JP6569531B2 - マグネシウム合金及びその製造方法 - Google Patents
マグネシウム合金及びその製造方法 Download PDFInfo
- Publication number
- JP6569531B2 JP6569531B2 JP2015543943A JP2015543943A JP6569531B2 JP 6569531 B2 JP6569531 B2 JP 6569531B2 JP 2015543943 A JP2015543943 A JP 2015543943A JP 2015543943 A JP2015543943 A JP 2015543943A JP 6569531 B2 JP6569531 B2 JP 6569531B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- satisfy
- following formula
- casting
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims description 158
- 238000004519 manufacturing process Methods 0.000 title claims description 41
- 239000011777 magnesium Substances 0.000 claims description 171
- 229910052749 magnesium Inorganic materials 0.000 claims description 69
- 230000007797 corrosion Effects 0.000 claims description 56
- 238000005260 corrosion Methods 0.000 claims description 56
- 150000001875 compounds Chemical class 0.000 claims description 48
- 238000005266 casting Methods 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 36
- 229910052779 Neodymium Inorganic materials 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 23
- 229910052726 zirconium Inorganic materials 0.000 claims description 21
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910019018 Mg 2 Si Inorganic materials 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 229910003465 moissanite Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 5
- 230000032683 aging Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000956 alloy Substances 0.000 description 83
- 229910045601 alloy Inorganic materials 0.000 description 68
- 239000000463 material Substances 0.000 description 59
- 238000001125 extrusion Methods 0.000 description 40
- 238000010586 diagram Methods 0.000 description 31
- 238000007792 addition Methods 0.000 description 30
- 238000012360 testing method Methods 0.000 description 21
- 229910052748 manganese Inorganic materials 0.000 description 18
- 239000013078 crystal Substances 0.000 description 16
- 229910000882 Ca alloy Inorganic materials 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 11
- 238000009864 tensile test Methods 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 description 3
- 238000002847 impedance measurement Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/002—Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
- Heat Treatment Of Steel (AREA)
Description
そこで、Al、Caの低い添加量でのマグネシウム合金の開発が進められて来たが、強度の改善には至っていなかった。以上の経緯から、Mg−Al−Ca合金の研究は、形成する相に関する研究や極めて低いAl、Ca添加量でのMg−Al−Ca合金に限られた研究が多くなされている。
また、マグネシウム合金を実用化するには難燃性を向上させて発火温度を高くする必要がある。しかし、難燃性を向上させると機械的性質が低下することが多く、難燃性と機械的性質はトレードオフの関係にあり、両者を向上させることは困難であった。
また、マグネシウム合金を実用化するには耐食性を向上させることも求められる。
また、本発明の一態様は、高強度及び高延性を有し、且つ耐食性及び難燃性の少なくとも一方を向上させたマグネシウム合金またはその製造方法を提供することを課題とする。
[1]Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMgからなる組成を有し、
(Mg,Al)2Caをc体積%含有し、
aとbとcとkが下記式(1)〜(4)及び(21)を満たし、
前記(Mg,Al)2Caが分散されており、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35(好ましくは10≦c≦30)
(21)0<k≦0.3
[2]Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMgからなる組成を有し、
(Mg,Al)2Caをc体積%含有し、
aとbとcとkが下記式(1)〜(5)及び(21)を満たし、
前記(Mg,Al)2Caが分散されており、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金。
(1)3≦a≦7
(2)8≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35(好ましくは10≦c≦30)
(21)0<k≦0.3
[3]上記[1]または[2]において、
前記マグネシウム合金にZnをx原子%含有し、xが下記式(20)を満たすことを特徴とするマグネシウム合金。
(20)0<x≦3(好ましくは1≦x≦3)
[4]上記[1]乃至[3]のいずれか一項において、
前記マグネシウム合金はAl12Mg17をd体積%含有し、dが下記式(6)を満たすことを特徴とするマグネシウム合金。
(5)0<d≦10
[5]上記[1]乃至[4]のいずれか一項において、
前記分散された(Mg,Al)2Caの結晶粒径はeであり、eが下記式(6)を満たすことを特徴とするマグネシウム合金。
(6)1nm≦e≦2μm
[6]上記[1]乃至[5]のいずれか一項において、
前記(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすことを特徴とするマグネシウム合金。
(7)35≦f≦65
[7]上記[1]乃至[6]のいずれか一項において、
前記マグネシウム合金の発火温度は850℃以上であることを特徴とするマグネシウム合金。
[8]上記[1]乃至[7]のいずれか一項において、
前記aとbが下記式(1’)及び(2’)を満たすことを特徴とするマグネシウム合金。
(1’)4≦a≦6.5
(2’)7.5≦b≦11
[9]上記[8]において、
前記aとbが下記式(3’)を満たすことを特徴とするマグネシウム合金。
(3’)11/7≦b/a≦12/5
[10]上記[8]または[9]において、
前記マグネシウム合金の発火温度は1090℃以上であることを特徴とするマグネシウム合金。
[11]上記[1]乃至[10]のいずれか一項において、
前記マグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たすことを特徴とするマグネシウム合金。
(8)0.8≦g/h
[12]上記[1]乃至[11]のいずれか一項において、
前記マグネシウム合金に、YとNdを除く希土類元素、Si、Sc、Sn、Cu、Li、Be、Mo、Nb、及びWの群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすことを特徴とするマグネシウム合金。
(9)0<i≦0.3
[13]上記[1]乃至[12]のいずれか一項において、
前記マグネシウム合金にAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物を、化合物中の金属原子の量としてj原子%含有し、jが下記式(10)を満たすことを特徴とするマグネシウム合金。
(10)0<j≦5
[14]Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMgからなる組成を有し、(Mg,Al)2Caをc体積%含有し、aとbとcが下記式(1)〜(4)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35(好ましくは10≦c≦30)
(21)0<k≦0.3
[15]Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMgからなる組成を有し、(Mg,Al)2Caをc体積%含有し、aとbとcが下記式(1)〜(4)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)8≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦30
(21)0<k≦0.3
[16]Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、Znをx原子%含有し、残部がMgからなる組成を有し、aとbとcが下記式(1)〜(3)、(20)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(20)0<x≦3
(21)0<k≦0.3
[17]上記[16]において、
前記鋳造物は(Mg,Al)2Caをc体積%含有し、cが下記式(4)を満たすことを特徴とするマグネシウム合金の製造方法。
(4)10≦c≦35
[18]Caをa原子%含有し、Alをb原子%含有し、残部がMgからなる組成を有し、(Mg,Al)2Caをc体積%含有し、aとbとcとkが下記式(1)〜(4)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に723K〜773Kの温度で0.5時間以上の熱処理を行い、
前記鋳造物に塑性加工を行うことを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35
[19]上記[14]乃至[18]のいずれか一項において、
前記鋳造物はAl12Mg17をd体積%含有し、dが下記式(5)を満たすことを特徴とするマグネシウム合金の製造方法。
(5)0<d≦10
[20]上記[14]乃至[19]のいずれか一項において、
前記鋳造物を形成する際の冷却速度は、1000K/秒以下であることを特徴とするマグネシウム合金の製造方法。
[21]上記[14]乃至[20]のいずれか一項において、
前記塑性加工を行う際の相当ひずみは、2.2以上であることを特徴とするマグネシウム合金の製造方法。
[22]上記[14]乃至[21]のいずれか一項において、
前記塑性加工を行う前に、前記鋳造物に400℃〜600℃の温度で5分〜24時間の熱処理を行うことを特徴とするマグネシウム合金の製造方法。
[23]
請求項14乃至17のいずれか一項において、
前記塑性加工を行う前に、前記鋳造物に723K〜773Kの温度で0.5時間以上の熱処理を行うことを特徴とするマグネシウム合金の製造方法。
[24]上記[14]乃至[23]のいずれか一項において、
前記aとbが下記式(1’)及び(2’)を満たすことを特徴とするマグネシウム合金の製造方法。
(1’)4≦a≦6.5
(2’)7.5≦b≦11
[25]上記[24]において、
前記aとbが下記式(3’)を満たすことを特徴とするマグネシウム合金の製造方法。
(3’)11/7≦b/a≦12/5
[26]上記[14]乃至[25]のいずれか一項において、
前記塑性加工を行った後の前記(Mg,Al)2Caの結晶粒径はeであり、eが下記式(6)を満たすことを特徴とするマグネシウム合金の製造方法。
(6)1nm≦e≦2μm
[27]上記[14]乃至[26]のいずれか一項において、
前記塑性加工を行った後の前記(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすことを特徴とするマグネシウム合金の製造方法。
(7)35≦f≦65
[28]上記[14]乃至[27]のいずれか一項において、
前記塑性加工を行った後に、前記マグネシウム合金に熱処理を行うことを特徴とするマグネシウム合金の製造方法。
[29]上記[14]乃至[27]のいずれか一項において、
前記塑性加工を行った後に、前記マグネシウム合金に溶体化処理を行うことを特徴とするマグネシウム合金の製造方法。
[30]上記[29]において、
前記溶体化処理を行った後に、前記マグネシウム合金に時効処理を行うことを特徴とするマグネシウム合金の製造方法。
[31]上記[14]乃至[30]のいずれか一項において、
前記マグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たすことを特徴とするマグネシウム合金。
(8)0.8≦g/h
[32]上記[14]乃至[31]のいずれか一項において、
前記鋳造物に、YとNdを除く希土類元素、Si、Sc、Sn、Cu、Li、Be、Mo、Nb、及びWの群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすことを特徴とするマグネシウム合金の製造方法。
(9)0<i≦0.3
[33]上記[14]乃至[32]のいずれか一項において、
前記鋳造物にAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物を、化合物中の金属原子の量としてj原子%含有し、jが下記式(10)を満たすことを特徴とするマグネシウム合金の製造方法。
(10)0<j≦5
また、本発明の一態様を適用することで、高強度及び高延性を有し、且つ耐食性及び難燃性の少なくとも一方を向上させたマグネシウム合金またはその製造方法を提供することができる。
図2は、Mg100−a−bCaaAlb合金鋳造押出材について室温にて引張試験を行った結果を示す図である。
図3は、Mg85Al10Ca5合金押出材の組織写真(SEM像)である。
図4は、Mg83.75Al10Ca6.25合金押出材中の(Mg,Al)2CaのTEM像および電子線回折図形である。
図5は、Mg100−a−bCaaAlb合金(a:2.5〜7.5at.%、b:2.5〜12.5at.%)合金押出材の形成相と機械的特性を示す図である。
図6は、Mg95−xAlxCa5合金押出材における機械的特性のAl添加量依存性を示す図である。
図7は、Mg90−xAl10Cax合金押出材における機械的特性のCa添加量依存性を示す図である。
図8は、Mg90−xAl10Cax合金押出材における組織変化のCa添加量依存性を示す図である。
図9は、Mg85Al10Ca5合金押出材における機械的特性の押出比依存性を示す図である。
図10は、Mg85Al10Ca5合金熱処理押出材を室温引張試験にて機械的性質を評価した結果を示す図である。
図11は、Mg85Al10Ca5合金材における発火温度のCa添加量依存性を示す図である。
図12は、Mg100−xCax(x=0〜5)合金材などにおける発火温度のCa添加量依存性を示す図である。
図13は、Mg89−xAl10Ca1Znx(x=0〜2.0)合金材などにおける発火温度のZn添加量依存性を示す図である。
図14は、Mg85Al10Ca5合金を大気中で溶融した合金試料の表面皮膜の構造を示す写真及び皮膜の分析結果を示す図である。
図15は、図14に示す合金試料の表面皮膜を模式的に示す図である。
図16は、表3に示すマグネシウム合金と腐食速度の関係を示す図である。
図17は、Mg85−xAl10Ca5Mnx合金(x:0〜0.3at.%)と腐食速度の関係を示す図である。
図18は、表4に示すマグネシウム合金と発火温度の関係を示す図である。
図19は、Mg85−xAl10Ca5Mnx合金(x:0〜0.3at.%)と発火温度の関係を示す図である。
図20は、鋳造押出材の機械的特性を示す図である。
図21は、Mg85Al10Ca5鋳造押出材を室温引張試験にて機械的性質を評価した結果を示す図である。
図22は、表7に示す組成のマグネシウム合金のMn含有量と降伏強度(Yield strength)及び伸び(Elongation)の関係を示す図である。
図23は、表8に示す組成のマグネシウム合金に腐食試験1を行った結果であって、Mn含有量と腐食速度の関係を示す図である。
図24は、表8に示す組成のマグネシウム合金に交流インピーダンス測定による腐食試験2を行った結果を示す図である。
図25(A)はMg85Al10Ca5合金に腐食試験を行った後にグロー放電発光分光分析による腐食皮膜の化学組成を分析した結果を示す図、図25(B)はMg84.7Al10Ca5Mn0.3合金に腐食試験を行った後にグロー放電発光分光分析による腐食皮膜の化学組成を分析した結果を示す図である。
(実施の形態1)
本発明の一態様は、溶質元素を高濃度に添加したマグネシウム合金であるMg−Al−Ca合金を用いて高強度な展伸材を開発したものである。優れた機械的特性を示した本発明の一態様であるMg83.75Al10Ca6.25押出材の引張耐力、伸びはそれぞれ460MPa、3.3%に達しており、従来のMg−Al−Ca合金鋳造材および展伸材の特性を大きく上回るものである。
従来の研究では、Mg−Al−Ca合金においてAlとCaを含む化合物の体積分率が高くなると延性が低下して脆性を示すことが報告されていた。
しかしながら、本発明者らは、化合物の体積分率が高くなるAlおよびCaの高濃度組成域での展伸材開発を目指し、硬質なMg−Al−Ca三元系化合物、例えばC36型化合物である(Mg,Al)2Caを金属組織中に分散させることで、高い強度と比較的大きな延性が得られることを見出した。
MgにAlを添加する利点は、機械的性質を向上させること、耐食性を向上させること、Alの比重が2.70であることから軽量化に寄与することにある。
MgにCaを添加する利点は、難燃性を向上させること、機械的性質を向上させること、耐クリープ性を向上させること、Caの比重が1.55であることから軽量化に寄与することにある。
本発明の一態様に係るマグネシウム合金は、Caをa原子%含有し、Alをb原子%含有し、残部がMgからなる組成を有し、C36型化合物である(Mg,Al)2Caをc体積%含有し、aとbとcが下記式(1)〜(4)を満たし、(Mg,Al)2Caが分散されている。なお、より好ましくは、aとbが下記式(1’)及び(2’)を満たすことであり、さらに好ましくは、aとbが下記式(3’)を満たすことである。
(1)3≦a≦7
(2)4.5≦b≦12(または8≦b≦12)
(3)1.2≦b/a≦3.0
(4)10≦c≦35(好ましくは10≦c≦30)
(1’)4≦a≦6.5
(2’)7.5≦b≦11
(3’)11/7≦b/a≦12/5
AlおよびCaの含有量を上記式(1)及び(2)の範囲とした理由は次のとおりである。
Al含有量が12原子%超であると、十分な強度を得ることができないためである。
Al含有量が4.5原子%未満であると、十分な延性を得ることができないためである。
Ca含有量が7原子%超であると、マグネシウム合金を固めた状態にすることが困難となり、塑性加工することが困難となるためである。
Ca含有量が3原子%未満であると、十分な難燃性を得ることができないためである。
上記のマグネシウム合金では、上述した範囲の含有量を有するAlとCa以外の成分がマグネシウムとなるが、合金特性に影響を与えない程度の不純物や他の元素を含有しても良い。つまり、上記の「残部がMgからなり」とは、残部がすべてMgからなる場合を意味するだけではなく、残部に合金特性に影響を与えない程度の不純物や他の元素を含む場合も意味する。
上記の(Mg,Al)2Caは硬質化合物であるため、この硬質化合物を微細にして分散させることにより高強度を得ることができる。言い換えると、高強度を得るためには、硬質化合物である(Mg,Al)2Caを高い体積分率で金属組織中に分散させることが好ましい。なお、(Mg,Al)2Caの分散の度合いは、1個/μm2以上であるとよい。
また、(Mg,Al)2Caは等軸晶であり、(Mg,Al)2Caの結晶粒のアスペクト比はおおむね1であるとよい。
また、上記のマグネシウム合金は、Al12Mg17(β相)をd体積%含有し、dが下記式(5)を満たすとよい。β相は、必ずしも必要な相ではないが、組成によっては不可避的に生成される。
(5)0<d≦10
また、上記のように分散された(Mg,Al)2Caの結晶粒径はeであり、eが下記式(6)を満たすとよい。
(6)1nm≦e≦2μm
(Mg,Al)2Caの結晶粒径を2μm以下とすることにより、高強度なマグネシウム合金を得ることができる。
ただし、上記式(6)は、マグネシウム合金中の全ての(Mg,Al)2Caが2μm以下の結晶粒径を持たなければ高強度化できないという意味ではなく、主な(Mg,Al)2Caが2μm以下であればよく、例えばマグネシウム合金中の(Mg,Al)2Caの50体積%以上が2μm以下であれば高強度なマグネシウム合金を得られるという意味である。なお、主な(Mg,Al)2Caが2μm以下であればよいとした理由は、2μmより大きな結晶粒径の(Mg,Al)2Caがマグネシウム合金中に存在することがあるからである。
上述したように(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすことが好ましく、より好ましくは下記式(7’)を満たすことである。
(7)35≦f≦65
(7’)35≦f≦55
マグネシウム合金中には、C36型化合物が分散されていない化合物フリー領域と、C36型化合物が分散された化合物分散領域が存在する。この化合物分散領域が上記の(Mg,Al)2Caが分散された領域を意味する。
化合物分散領域が強度の向上に寄与し、化合物フリー領域が延性の向上に寄与する。従って、化合物分散領域が多いほど強度を高くすることができ、化合物フリー領域が多いほど延性を高くすることができる。よって、マグネシウム合金中の(Mg,Al)2Caが分散された領域の体積分率fが上記式(7)または(7’)を満たすことにより、高強度を維持しつつ延性を向上させることができる。
上記のように、MgにCaを3原子%以上含有させることにより、マグネシウム合金の発火温度を900℃以上にすることができる。
また、上記のように、MgにCaを4原子%以上含有させることにより、マグネシウム合金の発火温度を1090℃以上(沸点以上)にすることができる。このように発火温度がマグネシウム合金の沸点以上であれば、実質的に不燃性のマグネシウム合金ということもできる。
また、上記のマグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たす。
(8)0.8≦g/h
従来のマグネシウム合金の圧縮耐力/引張耐力の比は0.7以下であるので、本実施の形態によるマグネシウム合金は、この点においても高強度ということができる。
また、上記のマグネシウム合金にMn、Zr、Si、Sc、Sn、Ag、Cu、Li、Be、Mo、Nb、W、及び希土類元素の群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすとよい。これにより、高難燃性、高強度及び高延性を併せ持ちながら種々の特性(例えば耐食性)を改善することができる。
(9)0<i≦0.3
また、上記のマグネシウム合金にAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物を、化合物中の金属原子の量としてj原子%含有し、jが下記式(10)を満たすとよく、より好ましくは下記式(10’)を満たすとよい。これにより、高難燃性、高強度及び高延性を併せ持ちながら種々の特性を改善することができる。
(10)0<j≦5
(10’)0<j≦2
本実施の形態によれば、硬質化合物であるMg−Al−Ca三元系化合物を金属組織中に分散させることにより、機械的特性を向上させることができ、高い強度と比較的大きな延性を得ることができるとともに、難燃性を向上させることができる。
また、上記のマグネシウム合金にZnをx原子%含有し、xが下記式(20)を満たすとよい。
(20)0<x≦3(好ましくは1≦x≦3、さらに好ましくは1≦x≦2)
上記のようにZnを含有させることにより、強度及び発火温度を向上させることができる。
(実施の形態2)
本発明の一態様は、溶質元素を高濃度に添加したマグネシウム合金であるMg−Al−Ca合金に第4元素を添加することで耐食性及び難燃性の少なくとも一方を向上させたものである。第4元素は、Mn、Zn、Zr、Ag、Y、Ndである。
本発明の一態様に係るマグネシウム合金は、Caをa原子%含有し、Alをb原子%含有し、Mn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMgからなる組成を有し、C36型化合物である(Mg,Al)2Caをc体積%含有し、aとbとcとkが下記式(1)〜(4)及び(21)を満たし、(Mg,Al)2Caが分散されており、前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素である。なお、より好ましくは、aとbが下記式(1’)及び(2’)を満たすことであり、さらに好ましくは、aとbが下記式(3’)を満たすことである。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35(好ましくは10≦c≦30)
(21)0<k≦0.3
(1’)4≦a≦6.5
(2’)7.5≦b≦11
(3’)11/7≦b/a≦12/5
AlおよびCaの含有量を上記式(1)及び(2)の範囲とした理由は実施の形態1と同様である。
上記のマグネシウム合金では、上述した範囲の含有量を有するAlとCaと前記少なくとも一つの元素以外の成分がマグネシウムとなるが、合金特性に影響を与えない程度の不純物や他の元素を含有しても良い。つまり、上記の「残部がMgからなり」とは、残部がすべてMgからなる場合を意味するだけではなく、残部に合金特性に影響を与えない程度の不純物や他の元素を含む場合も意味する。
上記の(Mg,Al)2Caを含有させる理由も実施の形態1と同様である。また、(Mg,Al)2Caは等軸晶である。また、(Mg,Al)2Caの結晶粒のアスペクト比、Al12Mg17(β相)の含有量、(Mg,Al)2Caの結晶粒径、(Mg,Al)2Caが分散された領域の体積分率は、実施の形態1と同様である。
マグネシウム合金中には、実施の形態1と同様に、化合物フリー領域と、化合物分散領域が存在する。
MgにCaを3原子%以上含有させることで、実施の形態1と同様にマグネシウム合金の発火温度を900℃以上にすることができ、Mn、Zr、Ag、Y及びNdの少なくとも一つの元素を添加することで発火温度をさらに上昇させることができる。
また、上記のように、MgにCaを4原子%以上含有させることで、実施の形態1と同様にマグネシウム合金の発火温度を1090℃以上(沸点以上)にすることができる。
また、MgにMn及びZnの少なくとも一つの元素を添加することで耐食性を向上させることができる。
また、上記のマグネシウム合金において圧縮耐力をgとし、引張耐力をhとした場合のgとhの関係は、実施の形態1と同様である。
また、上記のマグネシウム合金に、YとNdを除く希土類元素、Si、Sc、Sn、Cu、Li、Be、Mo、Nb、及びWの群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすとよい。これにより、高難燃性、高強度及び高延性を併せ持ちながら種々の特性を改善することができる。
(9)0<i≦0.3
また、上記のマグネシウム合金に含有するAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物中の金属原子の量は、実施の形態1と同様である。
本実施形態においても実施の形態1と同様の効果を得ることができる。
また、本実施の形態では、Mg−Al−Ca合金に第4元素としてMn、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を添加することで耐食性及び難燃性の少なくとも一方を向上させることができる。詳細には、Mg−Al−Ca合金に第4元素としてMn、Zr、Ag、Y及びNdの少なくとも一つの元素を添加することで、第4元素を添加しないMg−Al−Ca合金に比べて発火温度を高くすることができる。またMg−Al−Ca合金に第4元素としてMn及びZnの少なくとも一つの元素を添加することで、第4元素を添加しないMg−Al−Ca合金に比べて耐食性を向上させることができる。
(実施の形態3)
本発明の一態様に係るマグネシウム合金の製造方法について説明する。
まず、溶解鋳造によってマグネシウム合金からなる鋳造物を作製する。このマグネシウム合金の組成は、実施の形態1または実施の形態2と同様である。この鋳造物は、実施の形態1または実施の形態2と同様に、Mg−Al−Ca三元系化合物を有しており、Al12Mg17を有していてもよい。
なお、溶解鋳造による鋳造時の冷却速度は1000K/秒以下であり、より好ましくは100K/秒以下である。
次に、硬質化合物であるMg−Al−Ca三元系化合物を有する鋳造物に塑性加工を行うことにより、Mg−Al−Ca三元系化合物を微細分散させることができ、その結果、このマグネシウム合金は高い強度と比較的大きな延性を得ることができるとともに難燃性を向上させることができる。なお、塑性加工を行う際の相当ひずみは、2.2以上(押出比が9以上に相当)であることが好ましい。
上記の塑性加工の方法としては、例えば押出し、ECAE(equal−channel−angular−extrusion)加工法、圧延、引抜及び鍛造、これらの繰り返し加工、FSW加工などを用いることができる。
押出しによる塑性加工を行う場合は、押出し温度を250℃以上500℃以下とし、押出しによる断面減少率を5%以上とすることが好ましい。
ECAE加工法は、試料に均一なひずみを導入するためにパス毎に試料長手方向を90°ずつ回転させる方法である。具体的には、断面形状がL字状の成形孔を形成した成形用ダイの前記成形孔に、成形用材料であるマグネシウム合金鋳造物を強制的に進入させて、特にL状成形孔の90°に曲げられた部分で前記マグネシウム合金鋳造物に応力を加えて強度及び靭性が優れた成形体を得る方法である。ECAEのパス回数としては1〜8パスが好ましい。より好ましくは3〜5パスである。ECAEの加工時の温度は250℃以上500℃以下が好ましい。
圧延による塑性加工を行う場合は、圧延温度を250℃以上500℃以下とし、圧下率を5%以上とすることが好ましい。
引抜加工による塑性加工を行う場合は、引抜加工を行う際の温度が250℃以上500℃以下、前記引抜加工の断面減少率が5%以上であることが好ましい。
鍛造による塑性加工を行う場合は、鍛造加工を行う際の温度が250℃以上500℃以下、前記鍛造加工の加工率が5%以上であることが好ましい。
上記のようにマグネシウム合金に塑性加工を行った塑性加工物は、硬質化合物が微細に分散されているため、塑性加工を行う前に比べて、強度及び延性などの機械的特性を飛躍的に向上させることができる。
また、上記の塑性加工を行う前に、鋳造物に400℃〜600℃の温度で5分〜24時間の熱処理を行ってもよい。この熱処理により延性を向上させることができる。
また、上記の塑性加工を行う前に、鋳造物に723K〜773Kの温度で0.5時間以上の熱処理を施すことで、高い0.2%引張耐力(YS)を保持しつつ、より延性を向上させることができる。
上記の塑性加工を行った後のマグネシウム合金中の(Mg,Al)2Caの結晶粒径はeであり、eが下記式(6)を満たすとよい。このように結晶粒径を2μm以下とすることにより、高強度なマグネシウム合金を得ることができる。
(6)1nm≦e≦2μm
また、上記の塑性加工を行った後のマグネシウム合金に(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすとよく、fが下記式(7’)を満たすとさらによい。
(7)35≦f≦65
(7’)35≦f≦55
このように、マグネシウム合金中の(Mg,Al)2Caが分散された領域の体積分率fが上記式(7)または(7’)を満たすことにより、高強度を維持しつつ延性を向上させることができる。
また、上記の塑性加工を行った後のマグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たすとよい。
(8)0.8≦g/h
また、上記の塑性加工を行った後に、マグネシウム合金に175℃〜350℃の温度で30分〜150時間の熱処理を行うとよい。これにより、析出強化が起こり硬度値が上昇する。
また、上記の塑性加工を行った後に、マグネシウム合金に350℃〜560℃の温度で30分〜12時間の溶体化処理を行うとよい。これにより、析出物形成に必要な溶質元素の母相への固溶が促進される。
また、上記の溶体化処理を行った後に、マグネシウム合金に175℃〜350℃の温度で30分〜150時間の時効処理を行うとよい。これにより、析出強化が起こり硬度値が上昇する。
(実施の形態4)
本実施の形態によるマグネシウム合金は、実施の形態3と同様の方法によりMg−Al−Ca三元系化合物を有するマグネシウム合金材を用意し、このマグネシウム合金材を切削することによって作られた複数の数mm角以下のチップ形状の切削物を作製し、この切削物をせん断が付加されるようにして固化したものである。固化の方法は、例えば、切削物を缶に詰め込み、缶の内形状と同一形状の棒状部材で押し込むことで、切削物にせん断が付加されて固化される方法を採用してもよい。
本実施の形態においても実施の形態3と同様の効果を得ることができる。
また、チップ形状の切削物を固化したマグネシウム合金は、切削および固化を行わないマグネシウム合金に比べてより高強度・高延性のマグネシウム合金とすることができる。また、切削物を固化したマグネシウム合金に塑性加工を行ってもよい。
なお、上記の実施の形態1〜3に係るマグネシウム合金は、高温雰囲気で使用される部品、例えば、航空機用部品、自動車用部品、特に内燃機関用ピストン、バルブ、リフター、タペット、スプロケット灯等に使用することができる。
まず、Arガス雰囲気中で高周波誘導溶解によって、表1に示す組成のMg100−a−bCaaAlb合金(a:2.5〜7.5at.%、b:2.5〜12.5at.%)等のインゴット(鋳造材)を作製し、これらのインゴットからφ29×65mmの形状に切り出した押出ビレットを準備する。次いで、押出ビレットに表1に示す条件で押出加工を行う。押出加工は、押出比5,7.5,10、押出温度523K,573K,623K、押出速度2.5mm/秒で行った。
(鋳造押出材の機械的特性)
上記の押出加工を行ったMg100−a−bCaaAlb合金鋳造押出材等について室温にて引張試験及び圧縮試験を行った。その結果を表1、図1及び図2に示す。なお、図1及び図2における「*」は弾性域破断を示す。表1の引張特性におけるYSは0.2%引張耐力を示し、UTSは引張強さを示し、表1の圧縮特性におけるYSは0.2%圧縮耐力を示し、UTSは圧縮強さを示す。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
図2に示す太線で囲んでハッチングをかけた第2の組成範囲は、上記のaとbが下記式(1’)〜(3’)を満たすマグネシウム合金を示している。
(1’)4≦a≦6.5
(2’)7.5≦b≦11
(3’)11/7≦b/a≦12/5
図1及び図2には、Mg100−a−bCaaAlb合金鋳造押出材の0.2%引張耐力(MPa)および伸び(以下、δと略)を三元系強度図として示す。図1及び図2では、δが5%より大きいものを白丸で示し、δが2%より大きく5%以下のものを灰色丸で示し、δが2%以下のものを黒丸で示した。
高強度及び高延性の機械的性質を示すマグネシウム合金を得るためには、図1に示す第1の組成範囲とすることが好ましく、図2に示す第2の組成範囲とすることがさらに好ましいことが確認された。また、図1及び図2に示すように、Al添加量が10原子%の合金群が高い強度と延性を示す事がわかる。
また、表1に示すように、圧縮耐力/引張耐力の比は0.8以上であることが確認された。
(鋳造押出材の組織観察)
図3には、上記のようにして作製した試料のうちMg85Al10Ca5合金押出材の組織写真(SEM像)を示す。このMg85Al10Ca5合金押出材では、(Mg,Al)2Ca(C36型化合物)の効果的な分散が観察され、(Mg,Al)2Caが高い体積分率で金属組織中に分散されたことが観察された。
上記のようにして作製した試料のうち図1に示す第1の組成範囲のMg100−a−bCaaAlb合金押出材のSEM像から(Mg,Al)2Caが分散された領域の体積分率が35%以上65%以下であることが確認され、より優れた機械的性質(高強度及び高延性)を有するMg100−a−bCaaAlb合金押出材ではその体積分率が35%以上55%以下であることが確認された。
また、上記のようにして作製した試料のうち図1に示す第1の組成範囲のMg100−a−bCaaAlb合金押出材のSEM像から(Mg,Al)2Caの分散度を観察した結果、その分散度はおおむね1個/μm2以上であることが確認された。
また、上記のようにして作製した試料のうち図1に示す第1の組成範囲のMg100−a−bCaaAlb合金押出材のSEM像から(Mg,Al)2Caの結晶粒のアスペクト比を観察した結果、そのアスペクト比はおおむね1であり、等軸晶であることが確認された。
また、上記のようにして作製した試料のうち図1に示す第1の組成範囲のMg100−a−bCaaAlb合金押出材のSEM像から(Mg,Al)2Caの結晶粒径の上限は2μmであることが確認された。
図4には、上記のようにして作製した試料のうちMg83.75Al10Ca6.25合金押出材中の(Mg,Al)2CaのTEM像および電子線回折図形を示す。
図4に示すように、(Mg,Al)2Caの存在をTEMでも確認することができ、化合物が(Mg,Al)2Caであることが確認された。
また、上記のようにして作製した試料のうち図1に示す第1の組成範囲のMg100−a−bCaaAlb合金押出材のTEM像からは(Mg,Al)2Caの結晶粒径が10nm以下のものが多数観察され、その下限は1nmであることが確認された。
図5は、Mg100−a−bCaaAlb合金(a:2.5〜7.5at.%、b:2.5〜12.5at.%)合金押出材の形成相と機械的特性を示す図である。
図5によれば、図1に示す第1の組成範囲及び図2に示す第2の組成範囲において、(Mg,Al)2Caが形成される範囲と、(Mg,Al)2Ca及びAl12Mg17が形成される領域が存在することが確認された。
また、上記の形成相の測定によって、図1に示す第1の組成範囲の試料のマグネシウム合金は、(Mg,Al)2Caが10体積%以上35体積%以下含有することを確認し、Al12Mg17を0体積%以上10体積%以下含有することを確認した。
図6は、Mg95−xAlxCa5合金押出材における機械的特性のAl添加量依存性を示す図であり、横軸はAl含有量xを示し、縦軸は0.2%引張耐力YSを示す。
図6に示すように、Al添加量が12原子%を超えると0.2%引張耐力が急激に低下することが確認され、Al添加量の上限は12原子%が好ましく、より好ましくは11原子%であることが分かった。
図7は、Mg90−xAl10Cax合金押出材における機械的特性のCa添加量依存性を示す図であり、横軸はCa含有量xを示し、縦軸は0.2%引張耐力YSを示す。
図7に示すように、Ca添加量が3.75原子%を超えると0.2%引張耐力が急激に上昇することが確認された。また、Ca添加量が6.25原子%でもっとも高強度を示し、Caを7.5原子%以上添加すると延性を示さず、弾性限内で破断する事がわかった。従って、Ca添加量の上限は7原子%とすることが好ましいことが確認された。
図8は、Mg90−xAl10Cax合金押出材における組織変化のCa添加量依存性を示す図であり、横軸はCa含有量xを示し、縦軸は化合物分散領域または化合物の体積分率を示す。
図8に示すように、「■」で示すβ相(Al12Mg17)は、鋳造状態で測定した結果、0〜10%の範囲内にあることが分かり、「□」で示すC36型化合物((Mg,Al)2Ca)は、鋳造状態で測定した結果、10〜30%の範囲内にあることが分かり、「●」で示す化合物分散領域(C36型化合物及びβ相の分散領域)の体積分率は、押出材で測定した結果、25〜65%の範囲内にあることが分かる。なお、この化合物分散領域の体積分率は、YSが300MPa以下のマグネシウム合金を除くと、35〜65%の範囲内にあることが好ましいといえる。
図7及び図8によれば、C36型化合物の含有量の増加に伴い、0.2%引張耐力が増加することが確認された。
図9は、Mg85Al10Ca5合金押出材における機械的特性の押出比依存性を示す図であり、横軸は押出比を示し、左の縦軸は引張強さUTS及び0.2%引張耐力σ0.2を示し、右の縦軸は伸びδを示す。
図9に示すように、9以上の押出比(2.2以上の相当ひずみ)によって押出加工することにより2%以上の伸びが得られることが確認された。
図10は、Mg85Al10Ca5合金鋳造材に793Kの温度で1時間、0.5時間、2時間の熱処理を行った後、523Kの温度で押出比10、押出速度2.5mm/秒で押出加工した押出材を室温引張試験にて機械的性質を評価した結果を示す図であり、横軸は熱処理時間を示し、左の縦軸は引張強さのσUTS及び0.2%引張耐力σ0.2を示し、右の縦軸は伸びδを示す。
図10に示すように、塑性加工前に鋳造材に熱処理を施すことにより、飛躍的に伸びを向上させることができる。なお、5分程度の熱処理を行えば、伸びの向上効果を実現できると予想される。
図11は、ASTM規格によるAZ91合金にCaを0〜3.1原子%含有させた合金材(Ca−containing AZ91−based Alloys)及びMg85Al10Ca5合金材における発火温度のCa添加量依存性を示す図であり、横軸はCa添加量を示し、縦軸は発火温度を示す。
図11の燃焼試験によれば、Ca添加量が3原子%以上になると発火温度が1123K(850℃)以上になることが分かり、Ca添加量が5原子%以上になると発火温度が1363K(1090℃)以上になる。
図12は、Mg100−xCax(x=0〜5)合金材、Mg90−xAl10Cax(x=0〜5)合金材、Mg89.5−xAl10CaxZn0.5(x=0〜5)合金材、Mg89−xAl10CaxZn1(x=0〜5)合金材、Mg88−xAl10CaxZn2(x=0〜5)合金材それぞれにおける発火温度のCa添加量依存性を示す図であり、横軸はCa添加量を示し、縦軸は発火温度を示す。
図12の燃焼試験によれば、Zn添加量が増えると発火温度が高くなることが分かる。
図13は、Mg89−xAl10Ca1Znx(x=0〜2.0)合金材、Mg88−xAl10Ca2Znx(x=0〜2.0)合金材、Mg87−xAl10Ca3Znx(x=0〜2.0)合金材、Mg86−xAl10Ca4Znx(x=0〜2.0)合金材、Mg85−xAl10Ca5Znx(x=0〜2.0)合金材それぞれにおける発火温度のZn添加量依存性を示す図であり、横軸はZn添加量を示し、縦軸は発火温度を示す。
図13の燃焼試験によれば、Ca添加量が増えると発火温度が高くなることが分かる。また、Mg83Al10Ca5Zn2合金材では1380Kの発火温度を示した。そして、このMg83Al10Ca5Zn2合金を表1に示す試料と同様の方法で作製し、その機械的特性を測定した結果、降伏応力が380MPaであることを確認した。
図14は、Mg85Al10Ca5合金を大気中で溶融した合金試料の表面皮膜の構造を示す写真及び皮膜の分析結果を示す図である。
図15は、図14に示す合金試料の表面皮膜を模式的に示す図である。
<不燃性発現メカニズム>
図14及び図15によれば、Mg85Al10Ca5合金の溶融時に形成される表面皮膜は三層構造であり、表層から、超微細粒CaO層、微細粒MgO層、粗大MgO層によって形成されていることが確認された。このように溶融時に、超微細粒CaO層を形成することによって、不燃性の発現に大きく寄与していることが示唆された。
(腐食試験)
表2に示す組成のマグネシウム合金に腐食試験を行った。腐食条件は、1wt%NaCl水溶液(初期pH=6.8)に浸漬させ、腐食速度を測定した。その結果を表2に示す。
まず、Arガス雰囲気中で高周波誘導溶解によって、表3に示す組成のMg85Al10Ca5合金及びMg85−xAl10Ca5Xx合金(X:Mn,Zn,Zr,Ag,Y,La,Ce,Nd,Gd、x:0.1〜0.3at.%)のインゴット(鋳造材)を作製し、これらのインゴットからφ29×65mmの形状に切り出した押出ビレットを準備する。次いで、押出ビレットに次の条件で押出加工を行う。押出加工は、押出比10、押出温度523K、押出速度2.5mm/秒で行った。
(鋳造押出材の第4元素添加による腐食性特性)
上記の押出加工を行った鋳造押出材に腐食試験を行った。詳細には、鋳造押出材を1wt%NaCl中性水溶液(pH=6.8)に浸漬させ、腐食速度を測定した。その結果を表3、図16及び図17に示す。図16は、表3に示すマグネシウム合金と腐食速度の関係を示す図である。図17は、Mg85−xAl10Ca5Mnx合金(x:0〜0.3at.%)と腐食速度の関係を示す図である。
(鋳造押出材の第4元素添加による不燃性特性)
上記の腐食試験を行った試料と同様の鋳造押出材を用いて不燃性特性の試験を行った。詳細には、表4に示す組成の鋳造押出材における発火温度を測定し、その結果を表4、図18及び図19に示す。図18は、表4に示すマグネシウム合金と発火温度の関係を示す図である。図19は、Mg85−xAl10Ca5Mnx合金(x:0〜0.3at.%)と発火温度の関係を示す図である。
また、上記の腐食試験及び発火温度測定の結果からMnを添加することで耐食性と不燃性を同時に向上させることができることを確認した。
(鋳造押出材の機械的特性)
上記の腐食試験を行った試料と同様の方法で作製した表5に示す組成のMg85Al10Ca5合金及びMg85−xAl10Ca5Xx合金(X:Mn,Zn,Zr,Ag,Y,La,Ce,Nd,Gd、x:0.1〜0.3at.%)の鋳造押出材について室温にて引張試験を行った。その結果を表5及び図20に示す。図20は、上記の鋳造押出材の機械的特性を示す図である。なお、表5におけるTYSは0.2%引張耐力を示し、UTSは引張強さを示す。また図20に示すYSは0.2%引張耐力を示し、UTSは引張強さを示し、Elは伸びを示す。
上記の腐食試験、発火温度測定及び引張試験の結果から次のことが確認できた。Mnを添加することで耐食性及び不燃性を向上させることができるが、強度と延性が少し低下する。またZnを添加することで耐食性を向上させることができるが、強度と延性が少し低下する。またZr、Ag、Y、Ndを添加することで不燃性を向上させることができるが、強度及び延性の少なくとも一方が少し低下する。
(Mg85Al10Ca5鋳造押出材の押出前熱処理の効果)
上記の腐食試験を行った試料と同様の方法でMg85Al10Ca5合金の押出ビレットを準備し、その押出ビレットに表5に示す温度条件及び処理時間の熱処理を行う。次いで、その押出ビレットに次の条件で押出加工を行う。押出加工は、押出比10、押出温度523K、押出速度2.5mm/秒で行った。
上記の押出加工を行ったMg85Al10Ca5合金鋳造押出材について室温にて引張試験を行った。その結果を表6及び図21に示す。図21は、Mg85Al10Ca5鋳造押出材を室温引張試験にて機械的性質を評価した結果を示す図であり、横軸は熱処理時間を示し、左の縦軸は引張強さ(UTS)及び0.2%引張耐力(YS)σ0.2を示し、右の縦軸は伸びを示す。
まず、Arガス雰囲気中で高周波誘導溶解によって、表7に示す組成のインゴット(鋳造材)を作製し、これらのインゴットからφ29×65mmの形状に切り出した押出ビレットを準備する。次いで、押出ビレットに次の条件で押出加工を行う。押出加工は、押出比10、押出温度523K、押出ラム速度2.5mm/秒で行った。
(鋳造押出材の機械的特性)
上記の押出加工を行った鋳造押出材について室温にて引張試験を行った。その結果を表7及び図22に示す。図22に示すグラフの縦軸の「Yield strength」は降伏強度(0.2%引張耐力)を示し、「Elongation」は伸びを示し、図22に示すグラフの横軸はMn含有量を示す。
(腐食試験)
表8に示す組成のマグネシウム合金に腐食試験1を行った。腐食試験1の条件は、1wt%NaCl中性水溶液(初期pH=6.8)に浸漬させ、腐食速度を測定した。その結果を表8及び図23に示す。なお、表8に示す組成のマグネシウム合金は表7に示すマグネシウム合金と同じものであり、試料の作製方法も同様である。
図24は、表8に示す組成のマグネシウム合金に交流インピーダンス測定による腐食試験2を行った結果を示す図である。この腐食試験2の試験方法は次のとおりである。
298Kの恒温浴槽中に500mlビーカーに1wt%NaCl中性水溶液(初期pH=6.8)400mlを入れ、この水溶液に試料を浸漬させ、5分後に振幅5mV,周波数10mHz〜100kHzにて交流インピーダンス測定を行った。
図24に示す交流インピーダンス測定結果によれば、Mn添加合金に形成される腐食皮膜は高いインピーダンス特性を有することが確認された。
図25(A)は、Mg85Al10Ca5合金を1wt%NaCl中性水溶液(初期pH=6.8)に0.5時間浸漬させた後にグロー放電発光分光分析による腐食皮膜の化学組成を分析した結果を示す図である。図25(B)は、Mg84.7Al10Ca5Mn0.3合金を1wt%NaCl中性水溶液(初期pH=6.8)に0.5時間浸漬させた後にグロー放電発光分光分析による腐食皮膜の化学組成を分析した結果を示す図である。なお、Mg85Al10Ca5合金及びMg84.7Al10Ca5Mn0.3合金は表7に示す対応する組成のマグネシウム合金と同じものであり、試料の作製方法も同様である。
図25によれば、Mnは皮膜最表面に濃化していることが確認され、Mn添加による皮膜改質効果が認められた。
Claims (29)
- Caをa原子%含有し、Alをb原子%含有し、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMg及び不純物からなる組成を有し、
(Mg,Al)2Caをc体積%含有し、
aとbとcとkが下記式(1)〜(4)及び(21)を満たし、
前記(Mg,Al)2Caが分散されており、
前記少なくとも一つの元素は難燃性を向上させる元素であることを特徴とするマグネシウム合金。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35
(21)0<k≦0.3 - Caをa原子%含有し、Alをb原子%含有し、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMg及び不純物からなる組成を有し、
(Mg,Al)2Caをc体積%含有し、
aとbとcとkが下記式(1)〜(4)及び(21)を満たし、
前記(Mg,Al)2Caが分散されており、
前記少なくとも一つの元素は難燃性を向上させる元素であることを特徴とするマグネシウム合金。
(1)3≦a≦7
(2)8≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35
(21)0<k≦0.3 - 請求項1または2において、
前記マグネシウム合金にZnをx原子%含有し、xが下記式(20)を満たすことを特徴とするマグネシウム合金。
(20)0<x≦3 - 請求項1乃至3のいずれか一項において、
前記マグネシウム合金はAl12Mg17をd体積%含有し、dが下記式(5)を満たすことを特徴とするマグネシウム合金。
(5)0<d≦10 - 請求項1乃至4のいずれか一項において、
前記(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすことを特徴とするマグネシウム合金。
(7)35≦f≦65 - 請求項1乃至5のいずれか一項において、
前記マグネシウム合金の発火温度は850℃以上であることを特徴とするマグネシウム合金。 - 請求項1において、
前記aとbが下記式(1')及び(2')を満たすことを特徴とするマグネシウム合金。
(1')4≦a≦6.5
(2')7.5≦b≦11 - 請求項7において、
前記aとbが下記式(3')を満たすことを特徴とするマグネシウム合金。
(3')11/7≦b/a≦12/5 - 請求項7または8において、
前記マグネシウム合金の発火温度は1090℃以上であることを特徴とするマグネシウム合金。 - 請求項1乃至9のいずれか一項において、
前記マグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たすことを特徴とするマグネシウム合金。
(8)0.8≦g/h - 請求項1乃至10のいずれか一項において、
前記マグネシウム合金に、YとNdを除く希土類元素、Si、Sc、Sn、Cu、Li、Be、Mo、Nb、及びWの群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすことを特徴とするマグネシウム合金。
(9)0<i≦0.3 - 請求項1乃至11のいずれか一項において、
前記マグネシウム合金にAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物を、化合物中の金属原子の量としてj原子%含有し、jが下記式(10)を満たすことを特徴とするマグネシウム合金。
(10)0<j≦5 - Caをa原子%含有し、Alをb原子%含有し、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMg及び不純物からなる組成を有し、(Mg,Al)2Caをc体積%含有し、aとbとcとkが下記式(1)〜(4)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35
(21)0<k≦0.3 - Caをa原子%含有し、Alをb原子%含有し、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、残部がMg及び不純物からなる組成を有し、(Mg,Al)2Caをc体積%含有し、aとbとcとkが下記式(1)〜(4)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)8≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦30
(21)0<k≦0.3 - Caをa原子%含有し、Alをb原子%含有し、Zn、Zr、Ag、Y及びNdからなる群から選択された少なくとも一つの元素を合計でk原子%含有し、Znをx原子%含有し、残部がMg及び不純物からなる組成を有し、aとbとkとxが下記式(1)〜(3)、(20)及び(21)を満たす鋳造物を鋳造法によって形成し、
前記鋳造物に塑性加工を行うマグネシウム合金の製造方法であり、
前記鋳造物は(Mg,Al)2Caをc体積%含有し、cが下記式(4)を満たし、
前記少なくとも一つの元素は耐食性及び難燃性の少なくとも一方を向上させる元素であることを特徴とするマグネシウム合金の製造方法。
(1)3≦a≦7
(2)4.5≦b≦12
(3)1.2≦b/a≦3.0
(4)10≦c≦35
(20)0<x≦3
(21)0<k≦0.3 - 請求項13乃至15のいずれか一項において、
前記鋳造物はAl12Mg17をd体積%含有し、dが下記式(5)を満たすことを特徴とするマグネシウム合金の製造方法。
(5)0<d≦10 - 請求項13乃至16のいずれか一項において、
前記鋳造物を形成する際の冷却速度は、1000K/秒以下であることを特徴とするマグネシウム合金の製造方法。 - 請求項13乃至17のいずれか一項において、
前記塑性加工を行う際の相当ひずみは、2.2以上であることを特徴とするマグネシウム合金の製造方法。 - 請求項13乃至18のいずれか一項において、
前記塑性加工を行う前に、前記鋳造物に400℃〜600℃の温度で5分〜24時間の熱処理を行うことを特徴とするマグネシウム合金の製造方法。 - 請求項13乃至15のいずれか一項において、
前記塑性加工を行う前に、前記鋳造物に723K〜773Kの温度で0.5時間以上の熱処理を行うことを特徴とするマグネシウム合金の製造方法。 - 請求項13または15のいずれか一項において、
前記aとbが下記式(1')及び(2')を満たすことを特徴とするマグネシウム合金の製造方法。
(1')4≦a≦6.5
(2')7.5≦b≦11 - 請求項21において、
前記aとbが下記式(3')を満たすことを特徴とするマグネシウム合金の製造方法。
(3')11/7≦b/a≦12/5 - 請求項13乃至22のいずれか一項において、
前記塑性加工を行った後の前記(Mg,Al)2Caが分散された領域の体積分率はf%であり、fが下記式(7)を満たすことを特徴とするマグネシウム合金の製造方法。
(7)35≦f≦65 - 請求項13乃至23のいずれか一項において、
前記塑性加工を行った後に、前記マグネシウム合金に熱処理を行うことを特徴とするマグネシウム合金の製造方法。 - 請求項13乃至23のいずれか一項において、
前記塑性加工を行った後に、前記マグネシウム合金に溶体化処理を行うことを特徴とするマグネシウム合金の製造方法。 - 請求項25において、
前記溶体化処理を行った後に、前記マグネシウム合金に時効処理を行うことを特徴とするマグネシウム合金の製造方法。 - 請求項13乃至26のいずれか一項において、
前記マグネシウム合金は、圧縮耐力をgとし、引張耐力をhとした場合、gとhが下記式(8)を満たすことを特徴とするマグネシウム合金の製造方法。
(8)0.8≦g/h - 請求項13乃至27のいずれか一項において、
前記鋳造物に、YとNdを除く希土類元素、Si、Sc、Sn、Cu、Li、Be、Mo、Nb、及びWの群から選択された少なくとも一つの元素をi原子%含有し、iが下記式(9)を満たすことを特徴とするマグネシウム合金の製造方法。
(9)0<i≦0.3 - 請求項13乃至28のいずれか一項において、
前記鋳造物にAl2O3、Mg2Si、SiC、MgO、及びCaOの群から選択された少なくとも一つの化合物を、化合物中の金属原子の量としてj原子%含有し、jが下記式(10)を満たすことを特徴とするマグネシウム合金の製造方法。
(10)0<j≦5
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013220562 | 2013-10-23 | ||
JP2013220562 | 2013-10-23 | ||
PCT/JP2014/078676 WO2015060459A1 (ja) | 2013-10-23 | 2014-10-22 | マグネシウム合金及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015060459A1 JPWO2015060459A1 (ja) | 2017-03-09 |
JP6569531B2 true JP6569531B2 (ja) | 2019-09-04 |
Family
ID=52993041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015543943A Active JP6569531B2 (ja) | 2013-10-23 | 2014-10-22 | マグネシウム合金及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10138535B2 (ja) |
JP (1) | JP6569531B2 (ja) |
WO (1) | WO2015060459A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6596236B2 (ja) * | 2015-05-27 | 2019-10-23 | 本田技研工業株式会社 | 耐熱性マグネシウム合金及びその製造方法 |
KR101858856B1 (ko) * | 2016-12-21 | 2018-05-17 | 주식회사 포스코 | 난연성이 우수한 고강도 마그네슘 합금 및 그 제조방법 |
WO2018199258A1 (ja) * | 2017-04-26 | 2018-11-01 | 国立大学法人九州大学 | 電極、構造体およびその製造方法、接続構造体、並びに、その電極を用いた素子 |
EP3919633A4 (en) * | 2019-01-31 | 2023-06-28 | Tokyo Rope Manufacturing Co., Ltd. | Heat exchange method, heat exchange medium, heat exchange device, patenting method, and carbon steel wire |
JP2021063256A (ja) * | 2019-10-11 | 2021-04-22 | 三菱重工業株式会社 | 航空機部材の製造方法 |
WO2021157748A1 (ja) * | 2020-02-07 | 2021-08-12 | 国立大学法人 熊本大学 | マグネシウム合金及びその製造方法 |
JP7356116B2 (ja) * | 2021-04-09 | 2023-10-04 | 三菱重工業株式会社 | 航空機部材の製造方法 |
JP7235254B2 (ja) * | 2021-04-09 | 2023-03-08 | 三菱重工業株式会社 | Mg-Al-Ca系合金の表面改質方法 |
CN115786790A (zh) * | 2022-12-14 | 2023-03-14 | 中国电子科技集团公司第十八研究所 | 一种耐海水腐蚀高电流效率Mg-Ca-In镁合金及其制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843461B2 (ja) | 1975-08-07 | 1983-09-27 | トウホクダイガクキンゾクザイリヨウケンキユウシヨチヨウ | シリコンカ−バイドセンイキヨウカマグネシウムゴウキンフクゴウザイリヨウ オヨビ ソノセイゾウホウホウ |
JP4539572B2 (ja) | 2006-01-27 | 2010-09-08 | 株式会社豊田中央研究所 | 鋳造用マグネシウム合金および鋳物 |
JP2010242146A (ja) * | 2009-04-03 | 2010-10-28 | Toyota Central R&D Labs Inc | マグネシウム合金およびマグネシウム合金部材 |
JP5720926B2 (ja) | 2010-10-12 | 2015-05-20 | 住友電気工業株式会社 | マグネシウム合金の線状体及びボルト、ナット並びにワッシャー |
JP2012097309A (ja) | 2010-10-29 | 2012-05-24 | Sanden Corp | マグネシウム合金部材、エアコン用圧縮機及びマグネシウム合金部材の製造方法 |
KR20150005626A (ko) | 2012-04-19 | 2015-01-14 | 고꾸리쯔다이가꾸호오진 구마모또 다이가꾸 | 마그네슘 합금 및 그 제조 방법 |
-
2014
- 2014-10-22 US US15/030,229 patent/US10138535B2/en active Active
- 2014-10-22 WO PCT/JP2014/078676 patent/WO2015060459A1/ja active Application Filing
- 2014-10-22 JP JP2015543943A patent/JP6569531B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20160369378A1 (en) | 2016-12-22 |
US10138535B2 (en) | 2018-11-27 |
JPWO2015060459A1 (ja) | 2017-03-09 |
WO2015060459A1 (ja) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6569531B2 (ja) | マグネシウム合金及びその製造方法 | |
JP6432344B2 (ja) | マグネシウム合金及びその製造方法 | |
JP5852580B2 (ja) | 機械的特性に優れている難燃性マグネシウム合金及びその製造方法 | |
KR101258470B1 (ko) | 고강도 고연성 난연성 마그네슘 합금 | |
JP5703881B2 (ja) | 高強度マグネシウム合金およびその製造方法 | |
KR101276665B1 (ko) | 고온열처리 가능한 가공용 마그네슘 합금 | |
TWI545202B (zh) | 輕質鎂合金及其製造方法 | |
JP6860235B2 (ja) | マグネシウム基合金展伸材及びその製造方法 | |
JP2007138227A (ja) | マグネシウム合金材 | |
JP7467633B2 (ja) | 粉末アルミニウム材料 | |
JP2018197366A (ja) | アルミニウム合金材 | |
WO2010056130A1 (en) | Magnesium based alloys and processes for preparation thereof | |
JP6594663B2 (ja) | 耐熱性マグネシウム鋳造合金とその製造方法 | |
JP6385683B2 (ja) | Al合金鋳造物及びその製造方法 | |
JP2022044919A (ja) | アルミニウム合金製鍛造部材及びその製造方法 | |
JP2019060026A (ja) | マグネシウム基合金伸展材及びその製造方法 | |
JP5590413B2 (ja) | 高熱伝導性マグネシウム合金 | |
JPH0457738B2 (ja) | ||
JP7126915B2 (ja) | アルミニウム合金押出材及びその製造方法 | |
JP5699722B2 (ja) | マグネシウム合金 | |
EA033930B1 (ru) | Проводниковый алюминиевый сплав и изделие из него |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20160413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180821 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190722 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6569531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |