JP6539964B2 - センサ及びセンサの製造方法 - Google Patents

センサ及びセンサの製造方法 Download PDF

Info

Publication number
JP6539964B2
JP6539964B2 JP2014182739A JP2014182739A JP6539964B2 JP 6539964 B2 JP6539964 B2 JP 6539964B2 JP 2014182739 A JP2014182739 A JP 2014182739A JP 2014182739 A JP2014182739 A JP 2014182739A JP 6539964 B2 JP6539964 B2 JP 6539964B2
Authority
JP
Japan
Prior art keywords
detection
light
axis
substrate
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014182739A
Other languages
English (en)
Other versions
JP2016057127A (ja
Inventor
寿明 小口
寿明 小口
古川 秀樹
秀樹 古川
柳沢 知之
知之 柳沢
康寛 川井
康寛 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014182739A priority Critical patent/JP6539964B2/ja
Publication of JP2016057127A publication Critical patent/JP2016057127A/ja
Application granted granted Critical
Publication of JP6539964B2 publication Critical patent/JP6539964B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Description

本発明は、センサ及びセンサの製造方法に関する。
ロータリエンコーダの構成として、光を発する発光素子が設けられた基板と、発光素子から発せられた光を検出する受光素子が設けられた基板とをロータリエンコーダの筐体内に収める構成が知られている(例えば特許文献1)。
特開2001−027551号公報
しかしながら、特許文献1に記載のロータリエンコーダは、発光素子と受光素子とが別個の基板に存することから、組み立てにおいて発光素子から発せられる光の照射範囲と受光素子による受光範囲との関係を決定するための位置決めを行わなければならないという問題がある。位置決めを誤ることによる位置ずれが生じると、受光素子の出力が意図された出力にならないことがあり、センシングに伴う出力の不安定を招く。特に、受光素子が複数である場合、位置ずれが生じると複数の受光素子の各々の出力にばらつきが生じ、センシングに伴う出力の不安定を招く。
上記のような特許文献1のロータリエンコーダに係る問題は、光の検出によるロータリエンコーダに限らず、検出対象(例えば光等)を発する発生部と、発生部により発生した検出対象を検出する検出部とが別個の基板に設けられたセンサに共通する問題である。
本発明は、発生部と検出部との位置決めがより容易なセンサ及びセンサの製造方法を提供することを目的とする。また、本発明は、検出部の出力をより安定させることができるセンサ及びセンサの製造方法を提供することを目的とする。
上記の目的を達成するための本発明のセンサは、所定の検出対象を発生させる発生部と、前記発生部により発生した前記検出対象を検出する検出部と、前記発生部及び前記検出部が設けられる基板とを備え、前記基板は、前記発生部が設けられる第1部分と前記検出部が設けられる第2部分とが一体であり、二箇所で直角に折り曲げられて前記第1部分の前記発生部が設けられた面と前記第2部分の前記検出部が設けられた面とが平行に設けられて対向し、前記二箇所の一方における折り曲げ軸である第1軸と前記二箇所の他方における折り曲げ軸である第2軸は平行であり、前記発生部の前記検出対象の発生中心点である第1点と前記第1軸との距離と、前記検出部による前記検出対象の検出領域の中心又は検出部が有する複数の検出領域の配置中心のいずれか一方である第2点と前記第2軸との距離とが等しく、前記第1点と前記第2点は、折り曲げ前の基板に沿う同一直線上に存し、前記直線と前記第1軸及び前記第2軸とは直角に交差又は立体交差する。
従って、発生部が設けられる第1部分と検出部が設けられる第2部分とが分離しないので、基板を折り曲げる又は湾曲させる等の簡易な作業により発生部と検出部との位置決めを行うことができる。このように、本発明のセンサによれば、発生部と検出部との位置決めがより容易になる。また、第1部分の発生部が設けられた面と第2部分の検出部が設けられた面とが平行に設けられて対向し、第1軸と第2軸が平行であり、第1点と第1境目との距離と第2点と第2境目との距離とが等しく、第1点と第2点が折り曲げ前の基板において第1軸及び第2軸に対して直角に交差又は立体交差する同一直線上に存することで、第1点と第2点は、折り曲げ後の第1部分及び第2部分に直交する同一直線上に存することになる。このため、発生部と検出部とをより高精度に対向させることができるので、検出部の出力をより安定させることができる。
本発明のセンサでは、前記検出対象は光であり、前記基板の前記発光素子及び前記受光素子が設けられる面に前記光の反射防止処理が施されている。
従って、発生部から発せられる光の基板による反射を低減することができる。このため、反射光の検出による検出部の出力を低減することができるので、検出部の出力をより安定させることができる。
本発明のセンサでは、前記発光素子と前記受光素子との間の空間である被検出領域で回転動作することで前記光に影響を与えるスケールと、前記スケールを回転可能に支持するシャフトを有する回転支持部とを備え、前記シャフトに前記光の反射防止処理が施されている。
従って、発生部から発せられる光のシャフトによる反射を低減することができる。このため、反射光の検出による検出部の出力を低減することができるので、検出部の出力をより安定させることができる。
本発明のセンサは、ロータリエンコーダである。
従って、本発明によりロータリエンコーダに連結された回動動作体の回動角度等の角位置を検出することができる。
上記の目的を達成するための本発明のセンサの製造方法は、所定の検出対象を発生させる発生部と、前記発生部により発生した前記検出対象を検出する検出部と、前記発生部及び前記検出部が設けられる基板とを備えるセンサの製造方法であって、前記発生部が設けられる第1部分、前記検出部が設けられる第2部分及び前記第1部分と前記第2部分とを接続する接続部が一体である基板を形成する工程と、前記第1部分に前記発生部を設け、前記第2部分に検出部を設ける工程と、前記第1部分の前記発生部が設けられた面と前記第2部分の前記検出部が設けられた面とが平行に設けられて対向するように二箇所で直角に基板を折り曲げる工程とを含み、前記二箇所の一方における折り曲げ軸である第1軸と前記二箇所の他方における折り曲げ軸である第2軸を平行とし、前記発生部の前記検出対象の発生中心点である第1点と前記第1軸との距離と、前記検出部による前記検出対象の検出領域の中心又は検出部が有する複数の検出領域の配置中心のいずれか一方である第2点と前記第2軸との距離とを等しくし、前記第1点と前記第2点を、折り曲げ前の基板において前記第1軸及び前記第2軸に対して直角に交差又は立体交差する直線上に配置する。
従って、発生部が設けられる第1部分と検出部が設けられる第2部分とが分離しないので、基板を折り曲げる又は湾曲させる等の簡易な作業により発生部と検出部との位置決めを行うことができる。このように、本発明のセンサによれば、発生部と検出部との位置決めがより容易になる。また、第1部分の発生部が設けられた面と第2部分の検出部が設けられた面とが平行に設けられて対向し、第1軸と第2軸が平行であり、第1点と第1境目との距離と第2点と第2境目との距離とが等しく、第1点と第2点が折り曲げ前の基板において第1軸及び第2軸に対して直角に交差又は立体交差する同一直線上に存することで、第1点と第2点は、第1部分及び第2部分に直交する同一直線上に存することになる。このため、発生部と検出部とをより高精度に対向させることができるので、検出部の出力をより安定させることができる。
本発明のセンサ及びセンサの製造方法によれば、発生部と検出部との位置決めをより容易とすることができる。また、本発明のセンサ及びセンサの製造方法によれば、検出部の出力をより安定させることができる。
図1は、本発明の一実施形態に係るセンサの構成図である。 図2は、センサの外観斜視図である。 図3は、発生部、光学スケール及び検出部の配置の一例を説明する説明図である。 図4は、光学式エンコーダのブロック図である。 図5は、光学スケールのパターンの一例を示す説明図である。 図6は、基板の一例を示す斜視図である。 図7は、折り曲げられる前の基板の一例を示す平面図である。 図8は、発生部及び検出部が設けられる側の面における回路配置と、その裏面に設けられている構成との対応関係の一例を示す図である。 図9は、ステータのボディ及びボディに設けられている構成の一例を示す斜視図である。 図10は、ステータのシャシに設けられている構成の一例を示す斜視図である。 図11は、発生部と検出部との位置関係の一例を示す図である。 図12は、発生部と検出部との位置関係の一例を示す図である。 図13は、回路実装前の基板の一例を示す平面図である。 図14は、被検出領域に光学スケールを設けるためのステータの組み立ての一例を示す図である。 図15は、検出部の一例を説明するための説明図である。 図16は、検出部の第1受光部の一例を説明するための説明図である。 図17は、検出部の第3受光部の一例を説明するための説明図である。 図18は、光学スケールによる偏光成分の分離を説明するための説明図である。 図19は、光学スケールによる偏光成分の分離を説明するための説明図である。 図20は、光学スケールによる偏光成分の分離を説明するための説明図である。 図21は、光学式エンコーダの機能ブロック図である。 図22は、光学スケールの回転角度と各受光部の偏光成分の光強度変化を説明するための説明図である。 図23は、光学スケールの回転角度とリサージュ角度との関係を説明するための説明図である。 図24は、発生部を説明するための図である。 図25は、発生部からの光の発生範囲と検出部及びシャフトの位置との関係の一例を示す図である。 図26は、センサの製造に係る工程の流れの一例を示すフローチャートである。 図27は、検出部が有する複数の受光素子の別の配置例を示す図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
図1は、本発明の一実施形態に係るセンサ31の構成図である。図2は、センサ31の外観斜視図である。図1は、図2の断面模式図である。図3は、発生部41、光学スケール11及び検出部35の配置の一例を説明する説明図である。図4は、光学式エンコーダ2のブロック図である。図5は、光学スケール11のパターンの一例を示す説明図である。センサ31は、電磁波(例えば光)からなる検出対象を発生させる発生部41と、被検出領域を挟んで発生部41により発生した検出対象を検出する検出部35と、発生部41及び検出部35が設けられる基板50と、を備える。本実施形態では、センサ31は、さらに、モータ等の回転機械に連結されたシャフト12及び当該シャフト12の端部に取り付けられて被検出領域で回転可能に設けられる回転体(光学スケール11)を有するロータ10と、ステータ20とを有している。なお、被検出領域とは、発生部41と検出部35との間の空間である。本実施形態における発生部41は、光を発する発光素子である。具体的には、発生部41は、例えば発光素子としての発光ダイオード(点光源)を有する。本実施形態における検出部35は、発光素子である発生部41から発せられた光を受光する受光素子である。より具体的には、本実施形態の検出部35は、偏光層PP1を有する第1受光部PD1と、偏光層PP2を有する第2受光部PD2と、偏光層PP3を有する第3受光部PD3と、偏光層PP4を有する第4受光部PD4の四つの受光素子を有する。図3では、発生部41から発せられる光源光71から各受光部(第1受光部PD1〜第4受光部PD4)への入射光73が各偏光層PP1〜PP4を通過することを示すために偏光層PP1〜PP4と第1受光部PD1〜第4受光部PD4とが分離して描かれているが、実際には両者は当接している。
図6は、基板50の一例を示す斜視図である。図7は、折り曲げられる前の基板50の一例を示す平面図である。図8は、発生部41及び検出部35が設けられる側の面における回路配置と、その裏面に設けられている構成との対応関係の一例を示す図である。図9は、ステータ20のボディ21及びボディ21に設けられている構成の一例を示す斜視図である。図10は、ステータ20のシャシ22に設けられている構成の一例を示す斜視図である。図11及び図12は、発生部41と検出部35との位置関係の一例を示す図である。図13は、回路実装前の基板の一例を示す平面図である。図14は、被検出領域に光学スケール11を設けるためのステータ20の組み立ての一例を示す図である。図15は、検出部35の一例を説明するための説明図である。基板50は、発生部41が設けられる第1部分51と検出部35が設けられる第2部分52とが一体である。例えば図6、図7に示すように、基板50は、半円弧状の第1部分51、円状の第2部分52を含む一つの基板である。基板50は、例えばフレキシブルプリント基板(Flexible printed circuits:FPC)からなり、発生部41及び検出部35を含む各種の回路(例えば図6に示すIC回路60等)が実装されている。より具体的には、FPCは、例えばポリイミド膜又はフォトソルダーレジスト膜からなる絶縁体をベースフィルムとして、ベースフィルム上に接着層及び導体層を形成し、導体層のうち端子部(はんだ付け部を含む)を除く部分を絶縁体で被覆した可撓性を有する配線基板である。導体層は、銅等の電気伝導体からなり、導体層のパターンにより各種の回路等の部品に接続される信号線及び電力線が設けられる。本発明に採用可能なフレキシブル基板の具体的構成は、これに限られるものでなく適宜変更可能である。IC回路60等、検出部35及び発生部41を除く各種の回路は、例えば後述する図21に示すプリアンプAMP、差動演算回路DS、フィルター回路NR、逓倍回路AP等を構成する。以下、基板50において発生部41及び検出部35が設けられる側の面を表面50A、その反対側の面を裏面50Bと記載することがある(図8参照)。また、基板50の表面50Aのうち、第1部分51の表面51A及び第2部分の表面52Aについて区別して記載することがある。また、基板50の裏面50Bのうち、第1部分51の裏面51B及び第2部分の裏面52Bについて区別して記載することがある。
基板50は、第1部分51において発生部41を含む電子部品が設けられる面及び第2部分52において検出部35を含む電子部品が設けられる面の少なくとも一方の面の裏側の面に、電子部品が設けられる面を平面に保つ板状の支持部材が取り付けられている。具体的には、例えば図7に示すように、受光素子を構成するフォトダイオード(第1受光部PD1〜第4受光部PD4)の他、第2部分において受光素子と同一の面(表面52A)に設けられる部品61は、その裏面52BにおけるIC回路60の実装範囲の内側に設けられる。部品61は、第2部分52において受光素子と同一の面(表面52A)に設けられる他の回路であり、具体的には、例えばICチップ、抵抗器、コンデンサ等の回路部品を含む。IC回路60は、例えばQFN(Quad flat no lead package)方式のパッケージが採用された集積回路である。このように、本実施形態における第2部分52の支持部材は、集積回路(IC回路60)のパッケージであり、当該パッケージが取り付けられた第2部分52に設けられる一つ以上の電子部品(例えば、検出部35及び部品61)は、基板50を挟んだ裏側に当該パッケージが存する位置に設けられる。なお、集積回路のパッケージの方式は、QFN方式に限られず、当該集積回路が設けられた側の面の反対側の面(例えば第2部分52の表面52A)を平面に保つことができる支持部材として機能し得る支持構造部を有していればよい。なお、本実施形態において、第2部分52の表面52Aに設けられる他の回路であるICチップ、抵抗器、コンデンサ等の部品61は、はんだ付けにより配線に接続されるパッケージ回路と、ワイヤーボンディング等の方法により配線に接続されるベアチップとを含んでいるが、一例であってこれに限られるものでなく、いずれか一方であってもよいし、一部又は全部が他の方式を採用した回路であってもよい。
また、図8に示すように、本実施形態の第1部分51には、発光デバイス41Uをパッケージした発光素子(図24参照)が設けられる面の裏側にサポート基板65が設けられている。サポート基板65は、例えば第1部分51の反円弧状の形状に対応した半円弧状の板状部材である。より具体的には、第1部分51及びサポート基板65は、円板面の中心に当該円板の径よりも小さい径の円状の孔が設けられたドーナツ状(円弧状)の板面を直径に沿って二つに割った場合の一方に対応する半円弧状の板面を有する。サポート基板65は、例えば絶縁性を有する樹脂からなる。このように、本実施形態における第1部分51の支持部材は、第1部分51の形状に合わせて形成された絶縁性を有する板状部材である。本実施形態におけるサポート基板65は、あくまで回路でない支持部材の一例であってこれに限られるものでなく、適宜変更可能である。
基板50は、第1部分51と第2部分52とを接続する接続部53を有する。具体的には、例えば図6、図7に示すように、接続部53は、第1部分51と第2部分52との間で、第1部分51の円弧の外周部と第2部分52の円弧の外周部とを接続するよう設けられている。
接続部53は、発生部41(又は検出部35)に接続される配線を有する。本実施形態では、接続部53は、発生部41に接続される信号線及び電力線を具備する。具体的には、接続部53の配線は、例えばFPCに実装された信号線及び電力線として設けられている。なお、本実施形態の接続部53には回路が設けられていないが、接続部53に回路等の部品を設けることもできる。
図6、図7に示すように、本実施形態の接続部53は、第1部分51及び第2部分52に比して、第1部分51と第2部分52との間での接続部53の延設方向に直交する方向であって基板50の板面に沿う方向の幅が小さい。
基板50は、発生部41及び検出部35に接続される配線を含むハーネス部54を備える。具体的には、例えば図6、図7に示すように、ハーネス部54は、第1部分51から接続部53の反対側に延出されるよう設けられている。ハーネス部54は、発生部41、検出部35及び基板50に設けられた各種の回路に接続される信号線及び電力線を具備する。具体的には、ハーネス部54の配線は、例えばFPCに実装された信号線及び電力線として設けられている。本実施形態では、発生部41の配線は、第1部分51、接続部53及びハーネス部54に設けられている。また、検出部35の配線は、第2部分52及びハーネス部54に設けられている。
また、ハーネス部54は、例えば図1に示すように、コネクタCNTと接続されている。コネクタCNTは、センサ31と他の装置(例えば演算装置3)とを接続するインターフェースである。センサ31は、コネクタCNTを介して演算装置3と接続されている。すなわち、ハーネス部54は、基板50に設けられた各種の回路と他の装置(例えば演算装置3)とを接続する配線として機能する。なお、ハーネス部54に回路等の部品を設けてもよい。
基板50は、第1部分51と第2部分52とが平行になるよう設けられる。具体的には、基板50は、図1、図6に示すように、発生部41と検出部35とが対向する形状(コの字状)に折り曲げられる。本実施形態では、基板50は、接続部53に設けられた二箇所の折り曲げ位置55a,55bで表面50Aを内側にするように直角に折り曲げられる。すなわち、基板50は、接続部53に対して第1部分51及び第2部分52が直角になるよう折り曲げられ、かつ、第1部分51と第2部分52とが対向する位置に存する。これにより、第1部分51と第2部分52とが平行に設けられて、発生部41と検出部35とが対向する。本実施形態では、二箇所の折り曲げ位置55a,55bのうち、第1部分51に近い方の折り曲げ位置を折り曲げ位置55aとし、第2部分52に近い方の折り曲げ位置を折り曲げ位置55bとしている。
第1部分51において発生部41が設けられる側の面と、第2部分52において検出部35が設けられる側の面とは、基板50における同一の面(表面50A)である。発生部41が設けられる側の面と検出部35が設けられる側の面とが対向するよう設けられることで、発生部41と検出部35との位置関係は、図3等に示すように、発生部41により発生した検出対象(例えば光)が検出部35により検出可能な位置関係になる。また、対向する発生部41と検出部35の間の空間が被検出領域になる。
このように、基板50は、発生部41が設けられる第1部分51、検出部35が設けられる第2部分52及び第1部分51と第2部分52とを接続する接続部53が一体であり、二箇所の折り曲げ位置55a,55bで直角に折り曲げられて第1部分51の発生部41が設けられた面(表面51A)と第2部分52の検出部35が設けられた面(表面52A)とが平行に設けられて対向する。ここで、図7に示すように、折り曲げ位置55aにおける折り曲げ軸である第1軸LAと折り曲げ位置55bにおける折り曲げ軸である第2軸LBは平行である。折り曲げ軸とは、基板50を折り曲げる際に、折り曲がる基板の折り曲げ箇所(例えば折り曲げ位置55a,55b)を挟んで対向する一方(例えば第1部分51又は第2部分52)に対する他方(例えば接続部53)の回動動作の動作中心軸となる軸をさす。本実施形態における第1軸LA、第2軸LBはそれぞれ、基板50における折り曲げ位置55a,55bに折り目として形成される二つの折り曲げ線と重なる位置に存する。
また、基板50の折り曲げ前の平面上における発生部41の検出対象の発生中心点である第1点と第1軸LAとの距離と、検出部35による検出対象の検出領域の中心又は検出部35が有する複数の検出領域の配置中心のいずれか一方である第2点と第2軸LBとの距離とが等しい。具体的には、図7に示すように、本実施形態における発生部41の光の出射点41Sと、折り曲げ位置55aにおける折り曲げ線、すなわち第1軸LAとの距離W1と、検出部35が有する四つの受光素子である第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4の配置中心S0と、折り曲げ位置55bにおける折り曲げ線、すなわち第2軸LBとの距離W2とが等しい。ここで、発生部41の光の出射点41Sが本実施形態における第1点であり、配置中心S0が本実施形態における第2点である。
また、第1点と第2点は、折り曲げ前の基板50に沿う同一直線上に存し、当該直線と第1軸LA及び第2軸LBとは直角に交差する。第1軸LA及び第2軸LBに直交する同一直線上に存する。具体的には、図7に示すように、発生部41の光の出射点41Sと配置中心S0は、折り曲げ位置55a,55bにおける二つの折り曲げ線、すなわち第1軸LA及び第2軸LBに直交する同一直線である直線L1上に存する。
また、四つの受光素子の各々は、所定の平面上の異なる位置に配置され、所定の平面上の一点に対する四つの受光素子の各々からの距離が全て等しく、一点と四つの受光素子の各々の受光領域の中心とを結ぶ四つの線分は、互いに直角を形成する。具体的には、検出部35が有する四つの受光素子である第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4は、基板50の第2部分52の表面52A上で一点(配置中心S0)に対して等距離に配置されている。また、表面52A上で、第1受光部PD1と第3受光部PD3とが配置中心S0を挟んで点対称の位置に配置され、第2受光部PD2と第4受光部PD4とが配置中心S0を挟んで点対称の位置に配置されている。また、本実施形態では、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4の各々が有する受光領域の形状及び面積は全て等しい。また、検出部35は、第1受光部PD1の受光領域の中心と第3受光部PD3の受光領域の中心とが配置中心S0を中点として距離2W離して配置されており、第2受光部PD2の受光領域の中心と第4受光部PD4の受光領域の中心とが配置中心S0を中点として距離2W離して配置されている。言い換えれば、第1受光部PD1〜第4受光部PD4の四つの受光素子の受光領域の中心と配置中心S0との距離は、全て距離Wであり、等しい。なお、本実施形態において、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4の受光領域の中心と配置中心S0との距離Wは、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4の幅wより大きい。また、第1受光部PD1の受光領域の中心、配置中心S0及び第3受光部PD3の受光領域の中心を通過する仮想軸をx軸とし、第2受光部PD2の受光領域の中心、配置中心S0及び第4受光部PD4の受光領域の中心を通過する仮想軸をy軸とすると、x軸とy軸とは第2部分52の表面52A上で直交している。すなわち、第2部分52の表面52A上で、第1受光部PD1の受光領域の中心と第2受光部PD2の受光領域の中心とが形成する角θ1は、90°である。同様に、第2受光部PD2の受光領域の中心と第3受光部PD3の受光領域の中心とが形成する角θ2、第3受光部PD3の受光領域の中心と第4受光部PD4の受光領域の中心とが形成する角θ3及び第4受光部PD4の受光領域の中心と第1受光部PD1の受光領域の中心とが形成する角θ4は、90°である。このように、四つの受光素子(第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4)は、表面52A上で配置中心S0を円の中心とした同一円周上で、90°等配置されている。また、x軸とy軸とによるxy平面は、発生部41の光の出射点41Sと配置中心S0とを結ぶz軸と直交している。すなわち、発生部41側から表面52Aをz軸方向に沿って見下ろした場合、出射点41Sは配置中心S0と重なる。すなわち、一点(配置中心S0)を通る所定の平面(例えば第2部分52の表面52A)の法線である直線L2(図12参照)は、発光素子(発生部41)の光の出射点41Sの中心を通る。これにより、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4は、発光部41の光の出射点41Sから等距離に配置される。
第1部分51又は第2部分52の一方は、他方よりも小さい。具体的には、例えば図6、図7に示すように、本実施形態における円弧状の第1部分51の径は、円状の第2部分52の径と略同一である。ただし、第1部分51は、半円状のFPCの内周側に半円状の切欠部51aが設けられている半円弧状の形状を有する。このため、基板50に占める第1部分51の面積は、第2部分52の面積よりも小さい。
検出部35は、被検出領域における物理量の変化により生じる検出対象(例えば光等の電磁波)の変化を検出する。物理量の変化は、例えば被検出領域に存する回転体の回転による。具体的には、例えば図1〜図3に示すように、被検出領域にはロータ10の光学スケール11が設けられる。センサ31は、回転体としての光学スケール11の回転による検出対象の検出結果の変化に応じた出力を行うセンサである。すなわち、センサ31は、ロータ10に回転動作を伝達するよう接続された回動動作体の角位置を検出するロータリエンコーダとして機能する。
ロータ10は、図5に示す円板形状(又は多角形形状)の部材である光学スケール11を有している。光学スケール11は例えば、シリコン、ガラス、高分子材料などで形成されている。光学スケール11は円輪状もしくは中空であってもよい。図5に示す光学スケール11は、信号トラックT1を一方の板面に有している。また、ロータ10には、光学スケール11の取り付けられた板面に対し他方の板面にシャフト12が取り付けられている。光学スケール11は、傾斜していても傾斜角度が小さい場合には偏光分離の機能に影響がない。本実施形態における光学スケール11は、発光素子(発生部41)と受光素子(検出部35)との間の空間である被検出領域で動作することで光に影響を与える部材として機能する。
ステータ20は、軸受26a,26bと、シャフト12と、シャフト12の端部に取り付けられた光学スケール11と、検出部35とを囲む、遮光性の部材でできている。このため、ステータ20の内部では、外来の光ノイズを抑制できる。本実施形態におけるステータ20は、基板50及び部材(光学スケール11)を収納する筐体として機能する。ステータ20は、部材を動作可能に支持する第1筐体と、基板50の一部分が固定される第2筐体とを有する。具体的には、ステータ20は、例えば図9、図10に示すように、第1筐体として機能するボディ21と、第2筐体として機能するシャシ22と、カバー23とを備えている。ボディ21は、軸受26a,26bを介してシャフト12を回転可能に支持するハウジングである。ボディ21の内周が軸受26a,26bの外輪に固定されており、シャフト12の外周が軸受26a,26bの内輪に固定されている。シャフト12がモータ等回転機械からの回転により回転すると、シャフト12に連動して光学スケール11が回転中心Zrを軸中心として回転する。ボディ21は、基板50が設けられたシャシ22をボディ21に取り付けるための開口部21aを有する。シャシ22には、基板50の第2部分52のうち、検出部35が設けられた側の反対側の面(裏面)の少なくとも一部分と当接するように基板50が固定されている。具体的には、上記のように、基板50の裏面50Bには、センサ31を構成する部品としてのIC回路60が設けられている。シャシ22は、例えば図10に示すように、裏面のIC回路60を外側から覆うとともに第2部分52の円状の外周部と当接する形状を有する。コの字状に折り曲げられた基板50の接続部53は、シャシ22に固定されることでシャシ22に支持された第2部分52から立設するように位置する。このように、本実施形態では、基板50は、第2部分52がシャシ22に固定されることでシャシ22に固定されている。カバー23は、ステータ20の円筒状の外周面の一部を形成する部材である。カバー23は、ボディ21の開口部21a側、すなわち、シャシ22からハーネス部54が延出される切欠部21bの反対側に設けられる。ボディ21とシャシ22とが組み付けられた状態で、さらにカバー23が開口部21aを覆うように組み付けられることで、ボディ21、シャシ22及びカバー23は円筒状のステータ20を形成し、ステータ20の内部を外部の光ノイズから遮光する。このように、シャシ22及びカバー23は、ハウジングであるボディ21の蓋として機能する。
また、第1部分51は、被検出領域の反対側の面が第1筐体(例えばボディ21)に接着される。具体的には、第1部分51の被検出領域の反対側の面(裏面51B)は、板状部材(例えばサポート基板65)を介して第1筐体に接着される。より具体的には、本実施形態のサポート基板65は、第1部分51と当接する面及びその反対側の面の両面に粘着性を有するテープが貼り付けられている。当該テープは、所謂両面テープであり、両面が粘着性を有する。すなわち、サポート基板65は、一方の面がテープを介して第1部分51の裏側の面(裏面51B)に接着されている。また、サポート基板65は、一方の面が第1部分51に接着された状態で、他方の面が粘着性を有する状態になっていることになる。他方の面は、ボディ21からシャフト12が延出している面であって、シャシ22側に存する面(以下、接着面21cと記載)とテープを介して接着される。このように、第1部分51又は第2部分52の一方(本実施形態では、第2部分52)は、第2筐体(シャシ22)に固定され、第1部分51又は第2部分52の他方(本実施形態では、第1部分51)は、被検出領域の反対側の面が第1筐体(ボディ21)に接着される。また、板状部材(例えばサポート基板65)は、一方の面が他方の被検出領域の反対側の面(裏面51B)に接着された状態で、他方の面が第1筐体(ボディ21)に接着される。なお、第1部分51又は第2部分52の他方(例えば第1部分51)の被検出領域の反対側の面(例えば裏面51B)と第1筐体(例えばボディ21)との間に介在する板状部材(例えばサポート基板65)は、基板50に比して剛性が高いことが望ましい。
なお、本実施形態では、第1部分51の被検出領域の反対側の面がサポート基板65を介して第1筐体に接着されているが、これは接着の具体的形態の一例であってこれに限られるものでない。例えば、第1部分51の裏面51Bは、接着剤やテープ(両面テープ等)で接着面21cに接着されてもよい。具体的には、例えばサポート基板65の外周付近又は内周部の数点に接着剤を点状に塗布し、サポート基板65と第1部分51の裏面51B及びサポート基板65と接着面21cとをスポット固定するようにしてもよい。また、スポット固定において接着剤が固化するまでの補強として、さらにテープを併用するようにしてもよい。また、第1部分51と第2部分52の関係は逆であってもよい。すなわち、第1部分51が第2筐体に固定され、第2部分52の他方の被検出領域の反対側の面(裏面52B)が第1筐体に接着されるようにしてもよい。ただし、この場合、例えば第2部分52の形状が本実施形態における第1部分51の形状と同様になる等、基板50及び基板50に設けられる回路(例えば部品61等)の構成は、筐体(例えばステータ20)の構成に対する干渉等を考慮した形態を取る。
接着剤を用いる場合も、接着剤を第1筐体(例えばボディ21の接着面21c)又は第1部分51若しくは第2部分52の他方の被検出領域の反対側の面に塗布し、第1筐体と他方とを当接させるだけで他方の被検出領域の反対側の面を第1筐体に接着することができるので、センサ31の組み立てがより容易になる。
上述したロータ10のシャフト12が回転すると、図3に示すように、光学スケール11が、例えばR方向に検出部35に対して相対的に移動する。これにより、光学スケール11の信号トラックT1が検出部35に対して相対的に移動する。光学スケール11は、面内における偏光子の偏光方向Pmが所定の方向を向いており、かつ偏光方向Pmが回転により変化する。検出部35は、発生部41の光源光71が光学スケール11に透過して入射する入射光(透過光)73を受光して、図5に示す光学スケール11の信号トラックT1を読み取ることができる。
光学式エンコーダ2は、上述したセンサ31と、演算装置3と、を備えており、図4に示すように、センサ31と、演算装置3とが接続されている。演算装置3は、例えばモータ等の回転機械の制御部5と接続されている。
光学式エンコーダ2は、光学スケール11に光源光71が透過して入射する入射光73を検出部35で検出する。演算装置3は、検出部35の検出信号からセンサ31のロータ10と検出部35との相対位置を演算し、相対位置の情報を制御信号として、モータ等の回転機械の制御部5へ出力する。
演算装置3は、例えばパーソナルコンピュータ(PC)等のコンピュータであり、入力インターフェース4aと、出力インターフェース4bと、CPU(Central Processing Unit)4cと、ROM(Read Only Memory)4dと、RAM(Random Access Memory)4eと、内部記憶装置4fと、を含んでいる。入力インターフェース4a、出力インターフェース4b、CPU4c、ROM4d、RAM4e及び内部記憶装置4fは、内部バスで接続されている。なお、演算装置3は、専用の処理回路で構成してもよい。
入力インターフェース4aは、センサ31の検出部35からの入力信号を受け取り、CPU4cに出力する。出力インターフェース4bは、CPU4cから制御信号を受け取り、制御部5に出力する。
ROM4dには、BIOS(Basic Input Output System)等のプログラムが記憶されている。内部記憶装置4fは、例えばHDD(Hard Disk Drive)やフラッシュメモリ等であり、オペレーティングシステムプログラムやアプリケーションプログラムを記憶している。CPU4cは、RAM4eをワークエリアとして使用しながらROM4dや内部記憶装置4fに記憶されているプログラムを実行することにより、種々の機能を実現する。
内部記憶装置4fには、光学スケール11による偏光方向Pmと検出部35の出力とを対応付けたデータベースが記憶されている。または、内部記憶装置4fには、発生部41の光の出射点41Sと、配置中心S0(検出部35)との距離D(図12参照)の値と、光学スケール11の位置情報とを対応付けたデータベースが記憶されている。
図5に示す信号トラックT1は、ワイヤーグリッドパターンとよばれる金属細線(ワイヤー)gの配列が図1に示す光学スケール11に形成されている。光学スケール11は、信号トラックT1として、隣り合う金属細線gを平行に直線的に配置している。このため、光学スケール11は、光源光71が照射される位置によらず同じ偏光軸となり、面内における偏光子の偏光方向が一方向を向いている。
また、ワイヤーグリッドパターンとよばれる金属細線gを有する光学スケール11は、光誘起の偏光板に比較して、耐熱性を高めることができる。また、光学スケール11は、局所的にも、交差するような部分のないラインパターンとなっているため、高精度で誤差の少ない光学スケール11とすることができる。また、光学スケール11は、一括した露光またはナノインプリント技術により安定して製造することもできるため、高精度で誤差の少ない光学スケール11とすることができる。なお、光学スケール11は、光誘起の偏光板としてもよい。
複数の金属細線gは、交差せず配置されている。隣り合う金属細線gの間は、光源光71の全部又は一部が透過可能な透過領域dである。金属細線gの幅及び隣り合う金属細線gの間隔、つまり金属細線gの幅及び透過領域dの幅は、発生部41の光源光71の波長より十分小さくする場合、光学スケール11は、光源光71の入射光73を偏光分離することができる。このため、光学スケール11は、面内における偏光方向Pmが一様な偏光子を有している。光学スケール11は、回転する周方向において、検出部35へ入射する入射光73の偏光軸が光学スケール11の回転に応じて変化する。本実施形態において、偏光軸の変化は、光学スケール11の1回転に対して2回の増減を繰り返すことになる。
光学スケール11は、偏光方向の異なるセグメントを細かくする必要がない。そして、光学スケール11は、一様な偏光方向Pmを有しているため、偏光方向Pmの異なる領域の境界がなく、この境界による入射光73の偏光状態の乱れを抑制できる。本実施形態の光学式エンコーダ2は、誤検出またはノイズを生じさせる可能性を低減することができる。
図16は、検出部35の第1受光部PD1の一例を説明するための説明図である。図17は、検出部35の第3受光部PD3の一例を説明するための説明図である。発生部41は、例えば発光ダイオードである。図3に示すように、発生部41から照射される光源光71は、上述した光学スケール11を透過して、入射光73として、偏光層PP1、偏光層PP2、偏光層PP3及び偏光層PP4を透過し、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4に入射する。z軸方向から平面視でみると、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれが発生部41の周囲に配置されている。第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれから配置中心S0までの距離は等しい。この構造により、演算手段であるCPU4cの演算負荷を軽減することができる。
図16に示すように、第1受光部PD1は、シリコン基板34と、受光部37と、第1偏光層39aとを含む。また、図17に示すように、第3受光部PD3は、シリコン基板34と、受光部37と、第2偏光層39bとを含む。例えば、シリコン基板34はn型半導体であり、受光部37はp型半導体であり、シリコン基板34と受光部37とによりPN接合で形成されたフォトダイオードを構成することができる。第1偏光層39a及び第2偏光層39bは、光誘起の偏光層、または金属細線を平行に配列したワイヤーグリッドパターン等で形成することができる。第1偏光層39aは、図3に示す光学スケール11に光源光71から入射する入射光73を第1の偏光方向に分離し、第2偏光層39bは、上記入射光73を第2の偏光方向に分離する。これら第1の分離光の偏光軸と、第2の分離光の偏光軸とは、相対的に90°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
同様に、図16及び図17を用いて説明すると、第2受光部PD2は、シリコン基板34と、受光部37と、第1偏光層39aとを含む。また、図17に示すように、第4受光部PD4は、シリコン基板34と、受光部37と、第2偏光層39bとを含む。例えば、シリコン基板34はn型半導体であり、受光部37はp型半導体であり、シリコン基板34と受光部37とによりPN接合で形成されたフォトダイオードを構成することができる。第1偏光層39a及び第2偏光層39bは、光誘起の偏光層、または金属細線を平行に配列したワイヤーグリッドパターン等で形成することができる。第1偏光層39aは、図3に示す光学スケール11に光源光71から入射する入射光73を第1の偏光方向に分離し、第2偏光層39bは、上記入射光73を第2の偏光方向に分離する。これら第1の分離光の偏光軸と、第2の分離光の偏光軸とは、相対的に90°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4は、入射光73をそれぞれ異なる偏光方向に分離する偏光層PP1、PP2、PP3及びPP4を介して受光する。このため、偏光層PP1が分離する偏光軸と、偏光層PP2が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP2が分離する偏光軸と、偏光層PP3が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP3が分離する偏光軸と、偏光層PP4が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP4が分離する偏光軸と、偏光層PP1が分離する偏光軸とは、相対的に45°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
図18、図19及び図20は、光学スケール11による偏光成分の分離を説明するための説明図である。図18のように、光学スケール11の信号トラックT1により偏光方向Pmに偏光された入射光が入射する。図18において、センシング範囲には、異物D1及び異物D2がある。入射光の偏光方向Pmは、上述した第1の偏光方向の成分の光強度PI(−)と、第2の偏光方向の成分の光強度PI(+)と、で表現することができる。上述したように、第1の偏光方向と、第2の偏光方向とは、90°異なる方向であることが好ましく、基準方向に対して例えば+45°成分と−45°成分のようになっている。図18、図19及び図20において、ワイヤーグリッドの軸方向は、紙面に対して平行に示されているが、紙面に対して同一の角度で傾斜していても傾斜角度が小さい場合には偏光分離の機能に影響がない。すなわち、光学スケール11は、回転軸に対して傾斜していても、偏光分離素子として機能する。
第1受光部PD1は、図19に示すように、入射光を第1の偏光方向に分離する第1偏光層39aを介して検知するため、第1の偏光方向の成分の光強度PI(−)を検知する。第3受光部PD3は、図20に示すように、入射光を第2の偏光方向に分離する第2偏光層39bを介して検知するため、第2の偏光方向の成分の光強度PI(+)を検知する。同様に、第2受光部PD2は、図19に示すように、入射光を第1の偏光方向に分離する第1偏光層39aを介して検知するため、第1の偏光方向の成分の光強度PI(−)を検知する。第4受光部PD4は、図20に示すように、入射光を第2の偏光方向に分離する第2偏光層39bを介して検知するため、第2の偏光方向の成分の光強度PI(+)を検知する。
図21は、光学式エンコーダ2の機能ブロック図である。図22は、光学スケール11の回転角度と各受光部の偏光成分の光強度変化を説明するための説明図である。図21に示すように、発生部41は、基準信号に基づいた発光を行い、光学スケール11に光源光71を照射する。透過光である入射光73は、検出部35に受光される。差動演算回路DSは、検出部35から出力されてプリアンプAMPにより増幅された検出信号を用いた差動演算処理を行う。検出部35の出力の大きさに応じてプリアンプAMPは省略可能である。
差動演算回路DSは、検出部35の検出信号である、第1の偏光方向の成分(第1分離光)の光強度PI(−)と、第2の偏光方向の成分(第2分離光)の光強度PI(+)とを取得する。この光強度PI(−)と、光強度PI(+)とに対応する、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれの出力は、例えば、図22のように、光学スケール11の回転に応じて、位相がずれた光強度I1、I2、I3及びI4である。
差動演算回路DSは、式(1)及び式(2)に従って、第1の偏光方向の成分の光強度PI(−)及び第2の偏光方向の成分の光強度PI(+)から、光学スケール11の回転に依存した差動信号Vc及び差動信号Vsを演算する。差動信号Vcは、所謂コサイン(cos)成分に対応する信号であり、差動信号Vsは、所謂サイン(sin)成分に対応する信号である。
Vc=(I1−I3)/(I1+I3)…(1)
Vs=(I2−I4)/(I2+I4)…(2)
このように、差動演算回路DSは、光強度I1及び光強度I3に基づいて、光強度の和[I1+I3]と、光強度の差[I1−I3]を演算し、光強度の差[I1−I3]を光強度の和[I1+I3]で除した差動信号Vcを演算する。また、差動演算回路DSは、光強度I2及び光強度I4に基づいて、光強度の和[I2+I4]と、光強度の差[I2−I4]を演算し、光強度の差[I2−I4]を光強度の和[I2+I4]で除した差動信号Vsを演算する。式(1)及び式(2)により演算した差動信号Vc及びVsには、光源光71の光強度の影響を受けるパラメータが含まれておらず、センサ31の出力は、検出部35と光学スケール11との距離、発生部41の光強度のばらつき等の影響を低減することができる。差動信号Vc及びVsは、光学スケール11の回転角度となる光学スケール11の偏光軸の回転角度(以下、偏光角という)βの関数となる。ただし、発生部41に設けられた光源の光量を一定に制御するオートパワーコントロール(APC)を備えている場合は、上述の除算は不要である。
図21に示すように、差動信号Vc及びVsは、フィルター回路NRに入力され、ノイズ除去される。次に、逓倍回路APでは、差動信号Vc及びVsから図23に示すリサージュパターンを演算し、初期位置から回転したロータ10の回転角度の絶対角度を特定することができる。差動信号Vc及びVsは、λ/4位相がずれた差動信号であるので、差動信号Vcのコサインカーブを横軸へ、差動信号Vsのサインカーブを縦軸にとったリサージュパターンを演算し、回転角度に応じて、リサージュ角が定まることになる。例えば、図23に示すリサージュパターンは、ロータ10が1回転すると2周する。演算装置3は、光学スケール11の回転位置が0°以上180°未満の範囲にあるか、180°以上360°未満の範囲にあるかを記憶する機能を有する。これにより、光学式エンコーダ2は、ロータ10の絶対位置が演算できるアブソリュートエンコーダとすることができる。
図24は、発生部41を説明するための図である。図24に示す発生部41は、例えば発光ダイオード等の発光デバイス41Uをパッケージした発光素子である。発光デバイス41Uは、面発光型光源を用いている。発光デバイス41Uは、他の構成でもよい。具体的には、例えば、垂直共振器面発光レーザ等のレーザ光源、フィラメント等であってもよい。発生部41は、ベース基板41Fと、スルーホールSHに埋め込まれた貫通導電層41Hと、貫通導電層41Hと電気的に接続された外部電極41Pと、ベース基板41Fに搭載された発光デバイス41Uと、発光デバイス41Uと貫通導電層41Hとを導通接続するボンディングワイヤ41Wと、発光デバイス41Uを保護する封止樹脂41Mと、遮光膜41Rとを備えている。
発生部41の遮光膜41Rは、発光デバイス41Uが放射する光源光71を出射面41Tの範囲に絞る光源光71の絞りの機能を奏している。出射面41Tにはレンズ面がなく、光源光71の配光分布は、出射面41Tの断面に対して所定角度2θoの配光分布を示す。配光分布の角度2θoは、発生部41に依存する。角度2θoは、例えば30°であるが、これより角度を大きくすることも小さくすることもできる。
センサ31は、レンズのついていない発生部41を使用することができる。発生部41の光の出射点41Sと、配置中心S0(検出部35)との距離Dを接近させることでSN比を向上させることができる。第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれまでの距離Wは、発生部41の拡散する光の影響を減じて受光できる範囲に配置可能となる。このためセンサ31及び光学式エンコーダ2は、測定精度が向上する。無論、レンズのついた発生部41を使用してもよい。
図25は、発生部41からの光の出射範囲と検出部35及びシャフト12の位置との関係の一例を示す図である。本実施形態において、発生部41により発生して検出部35により検出される検出対象は光である。発生部41の光源光71の出射角度(上記の角度2θo)は設計により任意に設定可能である。よって、図25に示すように、光源光71の出射角度の範囲内に検出部35による受光領域を全て含めつつ、接続部53及びシャフト12を含めないようにすることができる。しかしながら、発光ダイオードを光源とする光源光71を完全に出射範囲に収めて光漏れをゼロにすることは難しい。また、出射後の反射光等をさらに考慮すると、直接の光源光71以外の光(例えば乱反射光等)の全てを検出部35に完全に入射させないようにすることは難しい。そこで、本実施形態では、反射光を低減する目的で、基板50の発光素子及び受光素子が設けられる面に光の反射防止処理が施されている。具体的には、基板50の板面のうち少なくとも発光素子(発生部41)及び受光素子(検出部35)が設けられる側の面(表面50A)に対して吸光性を有する黒色塗料等の反射防止材を塗装する塗装処理等を、光の反射防止処理として採用することができる。
また、シャフト12の外周面で光が反射する可能性を考慮して、シャフト12にも反射防止処理を施すようにしてもよい。この場合、センサ31は、発光素子(発生部41)と受光素子(検出部35)との間の空間である被検出領域で回転動作することで光に影響を与えるスケール(光学スケール11)と、スケールを回転可能に支持するシャフト12を有する回転支持部(ステータ20のボディ21)とを備え、シャフト12に光の反射防止処理が施されているセンサになる。具体的には、例えば金属製のシャフト12の外周面に対する黒色酸化皮膜のめっき処理や上記の塗装処理等を、光の反射防止処理として採用することができる。同様の発想で、光学スケール11及び基板50を収納するステータ20の内周面に反射防止処理を施すようにしてもよい。
次に、センサ31の製造方法について、図26のフローチャートを参照して説明する。図26は、センサ31の製造に係る工程の流れの一例を示すフローチャートである。以下、製造作業者又は当該製造作業者により操作される製造のための機械が主体となった作業工程を示す。まず、発生部41が設けられる第1部分51と、検出部35が設けられる第2部分52とが一体である基板50を形成する(ステップS1)。具体的には、例えば図13に示すように、半円弧状の第1部分51と、円状の第2部分52と、第1部分51と第2部分52とを接続する接続部53と、第1部分51から接続部53の反対側に延出されたハーネス部54とを有するFPCを形成する。この工程で、後の工程で基板50に実装される各種の回路に接続される信号線及び電力線等の配線が当該FPCに形成される。また、当該FPCの表面に、反射防止処理を施す。このとき、後に発生部41、検出部35を含む各種の回路の配線が接続される端子部には反射防止処理が施されないようにする。このように、本実施形態によるセンサ31(光学式センサ)の製造方法は、発生部41(発光素子)が設けられる第1部分51と、検出部35(受光素子)が設けられる第2部分52とが一体である基板50を形成する工程を含む。
次に、基板50に各種の部品を取り付ける。具体的には、例えば、まず第1部分51の裏面51Bにサポート基板65を貼り付ける(ステップS2)。次に、第2部分52の裏面52BにIC回路60を設けるための各種の工程が実施される。より具体的には、第2部分52の裏面52BにIC回路60を実装するためのはんだ印刷(ステップS3)、第2部分52の裏面52Bに対するIC回路60の実装(ステップS4)、ステップS4の処理による実装後の第2部分52の裏面52B側に対する加熱によるリフロー(ステップS5)、第2部分52の裏面52Bのはんだ付けの外観検査(ステップS6)等を経ることで、第2部分52の裏面52BにIC回路60が設けられる。このように、本実施形態によるセンサ31(光学式センサ)の製造方法は、第1部分51において発生部41(発光素子)を含む電子部品が設けられる面(表面51A)及び第2部分52において検出部35(受光素子)を含む電子部品が設けられる面(表面52A)の裏側の面(裏面51B,52B)に、電子部品が設けられる面(表面51A,52A)を平面に保つ板状の支持部材(IC回路60、サポート基板65)を取り付ける工程を含む。
次に、基板50の表面50Aに部品を取り付けるための各種の工程が実施される。より具体的には、第1部分51の表面51Aに発生部41及び部品61の一部を実装し、第2部分52の表面52Aに検出部35を実装するためのはんだ印刷(ステップS7)、発生部41及び検出部35を含む表面50Aに対する各種の部品の実装(ステップS8)、ステップS8の処理による実装後の表面50A側に対する加熱によるリフロー(ステップS9)、表面50Aのはんだ付けの外観検査(ステップS10)等を経ることで、表面50Aにはんだ付けで配線接続が行われる部品が取り付けられる。その後、基板を洗浄する(ステップS11)。基板の洗浄後、部品61の一部であるベアチップ取り付けのためのペースト(例えばAgペースト)を表面50Aに塗布し(ステップS12)、ベアチップを実装し(ステップS13)、熱硬化(ステップS14)によりベアチップを固定する。そして、ワイヤーボンディング(ステップS15)によりベアチップと基板50の配線とを接続する。ワイヤーボンディング後、基板50の表面50A側に紫外線で硬化する樹脂(UV硬化樹脂)を塗布し(ステップS16)、UV硬化樹脂が塗布された表面50A側に封止用の基板(例えばガラス基板)を搭載し(ステップS17)、紫外線を照射してUV硬化樹脂を硬化させる処理であるUV硬化処理を施す(ステップS18)。このように、本実施形態によるセンサ31(光学式センサ)の製造方法は、第1部分51に発生部41を設け、第2部分52に検出部35を設ける工程を含む。ここで、板状部材(例えばサポート基板65)が設けられた側の基板50の面(裏面50B)を一方の面とした場合、発生部41及び検出部35は、他方の面(表面50A)側に設けられる。また、第2部分52の表面52Aに設けられる一つ以上の電子部品(例えば検出部35及び部品61)は、裏面52BにIC回路60のパッケージが存する範囲内に設けられる。
ワイヤーボンディングは、例えば金線を用いたAuワイヤーボンディングであるが、一例であってこれに限られるものでなく、適宜変更可能である。また、ワイヤーボンディングに代えて、TAB(tape automated bonding)を採用してもよいし、ベアチップをフリップチップとして基板の配線とはんだ付けするようにしてもよい。
次に、発生部41と検出部35とを対向させる。具体的には、例えば第1部分51の発生部41が設けられた面(表面51A)と第2部分52の検出部35が設けられた面(表面52A)とが平行に設けられて対向するように、二箇所で基板50を折り曲げる(ステップS19)。このように、本実施形態によるセンサ31(光学式センサ)の製造方法は、フレキシブル基板(FPC)である基板50を、第1部分51の発生部41(発光素子)が設けられた面(表面51A)と第2部分52の検出部35(受光素子)が設けられた面(表面52A)とが対向する折り曲げ形状とする工程を含む。
上記のステップS7〜S14の工程で例を示したように、本実施形態によるセンサ31(光学式センサ)の製造方法は、第1部分51に発生部41(発光素子)を設け、第2部分52に検出部35(受光素子)を設ける工程を含む。なお、検出部35を構成する四つの受光素子(例えば第1受光部PD1〜第4受光部PD4)の各々は、所定の平面(例えば表面52A)上の異なる位置に配置され、所定の平面上の一点に対する四つの受光素子の各々からの距離(距離W)が全て等しく、一点と四つの受光素子の各々の受光領域の中心とを結ぶ四つの線分は、互いに直角を形成することが望ましい。また、基板50の折り曲げ後に、一点(配置中心S0)を通る所定の平面(表面52A)の法線である直線L2が、発光素子(発生部41)の光の出射点41Sの中心を通ることが望ましい。発生部41及び検出部35は、これらを考慮して設けられることが望ましい。具体的には、折り曲げ位置55aにおける折り曲げ軸である第1軸LAと折り曲げ位置55bにおける折り曲げ軸である第2軸LBとを平行にするという第1条件を満たす。また、基板50の折り曲げ前の平面上における発生部41の検出対象の発生中心点である第1点(例えば出射点41S)と第1軸LAとの距離(距離W1)と、検出部35による検出対象の検出領域の中心又は検出部35が有する複数の検出領域の配置中心のいずれか一方である第2点(例えば配置中心S0)と第2軸LBとの距離(距離W2)とを等しくするという第2条件を満たす。また、第1点と第2点とを、折り曲げ前の基板50において第1軸LA及び第2軸LB対して直角に交差(又は立体交差)する同一直線(例えば直線L1)上に配置するという第3条件を満たす。これらの第1条件、第2条件及び第3条件が満たされるよう、基板50の形成時に発生部41及び検出部35の配線を設け、第1軸LA及び第2軸LBを決定し、発生部41及び検出部35の実装時における配置を決定する。
次に、筐体(例えばステータ20)を形成する(ステップS20)。具体的には、発光素子(発生部41)と受光素子(検出部35)との間の空間である被検出領域で動作することで光に影響を与える部材(例えば光学スケール11)を動作可能に支持する第1筐体(例えばボディ21)と、基板50の一部分が固定される第2筐体(例えばシャシ22)とを有する筐体を形成する。本実施形態では、基板50及び光学スケール11を収納する筐体であるステータ20の一構成として、さらにカバー23が形成されるが、これは筐体の具体的構成の一例であってこれに限られるものでない。例えば、カバー23はシャシ22と一体であってもよい。また、第1筐体であるボディ21に設けられるシャフト12を、外周面に反射防止処理が施されたシャフトとするようにしてもよい。また、基板50及び光学スケール11を収納することになるステータ20の内周面に反射防止処理を施すようにしてもよい。
その後、センサ31の組み立てに係る工程(ステップS21)を経る。センサ31の場合、例えば所定の平面を基準として、折り曲げられた基板50の第1部分51及び第2部分52並びに光学スケール11の板面が当該所定の平面に沿うようにする。この状態で、基板50及び光学スケール11を有するステータ20の少なくとも一方を当該所定の平面に沿う方向に移動させることで、被検出領域に光学スケール11が設けられるようにする。具体的には、例えばステータ20の円柱状の外周面のうち光学スケール11が設けられた位置において、光学スケール11の板面に沿った方向に基板50を挿入可能な開口部を設け、当該開口部に基板50が進入することで被検出領域に光学スケール11が設けられるようにする。この場合、基板50は、開口部に対してハーネス部54側から挿入されることで進入する。また、光学スケール11のうちロータ10が延出している側に半円弧状の第1部分51が進入し、光学スケール11のうちロータ10が延出していない側に円状の第2部分52が進入する。
より具体的には、例えば図10に示すように、シャシ22に基板50の第2部分52を固定する。そして、図14に示すように、第2部分52が固定されたシャシ22と、ロータ10が回転可能に設けられたボディ21とを、第1部分51及び第2部分52並びに光学スケール11が略平行となり、かつ、光学スケール11が第1部分51と第2部分52との間の被検出領域に位置する位置関係とする。すなわち、第1部分51及び第2部分52並びに光学スケール11が所定の平面に沿う位置関係とする。この位置関係で、ボディ21の開口部21aからシャシ22が入り込むよう、所定の平面に沿ってボディ21とシャシ22とを近接、当接させてボディ21とシャシ22とを組み立てる。これにより、被検出領域に光学スケール11が設けられる。ここで、光学スケール11が第1部分51と第2部分52との間の被検出領域に位置する位置関係でボディ21とシャシ22とを近接させる際に、第1部分51の裏面51Bに接着されたサポート基板65と、ボディ21の接着面21cとを当接させないことが望ましい。そして、ボディ21とシャシ22とを当接させてボディ21とシャシ22とを組み立てる段階で、シャシ22を接着面21cに近接させるように押し上げることで、サポート基板65と接着面21cとを当接させて接着する。係る組み立て方法により、板状部材(サポート基板65)は、一方の面が他方(例えば第1部分51)の被検出領域の反対側の面(例えば裏面51B)に接着された状態で、他方の面が第1筐体(例えばボディ21)に接着される。接続部53の長さ、接着面21c側のシャフト12の延出長、サポート基板65の厚み等の各種の具体的設計事項は、このようなボディ21とシャシ22との組み立てが実現できるよう設定されることが望ましい。このように、本実施形態によるセンサ31(光学式センサ)の製造方法は、第1部分51又は第2部分52の一方(例えば第2部分52)を第2筐体(例えばシャシ22)に固定し、第1部分51又は第2部分52の他方(例えば第1部分51)の被検出領域の反対側の面(例えば裏面51B)を第1筐体(例えばボディ21)に接着する工程を含む。
ボディ21とシャシ22との組み立て後、ハーネス部54は、ボディ21の開口部21aと反対側に設けられた切欠部21bから延出する。その後、カバー23がシャシ22と別体である場合、ボディ21の開口部21aを覆うようにカバー23を取り付ける。なお、図13、図14では、検出部35等の一部の回路の図示を省略しているが、実際には既に検出部35を含む各種の回路が実装済みである。
以上説明したように、本実施形態によれば、発生部41が設けられる第1部分51と検出部35が設けられる第2部分52とが分離しないので、基板50を折り曲げる又は湾曲させる等の簡易な作業により発生部41と検出部35との位置決めを行うことができる。このように、本実施形態によれば、発生部41と検出部35との位置決めがより容易になる。
また、第1部分51と第2部分52とが平行になるよう設けられることで、第1部分51に設けられた発生部41と第2部分52に設けられた検出部35との位置関係を平行に設けられた第1部分51と第2部分52との関係に基づいて調整することができる。このため、発生部41が指向性を有する場合に発生部41による検出対象の発生領域内に検出部35を収めるための位置調整ならびに発生部41及び検出部35を基板50に設ける際の位置角度に関する設計がより容易になる。
また、接続部53により第1部分51と第2部分52との間の空間を設けることができる。このため、発生部41と検出部35との間の被検出領域をより容易に設けることができる。
また、接続部53が発生部41に接続される配線を有することで、発生部41に接続される配線と接続部53とを一体化することができる。このため、接続部53及び当該配線を有する基板50をよりコンパクトにすることができる。
また、第1部分51及び第2部分52に比して接続部53の幅が小さいことで、接続部53を挟んだ第1部分51と第2部分52とを含む基板50の幅を一様にした場合に比して基板50の面積をより小さくすることができる。このため、基板50をより軽量化することができる。
また、基板50が二箇所で折り曲げられることで、基板50の折り曲げにより発生部41と検出部35との間に被検出領域を設けることができる。また、折り曲げ箇所を明確にすることができる。
また、第1部分51が第2部分52よりも小さいことで、第1部分51の重量をより軽くすることができる。このため、接続部53に求められる強度等の要件をより易しい要件にすることができる。
また、基板50が発生部41と検出部35とが対向する形状(例えばコの字状)に折り曲げられることで、ステータ20内の平面(例えばシャシ22の平面部等)に基板50の一部(例えば第2部分52等)を沿わせることができる等、センサ31を筐体内に設ける場合の取り扱いがより容易になる。
また、基板50がフレキシブル基板であることで、第1部分51及び第2部分52が同一平面に存する状態で発生部41及び検出部35を含む部品を基板50に実装した後に発生部41と検出部35との間に被検出領域を設けるために基板50を加工するという一連の作業をより容易に行うことができる。
また、基板50が発生部41及び検出部35に接続される配線を含むハーネス部54を備えることで、基板50に発生部41及び検出部35を含むセンサ31の構成に接続される配線を纏めて設けることができる。すなわち、ハーネス部54を備えることで、配線が必要な部品(回路等)から個別に配線を引き出す必要がない。このため、基板50と配線とを別個に取り扱う必要がなくなり、より容易にセンサ31を取り扱うことができる。
また、検出部35が被検出領域における物理量の変化により生じる検出対象の変化を検出することで、物理量の変化を生じる対象物をセンサ31によるセンシングの対象にすることができる。
また、検出対象が電磁波(例えば発光素子である発生部41が発する光)であることで、電磁波の変化により被検出領域における変化を検出することができる。
また、物理量の変化が被検出領域に存する回転体(例えば光学スケール11)の回転によることで、回転体の回転運動をセンサ31によるセンシングの対象にすることができる。
また、第1部分51又は第2部分52の一方(例えば第2部分52)が第2筐体(例えばシャシ22)に固定され、他方(例えば第1部分51)の被検出領域の反対側の面が第1筐体(例えばボディ21)に接着される。すなわち、センサ31の組み立てにおいて、一方を第2筐体に固定し、他方の被検出領域の反対側の面を第1筐体に接着すればよいので、センサ31の組み立てがより容易になる。
また、両面が粘着性を有する板状部材(例えばサポート基板65)を設けるだけで他方の被検出領域の反対側の面と第1筐体とを接着することができるので、センサ31の組み立てがより容易になる。
また、筐体(例えばステータ20)の組立前に板状部材(例えばサポート基板65)を他方の被検出領域の反対側の面に貼り付けることで、板状部材と基板50とを一体化した状態で他方の面と第1筐体とを接着することができるので、センサの組み立てがより容易になる。
また、四つの受光素子の各々は、所定の平面(例えば表面52A)上の異なる位置に配置され、所定の平面上の一点(配置中心S0)に対する四つの受光素子の各々からの距離(距離W)が全て等しく、一点と四つの受光素子の各々の受光領域の中心とを結ぶ四つの線分は、互いに直角(θ1〜θ4)を形成し、一点を通る所定の平面の法線(例えば直線L2)は、発光素子(発生部41)の光の出射点41Sを通るので、発光素子に対する四つの受光素子の各々の距離を等しくすることができる。このため、受光素子による光の検知に伴う出力のばらつきを低減することができる。このように、本実施形態によれば、受光素子の出力をより安定させることができる。
また、FPCの裏側の面(例えば裏面51B,52B)にその反対側の面(例えば表面51A,52A)を平面に保つ支持部材が取り付けられているので、FPCに設けられた電子部品とFPCとの接続部に対するストレスをより低減することができる。このため、FPCとFPCに設けられた電子部品との接続部に係る不良をより低減することができる。よって、センサ31の正常な動作に関する信頼性をより高めることができる。また、接続部に対するストレスの低減を実現することができることから、FPCに対する電子部品の実装の難易度を低下させることができ、支持部材の反対側の面に対してより容易に電子部品を設けることができる。
また、裏側の面(例えば裏面52B)に設けられる集積回路(例えばIC回路60)のパッケージを、その反対側の面(例えば表面52A)に設けられる電子部品の支持部材として活用することができる。また、集積回路もセンサ31を構成する回路の一つであるので、FPCの両面に回路を設けることによる基板面積のより効率的な活用を実現することができることから、必要な回路の規模に対するFPCの面積の低減をより容易にすることができる。よって、回路の高集積化によるセンサ31の小型化をより容易に実現することができる。
また、サポート基板65のように、第1部分51の形状に合わせて形成された絶縁性を有する板状部材を設けることで、当該支持部材により電子部品が設けられる面(例えば表面51A)を全面的に支持することができる。
また、第1部分51の発生部41が設けられた面(例えば表面51A)と第2部分52の検出部35が設けられた面(例えば表面52A)とが平行に設けられて対向し、第1軸LAと第2軸LBが平行であり、第1点(例えば出射点41S)と第1軸LAとの距離W1と第2点(例えば配置中心S0)と第2軸LBとの距離W2とが等しく、第1点と第2点が折り曲げ前の基板50において第1軸及び第2軸に対して直角に交差(又は立体交差)する同一直線(例えば直線L1)上に存することで、第1点と第2点は、折り曲げ後の第1部分51及び第2部分52に直交する同一直線(例えば直線L2)上に存することになる。このため、発生部41と検出部35とをより高精度に対向させることができるので、検出部35の出力をより安定させることができる。
また、基板50の発光素子(発生部41)及び受光素子(検出部35)が設けられる面(表面50A)に反射処理を施すことで、発生部41から発せられる光の基板による反射を低減することができる。このため、反射光の検出による検出部35の出力を低減することができるので、検出部35の出力をより安定させることができる。
また、シャフト12に反射防止処理を施すことで、発生部41から発せられる光のシャフト12による反射を低減することができる。このため、反射光の検出による検出部35の出力を低減することができるので、検出部35の出力をより安定させることができる。
また、センサ31がロータリエンコーダとして機能することで、当該センサ31に連結された回動動作体の回動角度等の角位置を検出することができる。
図27は、検出部35が有する複数の受光素子の別の配置例を示す図である。図27に示すように、検出部35は、各々が正方形状の偏光層PP1〜PP4を有する受光素子(第1受光部PD1〜第4受光部PD4)が、配置中心S0を中心に、正方形である配置領域35Aの四隅に配置されるようにしてもよい。この場合も、四つの受光素子を配置中心S0に対して等距離に配置し、かつ、配置中心S0と四つの受光素子の各々の受光領域の中心とを結ぶ四つの線分を互いに直角を形成することができる。配置中心S0と四つの受光素子の各々との距離は任意であるが、より短い距離とすることで、発光素子(発生部41)の光源光71の減衰がより小さい状態で四つの受光素子の各々に光を検知させることができる。また、四つの受光素子は個別に第2部分52に設けられてもよいし、予め四つの受光素子と配置中心S0との位置関係が固定されたパッケージとしての検出部35が第2部分52に設けられてもよい。係るパッケージを採用することで、四つの受光素子の配置の調整がより容易になる。
また、第1部分51と第2部分52とが平行でなくてもよい。第1部分51と第2部分52との関係は、発生部41と検出部35との間に被検出領域を設けることができ、第1部分51に設けられた発生部41により発生した検出対象を第2部分52に設けられた検出部35により検出することができる関係であればよく、第1部分51及び第2部分52の詳細な配置については適宜変更可能である。
接続部53は、配線を具備していなくてもよい。この場合、接続部53は、例えば第1部分51又は第2部分52のうちシャシ22に固定されていない方を支持する。また、当該一方が他方よりも小さいことは必須でない。第1部分51と第2部分52は同じ大きさであってもよいし、接続部53により支持される側が大きくてもよい。また、ステータ20等が接続部53及び本実施形態における第1部分51の少なくとも一方を支持するための支持部を有していてもよい。また、係る支持部に接続部53及び本実施形態における第1部分51の少なくとも一方を固定するための構成(例えば接着剤やテープ、突起等の係止部等)を設けてもよい。
基板50の折り曲げ位置55a,55bには、折り目としての線が形成されなくてもよい。折り曲げ後の折り曲げ位置55a,55bは、湾曲していてもよい。この場合、折り曲げ軸は、基板の湾曲動作の回動中心軸となる。ただし、この場合、二箇所の折り曲げ位置(例えば折り曲げ位置55a,55b)の湾曲形状は同一である。また、この場合、第1点と第2点は、存する折り曲げ前の基板に沿う同一直線上に存し、当該直線と第1軸及び第2軸とは直角に立体交差することになる。
基板はフレキシブル基板に限らない。本発明における基板は、発生部41と検出部35との間に被検出領域を設けることができ、第1部分51に設けられた発生部41により発生した検出対象を第2部分52に設けられた検出部35により検出することができ、かつ、第1部分51と第2部分52とが一体である基板であればよい。例えば、加熱等の処理により処理部分を折り曲げ又は湾曲可能な素材で構成された基板を採用し、第1部分と第2部分との間の部分(例えば接続部等)に当該処理を加えて折り曲げ又は湾曲させて第1部分と第2部分とを対向させるようにしてもよい。また、リジッドフレキシブル基板のように、変形しにくい部分と変形しやすい部分の両方を有する基板を採用してもよい。この場合、変形しにくい部分を第1部分と第2部分に用いると共に変形しやすい部分を第1部分と第2部分との間の部分(例えば接続部等)に用いることで、第1部分と第2部分とを対向させることができる。
ハーネス部54は、適宜省略してもよい。また、ハーネス部として機能する延出部は、二つ以上であっても構わない。
光学スケール11の信号トラックT1の具体的なパターン及び検出部35に設けられる偏光層PP1〜PP4のパターンは適宜変更可能である。係るパターンは、被検出領域に設けられて偏光を生じさせる構成(例えば光学スケール11)のパターンと、検出に際して光を通過させる構成(例えば偏光層)パターンとの関係を考慮して決定される。
被検出領域に設けられる構成は、偏光を生じさせる光学スケール11に限られない。例えば、光学スケール11に代えて、ロータ10の回動角度に応じて選択的に光を通過又は透過させる孔又は透過部が設けられた板状の部材が設けられてもよい。この場合、ロータ10の回動角度の変化は、検出部により光が検出される位置やタイミングの変化として現れる。係る検出部は、偏光層PP1〜PP4を有しなくてもよい。センサから光が検出される位置を示す信号が出力されることで、シャフト12に連結された回転機械の角位置を検出することができる。また、この場合、検出部は四つの受光素子を有する必要もない。例えば、一つの受光素子であってもよいし、複数の受光素子であってもよい。受光素子が一つであるとき、一つの受光素子による検出対象の検出領域の中心(受光領域の中心)と第2軸LBとの距離を上記の距離W2とみなした上で、距離W2と距離W1とを等しくすることが望ましい。また、受光素子が複数であるとき、複数の受光素子により構成される検出部が有する複数の検出領域の配置中心と第2軸LBとの距離を上記の距離W2とみなした上で、距離W2と距離W1とを等しくすることが望ましい。
光を発する発生部41が有する発光素子は、発光ダイオードのような点光源に限られない。例えば、有機エレクトロルミネセンス(Electro−Luminescence:EL)照明のような面光源であってもよい。発光素子が面光源である場合、面光源における光の発生領域の中心を上記の実施形態における光の出射点41Sに相当する点として、発光素子の光の出射面の中心を通り、かつ、発光素子と受光素子とが対向する方向に沿う直線を規定することができる。このようにして規定された直線を図12に示す直線L2と同等の直線とみなして、上記の実施形態と同様に四つの受光素子の各々の配置を決定することができる。すなわち、四つの受光素子の各々を、当該直線に直交する所定の平面上のそれぞれ異なる位置において当該直線に対して等距離に配置し、当該直線と所定の平面との交差点と四つの受光素子の各々の受光領域の中心とを結ぶ四つの線分が互いに直角を形成するように、四つの受光素子の各々の配置を決定することができる。また、上記の光の出射点41Sに代わる点として、出射面41Tの中心を採用してもよい。
また、上記の実施形態では第1部分51及び第2部分52の両方に対して、電子部品が設けられる面(表面51A,52A)を平面に保つ支持部材として機能する部品(IC回路60及びサポート基板65)を取り付けているが、必ずしも両方に設ける必要はない。本発明の基板50として用いられるFPCに設けられる部品の配置に応じて適宜変更可能であり、第1部分51又は第2部分52の一方のみであってもよい。また、接続部53等に支持部材を設けてもよい。
また、検出対象としての電磁波は、発光ダイオードからの光やレーザ光に限られない。検出対象としての電磁波は、赤外線や紫外線等の不可視光、X線等であってもよい。また、検出対象は磁力であってもよい。この場合、発生部は、磁力による磁場、磁界を発生させる。検出部は、被検出領域における物理量の変化(例えば物体の通過等)により生じる磁力に係る変化を検出することで、センシングを行う。検出対象が磁力であることで、磁力の変化により被検出領域における変化を検出することができる。また、検出対象は、電磁波や磁力の他に、超音波を含む音波、プラズマ等のイオン、陰極線(電子線)等であってもよい。検出対象は、被検出領域に設けられる構成の物理量の変化により変化が生じるものであればよい。
物理量の変化は、被検出領域に存する直動体の直動によってもよい。この場合、直動体の直動をセンサによるセンシングの対象にすることができる。また、センサは、リニアエンコーダとして機能することができる。具体的には、第1部分51及び第2部分52に対して相対的に被検出領域内を直動する構成(例えばスケール等)により生じる検出対象の変化を検出部が検出することでリニアエンコーダとして機能するセンサは、当該構成の直動に関するセンシングを行う。従って、本発明によりエンコーダに連結された直動体の動作の有無及び動作位置を検出することができる。
2 光学式エンコーダ
3 演算装置
5 制御部
10 ロータ
11 光学スケール
12 シャフト
20 ステータ
21 ボディ
22 シャシ
23 カバー
31 センサ
35 検出部
41 発生部
41S 出射点
50 基板
51 第1部分
52 第2部分
53 接続部
54 ハーネス部
55a,55b 折り曲げ位置
60 IC回路
65 サポート基板
LA 第1軸
LB 第2軸
PD1 第1受光部
PD2 第2受光部
PD3 第3受光部
PD4 第4受光部
S0 配置中心

Claims (5)

  1. 所定の検出対象を発生させる発生部と、
    前記発生部により発生した前記検出対象を検出する検出部と、
    前記発生部及び前記検出部が設けられる基板と、
    円筒状の筐体とを備え、
    前記基板は、前記発生部が設けられる第1部分と、前記検出部が設けられる第2部分とが一体であり、二箇所で直角に折り曲げられて前記第1部分の前記発生部が設けられた面と前記第2部分の前記検出部が設けられた面とが平行に設けられて対向し、
    前記二箇所の一方における折り曲げ軸である第1軸と前記二箇所の他方における折り曲げ軸である第2軸は平行であり、
    前記発生部の前記検出対象の発生中心点である第1点と前記第1軸との距離と、前記検出部による前記検出対象の検出領域の中心又は検出部が有する複数の検出領域の配置中心のいずれか一方である第2点と前記第2軸との距離とが等しく、
    前記第1点と前記第2点は、折り曲げ前の基板に沿う同一直線上に存し、
    前記直線と前記第1軸及び前記第2軸とは直角に交差又は立体交差し、
    前記筐体は、前記発生部と前記検出部との間に設けられるスケールを回転動作可能に支持する第1筐体と、前記第1部分又は前記第2部分の一方が固定される第2筐体と、前記第1筐体が有する開口部を塞ぐカバーとを有し、
    前記第2筐体は、前記一方を挟んで対向するように設けられた2つの支持部を有し、
    前記2つの支持部は、前記一方が有する円状の外周縁と当接する円弧状の内周部と、前記第1筐体の円筒状の内周面に沿う円弧状の外周部とを有し、
    前記開口部は、前記第1部分と前記第2部分とが平行になるように折り曲げられて前記一方が前記第2筐体に固定されている前記基板と、前記2つの支持部と、を前記スケールの回転軸の径方向に沿って挿入可能に設けられている
    センサ。
  2. 前記検出対象は光であり、
    前記発生部は、発光素子であり、
    前記検出部は、受光素子であり、
    前記基板の前記発光素子及び前記受光素子が設けられる面に前記光の反射防止処理が施されている
    請求項に記載のセンサ。
  3. 前記発光素子と前記受光素子との間の空間である被検出領域で回転動作することで前記光に影響を与えるスケールと、
    前記スケールを回転可能に支持するシャフトを有する回転支持部とを備え、
    前記シャフトに前記光の反射防止処理が施されている
    請求項に記載のセンサ。
  4. 前記センサは、光学式のロータリエンコーダである
    請求項1からのいずれか一項に記載のセンサ。
  5. 所定の検出対象を発生させる発生部と、前記発生部により発生した前記検出対象を検出する検出部と、前記発生部及び前記検出部が設けられる基板と、円筒状の筐体とを備えるセンサの製造方法であって、
    前記発生部が設けられる第1部分、前記検出部が設けられる第2部分及び前記第1部分と前記第2部分とを接続する接続部が一体である基板を形成する工程と、
    前記筐体の構成として、前記発生部と前記検出部との間に設けられるスケールを回転動作可能に支持し、開口部を有する第1筐体、前記第1部分又は前記第2部分の一方が固定され、前記一方を挟んで対向するように設けられた2つの支持部を有する第2筐体、及び、前記開口部を塞ぐカバーを形成する工程と、
    前記第1部分に前記発生部を設け、前記第2部分に検出部を設ける工程と、
    前記第1部分の前記発生部が設けられた面と前記第2部分の前記検出部が設けられた面とが平行に設けられて対向するように二箇所で直角に基板を折り曲げる工程と、
    前記一方を前記第2筐体に固定する工程と、
    前記第2筐体に固定されている前記基板と、前記2つの支持部と、を前記スケールの回転軸の径方向に沿って前記第1筐体の開口部から挿入する工程と、
    前記開口部に前記カバーを取り付ける工程と、を含み、
    前記二箇所の一方における折り曲げ軸である第1軸と前記二箇所の他方における折り曲げ軸である第2軸を平行とし、
    前記発生部の前記検出対象の発生中心点である第1点と前記第1軸との距離と、前記検出部による前記検出対象の検出領域の中心又は検出部が有する複数の検出領域の配置中心のいずれか一方である第2点と前記第2軸との距離とを等しくし、
    前記第1点と前記第2点を、折り曲げ前の基板において前記第1軸及び前記第2軸に対して直角に交差又は立体交差する直線上に配置し、
    前記2つの支持部に、前記一方が有する円状の外周縁と当接する円弧状の内周部と、前記第1筐体の円筒状の内周面に沿う円弧状の外周部とを設ける、
    センサの製造方法。
JP2014182739A 2014-09-08 2014-09-08 センサ及びセンサの製造方法 Active JP6539964B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014182739A JP6539964B2 (ja) 2014-09-08 2014-09-08 センサ及びセンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182739A JP6539964B2 (ja) 2014-09-08 2014-09-08 センサ及びセンサの製造方法

Publications (2)

Publication Number Publication Date
JP2016057127A JP2016057127A (ja) 2016-04-21
JP6539964B2 true JP6539964B2 (ja) 2019-07-10

Family

ID=55756972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182739A Active JP6539964B2 (ja) 2014-09-08 2014-09-08 センサ及びセンサの製造方法

Country Status (1)

Country Link
JP (1) JP6539964B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181837A (ja) * 1983-03-31 1984-10-16 Toshiba Corp 信号伝送装置
JPH0792505B2 (ja) * 1986-07-02 1995-10-09 毅 池田 透過型フオト・インタラプタ
JPH08327402A (ja) * 1995-05-30 1996-12-13 Canon Inc ロータリーエンコーダ
JP4201941B2 (ja) * 1999-11-18 2008-12-24 セイコーインスツル株式会社 回転角検出装置
JP3714400B2 (ja) * 2000-07-11 2005-11-09 船井電機株式会社 センサー部品の基板への取付構造
JP4024644B2 (ja) * 2002-05-14 2007-12-19 株式会社ミツトヨ 反射型エンコーダ
JP2004309470A (ja) * 2003-03-27 2004-11-04 Citizen Watch Co Ltd 光学式傾斜センサ
US8035079B2 (en) * 2007-04-10 2011-10-11 Olympus Corporation Optical encoder

Also Published As

Publication number Publication date
JP2016057127A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5999147B2 (ja) センサ及びセンサの製造方法
JP6717352B2 (ja) センサ
JP6036761B2 (ja) センサ
US10458817B2 (en) Sensor manufacturing method and sensor
JP5954372B2 (ja) 光学式センサ
JP6539964B2 (ja) センサ及びセンサの製造方法
JP6044599B2 (ja) センサ
WO2017145345A1 (ja) センサ
JP6459467B2 (ja) センサ及びセンサの製造方法
JP6421577B2 (ja) センサ
WO2016021635A1 (ja) 光センサ及び光学式エンコーダユニット
JP6736887B2 (ja) ロータリエンコーダ及び光センサの製造方法
WO2017145344A1 (ja) センサ、センサの基板及びセンサの製造方法
JP2016070668A (ja) 小型エンコーダ
JP6380589B2 (ja) 光学式エンコーダユニット
WO2017022260A1 (ja) センサの製造方法及びセンサ
JP6361377B2 (ja) センサ
JP2018072099A (ja) 光センサの製造方法
WO2016021647A1 (ja) センサ及びセンサの製造方法
CN107850461A (zh) 传感器的制造方法以及传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6539964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150