JP6550812B2 - 蛍光部材、光源装置及びプロジェクター - Google Patents

蛍光部材、光源装置及びプロジェクター Download PDF

Info

Publication number
JP6550812B2
JP6550812B2 JP2015053602A JP2015053602A JP6550812B2 JP 6550812 B2 JP6550812 B2 JP 6550812B2 JP 2015053602 A JP2015053602 A JP 2015053602A JP 2015053602 A JP2015053602 A JP 2015053602A JP 6550812 B2 JP6550812 B2 JP 6550812B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
layer
fluorescent member
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053602A
Other languages
English (en)
Other versions
JP2016173941A (ja
Inventor
橋爪 俊明
俊明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015053602A priority Critical patent/JP6550812B2/ja
Publication of JP2016173941A publication Critical patent/JP2016173941A/ja
Application granted granted Critical
Publication of JP6550812B2 publication Critical patent/JP6550812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Description

本発明は、蛍光部材、光源装置及びプロジェクターに関する。
従来、光源装置から射出された光を変調して画像情報に応じた画像を形成し、当該画像をスクリーン等の被投射面に拡大投射する画像表示装置が知られている(例えば、特許文献1参照)。
この特許文献1に記載の画像表示装置は、照明装置、偏光分離装置、分光装置、液晶パネル、プリズム及び投射光学装置を備える。これらのうち、照明装置は、励起光を射出する励起光源と、蛍光部材とを備える。蛍光部材は、蛍光体と反射膜を有し、入射された励起光の一部を異なる波長の光に変換した蛍光と、他の一部とを、当該励起光の入射方向とは反対方向に向けて射出する。そして、これら蛍光と励起光の他の一部とが、偏光分離装置及び分光装置を介して赤、緑及び青の色光に分離される。これら色光は、液晶パネルにて変調された後、プリズムにて合成され、投射光学装置によって投射される。
特開2012−4009号公報
ところで、蛍光体層は、励起光が照射されることによって発熱する。上記特許文献1に記載の光源装置では、蛍光体層は、熱伝導性を有するグリース等の接合部を介して基板に接合されている。しかしながら、このような接合部は熱抵抗値が比較的大きいため、蛍光体層にて生じた熱が基板に伝達されにくく、蛍光体層の熱が放熱されにくい。そのため、蛍光体層の温度が上昇して、その結果、蛍光体の発光効率が低下する、という問題がある。
本発明は、上記課題の少なくとも1つを解決するものであり、波長変換層を効率よく冷却できる蛍光部材を提供することを目的の1つとする。また、当該蛍光部材を備えた光源装置を提供することを目的の1つとする。また、当該光源装置を備えたプロジェクターを提供することを目的の1つとする。
本発明の第1態様に係る蛍光部材は、励起光の照射によって蛍光を発する波長変換層と、前記波長変換層を支持する支持基板と、前記波長変換層と前記支持基板との間に位置する中間層と、を有し、前記波長変換層の熱抵抗値に対する前記中間層の熱抵抗値の比率に、前記波長変換層に入射される前記励起光のエネルギーの二乗を乗じて得た値は、2.3×10(W/mm )以下であり、前記比率は、1より大きいことを特徴とする。
なお、熱抵抗値の単位は(℃/W)であり、光エネルギーの単位は(W)である。
上記第1態様によれば、上記値が単位面積当たり2.3×10(W/mm )以下である蛍光部材では、当該値が2.3×10(W/mm )を超える蛍光部材に比べて、励起光の照射により発生する波長変換層の熱を、中間層を介して支持基板に効率よく伝導できる。これにより、上記波長変換層を効率よく冷却できる。従って、波長変換層の発光効率の低下を抑制できる。
上記第1態様では、前記中間層は、前記波長変換層から前記支持基板へ向かって進む光を反射する反射層を含み、前記励起光は、前記支持基板側とは反対側から前記波長変換層に入射されることが好ましい。
この構成によれば、波長変換層で生成された蛍光は、反射層で反射されて、波長変換層の励起光が入射する側から射出される。この場合、蛍光が支持基板を透過し、励起光が入射する側とは反対側から射出される場合に比べて、蛍光部材から蛍光が射出される領域の面積が小さい。従って、蛍光を集光しやすい。
上記第1態様では、前記中間層は、前記波長変換層を前記支持基板に固定している接着層を含むことが好ましい。
この構成によれば、上記中間層が接着層を含むので、波長変換層を確実に支持基板に固定できる。また、上記中間層が接着層を含んだ場合であっても、上記値が単位面積当たり2.3×10 (W/mm )以下であるため、波長変換層の熱を効率よく支持基板に伝導でき、当該熱を効果的に放熱できる。
上記第1態様では、前記中間層は、前記波長変換層が設けられている固定基板を含み、前記固定基板は、前記接着層により前記支持基板に固定されており、前記反射層は、前記固定基板と前記接着層との間、及び、前記接着層と前記支持基板との間のいずれかに位置することが好ましい。
この構成によれば、支持基板より小さい固定基板を採用することができるため、波長変換層の面積を小さくすることができる。換言すると、固定基板の面積を調整することにより、波長変換層の面積を調整できる。このように、波長変換層から蛍光が射出される領域を支持基板よりも小さくすることができるため、蛍光を集光しやすくすることができる。この他、波長変換層に接着層が直接接触することを抑制できる。
この他、反射層は、固定基板と接着層との間、及び、接着層と支持基板との間のいずれかに位置するので、固定基板から支持基板に向かって進む光を、波長変換層への励起光の入射方向とは反対方向に確実に反射させることができる。
更に、中間層が固定基板及び接着層を含む場合であっても、上記値が単位面積当たり2.3×10(W/mm )以下であるため、波長変換層の熱を効率よく支持基板に伝導できる。
上記第1態様では、前記反射層は、前記固定基板と前記接着層との間に位置することが好ましい。
この構成によれば、波長変換層から支持基板に向かって進む光は、固定基板と接着層との間に位置する反射層で反射されるため、反射層が接着層と支持基板との間に配置される場合に比べて、当該接着層に上記光が入射することを抑制できる。従って、接着層による光の損失を抑制できる他、当該接着層の光吸収による温度上昇を抑制できるので、波長変換層の熱を更に効率よく支持基板に伝導できる。
上記第1態様では、前記固定基板は、無機材料により構成されていることが好ましい。
なお、上記無機材料としては、シリカ系の板ガラス、水晶やサファイア等の結晶体、及び、酸化アルミニウム等の半透明のセラミック基板を例示できる。
この構成によれば、固定基板が有機材料により構成されている場合に比べて、当該固定基板の熱抵抗値が小さい。従って、接着層の熱抵抗値がある程度高い場合であっても、中間層を介して波長変換層の熱を効率よく支持基板に伝導できる。
上記第1態様では、前記無機材料は、アルミニウム及びグラファイトの少なくともいずれかを含むことが好ましい。
この構成によれば、固定基板の熱伝導率が比較的高いので、波長変換層の熱をより効率よく中間層を介して支持基板に伝導できる。
上記第1態様では、前記接着層は、熱伝導粒子を含むことが好ましい。
例えば、熱伝導粒子は、酸化アルミニウムの粒子などであり、熱伝導率が比較的高いことから、接着層が熱伝導粒子を含まない場合に比べて、接着層の熱抵抗値が小さい。従って、上記値が更に小さい蛍光部材を構成できるので、中間層を介して波長変換層の熱を更に効率よく支持基板に伝導できる。
本発明の第2態様に係る光源装置は、上述の蛍光部材と、前記励起光を射出する発光素子と、を備えることを特徴とする。
上記第2態様による光源装置は、上記第1態様に係る蛍光部材を備えているため、波長変換素子の冷却効率が高い。そのため、効率的に蛍光を生成することができる。
本発明の第3態様に係るプロジェクターは、前述の光源装置と、前記光源装置から射出された照明光を変調する光変調装置と、前記光変調装置からの画像光を投射する投射光学装置と、を備えることを特徴とする。
上記第3態様によるプロジェクターは、第2態様に係る光源装置を備えているため、波長変換素子の冷却効率が高い。そのため、効率的に照明光を生成することができる。従って、当該プロジェクターは、輝度の高い画像を投射することができる。
本発明の第1実施形態に係るプロジェクターの概略を示す模式図。 上記第1実施形態に係るプロジェクターの照明装置の概略を示す模式図。 上記第1実施形態に係る照明装置における蛍光部材の平面図。 上記第1実施形態に係る照明装置における蛍光部材の断面図。 上記実施形態に係る蛍光部材の特性を示すグラフ。
以下、本発明の一実施形態について、図面に基づいて説明する。
[プロジェクターの概略構成]
図1は、本実施形態に係るプロジェクター1の構成を示す模式図である。
プロジェクター1は、内部に設けられた光源から射出された光束を変調して画像情報に応じた画像を形成し、当該画像をスクリーンSC1等の被投射面上に拡大投射する表示装置である。
このプロジェクター1は、図1に示すように、外装筐体2と、当該外装筐体2内に収納される光学ユニット3の他、図示を省略するが、当該プロジェクター1を制御する制御装置、冷却対象を冷却する冷却装置、及び当該プロジェクター1を構成する電子部品に電力を供給する電源装置を備える。
[光学ユニットの構成]
光学ユニット3は、照明装置31、色分離装置32、平行化レンズ33、光変調装置34、色合成装置35及び投射光学装置36を備える。
照明装置31は、照明光WLを射出する。なお、照明装置31の構成については、後述する。
色分離装置32は、照明装置31から入射された照明光WLを赤(R)、緑(G)及び青(B)の3つの色光に分離する。この色分離装置32は、ダイクロイックミラー321,322、全反射ミラー323,324,325及びリレーレンズ326,327を備える。
ダイクロイックミラー321は、照明装置31からの照明光WLを赤色光LRとその他の色光(緑色光LG及び青色光LB)とに分離する。ダイクロイックミラー321は、赤色光LRを透過させるとともに、その他の色光(緑色光LG及び青色光LB)を反射させる。ダイクロイックミラー322は、その他の色光を緑色光LGと青色光LBとに分離する。ダイクロイックミラー322は、緑色光LGを反射するとともに、青色光LBを透過させる。
全反射ミラー323は、赤色光LRの光路中に配置され、ダイクロイックミラー321を透過した赤色光LRを光変調装置34(34R)に向けて反射させる。一方、全反射ミラー324,325は、青色光LBの光路中に配置され、ダイクロイックミラー322を透過した青色光LBを光変調装置34(34B)に導く。また、緑色光LGは、ダイクロイックミラー322にて、光変調装置34(34G)に向けて反射される。
リレーレンズ326,327は、青色光LBの光路の、ダイクロイックミラー322の下流に配置されている。これらリレーレンズ326,327は、青色光LBの光路長が赤色光LRや緑色光LGの光路長よりも長くなることによる青色光LBの光損失を補償する機能を有する。
平行化レンズ33は、後述する光変調装置34に入射する光を平行化する。なお、赤、緑及び青の各色光用の平行化レンズを、それぞれ33R,33G,33Bとする。また、赤、緑及び青の各色光用の光変調装置を、それぞれ34R,34G,34Bとする。
光変調装置34(34R,34G,34B)は、それぞれ入射される赤、緑及び青の色光LR,LG,LBを変調して、画像情報に応じた色画像を形成する。これら光変調装置34は、入射される光を変調する液晶パネルにより構成される。なお、図示は省略するが、光変調装置34R,34G,34Bの入射側及び射出側にはそれぞれ、偏光板が配置されている。
色合成装置35には、各光変調装置34R,34G,34Bからの画像光が入射される。この色合成装置35は、各色光LR,LG,LBに対応した画像光を合成し、この合成された画像光を投射光学装置36に向けて射出する。本実施形態では、色合成装置35は、クロスダイクロイックプリズムにより構成される。
投射光学装置36は、色合成装置35にて合成された画像光をスクリーンSC1等の被投射面に投射する。このような構成により、スクリーンSC1に拡大された画像が投射される。
[照明装置の構成]
図2は、本実施形態のプロジェクター1における照明装置31の構成を示す概略図である。
照明装置31は、前述したように照明光WLを色分離装置32に向けて射出する。この照明装置31は、図2に示すように、光源装置311、アフォーカル光学系312、ホモジナイザー光学系313、偏光分離装置314、位相差板315、ピックアップ光学系316、インテグレーター光学系317、偏光変換素子318、重畳レンズ319及び蛍光部材4を備える。また、光源装置311は、アレイ光源311A及びコリメーター光学系311Bを備える。
光源装置311のアレイ光源311Aは、本発明の光源に相当し、複数の半導体レーザー3111により構成される。具体的に、アレイ光源311Aは、当該アレイ光源311Aから射出される光束の照明光軸Ax1と直交する一平面内に複数の半導体レーザー3111がアレイ状に配列されることにより形成される。なお、詳しくは後述するが、蛍光部材4にて反射された光束の照明光軸をAx2としたとき、照明光軸Ax1と照明光軸Ax2とは同一平面内にあり、且つ互いに直交している。照明光軸Ax1上においては、アレイ光源311Aと、コリメーター光学系311Bと、アフォーカル光学系312と、ホモジナイザー光学系313と、偏光分離装置314とが、この順に並んで配置されている。
一方、照明光軸Ax2上においては、波長変換素子41を備えた蛍光部材4と、ピックアップ光学系316と、位相差板315と、偏光分離装置314と、インテグレーター光学系317と、偏光変換素子318と、重畳レンズ319とが、この順に並んで配置されている。
アレイ光源311Aを構成する半導体レーザー3111は、例えば、440〜480nmの波長域にピーク波長を有する励起光(青色光BL)を射出する。また、半導体レーザー3111から射出される青色光BLは、コヒーレントな直線偏光であり、偏光分離装置314に向けて照明光軸Ax1と平行に射出される。
また、アレイ光源311Aは、各半導体レーザー3111が射出する青色光BLの偏光方向を、偏光分離装置314の偏光分離層3143にて反射される偏光成分(S偏光成分)の偏光方向と一致させている。そして、このアレイ光源311Aから射出された青色光BLは、コリメーター光学系311Bに入射する。
コリメーター光学系311Bは、アレイ光源311Aから射出された青色光BLを平行光に変換するものである。コリメーター光学系311Bは、例えば各半導体レーザー3111に対応してアレイ状に配置された複数のコリメーターレンズ3112を備える。このコリメーター光学系311Bを通過することにより平行光に変換された青色光BLは、アフォーカル光学系312に入射する。
アフォーカル光学系312は、コリメーター光学系311Bから入射された青色光BLの光束径を調整する。このアフォーカル光学系312は、レンズ3121とレンズ3122を備える。このアフォーカル光学系312を通過することによりサイズが調整された青色光BLは、ホモジナイザー光学系313に入射する。
ホモジナイザー光学系313は、後述するピックアップ光学系316と協同して、被照明領域における青色光BLによる照度分布を均一化する。このホモジナイザー光学系313は、一対のマルチレンズアレイ3131,3132を備える。このホモジナイザー光学系313から射出された青色光BLは、偏光分離装置314に入射する。
偏光分離装置314は、いわゆるプリズム型の偏光ビームスプリッター(PBS)であり、P偏光及びS偏光のうち、一方の偏光光を通過させ、他方の偏光光を反射させる。この偏光分離装置314は、プリズム3141,3142及び偏光分離層3143を備える。これらプリズム3141,3142は、略三角柱形状に形成され、それぞれ照明光軸Ax1に対して45°の角度をなす傾斜面を有し、かつ、照明光軸Ax2に対して45°の角度をなしている。
偏光分離層3143は、上記傾斜面に設けられ、当該偏光分離層3143に入射した第1の波長帯の青色光BLを、S偏光成分とP偏光成分とに分離する偏光分離機能を有する。この偏光分離層3143は、青色光BLのS偏光成分を反射させ、青色光BLのP偏光成分を透過させる。また、偏光分離層3143は、当該偏光分離層3143に入射した光のうち、第1の波長帯(青色光BLの波長帯)とは異なる第2の波長帯(緑色光GL及び赤色光RL)の光を、その偏光状態にかかわらず透過させる色分離機能を有する。なお、偏光分離装置314は、プリズム型のものに限らず、プレート型の偏光分離装置を用いてもよい。
そして、偏光分離層3143に入射した青色光BLは、その偏光方向がS偏光成分と一致していることから、S偏光の励起光BLsとして、蛍光部材4に向けて反射される。
位相差板315は、偏光分離層3143と波長変換素子41との間の光路中に配置された1/4波長板である。この位相差板315に入射するS偏光である励起光BLsは、円偏光の励起光BLcに変換された後、ピックアップ光学系316に入射する。
ピックアップ光学系316は、励起光BLcを波長変換素子41に向けて集光させる。このピックアップ光学系316は、レンズ3161,レンズ3162を備える。具体的に、ピックアップ光学系316は、入射された複数の光束(励起光BLc)を後述する波長変換素子41に向けて集光させるとともに、当該波長変換素子41上で互いに重畳させる。
蛍光部材4は、モーター43により回転可能な円板42上に、入射された光の波長を変換する波長変換素子41が円板42の周方向に沿って形成されたものである。この波長変換素子41は、青色光(励起光BLc)が入射する側に向けて赤色光及び緑色光を射出する。
ピックアップ光学系316からの励起光BLcは、波長変換素子41に入射する。波長変換素子41は、励起光BLcの一部を赤色光及び緑色光を含む蛍光光YLに変換する。蛍光光YLは、500〜700nmの波長域にピーク波長を有する。なお、波長変換素子41の構成については、後述する。
そして、波長変換素子41から射出された蛍光光YLは、ピックアップ光学系316、位相差板315を通過し、偏光分離装置314に入射する。偏光分離装置314によって、蛍光光YLと偏光分離層3143を通過する青色光(P偏光の青色光)とが合成され、白色の照明光WLが生成される。照明光WLは、偏光分離装置314から射出され、インテグレーター光学系317に入射する。
インテグレーター光学系317は、後述する重畳レンズ319と協同して、被照明領域における照度分布を均一化する。インテグレーター光学系317は、一対のレンズアレイ3171,3172を備える。これら一対のレンズアレイ3171,3172は、複数のレンズがアレイ状に配列されたものからなる。このインテグレーター光学系317から射出された照明光WLは、偏光変換素子318に入射する。
偏光変換素子318は、偏光分離膜と位相差板とから構成され、照明光WLを直線偏光に変換する。偏光変換素子318から射出された照明光WLは、重畳レンズ319に入射する。
重畳レンズ319は、照明光WLを被照明領域において重畳させることにより、被照明領域の照度分布を均一化する。
[蛍光部材の構成]
図3は、照明装置31の蛍光部材4を励起光BLcの入射側から見た平面図であり、図4は、図3に示す蛍光部材4のA1−A1断面を示す断面図である。なお、図3及び図4では、モーター43の図示を省略している。
蛍光部材4の波長変換素子41は、上記のように、入射された励起光の一部を蛍光に変換して射出するとともに、他の一部を蛍光に変換せずに射出する。この波長変換素子41は、図3に示すように、リング状に形成され、円板42の円周に沿って設けられている。
この波長変換素子41は、波長変換層41A及び中間層41Bを有する。中間層41Bは、固定基板411、反射層412及び接着層413を有する。
なお、円板42は、上記モーター43によって回転される。これにより、励起光が入射することで発熱する波長変換素子41が冷却される。円板42は、本発明の支持基板に相当する。
[波長変換層の構成]
波長変換層41Aは、固定基板411上に形成されている。なお、固定基板411については、後に詳述する。
波長変換層41Aを構成する蛍光体として、本実施形態では、Ceイオンを含んだYAG(Yttrium Aluminum Garnet)蛍光体が採用されている。すなわち、本実施形態における波長変換層41Aは、無機蛍光体層であり、当該波長変換層41Aを構成するガラスバインダーと蛍光体との成分比率は、本実施形態では略50%に設定されている。
この波長変換層41Aは、ガラスバインダー、蛍光体及び有機物を含んだ混合物を固定基板411に塗布し、焼結することで形成される。すなわち、波長変換層41Aは塗布及び焼成により形成されるので、当該波長変換層41Aの上記励起光BLcが入射する方向に沿う方向の厚さは、50μm以上100μmに設定される。当該波長変換層41Aの厚さは、ガラスバインダーを含まない蛍光体を焼結して生成する多結晶蛍光体では実現できない厚さである。
また、上述したように、YAG蛍光体をガラスバインダーで焼成した場合、当該波長変換層41Aの熱伝導率は、YAG結晶の熱伝導率11W/mKとガラスの熱伝導率1W/mKとの中間となる。当該波長変換層41Aの熱伝導率は、ガラスバインダー及び蛍光体の配合比率が50%であるため、略5W/mKとなる。
[固定基板の構成]
固定基板411は、波長変換層41Aを支持するだけでなく、当該波長変換層が形成される形成基板としての機能を有する。
このような固定基板411は、本実施形態では、光透過性を有するシリカ系の板ガラスにより構成され、上記励起光BLcの入射方向に沿う方向の寸法(厚さ)は、略50μmに設定される。なお、上記励起光BLcの入射方向に沿う方向は、本発明の波長変換層41Aから円板42に向かう方向に沿う方向に相当する。また、当該固定基板411の熱伝導率は、常温(例えば、15℃以上25℃未満)において1W/mKである。
[反射層の構成]
反射層412は、上述した固定基板411において波長変換層41Aが形成される面とは反対側の面に形成されている。この反射層412は、波長変換層41Aから円板42に向かって進む光を反射させる。反射層412は例えば、銀により構成される。反射層412が形成された固定基板411は、接着層413により上記円板42に固定されている。
なお、反射層412を構成する銀の熱伝導率は、429W/mKと非常に高い。このため、詳しくは後述するが、中間層41Bの熱抵抗値を算出する際に、当該反射層412の熱抵抗値を無視してもよい。
[接着層の構成]
接着層413は、波長変換層41A及び反射層412が形成された固定基板411を円板42に固定する。この接着層413は、シリコーンを含むシリコーン接着剤により構成され、熱に強い特性を有する。また、接着層413の上記厚さは、略20μmに設定される。この接着層413の熱伝導率は、略0.2W/mKである。
[円板(支持基板)の構成]
円板42は、本発明の支持基板に相当し、上記モーターにより回転される。円板42は波長変換素子41を支持する。具体的に、円板42は、接着層413によって固定基板411が円板42に固定されることにより、当該波長変換層41Aを支持している。
このような円板42は、熱伝導率の高い金属(例えば、アルミニウム若しくはグラファイト)により形成されている。本実施形態では、当該円板42は、アルミニウムにより形成されており、当該円板42の熱伝導率は略237W/mKである。また、当該円板42の直径は、略100mmである。
以上のように、当該円板42上には、励起光の入射側から順に、波長変換層41A、固定基板411、反射層412、接着層413が配置されている。固定基板411、反射層412及び接着層413により、本実施形態における中間層41Bが構成される。
[蛍光部材の特性]
ここで、波長変換層41Aの温度が例えば300℃を超えた場合、当該波長変換層41Aが変性する可能性が高い。すなわち、波長変換層41Aの温度が300℃以上になると、温度消光により、波長変換層41Aの発光効率が大きく低下する。
このため、発明者は、鋭意研究の結果、以下の式(1)を満たす場合に、波長変換層41Aの温度が300℃以上にまで上昇しないことを発見した。
なお、式(1)において、αは、波長変換層41Aの熱抵抗値に対する中間層41Bの熱抵抗値の比率である。βは、波長変換層41Aに入射される励起光のパワー(エネルギー)であり、単位は「ワット(W)」である。ただし、波長変換層41Aの熱抵抗値とは、正確には波長変換層41Aから円板42に向かう方向、すなわち厚さ方向に沿う熱抵抗値を意味する。また、中間層41Bの熱抵抗値とは、当該厚さ方向に沿う熱抵抗値を意味する。
[数1]
α×β≦2.3×10(W/mm ) …(1)
本実施例の構成においては、β=150(W)である。また、固定基板411及び接着層413の熱抵抗値は、波長変換層41Aの熱抵抗値の略7倍である。円板42は、直径略100mmのアルミニウムにより形成された基板であるから、当該円板42の熱抵抗値は、略0.5℃/Wである。更に、波長変換層41Aへの光の照射位置を円板42の半径の中間点である略50mmとし、その照射の光の幅を略2mmとする。この場合、円板42に対する蛍光光YLの照射面積は、略3×10−4となるため、波長変換層41Aから接着層413までの熱抵抗値は、円板42の熱抵抗値とほぼ同じ略0.6℃/Wとなる。すなわち、波長変換層41Aの温度上昇ペースは、円板42の温度上昇ペースと略同じである。
図5は、波長変換層41Aの温度とα×βの値との関係を示すグラフである。この図5に示すグラフでは、縦軸に波長変換層41Aの温度を示し、横軸に上記α×βの値が示されている。
図5からわかるように、α×βの値が略2.3×10(W/mm )よりも大きくなると、波長変換層41Aの温度が急激に上昇する。波長変換層41Aの熱抵抗値が固定されているならば、中間層41Bの熱抵抗値が大きくなるに従って、波長変換層41Aの温度が急激に上昇する。従って、中間層41Bの熱抵抗値は小さい方がよい。
本実施形態においては、α=7、β=150(W)であるから、α×β=1.575×10(W/mm )であり、上記式(1)を満たす。
このように、本実施形態の蛍光部材4では、波長変換層41Aにて生じた熱を、中間層41Bを介して効果的に支持基板である円板42に伝導させることができるため、波長変換層41Aを効果的に冷却することができる。従って、温度消光に起因する発光効率の低下を抑制することができる。
本発明の効果を確かめるために、シミュレーションを行なった。その結果を以下の表1及び表2に示す。シミュレーションでは、波長変換層41A上での励起光のスポットの面積を1mmとした。
表1は、αとβとの各組に対する波長変換層41Aの温度(℃)を示す。
Figure 0006550812
表2は、αとβとの各組におけるα×βの値を示す。
Figure 0006550812
表1及び表2からわかるように、式(1)を満たす場合、波長変換層41Aの温度が300℃以上には上昇しないことが確かめられた。
[実施形態の効果]
以上説明した本実施形態に係るプロジェクター1によれば、以下の効果が得られる。
上記値(α×β)が2.3×10(W/mm )以下である蛍光部材では、当該値が2.3×10(W/mm )を超える蛍光部材に比べて、励起光の照射により発生する波長変換層41Aの熱を、中間層41Bを介して円板42に効率よく伝導できる。これにより、波長変換層41Aを効率よく冷却できる。従って、波長変換層41Aの発光効率の低下を抑制できる。また、波長変換素子41を支持している支持基板の面積を波長変換素子41の面積よりも容易に大きくすることができるため、波長変換層41Aの冷却効率を容易に高くすることができる。
ここで、反射層がなく、励起光が円板42を介して波長変換層41Aに入射される場合、円板42を励起光が通過する過程にて当該励起光が円板42により吸収される可能性がある。この場合、波長変換層41Aに入射される励起光の光量が低下するため、蛍光部材4に入射される励起光の光量に対する当該蛍光部材4から射出される蛍光光YLの光量との比率が低下する。また、円板42によって励起光が吸収される場合、当該円板42の温度が上昇するため、波長変換層41Aの熱を円板42によって効果的に放熱することができなくなるおそれがある。
これに対し、本実施形態によれば、励起光は円板42とは反対側から波長変換層41Aに入射され、当該波長変換層41Aによって蛍光に変換されずに波長変換層41Aを透過した励起光は、反射層412により反射される。これによれば、励起光が円板42を介して波長変換層41Aに入射される場合に比べて、円板42の温度が上昇することを抑制できるため、波長変換層41Aを効率よく冷却できる。
中間層41Bが接着層413を含むので、波長変換層41Aを確実に円板42に固定できる。
波長変換層41Aは、接着層413によって円板42に固定される固定基板411に形成されている。固定基板411は円板42より小さいため、波長変換層41Aの面積は円板42より小さい。換言すると、固定基板411の面積を調整することにより、波長変換層41Aの面積を調整できる。このように、波長変換層41Aから蛍光光YLが射出される領域を充分小さくすることができるため、蛍光光YLを集光しやすくすることができる。この他、波長変換層41Aに接着層413が直接接触することを抑制できる。
また、反射層412は、固定基板411と接着層413との間に位置するので、固定基板411から円板42に向かって進む光を、波長変換層41Aへの励起光の入射方向とは反対方向に確実に反射させることができる。
加えて、波長変換層41Aから円板42に向かって進む光は、固定基板411と接着層413との間に位置する反射層412で反射されるため、反射層412が接着層413と円板42との間に配置される場合に比べて、当該接着層413に上記光が入射することを抑制できる。従って、接着層413による光の損失を抑制できる他、当該接着層413の光吸収による温度上昇を抑制できるので、波長変換層41Aの熱を更に効率よく円板42に伝導できる。
固定基板411は、無機材料(シリカ系ガラス板)により構成されているので、固定基板411が有機材料により構成されている場合に比べて、当該固定基板411の熱抵抗値が小さい。従って、接着層413の熱抵抗値がある程度高い場合であっても、中間層41Bを介して波長変換層41Aの熱を効率よく円板42に伝導できる。
また、固定基板411として熱伝導率が比較的高い金属(例えば、アルミニウム若しくはグラファイト)を用いているので、波長変換層41Aの熱をより効率よく中間層41Bを介して円板42に伝導できる。
シリコーンは、熱伝導率が比較的高いことから、接着層413がシリコーンを含まない場合に比べて、接着層413の熱抵抗値が小さい。従って、α×βの値が更に小さい蛍光部材4を構成できるので、中間層41Bを介して波長変換層41Aの熱を更に効率よく円板42に伝導できる。
また、波長変換素子41の冷却効率が高いので、波長変換層41Aは蛍光光YLを高い効率で発生させることができる。従って、蛍光部材4を備えた投射光学装置36は、高い輝度の画像を投射することができる。
[実施形態の変形]
本発明は、上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
上記実施形態では、反射層412は、固定基板411と接着層413との間に配置されることとした。しかしながら、本発明は、これに限らない。例えば、反射層412は、円板42上、すなわち、接着層413と円板42との間に配置されることとしてもよい。この場合であっても、上記実施形態と同様の効果を奏することができる。
蛍光部材4は、反射層412を備えなくてもよい。この場合、円板42として、熱伝導率が高い水晶などを用いる。励起光BLcは、円板42側から当該円板42及び中間層41Bを通過して波長変換層41Aに入射されるようにすればよい。この場合、励起光BLcを透過させるが蛍光光YLを反射させるダイクロイックミラーを、円板42の励起光入射側に設ければよい。
上記実施形態では、中間層41Bは、接着層413を含むこととした。しかしながら、本発明は、これに限らない。例えば、中間層41Bは、接着層413を含まなくてもよい。この場合、波長変換素子41を円板42に固定する固定部材を別途設ければよい。
上記実施形態では、中間層41Bは、波長変換層41Aが形成される固定基板411を含むこととした。しかしながら、本発明は、これに限らない。例えば、中間層41Bは、固定基板411を含まなくてもよい。この場合、波長変換層41Aを接着層413にて円板42に固定すればよい。
上記実施形態では、固定基板411がシリカ系の板ガラスにより構成されることとした。しかしながら、本発明は、これに限らない。例えば、アルミニウム及びグラファイトの少なくともいずれかを含む無機材料により構成されてもよい。これによれば、波長変換層41Aの熱をより効率よく中間層41Bを介して円板42に伝導できる。
また、例えば、固定基板411は、透明なシリカ系の板ガラスにより構成されていたが、水晶やサファイア等の結晶体、若しくは、酸化アルミニウム等の半透明のセラミック基板等により構成されてもよい。すなわち、固定基板411は、上記波長変換層41Aの焼結に耐え得る素材であればよい。特に、固定基板411として、上記励起光BLcの入射方向に沿う方向の厚さが略0.3mmの水晶板ガラスを使用した場合、当該水晶板ガラスの熱伝導率が8W/mKと上記板ガラスに比べて高いので、更に波長変換素子41の冷却効率を高めることができる。
更に、固定基板411が酸化アルミニウム及び二酸化ジルコニアを含む焼結体により構成されてもよい。このような構成であれば、波長変換層41Aから円板42に向かって進む光を当該焼結体により反射させることができる。この場合、反射層412を設けなくてもよい。
上記実施形態では、接着層413は、シリコーンを含むこととした。しかしながら、本発明は、これに限らない。例えば、接着層413は、シリコーンを含まなくてもよいし、当該シリコーンに代えて、酸化アルミニウムの粒子を含むようにしてもよい。例えば、接着層413に酸化アルミニウムの粒子が含まれている場合には、当該接着層413がシリコーンを含む場合及びシリコーンを含まない場合のいずれの場合よりも当該接着層413の熱伝導率を高めることができる。これによれば、上記値(α×β)を確実に2.3×10(W/mm )より小さくできるので、波長変換素子41の冷却効率を更に高めることができる。
上記実施形態では、波長変換層41Aは、蛍光体とガラスバインダーとから構成されることとした。しかしながら、本発明は、これに限らない。例えば、波長変換層41Aは、蛍光体と上記ガラスバインダーとは異なる無機材料とにより構成されてもよい。更に、波長変換層41Aは、蛍光体と有機材料とにより構成されてもよい。すなわち、波長変換層41Aの材料は、適宜変更可能である。
上記実施形態では、支持基板として円板42を用いることとした。しかしながら、本発明は、これに限らない。すなわち、支持基板は、円板でなくてもよく、回転されない構成であってもよい。例えば、当該波長変換素子41が固定される側とは反対側の面に放熱板等を設けた矩形状の基板に固定されていてもよい。この場合、モーター43を設けなくてもよい。
上記実施形態では、光変調装置として透過型の光変調装置34(34R,34G,34B)を用いることとした。しかしながら、本発明は、これに限らない。例えば、光変調装置として反射型の光変調装置を用いてもよい。この場合、色分離装置32を設けることなく、当該色合成装置35により、色分離及び色合成を実行するようにしてもよい。
上記実施形態では、プロジェクター1は、3つの光変調装置34(34R,34G,34B)を備えるとしたが、本発明はこれに限らない。すなわち、2つ以下、あるいは、4つ以上の光変調装置を用いたプロジェクターにも、本発明を適用可能である。
また、光変調装置として、デジタルマイクロミラーデバイス等、液晶以外の光変調装置を用いてもよい。
上記実施形態において、上記蛍光部材4を備える照明装置31がプロジェクター1に適用される例を示した。しかしながら、本発明は、これに限らない。例えば、上記照明装置31は、照明器具及び自動車等のヘッドライト等に使用してもよい。
1…プロジェクター、31…照明装置(光源装置)、311A…アレイ光源(発光素子)、34…光変調装置、36…投射光学装置、4…蛍光部材、41…波長変換素子、41A…波長変換層、41B…中間層、411…固定基板、412…反射層、413…接着層、42…円板(支持基板)。

Claims (10)

  1. 励起光の照射によって蛍光を発する波長変換層と、
    前記波長変換層を支持する支持基板と、
    前記波長変換層と前記支持基板との間に位置する中間層と、を有し、
    前記波長変換層の熱抵抗値に対する前記中間層の熱抵抗値の比率に、前記波長変換層に入射される前記励起光のエネルギーの二乗を乗じて得た値は、2.3×10(W/mm )以下であり、
    前記比率は、1より大きいことを特徴とする蛍光部材。
  2. 請求項1に記載の蛍光部材において、
    前記中間層は、前記波長変換層から前記支持基板へ向かって進む光を反射する反射層を含み、
    前記励起光は、前記支持基板側とは反対側から前記波長変換層に入射されることを特徴とする蛍光部材。
  3. 請求項2に記載の蛍光部材において、
    前記中間層は、前記波長変換層を前記支持基板に固定している接着層を含むことを特徴とする蛍光部材。
  4. 請求項3に記載の蛍光部材において、
    前記中間層は、前記波長変換層が設けられている固定基板を含み、
    前記固定基板は、前記接着層により前記支持基板に固定されており、
    前記反射層は、前記固定基板と前記接着層との間、及び、前記接着層と前記支持基板との間のいずれかに位置することを特徴とする蛍光部材。
  5. 請求項4に記載の蛍光部材において、
    前記反射層は、前記固定基板と前記接着層との間に位置することを特徴とする蛍光部材。
  6. 請求項4又は請求項5に記載の蛍光部材において、
    前記固定基板は、無機材料により構成されていることを特徴とする蛍光部材。
  7. 請求項6に記載の蛍光部材において、
    前記無機材料は、アルミニウム及びグラファイトの少なくともいずれかを含むことを特徴とする蛍光部材。
  8. 請求項3から請求項7のいずれか一項に記載の蛍光部材において、
    前記接着層は、熱伝導粒子を含むことを特徴とする蛍光部材。
  9. 請求項1から請求項8のいずれか一項に記載の蛍光部材と、
    前記励起光を射出する発光素子と、を備えることを特徴とする光源装置。
  10. 請求項9に記載の光源装置と、
    前記光源装置から射出された照明光を変調する光変調装置と、
    前記光変調装置からの画像光を投射する投射光学装置と、を備えることを特徴とするプロジェクター。
JP2015053602A 2015-03-17 2015-03-17 蛍光部材、光源装置及びプロジェクター Active JP6550812B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015053602A JP6550812B2 (ja) 2015-03-17 2015-03-17 蛍光部材、光源装置及びプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053602A JP6550812B2 (ja) 2015-03-17 2015-03-17 蛍光部材、光源装置及びプロジェクター

Publications (2)

Publication Number Publication Date
JP2016173941A JP2016173941A (ja) 2016-09-29
JP6550812B2 true JP6550812B2 (ja) 2019-07-31

Family

ID=57009064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053602A Active JP6550812B2 (ja) 2015-03-17 2015-03-17 蛍光部材、光源装置及びプロジェクター

Country Status (1)

Country Link
JP (1) JP6550812B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015848A (ja) * 2017-07-06 2019-01-31 株式会社タムラ製作所 波長変換部材及びその製造方法
CN111123630A (zh) * 2018-11-01 2020-05-08 深圳光峰科技股份有限公司 波长转换装置及其制备方法、发光装置和投影装置
JP7472558B2 (ja) * 2020-03-12 2024-04-23 セイコーエプソン株式会社 波長変換素子、光源装置、プロジェクター、および波長変換素子の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759776B2 (ja) * 2011-04-20 2015-08-05 スタンレー電気株式会社 光源装置および照明装置
DE102011084949B4 (de) * 2011-10-21 2016-03-31 Osram Gmbh Konverteranordnung, Verfahren zum Herstellen der Konverteranordnung und Beleuchtungsanordnung
WO2014065051A1 (ja) * 2012-10-26 2014-05-01 ウシオ電機株式会社 蛍光光源装置

Also Published As

Publication number Publication date
JP2016173941A (ja) 2016-09-29

Similar Documents

Publication Publication Date Title
JP5673247B2 (ja) 光源装置及びプロジェクター
JP5527058B2 (ja) 光源装置及びプロジェクター
JP6476970B2 (ja) 照明装置およびプロジェクター
JP5601092B2 (ja) 照明装置及びプロジェクター
JP5445379B2 (ja) プロジェクター
JP6536202B2 (ja) 光源装置、照明装置およびプロジェクター
JP5659741B2 (ja) 光源装置及びプロジェクター
JP2015036790A (ja) 光源装置、画像表示装置、及び光学ユニット
US9869926B2 (en) Wavelength conversion element, light source device, and projector
JP2012014972A (ja) 光源装置及びプロジェクター
JP2018132549A (ja) 波長変換装置、光源装置及びプロジェクター
JP2016051013A (ja) 照明装置およびプロジェクター
WO2016167110A1 (ja) 照明装置および投影型表示装置
JP2012013977A (ja) 光源装置及びプロジェクター
JP2017027903A (ja) 照明装置及びプロジェクター
JP2017083636A (ja) 照明装置及びプロジェクター
JP2018138941A (ja) 照明装置及びプロジェクター
JP2015049441A (ja) 照明装置及びプロジェクター
JP2017138470A (ja) 反射素子、波長変換素子、光源装置及びプロジェクター
JP6550812B2 (ja) 蛍光部材、光源装置及びプロジェクター
JP2021150255A (ja) 光源装置、照明装置およびプロジェクター
JP6613583B2 (ja) 波長変換素子、光源装置及びプロジェクター
JP2017015966A (ja) 光源装置およびプロジェクター
WO2020255785A1 (ja) 光源装置および投射型表示装置
JP6515514B2 (ja) 光源装置、照明装置およびプロジェクター

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6550812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150