアップデータ転送等)を実行し、当該処理の実行後に電源を切断する。これは、次回の制御装置の軌道次回を短縮するためには不可欠な処理であるが、一方で、電源切断の指令から実際に切断されるまでに時間がかかるという問題がある。
特開平07−028572号公報
もし電源切断の指令がなされるタイミングを事前に検知できれば、ハイバネーションやバックアップデータ転送等の処理を当該タイミングまでに完了させておくことで、電源切断の指令後速やかに電源を切断できるはずである。しかし、現在のところ電源切断の指令タイミングを事前に予測するような技術は存在しない。
例えば特許文献1には、ロボット制御装置の稼働履歴に基づいて消費電力量を予測する構成が記載されている。しかしながら、特許文献1が予測するものは消費電力量であって、同文献は電源切断の指令タイミングを予測するための技術については何ら開示も示唆もしていない。
本発明はこのような問題点を解決するためになされたものであって、ユーザによる電源切断のタイミングを予測し、データ退避処理等を前記タイミングまでに予め実施しておくことで、電源切断処理の所要時間を短縮する制御装置を提供することを目的とする。
本発明の一実施の形態にかかる制御装置は、電源の切断タイミングを予測する制御装置であって、前記電源の切断タイミングを学習する機械学習装置を備え、前記機械学習装置は、ユーザ毎の前記制御装置に対する操作内容を、環境の現在状態を表す状態変数として観測する状態観測部と、前記ユーザにより前記制御装置の電源切断が指令されたことを示す判定データを取得する判定データ取得部と、前記状態変数と前記判定データとを用いて、前記ユーザ毎の操作内容と、前記電源切断の指令とを関連付けて学習する学習部と、を備える。
本発明の一実施の形態にかかる制御装置は、前記状態変数には、前記ユーザ毎の操作内容に加えて、前記操作の日付、曜日、時刻、ティーチングペンダントの加速度又は位置、工場の消費電力、CPUの負荷状態、アラームの出力状態のうち少なくともいずれか1つを含む。
本発明の一実施の形態にかかる制御装置は、前記学習部は、前記状態変数と前記判定データとを多層構造で演算する。
本発明の一実施の形態にかかる制御装置は、前記予測した電源の切断タイミングを通知する判定出力部320を備える。
本発明の一実施の形態にかかる制御装置は、前記学習部は、複数の前記制御装置から得られた前記状態変数及び前記判定データを用いて前記学習を行う。
本発明の一実施の形態にかかる制御装置は、前記機械学習装置は、クラウドサーバに存在する。
本発明の一実施の形態にかかる機械学習装置は、電源の切断タイミングを学習する機械学習装置であって、ユーザ毎の制御装置に対する操作内容を、環境の現在状態を表す状態変数として観測する状態観測部と、前記ユーザにより前記制御装置の電源切断が指令されたことを示す判定データを取得する判定データ取得部と、前記状態変数と前記判定データとを用いて、前記ユーザ毎の操作内容と、前記電源切断の指令とを関連付けて学習する学習部と、を備える。
本発明によれば、ユーザによる電源切断のタイミングを予測し、データ退避処理等を前記タイミングまでに予め実施しておくことで、電源切断処理の所要時間を短縮する制御装置を提供することができる。
制御装置100の構成を示すブロック図である。 制御装置100の構成を示すブロック図である。 制御装置100の構成を示すブロック図である。 ニューロンを説明する図である。 ニューラルネットワークを説明する図である。 制御装置100の構成を示すブロック図である。 制御システム1000の構成を示すブロック図である。 制御装置100の動作を示すフローチャートである。 制御装置100の動作を示すフローチャートである。 実施例1にかかる制御装置100の動作を示す図である。 実施例2にかかる制御装置100の動作を示す図である。
本発明の実施の形態について、図面を用いて説明する。
本発明の第1の実施の形態にかかる制御装置100は、電源切断前にユーザが実行した作業等に関する情報と、ユーザが電源切断の指令を行ったタイミングとを収集し、両者の関係を機械学習によりモデル化する処理を行う(学習過程)。また、学習過程で作成したモデルを使用して、ユーザが実行した作業等を観測して、ユーザが電源切断の指令を行うであろうタイミング予測する処理を行う(予測過程)。
図1は制御装置100の要部を示す概略的なハードウェア構成図である。CPU11は、制御装置100を全体的に制御するプロセッサである。CPU11は、ROM12に格納されたシステム・プログラムをバス20を介して読み出し、該システム・プログラムに従って制御装置100全体を制御する。RAM13には一時的な計算データや表示データ及び外部から入力された各種データ等が一時的に格納される。
不揮発性メモリ14は、例えば図示しないバッテリでバックアップされるなどして、制御装置100の電源がオフされても記憶状態が保持されるメモリとして構成される。図示しないインタフェースを介して入力された各種プログラムやデータが記憶されている。不揮発性メモリ14に記憶されたプログラムやデータは、実行時/利用時にはRAM13に展開されても良い。また、ROM12には、各種のシステム・プログラムがあらかじめ書き込まれている。
入力装置60は、ユーザが行った操作内容等を収集する装置である。例えば入力装置60はティーチングペンダント(TP)であり、ログイン中のユーザを特定する情報(ユーザID等)、ユーザが行った操作のログ(実行した日付や曜日、時刻、作業内容等)、TPの加速度等の情報を収集、出力する。また入力装置60は工場の制御システムであり、工場の消費電力を取得、出力しても良い。また入力装置60はTPをトラッキングするビジョンセンサであり、TPの現在位置(座標)を取得、出力しても良い。また入力装置60は制御装置100自身であり、CPU11の負荷状態や、再起動の必要性を通知するアラームの出力ログを取得、出力しても良い。
ユーザを特定する情報は、ユーザにより電源切断の指示のタイミングが異なる可能性があることから、入力データとして有用である。またユーザが行う作業内容のうち、例えばCPUに高負荷がかかる蓋然性が高い作業、ロボットの設定操作など制御装置100の再起動が必要になる作業、その他再起動を促すアラームが出る作業についてのログは、その後の電源切断との関連性を有する可能性があることから、入力データとして有用である。また、上述の作業に関わらず、ユーザによっては例えば特定のボタン操作のパターンが電源切断と関連性を有することがあるので、あらゆる操作ログが入力データとして有用である可能性がある。日付、曜日、時刻に関する情報は、例えば休日、長期連休前、休憩時間前、勤務終了時刻前などには電源切断が行われる可能性が高いことから、入力データとして有用である。TPの加速度や位置に関する情報は、工場によってはTPの置き場所などが電源切断と関連付けられてルール化されていたり、ユーザの癖により電源切断との関連性が見られることもあるので、入力データとして有用である。CPU11が高負荷状態であることや、再起動の必要性を通知するアラームが出力されたことは、上述のように近い将来の電源切断と関連性を有することがあるから、これらのイベントも入力データとして有用である。
入力装置60は、これらの入力データのうちサンプリング可能なもの(加速度、消費電力、座標、負荷状態等)については、所定の周期(典型的には秒単位だが、必要に応じ適宜調整し得る)でサンプリングし、制御装置100に送信する。その他の入力データ(操作ログ、アラーム発生ログ等のイベント)については、イベントが発生する毎に制御装置100に送信する。制御装置100は、インタフェース18を介して入力装置60から入力データを受信し、CPU11に渡す。
電源切断処理部70は、ユーザにより電源切断が指令された際にこれを検知し、通知信号(以下、切断情報)を出力する。制御装置100は、インタフェース19を介して電源切断処理部70から切断情報を受信し、CPU11に渡す。
インタフェース21は、制御装置100と機械学習装置300とを接続するためのインタフェースである。機械学習装置300は、機械学習装置300全体を統御するプロセッサ301と、システム・プログラム等を記憶したROM302、機械学習に係る各処理における一時的な記憶を行うためのRAM303、及び学習モデル等の記憶に用いられる不揮発性メモリ304を備える。機械学習装置300は、インタフェース21を介して制御装置100で取得可能な各情報(入力データ、切断情報等)を観測することができる。
図2は、制御装置100と機械学習装置300の概略的な機能ブロック図である。機械学習装置300は、入力データの変化と切断情報との相関関係を、いわゆる機械学習により自ら学習するためのソフトウェア(学習アルゴリズム等)及びハードウェア(プロセッサ301等)を含む。制御装置100が備える機械学習装置300が学習するものは、入力データの変化と切断情報との相関性を表すモデル構造に相当する。
図2に機能ブロックで示すように、制御装置100が備える機械学習装置300は、時系列の入力データを環境の現在状態を表す状態変数Sとして観測する状態観測部306と、切断情報を判定データDとして取得する判定データ取得部308と、状態変数Sと判定データDとを用いて、入力データの変化と切断情報とを関連付けて学習する学習部310とを備える。
状態観測部306は、例えばプロセッサ301の一機能として構成できる。或いは状態観測部306は、例えばプロセッサ301を機能させるためのROM302に記憶されたソフトウェアとして構成できる。状態観測部306が観測する状態変数Sすなわち時系列の入力データは、入力装置60が出力するものを取得することができる。入力装置60は、所定のサンプリング周期で取得された時系列の入力データから、所定期間の時系列の入力データを抽出し、状態変数Sとして状態観測部306に出力する。
例えば入力装置60は、入力データを常時取得するとともに、予め定められた一定期間中(例えば最新の入力データの取得時刻から過去x分間)の入力データを保存する。入力装置60は、電源切断処理部70が切断情報を出力したことを検知し、切断情報が出力された時点より過去の、予め定められた一定期間(例えば切断情報の出力時のm分前から過去n分間など)にわたる時系列の入力データを状態変数Sとして出力する。典型的には、m≧ハイバネーションやバックアップデータ転送等の処理に要する平均時間とすることができる。但し、mやnの長さ及び単位をどのように設定するかは任意である。また必要に応じ、mやnをユーザが変更できるようにしても良い。
判定データ取得部308は、例えばプロセッサ301の一機能として構成できる。或いは判定データ取得部308は、例えばプロセッサ301を機能させるためのROM302に記憶されたソフトウェアとして構成できる。判定データ取得部308が観測する判定データDすなわち切断情報は、電源切断処理部70が出力するものを取得することができる。
学習部310は、例えばプロセッサ301の一機能として構成できる。或いは学習部310は、例えばプロセッサ301を機能させるためのROM302に記憶されたソフトウェアとして構成できる。学習部310は、機械学習と総称される任意の学習アルゴリズムに従い、入力データの変化と切断情報との相関関係を学習する。学習部310は、前述した状態変数Sと判定データDとを含むデータ集合に基づく学習を反復実行することができる。
このような学習サイクルを繰り返すことにより、学習部310は入力データの変化と切断情報との相関性を暗示する特徴を自動的に識別することができる。学習アルゴリズムの開始時には入力データの変化と切断情報との相関性は実質的に未知であるが、学習部310は、学習を進めるに従い徐々に特徴を識別して相関性を解釈する。入力データの変化と切断情報との相関性が、ある程度信頼できる水準まで解釈されると、学習部310が反復出力する学習結果は、現在状態(入力データの変化傾向)に対して、切断情報がどのようなものとなるべきかという推定を行うために使用できるものとなる。つまり学習部310は、学習アルゴリズムの進行に伴い、入力データの変化と切断情報との相関性を最適解に徐々に近づけることができる。
上記したように、制御装置100が備える機械学習装置300は、状態観測部306が観測した状態変数Sと判定データ取得部308が取得した判定データDとを用いて、学習部310が機械学習アルゴリズムに従い、切断情報を学習するものである。状態変数Sは外乱の影響を受け難いデータで構成され、また判定データDは一義的に求められる。したがって、制御装置100が備える機械学習装置300によれば、学習部310の学習結果を用いることで、入力データの変化に対応する切断情報を、演算や目算によらずに自動的に、しかも正確に求めることができるようになる。
上記構成を有する機械学習装置300では、学習部310が実行する学習アルゴリズムは特に限定されず、機械学習として公知の学習アルゴリズムを採用できる。図3は、図2に示す制御装置100の一形態であって、学習アルゴリズムの一例として教師あり学習を実行する学習部310を備えた構成を示す。教師あり学習は、入力とそれに対応する出力との既知のデータセット(教師データと称する)が予め大量に与えられ、それら教師データから入力と出力との相関性を暗示する特徴を識別することで、新たな入力に対する所要の出力(入力データの変化に対する切断情報)を推定するための相関性モデルを学習する手法である。
図3に示す制御装置100が備える機械学習装置300において、学習部310は、状態変数Sから切断情報を導く相関性モデルMと予め用意された教師データTから識別される相関性特徴との誤差Eを計算する誤差計算部311と、誤差Eを縮小するように相関性モデルMを更新するモデル更新部312とを備える。学習部310は、モデル更新部312が相関性モデルMの更新を繰り返すことによって入力データの変化と切断情報との相関関係を学習する。
相関性モデルMは、回帰分析、強化学習、深層学習などで構築することができる。相関性モデルMの初期値は、例えば、状態変数Sと形状データとの相関性を単純化して表現したものとして、教師あり学習の開始前に学習部310に与えられる。教師データTは、例えば、過去の入力データの変化と切断情報との対応関係を記録することで蓄積された経験値(入力データの変化と切断情報との既知のデータセット)によって構成でき、教師あり学習の開始前に学習部310に与えられる。誤差計算部311は、学習部310に与えられた大量の教師データTから入力データの変化と切断情報との相関性を暗示する相関性特徴を識別し、この相関性特徴と、現在状態における状態変数Sに対応する相関性モデルMとの誤差Eを求める。モデル更新部312は、例えば予め定めた更新ルールに従い、誤差Eが小さくなる方向へ相関性モデルMを更新する。
次の学習サイクルでは、誤差計算部311は、新たに得られた状態変数S及び判定データDを用いて、それら状態変数S及び判定データDに対応する相関性モデルMに関し誤差Eを求め、モデル更新部312が再び相関性モデルMを更新する。このようにして、未知であった環境の現在状態(入力データの変化)とそれに対応する状態(切断情報)との相関性が徐々に明らかになる。つまり相関性モデルMの更新により、入力データの変化と切断情報との関係が、最適解に徐々に近づけられる。
前述した教師あり学習を進める際に、例えばニューラルネットワークを用いることができる。図4Aは、ニューロンのモデルを模式的に示す。図4Bは、図4Aに示すニューロンを組み合わせて構成した三層のニューラルネットワークのモデルを模式的に示す。ニューラルネットワークは、例えば、ニューロンのモデルを模した演算装置や記憶装置等によって構成できる。
図4Aに示すニューロンは、複数の入力x(ここでは一例として、入力x〜入力x)に対する結果yを出力するものである。各入力x〜xには、この入力xに対応する重みw(w〜w)が掛けられる。これにより、ニューロンは、次の数1式により表現される出力yを出力する。なお、数2式において、入力x、出力y及び重みwは、すべてベクトルである。また、θはバイアスであり、fは活性化関数である。
Figure 0006577542
図4Bに示す三層のニューラルネットワークは、左側から複数の入力x(ここでは一例として、入力x1〜入力x3)が入力され、右側から結果y(ここでは一例として、結果y1〜結果y3)が出力される。図示の例では、入力x1、x2、x3のそれぞれに対応の重み(総称してw1で表す)が乗算されて、個々の入力x1、x2、x3がいずれも3つのニューロンN11、N12、N13に入力されている。
図4Bでは、ニューロンN11〜N13の各々の出力を、総称してz1で表す。z1は、入カベクトルの特徴量を抽出した特徴ベクトルと見なすことができる。図示の例では、特徴ベクトルz1のそれぞれに対応の重み(総称してW2で表す)が乗算されて、個々の特徴ベクトルz1がいずれも2つのニューロンN21、N22に入力されている。特徴ベクトルz1は、重みW1と重みW2との間の特徴を表す。
図4Bでは、ニューロンN21〜N22の各々の出力を、総称してz2で表す。z2は、特徴ベクトルz1の特徴量を抽出した特徴ベクトルと見なすことができる。図示の例では、特徴ベクトルz2のそれぞれに対応の重み(総称してW3で表す)が乗算されて、個々の特徴ベクトルz2がいずれも3つのニューロンN31、N32、N33に入力されている。特徴ベクトルz2は、重みW2と重みW3との間の特徴を表す。最後にニューロンN31〜N33は、それぞれ結果y1〜y3を出力する。
制御装置100が備える機械学習装置300においては、状態変数Sを入力xとして、学習部310が上記したニューラルネットワークに従う多層構造の演算を行うことで、切断情報を推定値(結果y)として出力することができる。なおニューラルネットワークの動作モードには、学習モードと判定モードとがあり、例えば学習モードで学習データセットを用いて重みWを学習し、学習した重みWを用いて判定モードで切断タイミングの推定を行うことができる。なお判定モードでは、検出、分類、推論等を行うこともできる。
上記した制御装置100及び機械学習装置300の構成は、CPU11又はプロセッサ301が実行する機械学習方法(或いはソフトウェア)として記述できる。この機械学習方法は、入力データの変化に対応する切断情報を学習する機械学習方法であって、CPU11又はプロセッサ301が、入力データの変化を環境の現在状態を表す状態変数Sとして観測するステップと、切断情報を判定データDとして取得するステップと、状態変数Sと判定データDとを用いて、入力データの変化と切断情報とを関連付けて学習するステップとを有する。
本実施形態によれば、機械学習装置300が、入力データの変化と切断情報との相関性を示すモデルを生成する。これにより、一度学習モデルを作成してしまえば、加工途中であっても、その時点までに取得できた入力データの変化に基づいて、切断情報を予測することが可能となる。
図5は、第2の実施の形態による制御装置100を示す。制御装置100は、機械学習装置300と、データ取得部330とを備える。データ取得部330は、入力装置60や電源切断処理部70から、時系列の入力データと切断情報とを取得する。
制御装置100が有する機械学習装置300は、第1の実施形態の機械学習装置300が備える構成に加えて、学習部310が入力データの変化に基づいて推定した切断情報を制御装置200に対して出力する判定出力部320を含む。
判定出力部320は、例えばプロセッサ301の一機能として構成できる。或いは判定出力部320は、例えばプロセッサ301を機能させるためのソフトウェアとして構成できる。判定出力部320は、学習部310が入力データの変化に基づいて推定した切断情報を制御装置200に対して出力する。
上記構成を有する制御装置100が備える機械学習装置300は、前述した機械学習装置300と同等の効果を奏する。特に第2の実施形態における機械学習装置300は、判定出力部320の出力によって環境の状態を変化させることができる。他方、第1の実施形態の機械学習装置300では、学習部110の学習結果を環境に反映させるための判定出力部320に相当する機能を、外部装置に求めることができる。
図6は、本発明の他の実施の形態を示す。制御システム1000は、同種の制御装置100、100’と、それら制御装置100、100’を互いに接続する有線/無線のネットワーク1100とを備える。制御装置100、100’は、同じ目的の作業に必要とされる機構を有する。但し、制御装置100は機械学習装置300を備えるが、制御装置100’は機械学習装置300を備えない。
上記構成を有する制御システム1000は、複数の制御装置100、100’のうちで機械学習装置300を備える制御装置100が、学習部310の学習結果を用いて、入力データに対応する切断情報を、演算や目算によらずに自動的に、しかも正確に求めることができる。また、少なくとも1つの制御装置100の機械学習装置300が、他の複数の制御装置100、100’のそれぞれについて得られた状態変数S及び判定データDに基づき、全ての制御装置100、100’に共通する入力データと切断情報との相関関係を学習し、その学習結果を全ての制御装置100、100’が共有するように構成できる。したがって制御システム1000によれば、より多様なデータ集合(状態変数S及び判定データDを含む)を入力として、入力データに対応する切断情報の学習の速度や信頼性を向上させることができる。
<実施例1>
図7乃至図9を用いて、制御装置100の実施例1について説明する。
図9を用いて、実施例1の概要について説明する。学習前の制御装置100は、ユーザにより電源切断指令が行われたならば、直ちに電源を切断する。通常、ハイバネーションやバックアップデータ転送等の処理は電源切断指令の後に開始されるが、本実施例では電源が直ちに切断されるので、ハイバネーションやバックアップデータ転送等は正常に完了しない。よって、次回の起動時には比較的多くの起動時間を要することになる。一方、学習後の制御装置100も、ユーザにより電源切断指令が行われたならば、直ちに電源を切断する。但し、ユーザにより電源切断指令が行われるときには、既にハイバネーションやバックアップデータ転送等の処理が完了しているので、次回の起動時は比較的少ない起動時間で済む。
学習前の制御装置100は、ユーザの電源切断指令をトリガとして、入力データの変化と切断情報との相関関係を学習することで、学習モデルを作成する(学習過程)。学習後の制御装置100は、当該学習モデルを用いて、動作中常に電源の切断の有無を予測する(予測過程)。電源の切断が予測された場合、制御装置100は切断予測通知を出力する。切断予測通知に応じて、制御装置100はハイバネーションやバックアップデータ転送等の処理等を開始する。この後、予測通りにユーザが電源切断指令を行った場合、制御装置100は既にハイバネーションやバックアップデータ転送等の処理を完了しているので、即座に電源を切断することができる。
図7のフローチャートを用いて、制御装置100の学習過程における動作について具体的に説明する。
S1:制御装置100が動作を開始する。制御装置100は、通常、動作開始と同時に入力装置60からの入力データの収集を開始する。制御装置100は、所定のサンプリング周期で入力データを取得し、記憶装置に蓄積し続ける。ここで記憶装置にはリングバッファ等を用い、蓄積された入力データのうち、一定の時間が経過したもの(例えば最新の入力データの取得時刻からx分以上前に取得された入力データ)は削除することもできる。これにより記憶領域を有効に利用できる。
S2:電源切断処理部70は、ユーザにより制御装置100の電源切断が指令されたことを検知する。制御装置100は、切断情報を受信したならば、これをトリガとして学習サイクルを開始する。
S3:制御装置100は、ステップS1で蓄積した時系列の入力データのうち、予め定められた一定期間(例えば切断情報の出力のm分前から過去n分間など。なおm+n≦xとする。)の入力データを状態変数Sとし、ステップS2で取得した切断情報を判定データDとして機械学習装置300に入力し、状態変数Sと判定データDとの相関関係を示す学習モデルを作成する。
制御装置100は、所望の精度の学習モデルを得るのに十分な数の状態変数Sと判定データDとが得られるまで、ステップS1乃至S3までの処理を繰り返す。なおこの学習過程においては、切断情報が発行される毎に1回の学習サイクル(ステップS1乃至S3の処理)が実施されることになる。
なお、本実施例では、制御装置100の電源は、電源切断指令の発生直後に切断される。そのため制御装置100は、ステップS1及びS2において、入力データ及び切断情報を不揮発性の記憶装置に保存することができる。そして次回の起動時に、制御装置100はまずステップS3の学習処理を行ってから、ステップS1の処理に戻る。
しかし、例えば制御装置100と機械学習装置300とを分離し、機械学習装置300を例えばクラウド、フォグ又はエッジコンピューティング環境に配置したような場合は、制御装置100の電源が切断されたとしても、機械学習装置300が引続き学習を行うことが可能である。
続いて、図8のフローチャートを用いて、制御装置100の予測過程における動作について説明する。
S11:制御装置100が動作を開始する。制御装置100は、通常、動作開始と同時に入力装置60からの入力データの収集を開始する。以降、制御装置100の電源が切断されるまで以下の処理を継続的に実行する。
S12:制御装置100は、動作開始と同時に入力装置60からの入力データの収集を開始する。制御装置100は、所定のサンプリング周期で入力データを取得、蓄積し続ける。ここで蓄積された入力データのうち、一定の時間が経過したもの(少なくとも最新の入力データの取得時刻からn分以上前に取得された入力データ)は削除することもできる。これにより記憶領域を有効に利用できる。
S13:制御装置100は、ステップS12で取得した時系列の入力データのうち、予め定められた一定期間(例えばn分間)の入力データを状態変数Sとして機械学習装置300に入力する。機械学習装置300は、状態変数Sを学習済みモデルに入力し、状態変数Sに対応する判定データDを予測値として出力する。ここで制御装置100は、電源切断指示の発生までの時間を共に出力しても良い。例えば、学習過程において、切断情報の出力のm分前から過去n分間の入力データを状態変数Sとして使用しており、予測過程においてn分間の入力データを状態変数Sとして使用した場合には、m分後に電源切断の指示が発生すると予測できる。
S14:予測値として切断情報が出力されなければ、ステップS11に戻り動作を継続する。予測値として切断情報が出力された場合、ステップS15に遷移する。
S15:制御装置100は、電源切断が予測されることを示す通知(切断予測情報)を出力する。
制御装置100は、この切断予測情報を受けて、例えばハイバネーションやバックアップデータ転送等の処理等を開始することができる。これにより、ユーザが電源切断を指令したならば直ちに電源を切断することが可能となる。なお、制御装置100が切断予測情報を受けた後の処理(ハイバネーションやバックアップデータ転送等)の具体的な内容については本発明に含まれないため、詳細な説明は行わない。
<実施例2>
図7、図8及び図10を用いて、制御装置100の実施例2について説明する。なおここでは主に実施例1との相違点にのみついて説明する。特に言及しない事項については、実施例1と同様の動作であるものとする。
図10を用いて、実施例2の概要について説明する。学習前の制御装置100は、ユーザにより電源切断指令が行われたならば、ハイバネーションやバックアップデータ転送等の処理を行い、完了後に電源を切断する。よって、電源の切断までに比較的多くの時間を要する。一方、学習後の制御装置100は、ユーザにより電源切断指令が行われたならば、直ちに電源を切断する。このとき、既にハイバネーションやバックアップデータ転送等の処理が完了しているためである。
図7のフローチャートに示す制御装置100の学習過程において、本実施例では、制御装置100の電源は、電源切断指令の発生後、相当の時間が経過した後に切断される。そのため制御装置100は、電源切断指令の発生後直ちにステップS3の学習処理を実行することができる。なお、電源の切断までに学習処理が完了しない可能性がある場合には、実施例1と同じように、制御装置100が次回の起動時に学習処理を行うか、クラウド、フォグ又はエッジコンピューティング環境に配置した機械学習装置300が引続き学習を行うこととしても良い。図8のフローチャートに示す制御装置100の予測過程については、実施例1と同様であるため説明を省略する。
これら2つの実施例では、制御装置100の機械学習装置300が、制御装置100の稼働中における入力データの変化と、切断情報と、の相関関係を学習した学習モデルを生成する。この学習モデルを用いることにより、制御装置100は、入力データの変化に基づいて、切断情報を予測し、予測結果を制御装置200に通知することができる。
以上、本発明の実施の形態について説明したが、本発明は上述した実施の形態の例のみに限定されることなく、適宜の変更を加えることにより様々な態様で実施することができる。
例えば、上述の実施の形態では主に制御装置100が機械学習装置300を備える例を示したが、本発明はこれに限定されず、機械学習装置300は制御装置100の外部に存在しても良い。例えば機械学習装置300は独立の情報処理装置であって、クラウド、フォグ又はエッジコンピューティング環境等に配置され、制御装置100と有線又は無線等により通信可能に構成しても良い。
100 制御装置
11 CPU
12 ROM
13 RAM
14 不揮発性メモリ
18,19,21 インタフェース
20 バス
60 入力装置
70 電源切断処理部
300 機械学習装置
301 プロセッサ
302 ROM
303 RAM
304 不揮発性メモリ
306 状態観測部
308 判定データ取得部
310 学習部
311 誤差計算部
312 モデル更新部
320 判定出力部
330 データ取得部
1000 制御システム
1100 ネットワーク

Claims (7)

  1. 電源の切断タイミングを予測する制御装置であって、
    前記電源の切断タイミングを学習する機械学習装置を備え、
    前記機械学習装置は、
    ユーザ毎の前記制御装置に対する操作内容を、環境の現在状態を表す状態変数として観測する状態観測部と、
    前記ユーザにより前記制御装置の電源切断が指令されたことを示す判定データを取得する判定データ取得部と、
    前記状態変数と前記判定データとを用いて、前記ユーザ毎の操作内容と、前記電源切断の指令とを関連付けて学習する学習部と、
    を備える制御装置。
  2. 前記状態変数には、前記ユーザ毎の操作内容に加えて、前記操作の日付、曜日、時刻、ティーチングペンダントの加速度又は位置、工場の消費電力、CPUの負荷状態、アラームの出力状態のうち少なくともいずれか1つを含む、
    請求項1記載の制御装置。
  3. 前記学習部は、前記状態変数と前記判定データとを多層構造で演算する、
    請求項1記載の制御装置。
  4. 前記予測した電源の切断タイミングを通知する判定出力部320を備える
    請求項1記載の制御装置。
  5. 前記学習部は、複数の前記制御装置から得られた前記状態変数及び前記判定データを用いて前記学習を行う、
    請求項1〜4のいずれか1つに記載の制御装置。
  6. 前記機械学習装置は、クラウドサーバに存在する、
    請求項1記載の制御装置。
  7. 電源の切断タイミングを学習する機械学習装置であって、
    ユーザ毎の制御装置に対する操作内容を、環境の現在状態を表す状態変数として観測する状態観測部と、
    前記ユーザにより前記制御装置の電源切断が指令されたことを示す判定データを取得する判定データ取得部と、
    前記状態変数と前記判定データとを用いて、前記ユーザ毎の操作内容と、前記電源切断の指令とを関連付けて学習する学習部と、
    を備える機械学習装置。
JP2017170626A 2017-09-05 2017-09-05 制御装置 Active JP6577542B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017170626A JP6577542B2 (ja) 2017-09-05 2017-09-05 制御装置
US16/119,131 US11048216B2 (en) 2017-09-05 2018-08-31 Control device
DE102018006992.4A DE102018006992B4 (de) 2017-09-05 2018-09-04 Steuereinrichtung
CN201811032419.XA CN109421072B (zh) 2017-09-05 2018-09-05 控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170626A JP6577542B2 (ja) 2017-09-05 2017-09-05 制御装置

Publications (2)

Publication Number Publication Date
JP2019046324A JP2019046324A (ja) 2019-03-22
JP6577542B2 true JP6577542B2 (ja) 2019-09-18

Family

ID=65363737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170626A Active JP6577542B2 (ja) 2017-09-05 2017-09-05 制御装置

Country Status (4)

Country Link
US (1) US11048216B2 (ja)
JP (1) JP6577542B2 (ja)
CN (1) CN109421072B (ja)
DE (1) DE102018006992B4 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7369181B2 (ja) 2019-03-28 2023-10-25 株式会社Nttドコモ 制御データ生成装置、ユーザ装置及び情報処理システム
CN114815785B (zh) * 2022-06-07 2023-04-07 哈尔滨工业大学 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法
US20240055885A1 (en) * 2022-08-15 2024-02-15 Apple Inc. Energy based task shifting
US20240053410A1 (en) * 2022-08-15 2024-02-15 Apple Inc. Energy based task shifting

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253466A (ja) * 1989-03-28 1990-10-12 Yuichi Murakami 入力信号を演算処理する学習方式
JPH0728572A (ja) 1993-07-14 1995-01-31 Hitachi Ltd 停電時自動データ保存装置
JP2002351600A (ja) * 2001-05-28 2002-12-06 Allied Brains Inc 入力操作支援プログラム
JP4213008B2 (ja) * 2002-10-09 2009-01-21 パナソニック株式会社 情報端末装置、操作支援方法及び操作支援プログラム
JP2008195295A (ja) * 2007-02-14 2008-08-28 Toyota Motor Corp 灯火制御装置
US8924352B1 (en) 2007-03-31 2014-12-30 Emc Corporation Automated priority backup and archive
CN101782976B (zh) * 2010-01-15 2013-04-10 南京邮电大学 一种云计算环境下机器学习自动选择方法
CN102163073B (zh) 2010-02-23 2012-11-21 华为终端有限公司 终端功耗优化处理方法及装置
CN102339118B (zh) 2011-09-14 2015-02-18 奇智软件(北京)有限公司 一种终端关闭控制方法及系统
JP6024508B2 (ja) * 2013-02-20 2016-11-16 株式会社デンソー 車両用データ処理装置
US10558953B2 (en) * 2013-07-03 2020-02-11 Illinois Tool Works Inc. Welding system parameter comparison system and method
JP2016153247A (ja) 2014-07-23 2016-08-25 株式会社発明屋 クラウド運ちゃん
EP3186025A4 (en) * 2014-08-29 2018-06-20 CRC-Evans Pipeline International, Inc. Method and system for welding
US11562286B2 (en) * 2015-02-06 2023-01-24 Box, Inc. Method and system for implementing machine learning analysis of documents for classifying documents by associating label values to the documents
JP6148316B2 (ja) * 2015-07-31 2017-06-14 ファナック株式会社 故障条件を学習する機械学習方法及び機械学習装置、並びに該機械学習装置を備えた故障予知装置及び故障予知システム
CN105318499B (zh) 2015-09-30 2018-06-01 广东美的制冷设备有限公司 用户行为自学习空调系统及其控制方法
JP6114421B1 (ja) 2016-02-19 2017-04-12 ファナック株式会社 複数の産業機械の作業分担を学習する機械学習装置,産業機械セル,製造システムおよび機械学習方法
US10307855B2 (en) * 2016-03-29 2019-06-04 Illinois Tool Works Inc. Impending thermal shutdown alert system and thermal shutdown process
CN106407048B (zh) 2016-05-25 2019-04-05 清华大学 输入输出通信接口、基于该接口的数据备份和恢复方法
US20180015560A1 (en) * 2016-07-14 2018-01-18 Lincoln Global, Inc. Method and system for welding with temperature detector
US20190022787A1 (en) * 2017-07-24 2019-01-24 Lincoln Global, Inc. Weld sequencer part inspector

Also Published As

Publication number Publication date
DE102018006992B4 (de) 2022-08-04
JP2019046324A (ja) 2019-03-22
CN109421072B (zh) 2020-12-15
US11048216B2 (en) 2021-06-29
DE102018006992A1 (de) 2019-03-07
CN109421072A (zh) 2019-03-05
US20190072915A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
JP6577542B2 (ja) 制御装置
JP6693919B2 (ja) 制御装置及び機械学習装置
JP6542839B2 (ja) 制御装置及び機械学習装置
JP6693938B2 (ja) 外観検査装置
US20180373233A1 (en) Failure predicting apparatus and machine learning device
JP6572265B2 (ja) 制御装置及び機械学習装置
JP6652549B2 (ja) 切粉除去装置及び情報処理装置
JP2019117458A (ja) 制御装置及び機械学習装置
JP6680750B2 (ja) 制御装置及び機械学習装置
US11275421B2 (en) Production system
JP2019030941A (ja) 制御装置及び学習装置
JP6333868B2 (ja) セル制御装置、及び製造セルにおける複数の製造機械の稼働状況を管理する生産システム
US11897066B2 (en) Simulation apparatus
US20230038415A1 (en) Diagnosis device
US10908572B2 (en) Programmable controller and machine learning device
JP2019013993A (ja) 熱変位補正装置
JP6564426B2 (ja) 部品供給装置及び機械学習装置
JP6626064B2 (ja) 試験装置及び機械学習装置
JP2019150932A (ja) 衝突位置推定装置及び機械学習装置
JP6603260B2 (ja) 数値制御装置
CN109308051B (zh) 数值控制装置
CN110125955B (zh) 控制装置以及机器学习装置
JP6685483B1 (ja) ロボット行動計画システム、ロボットシステム、ロボット作業検証システム及びロボット行動計画方法
JP6637021B2 (ja) 切削液供給タイミング制御装置及び機械学習装置
US20230274408A1 (en) Inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150