JP6556960B2 - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
JP6556960B2
JP6556960B2 JP2018544573A JP2018544573A JP6556960B2 JP 6556960 B2 JP6556960 B2 JP 6556960B2 JP 2018544573 A JP2018544573 A JP 2018544573A JP 2018544573 A JP2018544573 A JP 2018544573A JP 6556960 B2 JP6556960 B2 JP 6556960B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic sensor
measurement
sensor unit
propagation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018544573A
Other languages
English (en)
Other versions
JPWO2018174121A1 (ja
Inventor
浩之 堀田
浩之 堀田
一樹 渡邊
一樹 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Publication of JPWO2018174121A1 publication Critical patent/JPWO2018174121A1/ja
Application granted granted Critical
Publication of JP6556960B2 publication Critical patent/JP6556960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、超音波流量計に関する。
従来より、気体や液体のような流体物を通過させる流路内の上流側と下流側に一対の超音波素子を配置し、一方からの超音波信号の伝播時間と、他方からの超音波信号の伝播時間の差から、流体の流量を計測する超音波流量計が知られている。
例えば、図14に示す特許文献1の超音波流量計101では、計測流路を構成する直線状の円筒の管102の側面に長手方向に沿って上流側と下流側に外部に開口した一対のセンサ挿入孔103、104内に超音波センサ105、106をそれぞれ内部に向けて配置する。一対のセンサ挿入孔103、104の間の管102の内部には流速を速める縮径管107を備える。超音波センサ105、106から管102内に発せられた超音波信号を縮径管107の内径全体を超音波信号が通るように管102の中心軸線に沿って直交方向に反射させるため、一対の反射面108、109を管の計測流路中心線CL100に沿って備える。反射面108、109の間の計測流路中心線CL100に沿って超音波信号の送受波が行われ、流体の流れに沿った順方向の超音波信号の伝播時間と、流体の流れに逆らった逆方向の超音波信号の伝播時間との差に基づいて、計測流路を通過する流体の流速及び流量を計測する。
また、図15に示す特許文献2の超音波流量計201では、計測流路を構成する円筒状のインナースリーブ202の両端部にインナースリーブ202の計測流路中心線CL200方向に対して斜め前方と斜め後方に突出した一対のセンサ保持部203、204が設けられている。それら一対のセンサ保持部203、204に超音波センサ205、206が保持されている。そして、超音波センサ205、206の間、即ち、計測流路を斜めに横切る方向で超音波信号の送受波が行われ、流体の流れに沿った順方向の超音波信号の伝播時間と、流体の流れに逆らった逆方向の超音波信号の伝播時間との差に基づいて、計測流路を通過する流体の流速及び流量を計測する。
中国実用新案公告第204881923号明細書 特開2014−71058号公報
しかしながら、特許文献1に記載した発明では、流路内を通過する流体の全体の速度を超音波信号で測定するために縮径管107を備え、計測流路中心線CL100に沿って縮径管107の内径を全部カバーするように反射面108、109が配置される。そのため、反射面108、109が計測流路の流れを妨げるように配置されることになって流路抵抗が大きくなり、超音波流量計101としては圧力損失が大きくなるという問題があった。
一方、特許文献2に記載した発明では、一対の超音波センサ205、206は、インナースリーブ202を斜めに横切る方向で配置されて超音波信号の送受波が行われるため、特許文献1に示す超音波流量計101と比較すれば、超音波センサ205、206のインナースリーブ202内への突出は少なく流体の流れを妨げにくいといえる。しかしながら、超音波センサ205、206をそれらの中心線を合せて対向した位置に正確に角度を割り出して配置するには、センサ保持部203、204が複雑な形状の加工となる。その加工に当たりワークの持ち替えや工具の反転など、その工数も多く、かつ工作精度の低下を招く要因が多くなり、工作精度が低下すると測定精度も低下するという問題があった。
本発明は、製造が容易であり、かつ高い測定精度を維持しつつ、圧力損失の低い超音波流量計を提供することにある。
上記課題を解決するため、本願に係る超音波流量計は、測定対象である流体を通過させる筒状の管本体と、流体が流れる前記管本体の上流位置と下流位置とにそれぞれ配置され相互に超音波信号を伝播させる一対の超音波センサとを備え、一方の超音波センサから他方の超音波センサまでの超音波信号の伝播時間と、他方の超音波センサから一方の超音波センサまでの超音波信号の伝播時間との到達時間差から測定対象である流体の流量を測定する超音波流量計であって、前記一対の超音波センサの一方から送出された超音波信号を前記管本体の超音波伝播経路に向けて反射し、当該管本体の超音波伝播経路を伝播する超音波信号を他方の超音波センサに向けて反射する一対の反射部材を備え、当該一対の反射部材の反射面の一方向の長さは前記超音波センサが送出する超音波伝播経路の幅全体の長さに設定され、前記一方向の長さと直交する他方向の長さは前記超音波伝播経路の幅全体の長さより短く設定されている。
また、一対の超音波センサの超音波信号の送出方向は、管本体の計測流路の中心軸を含む面と直交する方向であって、且つ同一の方向としてもよい。
また、超音波伝播経路の中心軸と、管本体の計測流路の中心軸を一致させてもよい。
また、超音波伝播経路の中心軸と、管本体の計測流路の中心軸を斜めに交差させてもよい。
また、反射部材の反射面の長手方向が、超音波センサの超音波信号の送出方向と超音波伝播経路の中心軸とを含む面に沿うように形成してもよい。
また、管本体と連通する計測管をさらに備えてもよい。計測管は、管本体の計測流路の中心軸に対して斜めに交差する中心軸を有する超音波伝播経路を規定し、一対の超音波センサからそれぞれ送出されて対応する反射部材により反射された超音波信号を超音波伝播経路を通じて伝播させる計測空間を形成する。
また、反射部材の反射面の長手方向が、超音波センサの超音波信号の送出方向と超音波伝播経路の中心軸とを含む面と直交する方向に沿って形成してもよい。
また、反射部材の反射面は、長円に形成してもよく、楕円に形成してもよい。
また、反射部材は、反射板保持部と、反射板保持部に保持された反射板とを備えてもよい。この場合、反射板は反射保持部材に熱かしめにより一体化されてもよい。
本発明によれば、製造が容易であり、かつ高い測定精度を維持しつつ圧力損失を小さくすることができる。
第1の実施形態の超音波流量計の使用状態を示す斜視図。 第1の実施形態の超音波流量計の分解斜視図。 第1の実施形態の超音波流量計のA−A水平断面図。 第1の実施形態の超音波流量計の計測空間のB−B垂直断面図。 第1の実施形態の(a)超音波センサユニットの斜視図、(b)超音波センサユニット保持部の位置規制構造。 第1の実施形態の超音波センサユニットの(a)計測空間中心線CL2と直交する方向から見た側面図、(b)平面図、(c)計測空間中心線CL2側から見た正面図。 (a)到達時間差を説明する模式図、(b)交差角θが小さい場合の伝播速度を説明する模式図、(c)交差角θが大きい場合の伝播速度を説明する模式図。 第2の実施形態の超音波流量計の分解斜視図。 第2の実施形態の超音波流量計の平面図。 第2の実施形態の超音波流量計のD−D水平断面図。 第3の実施形態の超音波センサユニットの(a)斜視図、(b)側面図、(c)平面図。 (a)〜(e)反射部材の形状毎の機能を説明する平面図。 比較例の超音波流量計を示す水平断面図。 従来技術1の超音波流量計を示す垂直断面図。 従来技術2の超音波流量計を示す水平断面図。
(第1の実施形態)
以下、本発明の一実施形態を図1〜7に基づいて説明する。
図1は、本実施形態の超音波流量計の使用状態を示す斜視図である。図2は、本実施形態の超音波流量計の分解斜視図を示す。図3は、図1のA−A断面であり、管本体の計測流路中心線CL1に沿った水平断面図である。図4は、図3のB−B断面であり、計測空間中心線CL2に沿った垂直断面図である。なお、本願においては構成の説明の便宜上、図示された姿勢において鉛直や水平の語を説明に用いるが、いうまでもなく実際の超音波流量計の設置の姿勢はこれに限定されるものではない。
(超音波流量計1の全体構成)
図1に示すように本実施形態の超音波流量計1は、管本体2を備え、例えば金属、実施形態ではステンレススチールから構成されている。管本体2は測定対象である流体F、例えばこの実施形態では熱量供給用の温水を通過させる流路管10を備える。また、この流路管10と斜めに交差する計測管20を備え、計測管20の両端部には超音波センサ50を保持する超音波センサユニット保持部30が設けられている。
(計測流路15)
図3に示すように、管本体2の流路管10は、上流側(図1〜3において左側)に開口する流入口11と、その周囲のフランジ部12を備えるとともに、下流側に開口する流出口13と、その周囲のフランジ部14とを備える。流路管10は、管本体2の内部に流入口11から流入した温水を通過させ流出口13から流出させる計測流路15を形成する。超音波流量計1の内部において、流入口11の上流側の端部には円筒状の空間が形成されている。流入口11の下流側の端部から下流側に行くにしたがって内径が狭まるテーパ部16が続く。そして、流路管10の中央部にはテーパ部16のもっとも小さな内径と同径の空間を有した円筒形の縮径部17が形成されている。そして、縮径部17の下流側の端部には、下流に行くにしたがって径が拡がるテーパ部18が連続して設けられ、テーパ部18のもっとも大きな内径と同径の円筒状の流出口13が下流側に開口している。流路管10の上流側と下流側は、対称な形状となっている。また、流入口11、流出口13には、管接続のための周知の加工がなされているが、詳細な説明は省略する。
(計測空間21)
管本体2の計測流路中心線CL1に対してこれを含む水平面において交差角θで斜めに交差する計測空間中心線CL2を有する計測空間21を形成する円筒形の計測管20が形成されている。計測空間21は、超音波センサ50、50(図1)から送受信される超音波信号USが伝播される超音波伝播経路22を形成する。
計測管20内部の計測空間21は管本体2内で計測流路15を斜めに横断するように形成され、計測流路15と計測空間21は連通するように形成されている。計測空間21は、管本体2の計測流路15を形成する縮径部17と同径の内径を有する。計測管20の両端部は管本体2の計測流路中心線CL1に対して対向する側に配置され、超音波センサユニット保持部30がテーパ部16、18より管本体2の長手方向内側の縮径部17の一部に飛び出すように配置される。
(超音波センサユニット保持部30)
図4に示すように、計測空間21の両端部には、それぞれ超音波センサユニット保持部30が形成されている。超音波センサユニット保持部30は、計測空間21と連通する筒部31からなり、計測空間中心線CL2と直交する鉛直方向の超音波センサユニット保持部中心線CL3を中心とした上部が開放した有底円筒状の空間として形成されている。すなわち、一対の超音波センサユニット保持部30、30の中心線CL3、CL3は、相互に平行で、超音波センサユニット保持部30、30は、同じ垂直方向上側に開口している。超音波センサユニット保持部30の内径は計測空間21の内径よりも大きな内径となっている。超音波センサユニット保持部30の底面32は、水平な平面として形成され、計測空間21のもっとも低い位置より低く掘り下げるように形成されている。超音波センサユニット保持部30は、詳細にはその上部と下部が同心異径の円筒形の形状となっており、上端から3分の1あたりまでの上部の内面である上部内壁面34の内径は、それより下部の下部内壁面35の内径より大きく形成されている。そして、上部内壁面34と下部内壁面35との境界部分は、ドーナツ状の水平な平面として形成された段差部33となっている。
図2に示すように、超音波センサユニット保持部30、30には、超音波センサユニット40を介して超音波センサ50及び反射板44が所定の位置に保持される。
(超音波センサユニット40)
図5(a)は、超音波センサユニット40の斜視図、図5(b)は、超音波センサユニット保持部30の位置決め構成を示す。図6(a)は計測空間中心線CL2と直交する方向から見た超音波センサユニット40の側面図、図6(b)は超音波センサユニット40の平面図、図6(c)は、計測空間21側から見た超音波センサユニット40の正面図である。
図5(a)に示すように、超音波センサユニット40は、周方向の断面が長方形をなす水平な円環状の嵌合リング41と、この嵌合リング41の直径方向で対向する位置に、内側にオフセットされて下方に舌状に延びる一対の反射部材保持部42、42を備える。また、超音波センサユニット40は、反射部材保持部42、42の下端内側間に設けられた反射板保持部43と、ここに保持された反射板44を備える。反射板44は、図6(a)に示すように側面視では計測空間中心線CL2と45度の傾きをもっている。
図5(a)に示す嵌合リング41の下面41bはドーナツ状の環状の水平面とされ、図2に示す段差部33に対応するように当接し、図4に示すように高さ方向に嵌合リング41が正確に位置決めされる。
図4に示すように、嵌合リング41の側面41aの外径は、上部内壁面34の内径よりわずかに小さく、上部内壁面34内に嵌入された嵌合リング41の側面41aは、上部内壁面34とほぼ隙間なく当接して位置決めされる。
図6(c)に示すように嵌合リング41の下方に舌状に延びる一対の反射部材保持部42、42は、嵌合リング41の内側からさらに内側にオフセットされ、図3、図4に示すように下部内壁面35に沿って、間隔を保持しつつ鉛直下方に延びる構成とされている。
(反射板44)
本実施形態では反射板保持部43と反射板44とで反射部材を構成する。図5(a)に示すように反射部材保持部42、42の下端内側間において反射板保持部43が、ステンレススチールなどの金属製の反射板44を保持している。反射板44は、図6(a)〜6(c)に示すように鉛直の超音波センサユニット保持部中心線CL3、及び計測空間中心線CL2から45度傾けられた長円の板状に形成される。反射板44は、図6(b)に示す平面視(超音波センサユニット保持部中心線CL3上側からの鉛直下向きの視点)及び図6(c)に示す計測空間中心線CL2の方向から見た正面図のいずれから見ても概ね長円になるように構成されている。
ここで図6(b)、(c)に示すように、一対の反射板44の反射面の長手方向の長さは超音波伝播経路22の幅(高さ)全体の長さに設定される。本実施形態では、反射面の長手方向の長さは、図6(b)の平面図では、計測空間中心線CL2に沿った水平方向における反射面の長さに相当し、図6(c)の正面図では、超音波センサユニット保持部中心線CL3に沿った高さ方向における反射面の長さに相当する。なお本実施形態の超音波センサ50が送出する超音波信号USは、送出方向に直交する断面が概ね円形の部分のエネルギーが大きい指向性の強いものであるが、その周縁部においても十分なエネルギーを有しているため、流速の測定は可能である。そのためここでいう反射板44の長手方向の長さと、超音波伝播経路22の幅(高さ)との関係は、計測流路15の周縁部の流速が測定可能な程度に実質的に同一であればよい。
この長手方向と直交する水平方向の反射板44の長さは超音波伝播経路22の幅全体の長さより短く設定されている。
そして、反射板44は、超音波センサ50の下面中央から送出された超音波信号USをそれぞれの反射面にて超音波センサユニット保持部中心線CL3に沿った方向から正確に計測空間中心線CL2に沿った方向に反射させる。具体的に、一方の反射板44は、計測管20により形成された横断面円形の計測空間21の鉛直方向上端から下端までの直径にわたって存在する反射面の全領域において、超音波信号USを超音波センサユニット保持部中心線CL3に沿った方向から正確に計測空間中心線CL2に沿った方向に反射させる。同様に、他方の反射板44は、反射面の全領域において、超音波信号USを計測空間中心線CL2に沿った方向から正確に超音波センサユニット保持部中心線CL3に沿った方向に反射させる。一方、横断面円形の計測空間21のうち左右の両端部においては、反射板44が存在しないため超音波信号USは反射しない。
(反射板保持部43)
図5(a)に示すように、この反射板44を正確な位置に保持するための反射板保持部43が反射部材保持部42、42の間に設けられる。
図6(a)に示すように反射板保持部43の側面は、概ね直角を挟む一対の斜辺と直角と対向する底辺からなる直角二等辺三角形の形状で、図6(b)に示す平面図や、図6(c)に示す計測空間21側から見た場合は、反射板44を縁取るような長円形に形成されている。一方の斜辺は、図4に示すように底面32に対向するように配置され、他の斜辺は垂直に配置される。
本実施形態では嵌合リング41、反射部材保持部42、42、反射板保持部43は、樹脂で一体成形されている。そして、反射板44は、反射板保持部43にインサート成形されて反射板保持部43と反射板44も一体に成形されている。なお、これらは、別々に成形して組み合わせることは妨げないが、一体成形とすることで、各要素の位置的な関係を正確に特定しやすい。
(位置規制構造)
図5(a)に示すように嵌合リング41の下面41bのうち計測空間21に近い位置には、下方に突出する突部からなる上部位置被規制部45が嵌合リング41と一体に形成されている。
図5(b)に示すように、超音波センサユニット保持部30の段差部33のうち計測空間21に近い位置には、上部位置被規制部45がずれなく嵌入される穴状の上部位置規制部37が凹設される。
図6(a)に示すように、反射板保持部43の反射板44と反対の背面には、鉛直下方に延びる棒状の突起からなる底部位置被規制部46が設けられている。
図5(b)に示すように、超音波センサユニット保持部30の底面32の計測空間21と反対側には、底部位置被規制部46がずれなく嵌入される穴状の底部位置規制部36が凹設される。
(超音波センサユニット40の装着)
図2に示すように、超音波センサユニット保持部30に超音波センサユニット40を挿入すると、嵌合リング41の下面41bと段差部33とが当接し、これにより嵌合リング41の鉛直方向の位置が決まるとともに嵌合リング41が水平に載置される。嵌合リング41の側面41aと上部内壁面34により嵌合リング41の水平方向の位置が決まる。そして、超音波センサユニット40の上部位置被規制部45と段差部33の上部位置規制部37(図5(b)参照)と、超音波センサユニット40の底部位置被規制部46と底面32の底部位置規制部36(図5(b)参照)とにより、反射板44の水平面における回転方向の向きが決まる。すなわち、超音波センサユニット保持部30に超音波センサユニット40を挿入するだけで、超音波センサユニット保持部30に対する超音波センサユニット40の高さ、水平位置、向きが正確に決まる。
図2、図4に示すように、超音波センサ50の下部が超音波センサユニット40の嵌合リング41の上部に嵌めこまれる。このとき、超音波センサ50は、嵌合リング41を介して段差部33により鉛直高さ方向の位置が簡単かつ正確に決まるとともに正確に水平に載置される。
図4に示すように、超音波センサ50が超音波センサユニット保持部30に挿入されるだけで、超音波センサ50の側面が超音波センサユニット保持部30の上部内壁面34に当接して超音波センサ50の水平位置が簡単かつ正確に決まる。なお、図示しない超音波センサ50の超音波素子は、その底面の中央部に円形に配置されているため、超音波センサ50の回転方向によってはその位置は変化しないので、位置ずれは生じない。
なお、超音波センサユニット40や超音波センサ50を超音波センサユニット保持部30に固定するためのねじなどの固定部材やカバー部材、気密性を高めるシール部材などの周知の構成については、適宜適用されるものとして説明を省略する。
(交差角θ)
次に、図3、図4、図7(a)〜7(c)に基づいて、計測流路中心線CL1と計測空間中心線CL2との交差角θについて説明する。
(到達時間差Δt)
図7(a)は、本実施形態の到達時間差Δtを説明する模式図である。一対の超音波センサ50と一対の反射板44による超音波伝播経路22を模式的に示す。超音波センサユニット保持部中心線CL3に沿った超音波センサ50から反射板44までの距離をx、xとして、一対の超音波センサユニット保持部30の中心軸間の離間距離Lを一定とすると、超音波伝播距離=L+x+xとなる。管本体2の計測流路中心線CL1と計測空間中心線CL2とが交差する交差角θは、到達時間差Δtが、予め設定された最小流量時において予め設定した値を超えるとともに、最大流量時に圧力損失が予め設定された数値を超えないように設定される。
図3に示すように、本実施形態では、一対の超音波センサユニット保持部30の超音波センサユニット保持部中心線CL3の離間距離Lを一定、言い換えると計測空間中心線CL2に沿った超音波伝播距離について一定とすることにしている。その理由は、この離間距離Lを一定とすることで、計測流路15の管径が異なる場合であっても、一対の超音波センサ50からの信号を受信し解析し表示する外部機器を一対の超音波センサユニット保持部30、30に共通して装着できるからである。
一方、超音波流量計(特に取引に用いられる計器としての超音波流量計)に公的な規格が課せられることがある。すなわち、条件1「計測精度が求められる」(計測精度の為に、十分な到達時間差を得られること)、条件2「圧力損失が規格以内であること」が求められる。
そこで、本実施形態では、このような条件を満たす交差角θを求めるため、以下のような構成としている。
(条件1:「計測精度が求められる」(計測精度の為に、十分な到達時間差を得られること))
特に、最小流量の場合に計測流路15内の流速vが最も遅くなるので、この時の到達時間差Δtが測定器の分解能以上であることが問題となる。
図7(a)を参照して、条件1を満たすため、まず、後述する第2の実施形態のような交差角θ=0としたときの「到達時間差Δt」の算出を説明する。到達時間差Δtは、以下の式により算出する。
Δt=2Lv/c
ここで、Δt:到達時間差、c:音速(流体内の音速)、v:流速(計測流路中心線CL1と平行な向きの流体の流速)、L:離間距離(超音波センサユニット保持部中心線CL3-CL3間の離間距離)である。
:上流から下流に向けて発信した時の到達時間
=(x/c)+(x/c)+L/(c+v)
:下流から上流に向けて発信した時の到達時間
=(x/c)+(x/c)+L/(c−v)
を用いると、到達時間差Δtは、次式で表される。
Δt=t−t
=L/(c−v)−L/(c+v)
=(L(c+v)−L(c−v))/(c−v)(c+v)
=2Lv/(c−v )
c>>vより、
Δt=2Lv/c
すなわち、到達時間差Δtは、流速vと比例する。
(超音波信号の伝播速度v、v
しかしながら、c:音速、v:流速、L:離間距離を一定としても(厳密にいえば、超音波伝播経路が曲線となるためLは変化するが、ここでは無視できる。)、実際の超音波信号の伝播速度は、交差角θが変化すると、流速vが音速cに与える影響が変化するため変化する。
すなわち、上流から下流に向けて発信した時の伝播速度v、下流から上流に向けて発信した時の伝播速度vは、流速vの交差角θでの伝播方向の速度ベクトルと音速cの速度ベクトルとの和となる。
=c+v・cosθ
=c−v・cosθ
図7(b)に示すように、交差角θがゼロに近い時には、伝播速度vはc−vに近づき、伝播速度vはc+vに近づくため、速度差は2vに近づく。
一方、図7(c)に示すように交差角θが大きくなると、v・cosθがゼロに近づくため、伝播速度vと伝播速度vはいずれも、音速cに近づき、速度差はゼロに近づく。
ここで、Δt:到達時間差、c:音速、L:超音波伝播距離として、
:上流から下流に向けて発信した時の伝播速度
:下流から上流に向けて発信した時の伝播速度
:上流から下流に向けて発信した時の到達時間
=(x/c)+(x/c)+L/v
:下流から上流に向けて発信した時の到達時間
=(x/c)+(x/c)+L/v
を用いると、到達時間差Δtは、次式で算出される。
Δt=t−t
=L/v−L/v
=L(1/v−1/v)
ここで、cosθがゼロ、すなわちθ=90°に近づけば、v≒v≒cとなり、到達時間差Δtは小さくなってゼロに近づき、流量の測定が困難となる。
したがって、交差角θは、仕様の最小流量の時に、十分な到達時間差Δtが満たされる範囲とする必要がある。
(条件2:圧力損失が規格以内であること)
圧力損失は、一般に最大流量のときが最大になるが、流体の種類、管本体2の形状・材質、反射部材保持部42の形状や位置、乱流や層流の発生状態など、スペックだけでは算出できないため、実験若しくはシミュレーションによる流体解析により算出する。一般的には、交差角θが大きいほど流路抵抗が小さくなる傾向がある。一般に、取引用の超音波流量計においては、規格により圧力損失が定められている。
(実施形態の交差角θ)
以上のように条件1と条件2を満たす交差角θを決定する。
以上のような理由から、本実施形態においては、例えば温水による熱量供給のカロリメータとして使用する超音波流量計であり、条件1及び条件2を満たすために交差角θを5〜70°に設定している。もちろん上記範囲内で、必要に応じて、到達時間差Δtか圧力損失かのいずれかを重視するような設計としてもよい。
(製造方法)
続いて、本実施形態の超音波流量計1の製造方法について説明する。
本実施形態の超音波流量計1の管本体2は、ステンレススチールを鋳造して製造する。その後、安全のための面取りや、精度を確保したり、流路抵抗を下げたりするために、切削・研削・研磨等を行う。
特に、管本体2に対する超音波センサ50と反射板44の位置は、測定精度を確保するために極めて重要である。このため、超音波センサユニット保持部30は、リーマや砥石等で正確に加工される。
本実施形態では、鋳造後の管本体2は、図1に示すような姿勢でリーマや研削盤等の工作機械のステージにチャックや治具を用いてワークとして所定の位置に固定される。この時、例えば超音波センサユニット保持部30を鉛直上方に開口する姿勢とする。また、管本体2の流路管10と計測管20が水平になるようにする。そして、一方の超音波センサユニット保持部30を、工具を鉛直下方に向けて移動させて加工する。続いて、他方の超音波センサユニット保持部30を、工具を水平移動して鉛直下方に向けて移動させて加工する。いずれも鉛直上方に開口しているので、管本体2は、工作機械のステージに治具を用いて所定の位置に固定したまま、向きはそのまま、超音波センサユニット保持部30の加工方向の精密な角度の割出は不要で、工具の水平位置のみ平行移動して移動して加工をする。この場合、一方の超音波センサユニット保持部30と他方の超音波センサユニット保持部30は、管本体2を固定したままで移動がなく、工具の水平移動のみであるので工作機械の精度を最大限に活かした加工が可能となる。
また、工数の面からもチャックによるワークの持ち替えなどの作業も不要となり、加工の工数の低減も可能となる。
このため、一方の超音波センサユニット保持部30と他方の超音波センサユニット保持部30は、相互に高度な精度で平行な関係を維持できる。また、水平に載置された管本体2の流路管10と計測管20の中心線を含む面に対しても、高い精度で垂直な位置関係とすることができる。このことは、高精度な超音波流量計の前提として重要な構成となる。
次に、図2に示すように表面や内部の加工が終了した管本体2に対して、超音波センサユニット40を装着する。超音波センサユニット40は、反射板44が既にインサート成形された反射板保持部43を含め、全体が樹脂で正確に一体成形されている。このため、嵌合リング41と反射板44との位置関係は正確に維持されている。この反射板44がインサート成形された超音波センサユニット40を超音波センサユニット保持部30に挿入する。挿入するだけで、前述のように嵌合リング41が段差部33と上部内壁面34とにより位置決めされ、また、上部位置被規制部45も上部位置規制部37に嵌合し、超音波センサユニット40の回転を規制する。さらに図4に示すように底部位置被規制部46が底部位置規制部36に嵌合し、超音波センサユニット40の高さと回転方向の向きを規定する。底部位置被規制部46は、位置決めのみならず、超音波センサユニット40を支え、特に反射板44が流体によって振動等しないように安定させる。
そして、段差部33に嵌合リング41を介して超音波センサ50を固定する。
なお、各種蓋材、シール部材、シール剤、接着剤、スペーサ、ねじなど周知の材料を適宜用いることができるが、その説明は省略する。
(本実施形態の作用)
次に、このように構成された本実施形態の超音波流量計1の作用について説明する。
本実施形態では、図1に示すように超音波流量計1は、例えば、暖房等の熱源となる温水の供給流路6の上流側6a、下流側6bの間に流入口11と流出口13が接続されて直列に配置される。配置位置はエルボ管などから離間して流れの安定した位置に取付けられる。取付姿勢は、図示に限定されず管内に気泡等が貯留されないような姿勢とする。このように装着された超音波流量計1の一対の超音波センサユニット保持部30、30には、仮想線で示すような表示部5が装着される。
表示部5は、その接続部5a、5bが、超音波センサユニット保持部30、30に気密に接続される。表示部5は、内部の図示を省略するが、超音波センサ50、50に電気的に接続され、信号を送受信させて信号を解析し流量を算出する制御部と、流量を表示する表示部5と、流量をデータとして外部に送信する出力部とを内蔵する。表示部5の取付に当たっては、接続部5a、5bの間隔を一定にしており、一対の超音波センサユニット保持部30、30の中心線CL3、CL3間の離間距離Lがその一定値に合わせてあるので、特に調整をすることなく表示部5を超音波流量計1に簡単に装着することができる。
図4に示すように、このように装着した超音波流量計1は、超音波センサ50、50から、超音波信号USを送受信する。一方の超音波センサ50から送出される超音波信号USは、超音波センサユニット保持部中心線CL3を中心として、図4の下方向に送出され、反射板44に当たって反射し、超音波信号USは、正確に90度屈曲して計測空間中心線CL2を中心として計測空間21を進む。その超音波信号USの送出幅と同等の幅を有する超音波伝播経路22が、計測管20により計測空間21として形成されている。
(特許文献1,2の超音波流量計101,201、および比較例の超音波流量計301との比較)
ここで、特許文献1の超音波流量計101、特許文献2の超音波流量計201、図13に示す比較例の超音波流量計301の構成と比較しつつ、第1の実施形態の作用を説明する。
前述のとおり、特許文献1の超音波流量計101では、反射面108、109が計測流路を形成する縮径管107を遮るような配置となるため、流れに対する投影面積が大きくなり流路抵抗が大きく圧力損失が大きいという問題があった。また、特許文献2の超音波流量計201では、このような計測流路内に流れを妨げる構成はないものの、製造工程において、正確な角度の割出しなど加工が複雑になり工数が多くなること、ワークの持ち替えによる加工誤差が発生しやすいこと、配線の取り回しが複雑になることなどの問題があった。
そこでこれらの問題を鑑み、図13に示すような、超音波流量計301のような構成の比較例が考えられる。この比較例の超音波流量計301は、基本的な構成は上記第1実施形態の超音波流量計1と共通する。比較例の超音波流量計301は超音波伝播経路309全体をカバーするような正面視及び平面視が円形の反射板302、303を備える。そのため比較例においては、反射板302、303は、計測流路304内に突出した形になっている。前述した特許文献2の超音波流量計201と比較すると、製造は容易になるものの、反射板302、303は、計測流路304内に突出しているため、特許文献1の超音波流量計101よりは流路抵抗が低いものの、流路抵抗に関しては特許文献2の超音波流量計201より高くなり、圧力損失を大きくすることになる。
なお、図示は省略するが、逆に反射板302、303を計測流路304内に突出しないように、完全に計測流路304の外側に移動させる構成も考えられる。しかしながら、このように構成したとすると、超音波信号の伝播経路を確保するための計測流路304の壁面に図13に示すよりも大きな凹部305、306ができて流体Fが流れ込み、特に渦流307が発生したような場合では、却って流れを不規則に乱して測定精度を低下させるという問題が生じてしまう。
本実施形態においては、反射板44は、図6(b)、図6(c)に示すように、一対の反射板44の反射面の長手方向の長さは超音波伝播経路22の幅(高さ)全体の長さに設定され、長手方向と直交する水平方向の長さは、超音波伝播経路22の幅全体の長さより短く設定されている。
このため、比較例の超音波流量計301において反射板302,303に遮られない計測流路304の幅W1(図13参照)と比較すると、本実施形態の超音波流量計1の反射板44の水平方向の幅が狭いため、反射板44に遮られない計測流路15の幅W2(図3参照)が広くなっている。
また、本実施形態の超音波流量計1の反射板44の水平方向の幅が狭いため、計測空間21を通過する超音波伝播経路22の幅W4(図3参照)が、比較例の超音波流量計301においての計測空間308を通過する超音波伝播経路309の幅W3(図13参照)よりも狭くなっている。
このため、本実施形態の超音波流量計1における計測管20を形成するための凹部23は、比較例の超音波流量計301における計測管を形成するための凹部305,306より凹みが小さくなっており、その体積も小さいため計測流路15を流れる流体Fの流れを乱さないようになっている。
以上のように、本実施形態の超音波流量計1は、比較例の超音波流量計301よりも、流路抵抗が小さく圧力損失もまた小さいものとなっている。
(流量の測定)
図3に示すように、送出した超音波信号を大きく減衰させることなしに、流路管10の縮径部17により形成された計測流路15を流体(温水)が流下するときにその計測流路15の幅全体を、超音波信号USが斜めに横断する。
その後、図4に示すように計測空間中心線CL2を中心として計測空間21を進む超音波信号USは反射板44に当たって反射し、90度屈曲して図4の上方向に送出され、超音波センサユニット保持部中心線CL3を中心として進み他方の超音波センサ50の受信面に到達する。
このため、超音波伝播経路22を進行する超音波信号USは、流路管10の縮径部17により流体の流速が高まるように形成された計測流路15の幅方向中心部のみならず、もれなく計測流路15の幅全体にわたる流体の流れの影響を受ける。そのため中心部と端部との間で流速が異なる場合や、上下左右に流心が偏った偏流や、乱流などが生じた場合でも、測定精度の低下を抑制できる。
また、図5(a)などに示す超音波センサユニット40は、反射部材保持部42、反射板保持部43の位置が、図3、図4に示すように、流路管10の縮径部17により形成された計測流路15から、幅方向外側にオフセットされるようにして、その流路を妨げにくい構成となっている。このため、超音波センサユニット40は、計測流路15の流路抵抗を抑えて、超音波流量計1の圧力損失が高くならないような構成となっている。
また、図3に示すように反射板保持部43は、単なる反射板44を保持する機能のみではなく、計測流路15を流れる流体Fの流れを整流するようになっている。具体的には、反射板保持部43により計測流路15を流れる流体Fの流れを凹部23に流れ込みにくいように整流したり、逆に反射板保持部43により、反射板44のみの構成よりも反射板44の周りの流れを円滑にすることで、流路抵抗が増加しないようにする。
このようにして、流路内の上流側の超音波センサ50と下流側の超音波センサ50により、一方からの超音波信号の伝播時間と、他方からの超音波信号の伝播時間の差から、流体の流量を計測する。計測した流量は、表示部5により表示され、記憶され、外部に送信される。
(本実施形態の効果)
本実施形態では、上記のような構成を備えるため、以下のような効果を奏する。
○超音波伝播経路22の計測空間中心線CL2と、管本体2の流路管10の縮径部17により形成された計測流路15の計測流路中心線CL1とが所定の交差角θを有しているので、超音波センサユニット40が計測流路15を妨げにくい位置にオフセットすることができるため、流路抵抗を小さくし圧力損失を小さくすることができる。小径の管でも流路を妨げにくく比較的小さな圧力損失とすることができる。
○特に、本実施形態では、各超音波センサ50から送出された超音波信号USが超音波伝播経路22の垂直方向における直径全体にわたり配置された一対の反射板44(反射面)によって反射されて他方の超音波センサ50が受信する。このため、計測流路15の幅(高さ)方向における中心部のみならず周縁部においても流体の流れを漏れなく測定することができる。
○縦方向と直交する水平方向では、反射板44、44は切り欠かれており、この部分の流体の通過を許している。このため、反射板44、44の流れに対する投影面積を小さくすることができるため、流路抵抗を下げ、圧力損失を小さくすることができる。
○反射板44が縦長になって水平方向の幅が小さくなるため、比較例の超音波流量計301と反射板44の位置が同じであれば、計測流路15に対して反射板44の突出量が少なくなり、図3に示す反射板44に妨げられない計測流路の幅W2を広くすることができる。
○反射板44が縦長になって水平方向の幅が小さくなるため、計測空間21で形成される超音波伝播経路22の水平方向の幅W4を小さくすることができる。そのため、超音波伝播経路22を形成する計測管20の幅も狭くすることができる。その結果、凹部23をより小さく、かつ、流路管10に対する凹部23の体積も小さくすることができる。そのため、計測流路15を流れる流体の流れを乱しにくくなり、流路抵抗を抑制できる。また、渦流などの発生も効果的に抑制できる。その結果、超音波流量計1の圧力損失を小さくすることができる。
○さらに、反射板保持部43、43は、反射板44を保持するだけでなく、計測流路15を流れる流体の流れを妨げないように整流する。
具体的には、反射板保持部43により流体Fを計測流路15の外側へ流れ込みにくくして、計測流路15を流れる流体の流れを妨げないように整流することができる。
もう一つの効果は、反射板保持部43により流体Fが計測流路15を外れて反射板44の外側へ流れ込んだ場合に、ここを流れる流体の流れを円滑にして、計測流路15を流れる流体の流れを乱さないように整流する。
○同一方向から管本体2の超音波センサユニット保持部30を加工できるので、ワークである管本体2のチャックによるワークの持ち替えや、ワークである管本体2を保持する治具の回転をさせないで、管本体2を同一位置に固定したまま超音波センサユニット保持部30を加工することができる。そのため加工の工数を減らし、工程の簡易化が可能となる。
○また、加工中にチャックによるワークとしての管本体2の持ち替えや、管本体2を保持する治具を回転させる必要がないので、精密な角度の割り出しをする必要もなく、またワークとしての管本体2の位置を移動する必要がなくなるため、ワークの移動に起因する位置ずれが生じない。このため、同一位置に固定された管本体2の位置を基準として、同一方向から一対の超音波センサユニット保持部30を加工することで、管本体2に対する超音波センサユニット保持部30の開口方向を容易に精度高く形成できる。
○超音波センサユニット保持部30の形状を精度高く加工することができるので、ここに保持される超音波センサユニット40の管本体2に超音波信号の射出方向の位置ずれを小さく正確な送出方向とすることができ、測定精度を向上させることができる。
○共通した超音波センサユニット保持部30に共通した超音波センサユニット40を用いることで、管径が異なっても共通の構成を共用できる。
○超音波センサユニット保持部30の開口部が同一方向に向いているので、表示部5を取り付ける場合でも、超音波センサ50の配線の取り回しも同一方向とすることができるため、外部機器の装着が容易となる。また、超音波センサ50の配線なども取り回しが短くなり、外部への突出や露出を抑えることができる。
○一対の超音波センサユニット保持部30、30の超音波センサユニット保持部中心線CL3、CL3の離間距離Lを共通化すれば、供給流路6の管径が異なっても、交差角θを調整することで、同一規格の表示部5のような外部機器の共通化ができる。
○精度の高い加工ができるため、超音波センサ50間で正確に超音波信号USの送受信ができる。そのため、受信される超音波信号USが減衰されることが少なく、高い波高を得ることができるため、S/N比を大きくして精度が高い超音波流量計1とすることができる。
○また、受信される超音波信号USが減衰されることが少なく、高い波高を得ることができるため、流体Fの流れにより超音波信号USの超音波伝播経路22が変化して曲がっても、受信する超音波信号の波高を比較的高く維持できる。
○超音波信号USが管本体2の流路管10の縮径部17により形成された計測流路15を斜めに通過するため、流体Fが流れる計測流路15の幅方向中央部分のみならず周縁部を含めた幅方向全体に超音波信号USが伝播するので計測流路15の全体を測定でき、流量の計測精度を向上させることができる。
○超音波伝播経路22の計測空間中心線CL2と、管本体2の流路管10の縮径部17により形成された計測流路15の計測流路中心線CL1とが所定の交差角θを有しているので、超音波センサユニット保持部中心線CL3、CL3間の離間距離Lを大きくとることができるので、測定に必要な十分な到達時間差Δtを得ることができる。
○反射板44、超音波センサ50を一体に保持する超音波センサユニット40を超音波センサユニット保持部30に保持するので、超音波センサ50や反射板44を超音波流量計1に容易に装着することができる。
○超音波センサユニット40を超音波センサユニット保持部30に挿入する。それだけで、超音波センサユニット40の嵌合リング41が超音波センサユニット保持部30の段差部33に当接し、超音波センサユニット40を管本体2に対して正確な高さと水平位置とすることができる。
○また、超音波センサユニット40を超音波センサユニット保持部30に挿入するだけで、超音波センサユニット40の嵌合リング41が超音波センサユニット保持部30の段差部33に当接し、上部位置被規制部45が上部位置規制部37に嵌合する。このため、超音波センサユニット40を超音波センサユニット保持部中心線CL3を中心とした正確な回転方向の向きに取り付けることができる。
○また、超音波センサユニット40を超音波センサユニット保持部30に挿入するだけで、超音波センサユニット40の反射板保持部43の背面から下方に突出した底部位置被規制部46が、超音波センサユニット保持部30の底面32に凹設された底部位置規制部36に嵌合するため、超音波センサユニット40の管本体2に対する高さが正確に設定される。
○また、底部位置被規制部46が底部位置規制部36に嵌合するため、超音波センサユニット40を超音波センサユニット保持部中心線CL3を中心とした正確な回転方向の向きに取り付けることができる。
○また、底部位置被規制部46が底部位置規制部36に嵌合するため、超音波センサユニット40に保持された反射板44が流体の影響により不安定となることを抑制することができる。
なお、上記実施形態は以下のように変更してもよい。
・反射板保持部43は、図示した形状に限定されず、流体の流れとの関係で適宜形状や大きさ位置などを変更することができる。
・反射板保持部43は、上流側と下流側で流れの違いに応じて異なる形状のものとしてもよい。
(第2の実施形態)
次に、本発明を具体化した超音波流量計1の第2の実施形態を図8〜図10にしたがって説明する。なお、第2の実施形態は、第1の実施形態の流路管10に対する計測管20の位置関係が異なる。具体的には、計測流路中心線CL1と計測空間中心線CL2との交差角θをゼロにしたものである。すなわち流路管10と計測管20とが同じ管体を共用して管本体2を構成した点に特徴がある。また、反射部材から反射板保持部43を省略して、反射板44を直接一対の反射部材保持部42、42間に設けた点で第1の実施形態とは構成が異なる。その他の部分は基本的に共通する構成であるため、同様の部分についてはその詳細な説明を省略する。
図8は、第2の実施形態の超音波流量計1の分解斜視図、図9は平面図、図10は、図8のD−D水平断面図である。
(計測流路15)
図10に示すように、直管状の管本体2の流路管10は、上流側に開口する流入口11とその周囲のフランジ部12と、下流側に開口する流出口13とその周囲のフランジ部14とを備える。流路管10は、管本体2の内部に流入口11から流入した温水を通過させ流出口13から流出させる計測流路15を形成する。流路管10の内部において、流入口11の上流側の端部には円筒状の空間が形成されている。流入口11の下流側の端部からは、下流側に行くにしたがって内径が狭まるテーパ部16が続く。そして、流路管10の中央部はテーパ部16のもっとも小さな内径と同径の空間を有した円筒形の縮径部17が形成されている。そして、縮径部17の下流側の端部から、下流に行くにしたがって径が拡がるテーパ部18が連続して設けられ、テーパ部18のもっとも大きな内径と同径の円筒状の流出口13が下流側に開口している。流路管10の上流側と下流側は、対称な形状となっている。
(計測空間21)
この流路管10は、計測空間21を形成する計測管20を兼ねている。
計測管20として、計測空間21は、超音波センサ50、50(図9)から送受信される超音波信号USが伝播される超音波伝播経路22を形成する。
したがって、前記第1の実施形態では、計測流路中心線CL1に対して計測空間中心線CL2が一定の傾きを持った交差角θで交差する構成に対して、第2の実施形態では、この交差角θがゼロの構成であるともいえる。
流路管10内部の計測流路15は、そのまま計測管20の計測空間21となり、管本体2内で計測流路15を同じ中心線CL1/CL2を共有して形成され、計測流路15と計測空間21は共通する空間を有する。
(超音波センサユニット保持部30)
超音波センサユニット保持部30は、計測空間21の両端部に設けられるが、第2の実施形態においては、計測空間21の両端部は計測流路15の両端部に相当する。そのため、超音波センサユニット保持部30は、図9に示すように計測管20、すなわち流路管10に設けられる。超音波センサユニット保持部30自体の構成は、第1の実施形態と共通するので説明は省略する。
(超音波センサユニット40)
第2の実施形態の超音波センサユニット40の構成は、第1の実施態様と基本的に共通する構成である。但し、反射部材保持部42、42の下端内側間においてステンレススチールなどの金属製の反射板44を直接保持しており、反射板保持部43を介さない点で第1の実施形態とは相違している。なお、第2の実施形態では、反射板44が本発明の反射部材を構成する。
(反射板44)
第2の実施形態の反射板44は、第1の実施形態に示す反射板44と同様に、長円の板状に形成される。図6(b)に示す平面視(超音波センサユニット保持部中心線CL3に沿って上側からの鉛直下向きの視点)、及び図6(c)に示す計測空間中心線CL2の方向に沿って見た正面図のいずれから見ても概ね長円になるように構成されている。
ここで第2の実施形態の反射板44においても、図6(b)、図6(c)に示すように、一対の反射板44の反射面の長手方向の長さは超音波伝播経路22の幅(高さ)全体の長さに設定されている。また、長手方向と直交する水平方向の反射板44の長さは超音波伝播経路22の幅全体の長さより短く設定されている。このため、計測流路中心線CL1/計測空間中心線CL2の方向から見た場合に、流路管10の内壁面と反射板44の左右の周縁部には、十分な間隙が生じている。
そして、反射板44は、超音波センサ50の下面中央から送出された超音波信号USをそれぞれの反射面にて超音波センサユニット保持部中心線CL3に沿った方向から正確に計測空間中心線CL2に沿った方向に反射させる。具体的に、一方の反射板44は、超音波センサユニット保持部中心線CL3及び計測空間中心線CL2を含む面に沿って計測空間21の鉛直方向上端から下端までの直径にわたって存在する反射面の全領域において、超音波信号USを超音波センサユニット保持部中心線CL3に沿った方向から正確に計測空間中心線CL2に沿った方向に反射させる。同様に、他方の反射板44は、反射面の全領域において、超音波信号USを計測空間中心線CL2に沿った方向から正確に超音波センサユニット保持部中心線CL3に沿った方向に反射させる。一方、横断面が円形の計測空間21のうち左右の両端部においては、反射板44が存在しないため超音波信号USは反射しない。
(第2の実施形態の作用)
次に、このように構成された第2の実施形態の超音波流量計1の作用について説明する。
前述のとおり、特許文献1の超音波流量計101では、反射面108、109が計測流路を形成する縮径管107を遮るような配置となるため、流路抵抗が大きく圧力損失が大きいという問題があった。
しかしながら第2の実施形態の超音波流量計1では、図10に示すように、水平幅方向で流路管10の縮径部17の内壁面と反射板44の左右の周縁部には、流体を通過させるのに十分な間隙が生じている。そのため、反射板44が計測流路15を覆うようには配置されず、流れの方向での投影面積を小さくできるため、流路抵抗が抑えられ、圧力損失が小さくなる。
一方、図示は省略するが、第2の実施形態の反射板44は、鉛直方向の直径方向では、第1の実施形態と同様、超音波センサ50から送出された超音波信号USをすべて反射し、計測流路15の中央部のみならず上下の周縁部を含むすべての部分の流体の流れを測定することができるようになっている。
(第2の実施形態の効果)
従って、第2の実施形態の超音波流量計1によれば、第1の実施形態の超音波流量計1に記載の効果に加えて、特に以下の効果を得ることができる。
○第2の実施形態では、反射板44の幅方向を流路管10より狭くして、流れに対する投影面積を小さくして流路抵抗を小さくすることで、流路管10と計測管20を共通の構成として管本体2を1本の直管の形状で実現できる。このため、流体の流れが乱れ難くなっている。
○第2の実施形態では、反射板44の幅方向を流路管10より狭くして流路抵抗を小さくすることで、流路管10と計測管20を共通の構成として管本体2を1本の直管で実現できるので、外径がコンパクトとなる。このため、狭い場所の配管であっても、超音波流量計1を配置することができる。
○また、第1の実施形態に加え管本体2が単純な形状となるため、さらに加工が容易となる。
○加工が単純化されるため、加工の工数も少なくすることができる。
○加えて加工がXYZ軸に沿うだけでできるため、精密な角度の割り出しなどが不要となり、加工が単純で同じ工作機であっても、高い精度の加工ができる。
○第2の実施形態では、第1の実施形態のような反射板保持部43を備えず反射板44が超音波センサユニット40の反射部材保持部42に直接保持されるため、部品点数を減少させることができる。
○また、流路管10における反射部材の投影面積をより小さなものとして、より流路抵抗を小さくすることができる。
(第3の実施形態)
次に、本発明を具体化した超音波流量計1の第3の実施形態を図11(a)〜(c)にしたがって説明する。なお、第3の実施形態は、第2の実施形態の反射板44の配置方向のみを変更したものであるため、その他の部分は基本的に共通する構成であるため、同様の部分についてはその詳細な説明を省略する。
図11は、第3の実施形態の超音波流量計の反射部材の(a)斜視図、(b)側面図、(c)平面図を示す。
(反射板44)
第3の実施形態の反射板44は、第2の実施形態に示す反射板44と同様に、長円の板状に形成される。図11(c)に示す平面視(超音波センサユニット保持部中心線CL3に沿って上側からの鉛直下向きの視点)から見ても概ね長円になるように構成されている。
但し、第2の実施形態の反射板44は、長手方向が超音波センサユニット保持部中心線CL3と計測空間中心線CL2を含む平面に沿って配置されていたが、第3の実施形態ではこの平面と直交する方向に配置される。図11(b)に示すように反射板44の反射面は、第2の実施形態と同様、超音波センサユニット保持部中心線CL3に沿った方向に送出された超音波信号USを計測空間中心線CL2に沿った方向に反射させるように、水平面に対して45度傾けて配置される。このため、計測流路中心線CL1/計測空間中心線CL2の方向から見た場合に、流路管10の内壁面と反射板44の上下の周縁部には、十分な間隙が生じているが、反射板44は、流路管10の左右方向の直径にわたって存在する反射面の全領域において、流路管10の中央部のみならず周縁部を含む幅全体で超音波信号USを反射させて流体の流れを測定できるように構成される。
(第3の実施形態の効果)
従って、第3の実施形態の超音波流量計によれば、第2の実施形態に記載の超音波流量計の効果と同等の効果を得ることができる。
(反射板の形状による機能)
ここで、反射板44の形状の違いによる機能の差を図12を参照して説明する。図12(a)は、図13に示す比較例の反射板302、303を示す。この形状では、反射板302、303の平面視が円形で、超音波センサから送出される断面形状円形の超音波信号USの超音波伝播経路と同様の形状であり、超音波センサから送出される断面形状円形の超音波信号USのすべてを利用するため、超音波信号の減衰も少なく、超音波センサの出力を無駄なく有効に利用できる。ただし、第1の実施形態と異なることは、計測流路304に突出したりする点で好ましくない。
図12(b)は、第1及び第2の実施形態、図12(c)は、第3の実施形態での長円の反射板44を示し、縦方向若しくは横方向に配置したものであり、1方向の直径方向(反射板44の長手方向)は、超音波伝播経路22の中央部のみならず周縁部までのすべての部分に超音波信号USを伝播させて流体の流れを測定できる。その一方で、反射板44の長手方向と直交する方向の周縁部には間隙を設けることで、流体の流路を確保することで、流れに対する投影面積を小さくすることで流路抵抗を抑制することができる。
この場合、実際の流体の中央部及び周縁部における流速と、流量の関係は単純ではなく、中央部と周縁部との速度差は流量が変化すれば一定ではない。しかしながら、超音波センサ50、50による測定結果と流量においては、相関関係があり、例えば超音波センサ50、50による測定結果に対する流量の関係を、実験もしくはシミュレーションによる流体解析を通じてルックアップテーブルなどを参照して対応させたり、あるいはその関係を近似式で算出することもできる。
なお、その結果、図12(d)に示すように、中央部と周縁部の面積のバランスを変更して、楕円形の形状として、中央部の流量による、測定結果に対する寄与度を大きくすることもできる。また、実験又はシミュレーションの結果によっては、図12(e)に示すように、中央部の面積を少なくして周縁部の面積を増大して、周縁部の寄与率を大きくすることもできる。
このように、反射板の形状は、必ずしも限定されるものではなく、要は、超音波センサから送出される、送出方向に直交する断面形状が円形の超音波伝播経路を伝播する超音波信号USのうち、一部を測定のために利用し、一部は流体の流路の為開放するものである。
(変形例)なお、上記各実施形態は以下のように変更してもよい。
・上記実施形態では、熱量供給用の温水を例示したが、流体Fは温水に限らず他の液体でもよく、さらに気体の流量の測定にも適用できる。
・管本体2は、流体を通過させる筒状であるが、筒状とは円筒形に限定されず、流体が流せれば各種断面形状のものや、複数の流路が形成されたものでもよい。
・管本体2は、ステンレススチールを例示したが、青銅鋳物や鋳鉄管や真鍮管、あるは樹脂やセラミックスにより構成されていてもよい。また、必要に応じて内部に超音波信号の反射を高め、あるは乱反射を抑制するようなコーティングを施したりや研磨を適宜することを妨げない。また、インナーパイプを配設してもよい。
・超音波センサは、ここでは送受信が可能なセラミックスの圧電素子が代表に挙げられるが、その素材は限定されない。また、送信用と受信用の超音波センサとを夫々用いてもよく、超音波信号を送信でき且つ受信できればその構成は問わない。
・「超音波」とは、可聴音を超える周波数のものをいうが、材質等により適宜周波数は選択でき、また、複数の周波数を組み合わせることも妨げない。
・超音波センサや管同士の接続は、詳細な説明はしないが、適宜周知の方法で、固定し、弾性体や充填剤でシールすることができる。或いは、適宜蓋材やスペーサを用いることも妨げない。また、フランジを形成した接合、ねじによる螺合を含む加工をすることも含む。
・管本体2の超音波センサユニット保持部30に対する加工は、リーマや砥石に限定されず、ドリルや刃物、研磨、レーザ加工、放電加工などその方法は限定されない。
・ワークとしての管本体2は、工作機械の構成により、超音波センサユニット保持部30を鉛直上方に開口する姿勢に限らず、水平方向にするなど、工作機械において精度を上げやすい姿勢で加工することができる。また、ワークとしての管本体2の一対の超音波センサユニット保持部30を、固定したまま加工できることが望ましい。
・反射部材は、図5(a)、図6(b)、6(c)、図11などに示すような反射板44を樹脂製の反射板保持部43とインサート成形により一体化することに限らず、反射板44を樹脂製の反射板保持部43に熱かしめで一体化してもよい。また、反射部材は、反射板44と反射板保持部43によらず、反射板44のみで構成されていてもよい。また、反射板44は単なる薄膜により形成されていてもよい。
・また、温度計、電流計等適宜他の計測器を付加することを妨げない。
・表示部5は、各種の構成が採用でき、単に超音波センサ50からの信号を取りだし、遠隔で処理してもよく、逆に超音波センサ50内で、信号処理などの制御を行ってもよい。
なお、各実施形態は例示であり、本発明は特許請求の範囲を逸脱しない限り、当業者により適宜変更し、追加し、削除して実施することができる。
CL1…計測流路中心線(中心軸)、CL2…計測空間中心線(中心軸)、CL3…超音波センサユニット保持部中心線(中心軸)、θ…交差角、F…流体、US…超音波信号、t(td・tu)…伝播時間、Δt…到達時間差、c…音速、v…流速、L…離間距離、W1…(比較例の計測流路の)幅、W2…(実施形態の計測流路の)幅、W3…(比較例の超音波伝播経路の)幅、W4…(実施形態の超音波伝播経路の)幅、1…超音波流量計、2…管本体、5…表示部、6…供給流路、6a…上流側、6b…下流側、10…流路管、11…流入口、13…流出口、15…計測流路、16…テーパ部、17…縮径部、18…テーパ部、20…計測管、21…計測空間、22…超音波伝播経路、23…凹部、30…超音波センサユニット保持部、31…筒部、32…底面、33…段差部、34…上部内壁面、35…下部内壁面、36…底部位置規制部、37…上部位置規制部、40…超音波センサユニット、41…嵌合リング、41a…側面、41b…下面、42…反射部材保持部、43…反射板保持部(反射部材)、44…反射板(反射部材)、45…上部位置被規制部、46…底部位置被規制部、50…超音波センサ、101…超音波流量計(従来技術1)、201…超音波流量計(従来技術2)、301…超音波流量計(比較例)。

Claims (10)

  1. 測定対象である流体を通過させる計測流路を備えた筒状の管本体と、流体が流れる前記管本体の上流位置と下流位置とにそれぞれ配置され相互に超音波信号を伝播させる一対の超音波センサとを備え、一方の超音波センサから他方の超音波センサまでの超音波信号の伝播時間と、他方の超音波センサから一方の超音波センサまでの超音波信号の伝播時間との到達時間差から測定対象である流体の流量を測定する超音波流量計であって、
    前記一対の超音波センサの一方から送出された超音波信号を前記管本体の超音波伝播経路に向けて反射し、当該管本体の超音波伝播経路を伝播する超音波信号を他方の超音波センサに向けて反射する一対の反射部材を備え、
    当該一対の反射部材の各々の反射面の超音波伝播経路に沿って反射面を見たときの一方向の長さは前記超音波センサから送出される超音波伝播経路の幅全体の長さに設定され、前記一方向の長さと直交する他方向の長さは当該超音波伝播経路の幅全体の長さより短く設定されたことを特徴とする超音波流量計。
  2. 前記一対の超音波センサの超音波信号の送出方向は、前記管本体の計測流路の中心軸を含む面と直交する方向であって、且つ同一の方向であることを特徴とする請求項1に記載の超音波流量計。
  3. 前記超音波伝播経路の中心軸と、前記管本体の計測流路の中心軸が一致していることを特徴とする請求項2に記載の超音波流量計。
  4. 前記超音波伝播経路の中心軸と、前記管本体の計測流路の中心軸が斜めに交差していることを特徴とする請求項2に記載の超音波流量計。
  5. 前記反射部材の反射面の長手方向が、前記超音波センサの超音波信号の送出方向と前記超音波伝播経路の中心軸とを含む面に沿って形成されていることを特徴とする請求項1〜4のいずれか一項に記載の超音波流量計。
  6. 前記管本体と連通する計測管をさらに備え、当該計測管は、前記管本体の計測流路の中心軸に対して斜めに交差する中心軸を有する前記超音波伝播経路を規定し、前記一対の超音波センサからそれぞれ送出されて対応する前記反射部材により反射された前記超音波信号を前記超音波伝播経路を通じて伝播させる計測空間を形成することを特徴とする請求項4に記載の超音波流量計。
  7. 前記反射部材の反射面の長手方向が、前記超音波センサの超音波信号の送出方向と前記超音波伝播経路の中心軸とを含む面と直交する方向に沿って形成されていることを特徴とする請求項3に記載の超音波流量計。
  8. 前記反射部材の反射面は、長円に形成されていることを特徴とする請求項1〜7のいずれか一項に記載に超音波流量計。
  9. 前記反射部材の反射面は、楕円に形成されていることを特徴とする請求項1〜7のいずれか一項に記載に超音波流量計。
  10. 前記反射部材は、反射板保持部と、当該反射板保持部に保持された反射板とを備え、前記反射板は前記反射板保持部に熱かしめにより一体化されていることを特徴とする請求項1〜9のいずれか一項に記載の超音波流量計。
JP2018544573A 2017-03-23 2018-03-22 超音波流量計 Active JP6556960B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017057932 2017-03-23
JP2017057932 2017-03-23
PCT/JP2018/011261 WO2018174121A1 (ja) 2017-03-23 2018-03-22 超音波流量計

Publications (2)

Publication Number Publication Date
JPWO2018174121A1 JPWO2018174121A1 (ja) 2019-03-28
JP6556960B2 true JP6556960B2 (ja) 2019-08-07

Family

ID=63585520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018544573A Active JP6556960B2 (ja) 2017-03-23 2018-03-22 超音波流量計

Country Status (3)

Country Link
JP (1) JP6556960B2 (ja)
CN (1) CN108934176B (ja)
WO (1) WO2018174121A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ2019161A3 (cs) * 2019-03-16 2020-09-30 Jaroslav Mikan Ultrazvukový kompaktní průtokoměr, zejména pro plyn
KR102189806B1 (ko) * 2020-04-03 2020-12-11 김영탁 초음파 수도미터기

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182431A4 (en) * 1999-03-17 2006-06-14 Matsushita Electric Ind Co Ltd ULTRASOUND FLOWMETER
DE10047383C1 (de) * 2000-09-25 2001-11-08 Siemens Ag Ultraschall-Durchflussmesser
JP4333098B2 (ja) * 2002-08-07 2009-09-16 パナソニック株式会社 流量計測装置
CN2804809Y (zh) * 2005-05-30 2006-08-09 张力新 超声流量、热量计转换器用测量管段
DE102006038620A1 (de) * 2006-08-17 2008-02-21 Hydrometer Gmbh Durchflussmesser
EP1995570A1 (en) * 2007-05-25 2008-11-26 Kamstrup A/S An ultrasound flow meter
DK2270439T3 (en) * 2009-07-03 2018-07-16 Kamstrup As Flow meter with cast reflector unit
JP2012028961A (ja) * 2010-07-22 2012-02-09 Panasonic Corp 超音波送受波器の取り付け方法及びこれを用いた超音波流量計
CN201724700U (zh) * 2010-07-29 2011-01-26 唐山汇中仪表股份有限公司 具有束流功能的超声流量、热量计转换器用测量管段
CN201772957U (zh) * 2010-09-17 2011-03-23 合肥瑞纳表计有限公司 反射装置和安装该反射装置的超声波热量计
PL2786100T3 (pl) * 2011-12-02 2023-02-27 Kamstrup A/S Przepływomierz ultradźwiękowy z cyfrowo podpróbkowanymi pomiarami przepływu
EP2725327A1 (en) * 2012-10-29 2014-04-30 Kamstrup A/S Ultrasonic flow meter with reflector surface with reduced symmetry
CN203785714U (zh) * 2014-03-20 2014-08-20 杭州富合仪表有限公司 一种可拆卸支架式热量表基表
CN105973336A (zh) * 2016-07-01 2016-09-28 北京京源水仪器仪表有限公司 导流反射支架
CN106525170A (zh) * 2017-01-04 2017-03-22 汇中仪表股份有限公司 一种具有整流功能的测量管段结构及其组装方法

Also Published As

Publication number Publication date
CN108934176B (zh) 2021-03-30
JPWO2018174121A1 (ja) 2019-03-28
CN108934176A (zh) 2018-12-04
WO2018174121A1 (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6556961B2 (ja) 超音波流量計
US8689638B2 (en) Ultrasonic flow sensor
US9279707B2 (en) Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths
EP2687828A1 (en) Ultrasonic wedge and method for determining the speed of sound in same
US9140594B2 (en) Ultrasonic, flow measuring device
US7870793B1 (en) Transit time flow sensor with enhanced accuracy
JP6556960B2 (ja) 超音波流量計
KR20020021558A (ko) 초음파 유량 측정 방법
US20180328768A1 (en) Ultrasonic flowmeter
Mahadeva et al. Further studies of the accuracy of clamp-on transit-time ultrasonic flowmeters for liquids
KR20170131265A (ko) 도관에 유입하는 유체의 유동 속도를 판정하기 위한 측정 장치 및 방법
JPH06249690A (ja) 超音波流量計
US11815381B2 (en) Ultrasonic flowmeter, use of an ultrasonic flowmeter in a shut-off device and shut-off device
JP2008111714A (ja) 流量計
JP2013250254A (ja) 超音波式スパイロメータの多重反射防止整流管
US20180340808A1 (en) Torque Based Flowmeter Device and Method
JP2006208159A (ja) 超音波流量計
CN210108561U (zh) 一种高精度超声波热量表
JP4561071B2 (ja) 流量計測装置
JP2008014833A (ja) 超音波流量計
JP2008256383A (ja) 超音波流量計
JP2006126019A (ja) 超音波流量計
KR20220137349A (ko) 초음파 유량계
JP2005195371A (ja) 超音波流量計および超音波流量計用の吸音材
JP2022188333A (ja) 超音波流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190710

R150 Certificate of patent or registration of utility model

Ref document number: 6556960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250