JP6561747B2 - 温度測定装置、温度測定方法および温度測定プログラム - Google Patents

温度測定装置、温度測定方法および温度測定プログラム Download PDF

Info

Publication number
JP6561747B2
JP6561747B2 JP2015197557A JP2015197557A JP6561747B2 JP 6561747 B2 JP6561747 B2 JP 6561747B2 JP 2015197557 A JP2015197557 A JP 2015197557A JP 2015197557 A JP2015197557 A JP 2015197557A JP 6561747 B2 JP6561747 B2 JP 6561747B2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature distribution
distribution information
temperature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015197557A
Other languages
English (en)
Other versions
JP2017072388A (ja
Inventor
孝祐 有岡
孝祐 有岡
宇野 和史
和史 宇野
丈夫 笠嶋
丈夫 笠嶋
裕幸 福田
裕幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2015197557A priority Critical patent/JP6561747B2/ja
Priority to US15/271,963 priority patent/US10247622B2/en
Publication of JP2017072388A publication Critical patent/JP2017072388A/ja
Application granted granted Critical
Publication of JP6561747B2 publication Critical patent/JP6561747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/324Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/322Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres using Brillouin scattering

Description

本件は、温度測定装置、温度測定方法および温度測定プログラムに関する。
光源から光ファイバに光を入射した際に当該光ファイバからの後方散乱光を用いて、光ファイバの延伸方向の温度分布を測定する技術が開発されている(例えば、特許文献1,2参照)。
特開平7−218354号公報 特開2014−167399号公報
光源からの光にノイズが含まれていると、温度測定の精度が低下する。
1つの側面では、本件は、ノイズの影響を抑制することができる温度測定装置、温度測定方法および温度測定プログラムを提供することを目的とする。
1つの態様では、温度測定装置は、所定の経路に沿って配置された光ファイバと、前記光ファイバに光を入射する光源と、前記光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定する測定部と、前記光ファイバに含まれる区間のうち、同じ温度領域に配置されて前記光源からの距離に対して対称な温度分布に位置する2つの区間の温度分布情報の、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、前記測定部が測定した温度分布情報のノイズ成分を低減するフィルタを作成し、当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する補正部と、を備える。
ノイズの影響を抑制することができる。
(a)は実施形態に係る温度測定装置の全体構成を表す概略図であり、(b)は制御部のハードウェア構成を説明するためのブロック図である。 後方散乱光の成分を表す図である。 (a)はレーザによる光パルス発光後の経過時間とストークス成分およびアンチストークス成分の光強度との関係を例示する図であり、(b)は(a)の検出結果を用いて算出した温度である。 (a)はシングルエンド方式を例示し、(b)はダブルエンド方式を例示する図である。 ダブルエンド方式のノイズおよび信号成分を例示する図である。 インパルス応答の典型例を例示する図である。 制御部が実行する処理の一例を表すフローチャートである。 (a)はターミネーションケーブルを例示し、(b)は温度分布を例示する図である。 (a)はノイズのパワースペクトルを例示し、(b)は高周波をカットした場合の測定温度を例示する図である。 (a)は高周波をカットした場合の測定温度を例示し、(b)は2400mから2700mの測定温度の拡大図である。 光ファイバの各位置における処理前および処理後の標準偏差を例示する。 (a)は意図的に実現した温度分布を例示し、(b)はフィルタ係数の算出結果を例示する図である。 (a)および(b)は光ファイバの他の例を表す図である。 チャネル1における測定温度を例示する図である。
以下、図面を参照しつつ、実施形態について説明する。
(実施形態)
図1(a)は、実施形態に係る温度測定装置100の全体構成を表す概略図である。図1(a)で例示するように、温度測定装置100は、測定機10、制御部20、光ファイバ30などを備える。測定機10は、レーザ11、ビームスプリッタ12、光スイッチ13、フィルタ14、複数の検出器15a,15bなどを備える。制御部20は、指示部21、温度測定部22、補正部23などを備える。
図1(b)は、制御部20のハードウェア構成を説明するためのブロック図である。図1(b)で例示するように、制御部20は、CPU101、RAM102、記憶装置103、インタフェース104などを備える。これらの各機器は、バスなどによって接続されている。CPU(Central Processing Unit)101は、中央演算処理装置である。CPU101は、1以上のコアを含む。RAM(Random Access Memory)102は、CPU101が実行するプログラム、CPU101が処理するデータなどを一時的に記憶する揮発性メモリである。記憶装置103は、不揮発性記憶装置である。記憶装置103として、例えば、ROM(Read Only Memory)、フラッシュメモリなどのソリッド・ステート・ドライブ(SSD)、ハードディスクドライブに駆動されるハードディスクなどを用いることができる。CPU101が記憶装置103に記憶されている温度測定プログラムを実行することによって、制御部20に指示部21、温度測定部22、補正部23などが実現される。なお、指示部21、温度測定部22および補正部23は、専用の回路などのハードウェアであってもよい。
レーザ11は、半導体レーザなどの光源であり、指示部21の指示に従って所定の波長範囲のレーザ光を出射する。本実施形態においては、レーザ11は、所定の時間間隔で光パルス(レーザパルス)を出射する。ビームスプリッタ12は、レーザ11が出射した光パルスを光スイッチ13に入射する。光スイッチ13は、入射された光パルスの出射先(チャネル)を切り替えるスイッチである。後述するダブルエンド方式では、光スイッチ13は、指示部21の指示に従って、光ファイバ30の第1端および第2端に一定周期で交互に光パルスを入射する。後述するシングルエンド方式では、光スイッチ13は、指示部21の指示に従って、光ファイバ30の第1端または第2端のいずれか一方に光パルスを入射する。光ファイバ30は、温度測定対象の所定の経路に沿って配置されている。本実施形態においては、光ファイバ30の長さをLメートル(m)とし、第1端の位置を0メートル(m)とし、第2端の位置をLメートル(m)とする。
光ファイバ30に入射した光パルスは、光ファイバ30を伝搬する。光パルスは、伝搬方向に進行する前方散乱光および帰還方向に進行する後方散乱光(戻り光)を生成しながら徐々に減衰して光ファイバ30内を伝搬する。後方散乱光は、光スイッチ13を通過してビームスプリッタ12に再度入射する。ビームスプリッタ12に入射した後方散乱光は、フィルタ14に対して出射される。フィルタ14は、WDMカプラなどであり、後方散乱光を長波長成分(後述するストークス成分)と短波長成分(後述するアンチストークス成分)とを抽出する。検出器15a,15bは、受光素子である。検出器15aは、後方散乱光の短波長成分の受光強度を電気信号に変換して温度測定部22および補正部23に送信する。検出器15bは、後方散乱光の長波長成分の受光強度を電気信号に変換して温度測定部22および補正部23に送信する。温度測定部22は、ストークス成分およびアンチストークス成分を用いて、光ファイバ30の延伸方向の温度分布情報を測定する。補正部23は、温度測定部22が取得した温度分布情報を補正する。
図2は、後方散乱光の成分を表す図である。図2で例示するように、後方散乱光は、大きく3種類に分類される。これら3種類の光は、光強度の高い順かつ入射光波長に近い順に、OTDR(光パルス試験器)などに使用されるレイリー散乱光、歪測定などに使用されるブリルアン散乱光、温度測定などに使用されるラマン散乱光である。ラマン散乱光は、温度に応じて変化する光ファイバ30内の格子振動と光との干渉で生成される。強めあう干渉によりアンチストークス成分と呼ばれる短波長成分が生成され、弱めあう干渉によりストークス成分とよばれる長波長成分が生成される。
図3(a)は、レーザ11による光パルス発光後の経過時間と、ストークス成分(長波長成分)およびアンチストークス成分(短波長成分)の光強度との関係を例示する図である。経過時間は、光ファイバ30における伝搬距離(光ファイバ30における位置)に対応している。図3(a)で例示するように、ストークス成分およびアンチストークス成分の光強度は、両方とも経過時間とともに低減する。これは、光パルスが前方散乱光および後方散乱光を生成しながら徐々に減衰して光ファイバ30内を伝搬することに起因する。
図3(a)で例示するように、アンチストークス成分の光強度は光ファイバ30において高温になる位置では、ストークス成分と比較してより強くなり、低温になる位置では、ストークス成分と比較してより弱くなる。したがって、両成分を検出器15a,15bで検出し、両成分の特性差を利用することによって、光ファイバ30内の各位置の温度を検出することができる。なお、図3(a)において、極大を示す領域は、図1(a)においてドライヤなどで光ファイバ30を意図的に加熱した領域である。また、極小を示す領域は、図1(a)において冷水などで光ファイバ30を意図的に冷却した領域である。
本実施形態においては、温度測定部22は、経過時間ごとにストークス成分とアンチストークス成分とから温度を測定する。それにより、光ファイバ30内における各位置の温度を測定することができる。すなわち、光ファイバ30の延伸方向における温度分布を測定することができる。なお、両成分の特性差を利用することから、距離に応じて両成分の光強度が減衰しても、高精度で温度を測定することができる。図3(b)は、図3(a)の検出結果を用いて算出した温度である。図3(b)の横軸は、経過時間を基に算出した光ファイバ30内の位置である。図3(b)で例示するように、ストークス成分およびアンチストークス成分を検出することによって、光ファイバ30内の各位置の温度を測定することができる。
図4(a)で例示するように、光スイッチ13からの光ファイバ30への入射位置が第1端または第2端で固定されている方式は、「方端方式」や「シングルエンド方式」などと呼ばれる(以下、シングルエンド方式と称する)。シングルエンド方式では、入射位置を切り替える必要がないため、温度測定の処理がシンプルになるというメリットがある。一方、入射位置から遠くなるにつれてノイズが大きくなる。
図4(b)で例示するように、入射位置を一定周期で第1端と第2端とで切り替える方式は、「ループ式測定」や、「ダブルエンド測定」や、「デュアルエンド測定」などと呼ばれる(以下、ダブルエンド方式と称する)。ダブルエンド方式では、切替前後において、アンチストークス光量とストークス光量とを各光ファイバ30の位置で平均化(平均値の算出)することによって温度測定が可能となる。この方式では、入射位置の切替などの制御が必要となる一方で、光ファイバ30の端部におけるノイズが低減されるというメリットがある。例えば、温度分解能が、シングルエンド方式と比較して4倍以上良くなる。
また、経路中に過大な曲げが発生すると伝送損失が発生し、当該地点で光強度が急峻に低下する。この場合、光強度が急峻に低下し、ストークス成分とアンチストークス成分との比が変わり、温度測定精度が低下する。しかしながら、ダブルエンド方式では、平均を取ることで、曲げ損失点前後の急峻な変化を打ち消すことができる、つまり、損失の長さ方向の変化を解消できるというメリットが得られる。
ただし、シングルエンド方式およびダブルエンド方式のいずれにおいても、ノイズが現れる。また、これらの方式の違いに応じて、ノイズおよび信号成分のパワースペクトルが異なる。信号成分とは、光ファイバ30の延伸方向の温度分布に係る成分である。また、測定位置の違いに応じても、ノイズおよび信号成分のパワースペクトルが異なる。すなわち、どのような温度分布になるか、どのようなノイズが重畳するか、予測することは困難である。なお、図5はダブルエンド方式のノイズおよび信号成分を例示するが、方式の違いおよび測定位置の違いに応じて、ノイズおよび信号成分のパワースペクトルは異なるものとなってしまう。
ところで、一定温度区間内に高温印加区間を設けた際の温度は、単一方形波に対してインパルス応答を畳み込んだものと等価とみなすことができる。それにより、システムのインパルス応答が求まる。図6は、求めたインパルス応答の典型例を例示する。後方ラマン散乱光を用いた光ファイバの温度測定においては、図6で例示するように、インパルス応答はsinc関数に中心から離れた位置がきれいに減衰するような窓関数処理をした波形とみなせる。しかしながら、測定環境に応じて、インパルス応答は異なってしまう。
そこで、本実施形態においては、ノイズ情報を取得することによって、光ファイバの敷設環境や測定条件に応じた適切なフィルタを作成し、当該フィルタを測定温度情報に作用させることによって、ノイズを低減する。
図7は、制御部20が実行する処理の一例を表すフローチャートである。図7で例示するように、温度測定部22は、光ファイバ30からのラマン散乱光に基づいて、光ファイバ30の延伸方向の温度分布を測定する(ステップS1)。この場合において、温度測定部22は、1本の光ファイバ30において、光ファイバ30が配置された経路の特定区間に位置する異なる2つの区間の温度分布に係る情報を測定する。
例えば、ターミネーションケーブルを用いることができる。ターミネーションケーブルでは、光ファイバ30の両端部が束ねられ、シースで保護された多心光ファイバ領域31が備わっている。図8(a)は、ターミネーションケーブルを例示する。図8(a)で例示するように、多心光ファイバ領域31では、光入射側(0(m)近傍)の端部と光出射側(L(m)近傍)の端部とが束ねられ、シースで保護されている。このような構成の光ファイバ30を用いることで、多心光ファイバ領域31において、光ファイバ30の2つの異なる区間で、同じ温度分布を測定することができる。
図8(b)は、光ファイバ30における測定機10からの距離と、ラマン散乱光に基づいて測定された温度との関係を例示する。多心光ファイバ領域31においては、同じ温度分布が測定される。なお、多心光ファイバ領域31では、光の伝搬方向が逆になるため、測定機10からの距離に対して対称な温度分布が測定される。ノイズの影響が無ければ、多心光ファイバ領域31の光入射側の区間(第1区間)と、多心光ファイバ領域31の光出射側の区間(第2区間)において測定される温度の波形は、図8(b)において左右対称となる。しかしながら、第2区間は測定機10からの距離が大きくノイズが大きくなることから、図8(b)で例示するように、第1区間と第2区間とで、測定される温度分布の波形に相違が見られる。
そこで、補正部23は、多心光ファイバ領域31で測定された2つの温度分布の差分を算出する(ステップS2)。ステップS2では、多心光ファイバ領域31の各位置における測定温度同士の差分を算出すればよい。多心光ファイバ領域31では、同じ温度分布が測定されるため、上記差分において、温度に係る信号成分が相殺される。そのため、上記差分にはノイズ成分が残る。
次に、補正部23は、得られたノイズ成分と、測定された温度分布とからフィルタを作成し、当該フィルタを、測定された温度分布に作用させ、当該温度分布を補正する(ステップS3)。それにより、ノイズの影響が抑制される。図8(b)の例では、多心光ファイバ領域31において、第1区間よりも第2区間においてノイズが大きくなる。そこで、第2区間の温度波形から、第1区間の温度波形を左右反転させたものを差し引く。これにより、温度に係る信号成分が差し引かれ、ノイズの波形が得られる。このノイズの波形に対してフーリエ変換することによって、図9(a)で例示するノイズのパワースペクトルを得ることができる。
ノイズの波形は距離との関係で得られていることから、ノイズのパワースペクトルは、「周波数/m」を横軸として表される。図9(a)では、ノイズのパワースペクトルに重ねて、温度に係る信号成分が表されている。この信号成分の取得手法は特に限定されるものではなく、例えば、第1区間の測定温度に対してフーリエ変換することによって取得してもよい。図9(a)で例示するように、信号成分とノイズとの間では、高周波側で差異が小さくなる。そこで、高周波側をカットするローパスフィルタを作成することによって、信号成分への影響を抑制しつつ、ノイズ成分を除去することができる。
図9(b)は、0.5/m以上の高周波をカットした場合の測定温度を例示する図である。図9(b)において、破線が処理前(カット前)の測定温度を表し、実線が処理後(カット後)の測定温度を表す。図9(b)で例示するように、処理前と比較して、処理後では波形が滑らかになっている。これは、高周波のカットにより、ノイズの影響が抑制できているからである。
図10(a)は、上記ローパスフィルタによって高周波をカットした場合の測定温度を例示する。図10(a)の例は、ダブルエンド方式において、第1端に入射した場合にフィルタ処理した測定温度と、第2端に入射した場合にフィルタ処理した測定温度との平均値を表している。図10(a)で例示するように、処理前と比較して、処理後ではバラツキが抑制され、ノイズの影響が抑制できていることがわかる。
なお、図10(a)の例では、2400mあたりから2700mあたりにかけて、温度を意図的に高くしてある。すなわち、2400mあたりから2700mあたりにかけては、高温に係る信号成分が検出される。図10(b)は、2400mから2700mの測定温度の拡大図である。図10(b)で例示するように、処理前と処理後とを比較すると、大きな差は見られない。これは、フィルタ処理によってノイズの影響を抑制できるとともに、信号成分については影響を抑制できていることを意味している。このように、高周波をカットするフィルタ処理によって、信号成分への影響を抑制しつつ、ノイズの影響を抑制することができる。
図11は、図10(a)の結果において、光ファイバ30の各位置における処理前および処理後の標準偏差を例示する。図11で例示するように、処理前においてはいずれの位置においても標準偏差が大きい値となっているが、処理後においてはいずれの位置においても標準偏差が削減されている。これは、ノイズの影響が抑制されたため、測定温度のバラツキが抑制されているからである。なお、フィルタ処理は複数回行うことが好ましい。例えば、フィルタ処理後の測定温度に対してさらにフィルタを作成し、当該フィルタを処理後の測定温度に作用させることで、ノイズの影響をより抑制することができる。
上記例では、多心光ファイバ領域31に位置する第1区間の測定温度と第2区間の測定温度との差分からノイズのパワースペクトルを取得したが、それに限られない。例えば、ノイズが大きい第2区間の測定温度とノイズが小さい第1区間の測定温度との差分から適応フィルタを作成してもよい。以下、適応フィルタの作成手順について説明する。
まず、多心光ファイバ領域31において、図12(a)で例示するような温度分布を意図的に実現しておく。すなわち、所定の間隔で温度ピークが現れるような温度分布を実現しておく。図12(a)において、「ノイズ小」は、第1区間における測定温度を表す。「ノイズ大」は、第2区間における測定温度を表す。すなわち、図12(a)の横軸は第1区間における測定機10からの距離を表しているが、第2区間における対応する距離も表している。
まず、ノイズが小さい第1区間における光ファイバ30の地点n(m)における温度をd[n]とする。当該地点においてノイズが大きい温度をx[n]とする。x[n]として、第2区間において当該地点n(m)に対応する地点の温度を用いることができる。n−kに係るフィルタ係数をhとする。kを、−M〜+Mとする。ここで、「M」は適応フィルタの適用範囲(m)の1/2を表し、例えば1m程度である。地点n(m)におけるフィルタ処理後の温度をy[n]とする。y[n]は、下記式(1)で表すことができる。
Figure 0006561747
フィルタ処理後の誤差をε[n]とすると、ε[n]は、d[n]−y[n]と表すことができる。この場合、2乗平均誤差は、下記式(2)で表すことができる。なお、E{・}は、期待値操作を表す。Pは、定数である。p[k]は、d[n]とx[n]との相互相関関数を表し、p[k]=E{d[n]−x[n−k]}で表される。r[m]は、x[n]の自己相関関数を表し、r[m]=E{x[n]−x[n+m]}で表される。
Figure 0006561747
上記式(2)のh ・・・の係数はr[0]である。r[0]>0であるため、下記式(3)のときに2乗平均誤差が最小となる。すなわち、最適なフィルタ係数hが得られる。図12(b)は、フィルタ係数hの算出結果を例示する。この適応フィルタを、光ファイバ30の所定の間隔ごとの各位置において適用することによって、測定温度におけるノイズの影響を抑制することができる。
Figure 0006561747
上記例では、同じ温度分布を測定する手段としてターミネーションケーブルを用いたが、それに限られない。例えば、図13(a)で例示するように、2本の光ファイバ30を互いに沿うように配置しておき、一方の光ファイバ30には第1端から光を入射し、他方の光ファイバ30には第2端から光を入射する。当該第1端に光を入射するチャネルをチャネル1とし、当該第2端に光を入射するチャネルをチャネル2とする。チャネル1とチャネル2とは、光スイッチ13を用いて切り替えることができる。
2本の光ファイバ30が配置された経路においていずれかの区間を特定区間として選択することで、当該特定区間において同じ温度分布が得られる。信号成分がノイズに埋もれないために、当該特定区間を意図的に高温の領域とすることで、同じ温度分布を顕著にすることができる。なお、一方の光ファイバにおける当該特定区間のノイズを小さくし、他方の光ファイバにおける当該特定区間のノイズを大きくするために、当該特定区間をいずれかの端部に偏って設定することが好ましい。
また、図13(b)で例示するように、1本の光ファイバ30の第1端から光を入射するチャネルをチャネル1とし、第2から光を入射するチャネルをチャネル2とする。チャネル1とチャネル2とは、光スイッチ13を用いて切り替えることができる。光ファイバ30が配置された経路においていずれかの区間を特定区間として選択することで、当該特定区間において同じ温度分布が得られる。信号成分がノイズに埋もれないために、当該特定区間を意図的に高温の領域とすることで、同じ温度分布を顕著にすることができる。なお、一方のチャネルにおける当該特定区間のノイズを小さくし、他方のチャネルにおける当該特定区間のノイズを大きくするために、当該特定区間を光ファイバ30の中心からいずれかの端部に偏って設定することが好ましい。
図14は、チャネル1における測定温度を例示する。図14で例示するように、測定機10から離れるに従ってノイズが大きくなる。一方で、測定機10に近い領域ではノイズが小さくなる。図14では、チャネル2における測定温度も例示されている。チャネル2については、測定機10からの距離を反転させてある。チャネル1において測定機10に近い領域に高温度領域を設定しておくと、チャネル2では、測定機10から遠い領域に高温度領域が現れる。これらの高温度領域を同じ温度分布が得られる特定区間として用いることができる。すなわち、チャネル1の高温度領域からノイズが小さい測定温度を得ることができ、チャネル2の高温度領域からノイズが大きい測定温度を得ることができる。なお、光スイッチ13を用いてチャネルを切り替える場合、温度測定に時間的な差異が生じるが、同温度領域の温度は急激に変化しないため、フィルタの作成精度には影響しない。
上記各例において、光ファイバ30が、所定の経路に沿って配置された光ファイバの一例である。レーザ11が、光ファイバに光を入射する光源の一例である。温度測定部22が、光ファイバからの後方散乱光に基づいて光ファイバの延伸方向の温度分布情報を測定する測定部の一例である。補正部23が、光ファイバにおいて同じ温度分布が得られる異なる2つの区間の温度分布情報の差分を基に、測定部が測定した温度分布情報のノイズ成分を低減するフィルタを作成し、当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する補正部の一例である。または、補正部23は、光ファイバの特定の区間において、光源から光ファイバの第1端に光を入射した場合に得られる温度分布情報と光源から光ファイバの第2端に光を入射した場合に得られる温度分布情報との差分を基に、測定部が測定した温度分布情報のノイズ成分を低減するフィルタを作成し、当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する補正部の一例である。
以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 測定機
11 レーザ
12 ビームスプリッタ
13 光スイッチ
14 フィルタ
15a,15b 検出器
20 制御部
21 指示部
22 温度測定部
23 補正部
30 光ファイバ
31 多心光ファイバ領域
100 温度測定装置

Claims (13)

  1. 所定の経路に沿って配置された光ファイバと、
    前記光ファイバに光を入射する光源と、
    前記光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定する測定部と、
    前記光ファイバに含まれる区間のうち、同じ温度領域に配置されて前記光源からの距離に対して対称な温度分布に位置する2つの区間の温度分布情報の、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、前記測定部が測定した温度分布情報のノイズ成分を低減するフィルタを作成し、当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する補正部と、を備えることを特徴とする温度測定装置。
  2. 前記2つの区間は、1本の光ファイバにおいて、前記経路の特定区間に位置する異なる2つの区間であることを特徴とする請求項1記載の温度測定装置。
  3. 前記2つの区間は、2本の光ファイバのそれぞれにおいて、前記経路の特定区間に位置する区間であることを特徴とする請求項1記載の温度測定装置。
  4. 前記測定部は、前記光ファイバの延伸方向における各位置の温度を測定し、
    前記差分は、前記2つの区間において、同じ温度の位置のそれぞれの測定温度の差分であることを特徴とする請求項1〜3のいずれか一項に記載の温度測定装置。
  5. 前記2つの区間は、前記光ファイバを束ねてシースで保護した多芯光ファイバ領域であることを特徴とする請求項1〜4のいずれか一項に記載の温度測定装置。
  6. 所定の経路に沿って配置された光ファイバと、
    前記光ファイバに光を入射する光源と、
    前記光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定する測定部と、
    前記光ファイバの特定の区間において、前記光源から前記光ファイバの第1端に光を入射した場合に得られる温度分布情報と前記光源から前記光ファイバの第2端に光を入射した場合に得られる温度分布情報との、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、前記測定部が測定した温度分布情報のノイズ成分を低減するフィルタを作成し、当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する補正部と、を備えることを特徴とする温度測定装置。
  7. 前記測定部は、前記光ファイバの延伸方向における各位置の温度を測定し、
    前記差分は、前記特定の区間において、同じ温度の位置のそれぞれの測定温度の差分であることを特徴とする請求項6記載の温度測定装置。
  8. 前記フィルタは、前記差分から得られたパワースペクトルを基に作成されたローパスフィルタであることを特徴とする請求項1〜7のいずれか一項に記載の温度測定装置。
  9. 前記フィルタは、前記差分に基づいて得られた適応フィルタであることを特徴とする請求項1〜7のいずれか一項に記載の温度測定装置。
  10. 所定の経路に沿って配置された光ファイバに光源から光を入射し、
    前記光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定し、
    前記光ファイバに含まれる区間のうち、同じ温度領域に配置されて前記光源からの距離に対して対称な温度分布に位置する2つの区間の温度分布情報の、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、測定された温度分布情報のノイズ成分を低減するフィルタを作成し、
    当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する、ことを特徴とする温度測定方法。
  11. 所定の経路に沿って配置された光ファイバに光源から光を入射し、
    前記光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定し、
    前記光ファイバの特定の区間において、前記光源から前記光ファイバの第1端に光を入射した場合に得られる温度分布情報と前記光源から前記光ファイバの第2端に光を入射した場合に得られる温度分布情報との、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、測定された温度分布情報のノイズ成分を低減するフィルタを作成し、
    当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する、ことを特徴とする温度測定方法。
  12. コンピュータに、
    所定の経路に沿って配置され光源から光が入射された光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定する処理と、
    前記光ファイバに含まれる区間のうち、同じ温度領域に配置されて前記光源からの距離に対して対称な温度分布に位置する2つの区間の温度分布情報の、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、測定された温度分布情報のノイズ成分を低減するフィルタを作成する処理と、
    当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する処理と、を実行させることを特徴とする温度測定プログラム。
  13. コンピュータに、
    所定の経路に沿って配置され光源から光が入射された光ファイバからの後方散乱光に基づいて前記光ファイバの延伸方向の温度分布情報を測定する処理と、
    前記光ファイバの特定の区間において、前記光源から前記光ファイバの第1端に光を入射した場合に得られる温度分布情報と前記光源から前記光ファイバの第2端に光を入射した場合に得られる温度分布情報との、一方の温度分布情報を前記光源からの距離に対して反転させて算出した差分を基に、測定された温度分布情報のノイズ成分を低減するフィルタを作成する処理と、
    当該フィルタを当該温度分布情報に作用させることで当該温度分布情報を補正する処理と、を実行させることを特徴とする温度測定プログラム。
JP2015197557A 2015-10-05 2015-10-05 温度測定装置、温度測定方法および温度測定プログラム Active JP6561747B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015197557A JP6561747B2 (ja) 2015-10-05 2015-10-05 温度測定装置、温度測定方法および温度測定プログラム
US15/271,963 US10247622B2 (en) 2015-10-05 2016-09-21 Temperature measurement device and temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015197557A JP6561747B2 (ja) 2015-10-05 2015-10-05 温度測定装置、温度測定方法および温度測定プログラム

Publications (2)

Publication Number Publication Date
JP2017072388A JP2017072388A (ja) 2017-04-13
JP6561747B2 true JP6561747B2 (ja) 2019-08-21

Family

ID=58447385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197557A Active JP6561747B2 (ja) 2015-10-05 2015-10-05 温度測定装置、温度測定方法および温度測定プログラム

Country Status (2)

Country Link
US (1) US10247622B2 (ja)
JP (1) JP6561747B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6674361B2 (ja) * 2016-09-29 2020-04-01 キオクシア株式会社 メモリシステム
JP7115565B2 (ja) * 2018-12-26 2022-08-09 富士通株式会社 温度測定構造および温度測定システム
CN111157141A (zh) * 2019-12-31 2020-05-15 福州英诺电子科技有限公司 一种多路合一的光纤测温模块及其控制方法
CN111721438B (zh) * 2020-06-08 2022-05-13 太原理工大学 一种噪声调制线阵ccd采集的免扫频botda装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2156513B (en) * 1984-03-28 1988-05-25 Plessey Co Plc Temperature measuring arrangements
GB8520827D0 (en) * 1985-08-20 1985-09-25 York Ventures & Special Optica Fibre-optic sensing devices
JPH0769223B2 (ja) * 1989-06-08 1995-07-26 旭硝子株式会社 温度測定方法および分布型光ファイバー温度センサー
US5449233A (en) * 1992-06-16 1995-09-12 Kabushiki Kaisha Toshiba Temperature distribution measuring apparatus using an optical fiber
JPH07218354A (ja) 1994-02-09 1995-08-18 Tokyo Electric Power Co Inc:The 光ファイバを用いた物理量分布検知センサ
JPH08247858A (ja) * 1995-03-07 1996-09-27 Toshiba Corp 光温度分布センサ及び温度分布測定方法
GB2440952B (en) * 2006-08-16 2009-04-08 Schlumberger Holdings Measuring brillouin backscatter from an optical fibre using digitisation
CA2783023A1 (en) * 2011-07-12 2013-01-12 University Of New Brunswick Method and apparatus for central frequency estimation
JP2013092388A (ja) * 2011-10-24 2013-05-16 Yokogawa Electric Corp ファイバ温度分布測定装置
US9645018B2 (en) * 2013-02-19 2017-05-09 Chung Lee Method and apparatus for auto-correcting the distributed temperature sensing system
JP5742861B2 (ja) 2013-02-28 2015-07-01 横河電機株式会社 光ファイバ温度分布測定装置
JP5761235B2 (ja) * 2013-03-06 2015-08-12 横河電機株式会社 光ファイバ温度分布測定装置
JP5975064B2 (ja) * 2014-05-13 2016-08-23 横河電機株式会社 光ファイバ温度分布測定装置
JP6020521B2 (ja) * 2014-07-16 2016-11-02 横河電機株式会社 光ファイバ温度分布測定装置
DK3172545T3 (en) * 2014-07-25 2019-01-07 Univ Mons TEMPERATURE GAUGE
JP6428336B2 (ja) * 2015-02-12 2018-11-28 富士通株式会社 温度測定システム、温度測定方法及びプログラム
CN107532948B (zh) * 2015-05-13 2020-05-19 富士通株式会社 温度测量装置、温度测量方法以及存储介质
WO2016181541A1 (ja) * 2015-05-13 2016-11-17 富士通株式会社 温度測定装置、温度測定方法および温度測定プログラム
AU2015394728B2 (en) * 2015-05-13 2019-05-02 Fujitsu Limited Temperature measurement device, temperature measurement method, and temperature measurement program
JP6358277B2 (ja) * 2016-03-04 2018-07-18 沖電気工業株式会社 光ファイバ歪み及び温度測定装置並びに光ファイバ歪み及び温度測定方法
JP6705353B2 (ja) * 2016-09-30 2020-06-03 沖電気工業株式会社 光ファイバ歪み及び温度測定装置

Also Published As

Publication number Publication date
JP2017072388A (ja) 2017-04-13
US10247622B2 (en) 2019-04-02
US20170097267A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
CA2711223C (en) Methods and systems for extending the range of fiber optic distributed temperature sensing (dts) systems
US9322721B2 (en) Optic fiber distributed temperature sensor system with self-correction function and temperature measuring method using thereof
US9228890B2 (en) Method of measuring acoustic distribution and distributed acoustic sensor
JP6561747B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
CN101556193A (zh) 用于校准纤维光学温度测量系统的装置和方法
US20220146332A1 (en) Single-band distributed temperature sensing
WO2020075441A1 (ja) 分光分析用光源、分光分析装置及び分光分析方法
JP6376287B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
EP2947446B1 (en) Method for measuring light physical constants and device for estimating light physical constants
JP6791374B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
US20130208762A1 (en) Suppression of Stimulated Raman Scattering
JP6631175B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
JP5478087B2 (ja) 光周波数領域反射測定方法及び装置
JP7334662B2 (ja) 温度測定装置、温度測定方法、及び温度測定プログラム
JP7192626B2 (ja) 温度測定装置、温度測定方法、および温度測定プログラム
JP6484125B2 (ja) 温度測定装置及び温度測定方法
JP2022146053A (ja) オフセット量決定プログラム、オフセット量決定方法及びオフセット量決定装置
KR101106726B1 (ko) 광케이블을 이용한 온도보정 변형률 분해능 향상을 위한 계측 방법
JP3167202B2 (ja) 温度測定方法及び装置
JP5883730B2 (ja) 光線路監視装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150