WO2016021647A1 - センサ及びセンサの製造方法 - Google Patents
センサ及びセンサの製造方法 Download PDFInfo
- Publication number
- WO2016021647A1 WO2016021647A1 PCT/JP2015/072249 JP2015072249W WO2016021647A1 WO 2016021647 A1 WO2016021647 A1 WO 2016021647A1 JP 2015072249 W JP2015072249 W JP 2015072249W WO 2016021647 A1 WO2016021647 A1 WO 2016021647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- sensor
- detection
- light
- unit
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000001514 detection method Methods 0.000 claims abstract description 223
- 239000000758 substrate Substances 0.000 claims abstract description 138
- 238000000034 method Methods 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 description 198
- 230000010287 polarization Effects 0.000 description 74
- 239000010410 layer Substances 0.000 description 53
- 238000010586 diagram Methods 0.000 description 42
- 230000006870 function Effects 0.000 description 19
- 238000003860 storage Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 229910001111 Fine metal Inorganic materials 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 244000126211 Hericium coralloides Species 0.000 description 1
- 241000135309 Processus Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- -1 plasma Chemical class 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/347—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
Definitions
- the present invention relates to a sensor and a method for manufacturing the sensor.
- a configuration of a rotary encoder a configuration is known in which a substrate provided with a light emitting element that emits light and a substrate provided with a light receiving element that detects light emitted from the light emitting element are housed in a casing of the rotary encoder. (For example, patent document 1).
- the problem with the rotary encoder of Patent Document 1 as described above is not limited to the rotary encoder based on light detection, but a generation unit that emits a detection target (for example, light) and a detection unit that detects a detection target generated by the generation unit. Is a problem common to sensors provided on separate substrates.
- An object of the present invention is to provide a sensor and a method for manufacturing the sensor in which the positioning of the generation unit and the detection unit is easier.
- a sensor of the present invention includes a generation unit that generates a predetermined detection target, a detection unit that detects the detection target generated by the generation unit across a detection area, and the generation unit And a substrate on which the detection unit is provided, wherein the substrate includes a first part on which the generation unit is provided and a second part on which the detection unit is provided.
- the generating part and the detecting part can be positioned by a simple operation such as bending or bending the substrate. .
- it is easier to position the generating unit and the detecting unit.
- the substrate is provided so that the first portion and the second portion are parallel to each other.
- the positional relationship between the generator provided in the first part and the detector provided in the second part can be adjusted based on the relationship between the first part and the second part provided in parallel. For this reason, when the generator has directivity, it is easier to adjust the position for placing the detector in the detection target generation area by the generator and to design the position angle when the generator and detector are provided on the substrate. Become.
- the substrate has a connection portion for connecting the first portion and the second portion.
- the connecting portion a region between the first portion and the second portion can be provided by the connecting portion. For this reason, the to-be-detected area
- the connecting portion has a wiring connected to the generating portion or the detecting portion.
- the wiring connected to the generation unit or the detection unit and the connection unit can be integrated.
- substrate which has a connection part and the said wiring can be made more compact.
- connection portion may be perpendicular to the extending direction of the connection portion between the first portion and the second portion, as compared with the first portion and the second portion. And the width in the direction along the plate surface of the substrate is small.
- the area of the substrate can be made smaller than when the width of the substrate including the first portion and the second portion sandwiching the connection portion is made uniform. For this reason, a board
- substrate can be reduced more.
- the substrate is bent at the boundary between the first portion and the connection portion and at the boundary between the second portion and the connection portion.
- a detection area can be provided between the generation part and the detection part by bending the substrate. Further, the bent portion can be clarified.
- one of the first part and the second part is supported in a hollow manner by the connecting portion, and the one is smaller than the other.
- connection part it is possible to provide a detection area between the generation part and the detection part by supporting one of the first part and the second part in a hollow state by the connection part alone with the connection part. Moreover, the weight of the said one can be made lighter because the said one is smaller than the other. For this reason, in addition to making it possible to make requirements such as strength required for the connection portion easier, the center of gravity of the entire substrate can be brought closer to the other side which is the base. Therefore, the support by the connection portion can be realized more easily.
- the substrate is bent into a shape in which the generation unit and the detection unit are opposed to each other.
- a part of the substrate having the shape can be placed along a plane constituting the case of a general machine.
- the substrate is a flexible substrate.
- the substrate is processed to provide a detection region between the generation unit and the detection unit. This series of operations can be performed more easily.
- the substrate includes a harness portion including wiring connected to the generation portion and the detection portion.
- the detection unit detects a change in the detection target caused by a change in physical quantity in the detection area.
- an object that causes a change in physical quantity can be an object of sensing by a sensor.
- the detection target is an electromagnetic wave.
- the detection target is a magnetic force.
- a change in the detection area can be detected by a change in magnetic force.
- the change in the physical quantity is due to the rotation of a rotating body existing in the detection area.
- the rotational motion of the rotating body can be the target of sensing by the sensor.
- the sensor of the present invention is a rotary encoder.
- the present invention it is possible to detect the angular position such as the rotational angle of the rotational operation body connected to the rotary encoder.
- the change in the physical quantity is due to the linear motion of the linear motion body existing in the detection area.
- the linear motion of the linear motion body can be targeted for sensing by the sensor.
- the sensor of the present invention is an encoder.
- the sensor of the present invention is a torque sensor.
- the change in the physical quantity is due to a change in the concentration or amount of gas, liquid, or solid existing in the detection region.
- a method for manufacturing a sensor according to the present invention includes: a first part provided with a generating unit that generates a predetermined detection target; and the detection target generated by the generating unit across a detection target region.
- a substrate integrated with a second portion provided with a detection portion to be detected is formed, the generation portion is provided in the first portion of the substrate, and the detection portion is provided in the second portion.
- the generating part and the detecting part can be positioned by a simple operation such as bending or bending the substrate. .
- positioning of the generation part and the detection part becomes easier.
- the sensor and the method for manufacturing the sensor of the present invention it is possible to more easily position the generation unit and the detection unit.
- FIG. 1 is a configuration diagram of a sensor according to the first embodiment.
- FIG. 2 is an external perspective view of the sensor according to the first embodiment.
- FIG. 3 is an explanatory diagram illustrating an example of the arrangement of the generation unit, the optical scale, and the detection unit.
- FIG. 4 is a block diagram of the optical encoder according to the first embodiment.
- FIG. 5 is an explanatory diagram illustrating an example of an optical scale pattern according to the first embodiment.
- FIG. 6 is a perspective view showing an example of the substrate.
- FIG. 7 is a plan view showing an example of the substrate before being bent.
- FIG. 8 is a perspective view showing an example of a stator body and a configuration provided on the body.
- FIG. 9 is a perspective view illustrating an example of a configuration provided in the chassis of the stator.
- FIG. 10 is a plan view showing an example of a substrate before circuit mounting.
- FIG. 11 is a diagram illustrating an example of assembling a stator for providing an optical scale in a detection area.
- FIG. 12 is an explanatory diagram for explaining an example of the detection unit according to the first embodiment.
- FIG. 13 is an explanatory diagram for explaining an example of the first light receiving unit of the detection unit according to the first embodiment.
- FIG. 14 is an explanatory diagram for describing an example of a third light receiving unit of the detection unit according to the first embodiment.
- FIG. 15 is an explanatory diagram for explaining separation of polarization components by the optical scale according to the first embodiment.
- FIG. 16 is an explanatory diagram for explaining separation of polarization components by the optical scale according to the first embodiment.
- FIG. 17 is an explanatory diagram for explaining separation of polarization components by the optical scale according to the first embodiment.
- FIG. 18 is a functional block diagram of the optical encoder according to the first embodiment.
- FIG. 19 is an explanatory diagram for explaining the rotation angle of the optical scale and the change in the light intensity of the polarization component of each light receiving unit according to the first embodiment.
- FIG. 20 is an explanatory diagram for explaining the relationship between the rotation angle of the optical scale and the Lissajous angle according to the first embodiment.
- FIG. 21 is a diagram for explaining the generation unit according to the first embodiment.
- FIG. 22 is an exploded perspective view for explaining main components of the torque sensor according to the second embodiment.
- FIG. 23 is an explanatory diagram illustrating the arrangement of the optical scale and the detection unit of the torque sensor according to the second embodiment.
- FIG. 24 is an explanatory diagram schematically illustrating the arrangement of the optical scale and the detection unit of the torque sensor according to the second embodiment.
- FIG. 25 is an explanatory diagram illustrating the arrangement of the optical scale and the detection unit of the torque sensor according to the second embodiment.
- FIG. 26 is a block diagram of the torque detection device according to the second embodiment.
- FIG. 27 is an explanatory diagram illustrating an example of a wire grid pattern of the optical scale according to the second embodiment.
- FIG. 28 is an explanatory diagram for describing a modification of the detection unit according to the second embodiment.
- FIG. 29 is an explanatory diagram for describing a modification of the detection unit according to the second embodiment.
- FIG. 1 is a configuration diagram of a sensor 31 according to the first embodiment.
- FIG. 2 is an external perspective view of the sensor 31 according to the first embodiment.
- FIG. 1 is a schematic cross-sectional view of FIG.
- FIG. 3 is an explanatory diagram illustrating an example of the arrangement of the generation unit 41, the optical scale 11, and the detection unit 35.
- FIG. 4 is a block diagram of the optical encoder 2 according to the first embodiment.
- FIG. 5 is an explanatory diagram illustrating an example of a pattern of the optical scale 11 according to the first embodiment.
- the sensor 31 includes a generation unit 41 that generates a detection target made of electromagnetic waves (for example, light), a detection unit 35 that detects a detection target generated by the generation unit 41 across the detection area, and the generation unit 41 and the detection unit 35
- the sensor 31 further includes a shaft 12 connected to a rotating machine such as a motor, and a rotating body (optical scale 11) attached to an end of the shaft 12 and provided to be rotatable in a detection area.
- the rotor 10 has a stator 20.
- the detected area is an area between the generation unit 41 and the detection unit 35.
- FIG. 6 is a perspective view showing an example of the substrate 50.
- FIG. 7 is a plan view showing an example of the substrate 50 before being bent.
- the first portion 51 provided with the generating portion 41 and the second portion 52 provided with the detecting portion 35 are integrated.
- FIG. 8 is a perspective view illustrating an example of a structure provided on the body 21 and the body 21 of the stator 20.
- FIG. 9 is a perspective view illustrating an example of a configuration provided in the chassis 22 of the stator 20.
- FIG. 10 is a plan view showing an example of a substrate before circuit mounting.
- FIG. 11 is a diagram illustrating an example of the assembly of the stator 20 for providing the optical scale 11 in the detection area. For example, as shown in FIGS.
- the substrate 50 is a single substrate including a semicircular arc-shaped first portion 51 and a circular second portion 52.
- the substrate 50 is made of, for example, a flexible printed circuit (FPC), and various circuits including the generation unit 41 and the detection unit 35 (for example, the circuits 60 to 62 shown in FIG. 6) are mounted thereon.
- FPC uses an insulator made of, for example, a polyimide film or a photo solder resist film as a base film, and forms an adhesive layer and a conductor layer on the base film.
- a wiring board having flexibility in which a portion other than (including) is covered with an insulator.
- the conductor layer is made of an electrical conductor such as copper, and is provided with signal lines and power lines that are connected to components such as various circuits according to the pattern of the conductor layer.
- the specific configuration of the flexible substrate that can be employed in the present invention is not limited to this, and can be changed as appropriate.
- the circuits 60 to 62 constitute, for example, a preamplifier AMP, a differential operation circuit DS, a filter circuit NR, a multiplication circuit AP, and the like shown in FIG.
- the substrate 50 has a connection portion 53 that connects the first portion 51 and the second portion 52.
- the connection portion 53 is between the first portion 51 and the second portion 52, and the outer peripheral portion of the arc of the first portion 51 and the second portion 52. It is provided to connect to the outer periphery of the arc.
- connection unit 53 has wiring connected to the generation unit 41 (or the detection unit 35).
- the connection unit 53 includes a signal line and a power line connected to the generation unit 41.
- the wiring of the connection portion 53 is provided as a signal line and a power line mounted on, for example, an FPC.
- the circuit is not provided in the connection part 53 of Embodiment 1, components, such as a circuit, can also be provided in the connection part 53. FIG.
- the connecting portion 53 has a connecting portion 53 between the first portion 51 and the second portion 52 as compared with the first portion 51 and the second portion 52.
- the width in the direction perpendicular to the extending direction of the substrate 50 and along the plate surface of the substrate 50 is small.
- the substrate 50 includes a harness part 54 including wiring connected to the generation part 41 and the detection part 35.
- the harness portion 54 is provided so as to extend from the first portion 51 to the opposite side of the connection portion 53.
- the harness unit 54 includes a signal line and a power line that are connected to various circuits provided on the generation unit 41, the detection unit 35, and the substrate 50.
- the wiring of the harness portion 54 is provided as, for example, a signal line and a power line mounted on the FPC.
- the wiring of the generation unit 41 is provided in the first portion 51, the connection portion 53, and the harness portion 54.
- the wiring of the detection unit 35 is provided in the second portion 52 and the harness portion 54.
- the harness part 54 is connected with the connector CNT, for example, as shown in FIG.
- the connector CNT is an interface that connects the sensor 31 and another device (for example, the arithmetic device 3).
- the sensor 31 is connected to the arithmetic device 3 via the connector CNT.
- the harness portion 54 functions as a wiring that connects various circuits provided on the substrate 50 and another device (for example, the arithmetic device 3).
- the substrate 50 is provided so that the first portion 51 and the second portion 52 are parallel to each other. Specifically, as illustrated in FIGS. 1 and 6, the substrate 50 is bent into a shape (a U-shape) in which the generation unit 41 and the detection unit 35 face each other.
- the substrate 50 is bent at the boundary 55 a between the first portion 51 and the connection portion 53 and at the boundary 55 b between the second portion 52 and the connection portion 53. That is, the substrate 50 of the first embodiment is bent so that the first portion 51 and the second portion 52 are perpendicular to the connection portion 53, and the first portion 51 and the second portion 52 are opposed to each other.
- the 1st part 51 and the 2nd part 52 are provided in parallel, and the generation
- the surface of the first portion 51 on the side where the generator 41 is provided and the surface of the second portion 52 on the side where the detector 35 is provided are the same surface of the substrate 50.
- the detection target for example, light
- the detection target generated by the generation unit 41 has a positional relationship that can be detected by the detection unit 35.
- a region between the facing generation unit 41 and the detection unit 35 is a detection target region.
- One of the first part 51 or the second part 52 is supported hollowly by the connection part 53, and one is smaller than the other.
- the first portion 51 provided with the generating portion 41 is supported in a hollow manner by the connecting portion 53.
- the first portion 51 is smaller than the second portion 52.
- the diameter of the arc-shaped first portion 51 in the first embodiment is substantially the same as the diameter of the circular second portion 52.
- the first portion 51 has a semicircular arc shape, and a semicircular cutout 51a is provided on the inner peripheral side of the semicircular FPC. For this reason, the area of the first portion 51 occupying the substrate 50 is smaller than the area of the second portion 52.
- the detection unit 35 detects a change in a detection target (for example, an electromagnetic wave such as light) caused by a change in a physical quantity in the detection region.
- the change in the physical quantity is due to, for example, rotation of a rotating body existing in the detection area.
- an optical scale 11 of the rotor 10 is provided in the detection area.
- the sensor 31 according to the first embodiment is a sensor that performs output according to a change in the detection result of the detection target due to the rotation of the optical scale 11 as a rotating body. That is, the sensor 31 according to the first embodiment functions as a rotary encoder that detects the angular position of the rotary driving body connected to transmit the rotational operation to the rotor 10.
- the rotor 10 has an optical scale 11 that is a disk-shaped (or polygonal) member shown in FIG.
- the optical scale 11 is made of, for example, silicon, glass, a polymer material, or the like.
- the optical scale 11 may be annular or hollow.
- the optical scale 11 shown in FIG. 5 has a signal track T1 on one plate surface.
- the rotor 10 has a shaft 12 attached to the other plate surface with respect to the plate surface to which the optical scale 11 is attached. Even if the optical scale 11 is tilted, it does not affect the polarization separation function when the tilt angle is small. That is, even if the optical scale 11 is inclined with respect to a plane orthogonal to the rotation center Zr, it functions as a polarization separation element.
- the stator 20 is made of a light-shielding member that surrounds the bearings 26a and 26b, the shaft 12, the optical scale 11 attached to the end of the shaft 12, and the detection unit 35. For this reason, external optical noise can be suppressed inside the stator 20.
- the stator 20 includes a body 21, a chassis 22, and a cover 23.
- the body 21 rotatably supports the shaft 12 via bearings 26a and 26b.
- the inner periphery of the body 21 is fixed to the outer rings of the bearings 26a and 26b, and the outer periphery of the shaft 12 is fixed to the inner rings of the bearings 26a and 26b.
- the body 21 has an opening 21 a for attaching the chassis 22 provided with the substrate 50 to the body 21.
- the chassis 22 supports the substrate 50 by contacting at least a part of a surface (back surface) opposite to the side where the detection unit 35 is provided in the second portion 52 of the substrate 50.
- an integrated circuit for example, an IC of a QFN package
- the chassis 22 supports the substrate 50 by covering the integrated circuit on the back surface from the outside and contacting the outer peripheral portion of the back surface of the substrate 50.
- connection portion 53 of the substrate 50 bent in a U-shape is positioned so as to stand up from the second portion 52 supported by the chassis 22.
- the substrate 50 is fixed to the chassis 22.
- the cover 23 is a member that forms a part of the cylindrical outer peripheral surface of the stator 20.
- the cover 23 is provided on the opening 21 a side of the body 21, that is, on the opposite side of the notch 21 b where the harness portion 54 extends from the chassis 22.
- the cover 23 is further assembled so as to cover the opening 21a, so that the body 21, the chassis 22 and the cover 23 form a cylindrical stator 20, and the stator 20
- the inside is shielded from external light noise.
- the optical scale 11 moves relative to the detection unit 35 in the R direction, for example, as shown in FIG.
- the signal track T1 of the optical scale 11 moves relative to the detector 35.
- the polarization direction Pm of the polarizer in the plane is in a predetermined direction, and the polarization direction Pm is changed by rotation.
- the detecting unit 35 can receive the incident light (transmitted light) 73 that is incident upon the light source light 71 of the generating unit 41 transmitted through the optical scale 11 and can read the signal track T1 of the optical scale 11 shown in FIG. .
- the optical encoder 2 includes the above-described sensor 31 and the arithmetic device 3, and the sensor 31 and the arithmetic device 3 are connected as shown in FIG.
- the arithmetic device 3 is connected to a control unit 5 of a rotating machine such as a motor.
- the optical encoder 2 uses the detection unit 35 to detect the incident light 73 that is transmitted through and incident on the optical scale 11 from the light source light 71.
- the calculation device 3 calculates the relative position between the rotor 10 of the sensor 31 and the detection unit 35 from the detection signal of the detection unit 35, and outputs the relative position information as a control signal to the control unit 5 of the rotary machine such as a motor. .
- the arithmetic device 3 is a computer such as a personal computer (PC), for example, an input interface 4a, an output interface 4b, a CPU (Central Processing Unit) 4c, a ROM (Read Only Memory) 4d, and a RAM (Random Access Memory). 4e and an internal storage device 4f.
- the input interface 4a, output interface 4b, CPU 4c, ROM 4d, RAM 4e, and internal storage device 4f are connected by an internal bus.
- the arithmetic device 3 may be configured by a dedicated processing circuit.
- the input interface 4a receives an input signal from the detection unit 35 of the sensor 31 and outputs it to the CPU 4c.
- the output interface 4 b receives a control signal from the CPU 4 c and outputs it to the control unit 5.
- the ROM 4d stores programs such as BIOS (Basic Input Output System).
- BIOS Basic Input Output System
- the internal storage device 4f is, for example, an HDD (Hard Disk Drive), a flash memory, or the like, and stores an operating system program and application programs.
- the CPU 4c implements various functions by executing programs stored in the ROM 4d and the internal storage device 4f while using the RAM 4e as a work area.
- the internal storage device 4f stores a database in which the polarization direction Pm of the optical scale 11 and the output of the detection unit 35 are associated with each other.
- the internal storage device 4f stores a database in which a value of distance D described later is associated with position information of the optical scale 11.
- an array of fine metal wires (wires) g called a wire grid pattern is formed on the optical scale 11 shown in FIG.
- the optical scale 11 linearly arranges adjacent fine metal wires g as signal tracks T1 in parallel. For this reason, the optical scale 11 has the same polarization axis regardless of the position where the light source light 71 is irradiated, and the polarization direction of the polarizer in the plane is in one direction.
- the optical scale 11 having the fine metal wires g called wire grid pattern can improve heat resistance as compared with the light-induced polarizing plate.
- the optical scale 11 is a line pattern that does not have a portion that intersects locally, the optical scale 11 can be highly accurate and have few errors.
- the optical scale 11 can be stably manufactured by batch exposure or nanoimprint technology, the optical scale 11 can be made highly accurate and less error-prone.
- the optical scale 11 may be a light-induced polarizing plate.
- the plurality of fine metal wires g are arranged without intersecting. Between adjacent metal fine wires g is a transmission region d through which all or part of the light source light 71 can be transmitted.
- a transmission region d through which all or part of the light source light 71 can be transmitted.
- the polarization axis of the incident light 73 incident on the detection unit 35 changes according to the rotation of the optical scale 11.
- the change of the polarization axis repeats the increase / decrease twice for one rotation of the optical scale 11.
- the optical scale 11 does not need to be finely divided into segments having different polarization directions. And since the optical scale 11 has the uniform polarization direction Pm, there is no boundary of the area
- the optical encoder 2 of Embodiment 1 can reduce the possibility of causing false detection or noise.
- FIG. 12 is an explanatory diagram for explaining an example of the detection unit 35 according to the first embodiment.
- FIG. 13 is an explanatory diagram for explaining an example of the first light receiving unit PD1 of the detection unit 35 according to the first embodiment.
- FIG. 14 is an explanatory diagram for explaining an example of the third light receiver PD3 of the detector 35 according to the first embodiment.
- the detection unit 35 includes a first light receiving unit PD1 having a polarizing layer PP1, a second light receiving unit PD2 having a polarizing layer PP2, and a polarization on the surface 30b of the unit base 30.
- a third light receiving part PD3 having a layer PP3 and a fourth light receiving part PD4 having a polarizing layer PP4 are included.
- the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 are equidistant from the arrangement center S0 of the surface 30b of the unit base member 30 in plan view. Has been placed.
- the generating unit 41 is, for example, a light emitting diode or a semiconductor laser light source. As shown in FIG. 3, the light source light 71 emitted from the generation unit 41 passes through the optical scale 11 described above, and enters the polarizing layer PP1, the polarizing layer PP2, the polarizing layer PP3, and the polarizing layer PP4 as the incident light 73. The light passes through and enters the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4.
- the distances from the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 to the arrangement center S0 are equal. With this structure, it is possible to reduce the calculation load on the CPU 4c which is the calculation means.
- first light receiving part PD1 is arranged at a point-symmetrical position with respect to the third light receiving part PD3 via the arrangement center S0, and the second light receiving part PD2 is point-symmetrical with the fourth light receiving part PD4 via the arrangement center S0. Is arranged.
- the first light receiving unit PD1 is arranged at a distance W from the third light receiving unit PD3 via the arrangement center S0, and the second light receiving unit PD2 is arranged at a distance W from the fourth light receiving unit PD4 through the arrangement center S0. Has been.
- the virtual axis on the surface 30b of the unit base material 30 passing through the first light receiving part PD1, the placement center S0, and the third light receiving part PD3 is defined as the x axis
- the virtual axis on the surface 30b of the unit base material 30 passing through the four light receiving parts PD4 is taken as the y axis.
- the x axis is orthogonal to the y axis on the surface 30 b of the unit substrate 30.
- D be the distance between the exit surface of the generator 41 and the arrangement center S0.
- the xy plane formed by the x-axis and the y-axis is orthogonal to the z-axis connecting the emission surface of the generation unit 41 and the arrangement center S0.
- each of the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 is arranged around the generating part 41 when viewed in a plan view from the z-axis direction.
- the distances from the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 to the arrangement center S0 are equal. With this structure, it is possible to reduce the calculation load on the CPU 4c which is the calculation means.
- the first light receiving portion PD1 includes a silicon substrate 34, a light receiving portion 37, and a first polarizing layer 39a.
- the third light receiving portion PD3 includes a silicon substrate 34, a light receiving portion 37, and a second polarizing layer 39b.
- the silicon substrate 34 is an n-type semiconductor
- the light receiving portion 37 is a p-type semiconductor
- a photodiode formed by a PN junction with the silicon substrate 34 and the light receiving portion 37 can be configured.
- the first polarizing layer 39a and the second polarizing layer 39b can be formed of a light-induced polarizing layer or a wire grid pattern in which fine metal wires are arranged in parallel.
- the first polarizing layer 39a separates the incident light 73 incident from the light source light 71 into the optical scale 11 shown in FIG. 3 in the first polarization direction
- the second polarizing layer 39b separates the incident light 73 into the second polarized light. Separate in direction. It is preferable that the polarization axis of the first separated light and the polarization axis of the second separated light are relatively different by 90 °. With this configuration, the CPU 4c of the arithmetic device 3 can easily calculate the polarization angle.
- the second light receiving portion PD2 includes a silicon substrate 34, a light receiving portion 37, and a first polarizing layer 39a.
- the fourth light receiving portion PD4 includes a silicon substrate 34, a light receiving portion 37, and a second polarizing layer 39b.
- the silicon substrate 34 is an n-type semiconductor
- the light receiving portion 37 is a p-type semiconductor
- a photodiode formed by a PN junction with the silicon substrate 34 and the light receiving portion 37 can be configured.
- the first polarizing layer 39a and the second polarizing layer 39b can be formed of a light-induced polarizing layer or a wire grid pattern in which fine metal wires are arranged in parallel.
- the first polarizing layer 39a separates the incident light 73 incident from the light source light 71 into the optical scale 11 shown in FIG. 3 in the first polarization direction
- the second polarizing layer 39b separates the incident light 73 into the second polarized light. Separate in direction. It is preferable that the polarization axis of the first separated light and the polarization axis of the second separated light are relatively different by 90 °. With this configuration, the CPU 4c of the arithmetic device 3 can easily calculate the polarization angle.
- the first light receiving unit PD1, the second light receiving unit PD2, the third light receiving unit PD3, and the fourth light receiving unit PD4 receive the incident light 73 through the polarization layers PP1, PP2, PP3, and PP4 that separate the different polarization directions, respectively. .
- the polarization axis separated by the polarizing layer PP1 and the polarization axis separated by the polarizing layer PP2 are relatively different by 45 °.
- the polarization axis separated by the polarizing layer PP2 and the polarization axis separated by the polarizing layer PP3 are relatively different by 45 °.
- the polarization axis separated by the polarizing layer PP3 and the polarization axis separated by the polarizing layer PP4 are relatively different by 45 °. It is preferable that the polarization axis separated by the polarization layer PP4 and the polarization axis separated by the polarization layer PP1 are relatively different by 45 °. With this configuration, the CPU 4c of the arithmetic device 3 can easily calculate the polarization angle.
- FIG. 16 and FIG. 17 are explanatory diagrams for explaining the separation of polarization components by the optical scale 11 according to the first embodiment.
- incident light polarized in the polarization direction Pm is incident by the signal track T ⁇ b> 1 of the optical scale 11.
- the sensing range includes foreign matter D1 and foreign matter D2.
- the polarization direction Pm of incident light can be expressed by the light intensity PI ( ⁇ ) of the first polarization direction component and the light intensity PI (+) of the second polarization direction component.
- the first polarization direction and the second polarization direction are preferably different from each other by 90 °, and are, for example, a + 45 ° component and a ⁇ 45 ° component with respect to the reference direction.
- the axial direction of the wire grid is shown parallel to the paper surface.
- the wire grid is inclined at the same angle with respect to the paper surface, it is polarized when the inclination angle is small.
- the separation function is not affected. That is, even if the optical scale 11 is inclined with respect to the rotation axis, it functions as a polarization separation element.
- the first light receiving unit PD1 detects incident light through the first polarizing layer 39a that separates the incident light in the first polarization direction, and therefore the light intensity PI ( ⁇ of the component in the first polarization direction). ) Is detected.
- the third light receiving unit PD3 detects incident light via the second polarizing layer 39b that separates the incident light in the second polarization direction, and thus the light intensity PI (+ of the component in the second polarization direction) ) Is detected.
- the third light receiving unit PD3 detects incident light via the second polarizing layer 39b that separates the incident light in the second polarization direction, and thus the light intensity PI (+ of the component in the second polarization direction) ) Is detected.
- the second light receiving unit PD2 detects incident light through the first polarizing layer 39a that separates the incident light in the first polarization direction, the light intensity of the component in the first polarization direction is detected. PI (-) is detected.
- the fourth light receiving unit PD4 detects incident light through the second polarizing layer 39b that separates the incident light in the second polarization direction, and thus the light intensity PI (+ of the component in the second polarization direction) ) Is detected.
- FIG. 18 is a functional block diagram of the optical encoder 2 according to the first embodiment.
- FIG. 19 is an explanatory diagram for explaining the rotation angle of the optical scale 11 according to the first embodiment and the light intensity change of the polarization component of each light receiving unit.
- the generator 41 emits light based on the reference signal and irradiates the optical scale 11 with the light source light 71.
- Incident light 73 that is transmitted light is received by the detector 35.
- the differential arithmetic circuit DS performs differential arithmetic processing using the detection signal output from the detection unit 35 and amplified by the preamplifier AMP.
- the preamplifier AMP can be omitted according to the output level of the detection unit 35.
- the differential arithmetic circuit DS detects the light intensity PI ( ⁇ ) of the first polarization direction component (first separation light) and the second polarization direction component (second separation light), which are detection signals of the detection unit 35. ) Of the light intensity PI (+).
- the outputs of the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 corresponding to the light intensity PI ( ⁇ ) and the light intensity PI (+) are, for example, As shown in FIG. 19, the light intensities I1, I2, I3, and I4 are out of phase according to the rotation of the optical scale 11.
- the differential arithmetic circuit DS calculates the optical intensity from the light intensity PI ( ⁇ ) of the first polarization direction component and the light intensity PI (+) of the second polarization direction component according to the expressions (1) and (2).
- the differential signals Vc and Vs depending on the rotation of the scale 11 are calculated.
- Vc (I1-I3) / (I1 + I3) (1)
- Vs (I2-I4) / (I2 + I4) (2)
- the differential operation circuit DS calculates the light intensity sum [I1 + I3] and the light intensity difference [I1-I3] based on the light intensity I1 and the light intensity I3, and the light intensity difference [I1 -I3] is divided by the sum of light intensities [I1 + I3] to calculate a differential signal Vc. Further, the differential operation circuit DS calculates the light intensity sum [I2 + I4] and the light intensity difference [I2-I4] based on the light intensity I2 and the light intensity I4, and the light intensity difference [I2-I4]. ] Is calculated by dividing the light intensity by the sum [I2 + I4] of the light intensity.
- the differential signals Vc and Vs calculated by the equations (1) and (2) do not include a parameter affected by the light intensity of the light source light 71, and the output of the sensor 31 is output from the detection unit 35 and the optical signal.
- the influence of the distance from the scale 11 and the variation in the light intensity of the generation unit 41 can be reduced.
- the differential signals Vc and Vs are a function of the rotation angle (hereinafter referred to as the polarization angle) ⁇ of the polarization axis of the optical scale 11 that is the rotation angle of the optical scale 11.
- the automatic power control (APC) for controlling the light amount of the light source provided in the generation unit 41 to be constant is provided, the above division is not necessary.
- the differential signals Vc and Vs are input to the filter circuit NR and noise is removed.
- the multiplication circuit AP can calculate the Lissajous pattern shown in FIG. 20 from the differential signals Vc and Vs, and can specify the absolute angle of the rotation angle of the rotor 10 rotated from the initial position. Since the differential signals Vc and Vs are differential signals having a phase shift of ⁇ / 4, a Lissajous pattern with the cosine curve of the differential signal Vc on the horizontal axis and the sine curve of the differential signal Vs on the vertical axis is used. The Lissajous angle is determined according to the calculation and the rotation angle. For example, the Lissajous pattern shown in FIG.
- the arithmetic device 3 has a function of storing whether the rotation position of the optical scale 11 is in the range of 0 ° or more and less than 180 ° or in the range of 180 ° or more and less than 360 °.
- the optical encoder 2 can be an absolute encoder capable of calculating the absolute position of the rotor 10.
- FIG. 21 is a diagram for explaining the generation unit 41 according to the first embodiment.
- the generator 41 shown in FIG. 21 is a package of a light source such as a light emitting diode, a laser light source such as a vertical cavity surface emitting laser, and a light emitting device 41U such as a filament.
- the generation unit 41 includes a base substrate 41F, a through conductive layer 41H embedded in the through hole SH, an external electrode 41P electrically connected to the through conductive layer 41H, and a light emitting device 41U mounted on the base substrate 41F.
- a bonding wire 41W that electrically connects the light emitting device 41U and the through conductive layer 41H, a sealing resin 41M that protects the light emitting device 41U, and a light shielding film 41R are provided. *
- the light-shielding film 41R of the generation unit 41 has a function of a diaphragm of the light source light 71 that narrows the light source light 71 emitted from the light emitting device 41U to the range of the emission surface 41T.
- the exit surface 41T has no lens surface, and the light distribution of the light source light 71 shows a light distribution of a predetermined angle 2 ⁇ o with respect to the cross section of the exit surface 41T.
- FIG. 23 is an explanatory diagram for explaining the position of the light receiving unit within a uniform range of the light distribution from the generation unit 41 of the detection unit 35 according to the first embodiment.
- the angle ⁇ o of the light distribution depends on the generator 41.
- the angle ⁇ o is 45 °, for example, but the angle can be made larger or smaller than this.
- the sensor 31 according to the first embodiment can use the generation unit 41 without a lens.
- the SN ratio can be improved by bringing the distance D between the emission surface of the generation unit 41 and the arrangement center S0 (detection unit 35) closer.
- the distance W to each of the first light receiving part PD1, the second light receiving part PD2, the third light receiving part PD3, and the fourth light receiving part PD4 can be arranged within a range where light can be received by reducing the influence of light diffused by the generating part 41. Become. For this reason, the measurement accuracy of the sensor 31 and the optical encoder 2 is improved.
- the generating part 41 with a lens may be used.
- production part 41 is provided and the 2nd part 52 in which the detection part 35 is provided is formed.
- a semicircular arc-shaped first portion 51, a circular second portion 52, a connection portion 53 that connects the first portion 51 and the second portion 52, An FPC having a harness portion 54 extending from the first portion 51 to the opposite side of the connection portion 53 is formed.
- wiring such as signal lines and power lines connected to various circuits mounted on the substrate 50 in a later step is formed in the FPC.
- various circuits constituting the sensor are provided on the substrate 50. Specifically, as illustrated in FIG. 7, the generation unit 41 is provided in the first portion 51 of the substrate 50, and the detection unit 35 is provided in the second portion 52 of the substrate 50. In addition to this, various components constituting the sensor are provided in this step in accordance with the wiring provided in the previous step.
- the substrate 50 is bent so that the generation unit 41 and the detection unit 35 face each other.
- the first portion 51 and the second portion 52 are bent in a U shape so as to be parallel.
- the sensor 31 for example, on the basis of a predetermined plane, the first portion 51 and the second portion 52 of the bent substrate 50 and the plate surface of the optical scale 11 are set along the predetermined plane. .
- the optical scale 11 is provided in the detection area.
- an opening through which the substrate 50 can be inserted in a direction along the plate surface of the optical scale 11 is provided at the position where the optical scale 11 is provided on the cylindrical outer peripheral surface of the stator 20.
- the optical scale 11 is provided in the detection area by the substrate 50 entering the part.
- substrate 50 approachs by being inserted from the harness part 54 side with respect to an opening part.
- a semicircular arc-shaped first portion 51 enters the side of the optical scale 11 where the rotor 10 extends
- a circular second portion 52 extends on the side of the optical scale 11 where the rotor 10 does not extend. enter in.
- the chassis 22 to which the second portion 52 is fixed and the body 21 on which the rotor 10 is rotatably provided include a first portion 51, a second portion 52, and an optical device.
- the scale 11 is substantially parallel and the optical scale 11 is positioned in the detection area between the first portion 51 and the second portion 52. That is, the first portion 51, the second portion 52, and the optical scale 11 are in a positional relationship along a predetermined plane. With this positional relationship, the body 21 and the chassis 22 are assembled by bringing the body 21 and the chassis 22 into close contact with each other along a predetermined plane so that the chassis 22 enters from the opening 21a of the body 21. Thereby, the optical scale 11 is provided in the detection area.
- the harness portion 54 extends from a cutout portion 21 b provided on the opposite side of the opening 21 a of the body 21. Thereafter, the cover 23 is attached so as to cover the opening 21 a of the body 21.
- FIG. 11 illustration of some circuits such as the detection unit 35 is omitted, but in practice, various circuits including the detection unit 35 have already been mounted.
- the chassis 22 and the cover 23 may be integrated.
- the first portion 51 provided with the generating unit 41 and the second portion 52 provided with the detecting unit 35 are not separated, and thus the substrate 50 can be simply bent or curved.
- the generation unit 41 and the detection unit 35 can be positioned by a simple operation.
- the positioning of the generation unit 41 and the detection unit 35 becomes easier.
- the positional relationship between the generation unit 41 provided in the first portion 51 and the detection unit 35 provided in the second portion 52 is determined. Adjustment can be made based on the relationship between the first portion 51 and the second portion 52 provided in parallel. For this reason, when the generation unit 41 has directivity, the position adjustment for placing the detection unit 35 in the generation region of the detection target by the generation unit 41 and the position angle when the generation unit 41 and the detection unit 35 are provided on the substrate are related. Design becomes easier.
- a region between the first portion 51 and the second portion 52 can be provided by the connecting portion 53. For this reason, the detection area between the generation unit 41 and the detection unit 35 can be provided more easily.
- connection part 53 has the wiring connected to the generating part 41, the wiring connected to the generating part 41 and the connecting part 53 can be integrated. For this reason, the board
- connection portion 53 is smaller than that of the first portion 51 and the second portion 52, the width of the substrate including the first portion 51 and the second portion 52 sandwiching the connection portion 53 is made uniform. Compared to the case, the area of the substrate can be made smaller. For this reason, a board
- the substrate is bent at the boundary 55a between the first portion 51 and the connection portion 53 and at the boundary 55b between the second portion 52 and the connection portion 53, so that the substrate 41 is bent between the generation portion 41 and the detection portion 35.
- a detection area can be provided. Further, the bent portion can be clarified.
- the first portion 51 is supported hollow by the connecting portion 53 and the first portion 51 is smaller than the second portion 52, the first portion 51 is supported hollow by the connecting portion 53 alone, and the generating portion It is possible to provide a detection area between 41 and the detection unit 35. Further, since the first portion 51 is smaller than the second portion 52, the weight of the first portion 51 can be further reduced. For this reason, in addition to making it possible to make requirements such as strength required for the connection portion 53 easier, it is possible to bring the center of gravity of the entire substrate closer to the second portion 52 side that is the base. Therefore, the support by the connecting portion 53 can be realized more easily.
- the substrate is bent into a shape (for example, a U-shape) in which the generation unit and the detection unit are opposed to each other, so that a part of the substrate 50 (for example, the first surface of the chassis 22) 2 part 52 etc.) can be arranged, and handling when providing a sensor in a case becomes easier.
- a shape for example, a U-shape
- the substrate is a flexible substrate
- the generator 41 and the detector 35 are mounted after mounting the component including the generator 41 and the detector 35 on the substrate in a state where the first portion 51 and the second portion 52 are on the same plane. A series of operations of processing the substrate to provide the detection area between the two can be performed more easily.
- the wiring board connected to the configuration of the sensor 31 including the generation unit 41 and the detection unit 35 is collectively provided by providing the harness unit 54 including the wiring connected to the generation unit 41 and the detection unit 35 on the substrate. be able to. That is, by providing the harness portion 54, it is not necessary to individually draw out wiring from components (circuits or the like) that require wiring. For this reason, it is not necessary to handle the substrate and the wiring separately, and the sensor can be handled more easily.
- the detection unit 35 detects the change of the detection target caused by the change of the physical quantity in the detection area, so that the target that causes the change of the physical quantity can be set as the sensing target by the sensor.
- the detection target is an electromagnetic wave (for example, light)
- a change in the detection region can be detected by a change in the electromagnetic wave.
- the rotational motion of the rotating body can be set as a sensing target by the sensor.
- the senor functions as a rotary encoder, it is possible to detect an angular position such as a rotation angle of a rotation operation body connected to the sensor.
- first portion 51 and the second portion 52 may be reversed. That is, the generator 41 and the first part 51 may be provided on the chassis 22 side, and the detection part 35 and the second part 52 may be provided on the side supported by the connection part 53 so as to sandwich the detection area.
- first portion 51 and the second portion 52 may not be parallel.
- the relationship between the first part 51 and the second part 52 is that a detection area can be provided between the generation part 41 and the detection part 35, and the detection target generated by the generation part 41 provided in the first part 51. Can be detected by the detection unit 35 provided in the second portion 52, and the detailed arrangement of the first portion 51 and the second portion 52 can be appropriately changed.
- connection unit 53 may not include wiring.
- the connection part 53 supports either the 1st part 51 or the 2nd part 52 in hollow, for example.
- the said one is smaller than the other.
- the first portion 51 and the second portion 52 may be the same size, or the side supported by the connection portion 53 may be large.
- the stator 20 or the like may have a support portion for supporting at least one of the connection portion 53 and the first portion 51 in the first embodiment.
- latching parts such as an adhesive agent, a tape, a 1986
- the bending position of the substrate 50 is not limited to the boundary 55 a between the first portion 51 and the connection portion 53 and the boundary 55 b between the second portion 52 and the connection portion 53.
- a connecting portion 53 including a fold may be provided between the first portion 51 and the second portion 52 separately.
- the bending of the substrate 50 is not essential.
- the generation unit 41 and the detection unit 35 may be opposed to each other by bending the substrate 50 in a U shape.
- the substrate 50 is not limited to a flexible substrate.
- a detection region can be provided between the generation unit 41 and the detection unit 35, and a detection target generated by the generation unit 41 provided in the first portion 51 is provided in the second portion 52.
- Any substrate can be used as long as the first portion 51 and the second portion 52 are integrated with each other.
- a substrate made of a material that can be bent or bent by a process such as heating is adopted, and the process is applied to a part between the first part and the second part (for example, a connection part) and bent.
- the first portion and the second portion may be opposed to each other by being curved.
- substrate which has both a part which is hard to deform
- the first part and the second part are used by using the part that is not easily deformed and the part that is easily deformed as a part between the first part and the second part (for example, a connection part).
- the second portion can be opposed.
- the harness portion 54 may be omitted as appropriate.
- the extension part which functions as a harness part may be two or more.
- the specific pattern of the signal track T1 of the optical scale 11 and the pattern of the polarizing layers PP1 to PP4 provided in the detection unit 35 can be appropriately changed.
- Such a pattern is determined in consideration of the relationship between the pattern of a configuration (for example, the optical scale 11) provided in the detection region and causing polarized light, and the configuration of a configuration (for example, a polarization layer) that transmits light upon detection.
- the configuration provided in the detection area is not limited to the optical scale 11 that generates polarized light.
- a plate-like member provided with a hole or a transmission part that selectively transmits or transmits light according to the rotation angle of the rotor 10 may be provided.
- the change in the rotation angle of the rotor 10 appears as a change in the position and timing at which light is detected by the detection unit.
- Such a detection unit may not include the polarizing layers PP1 to PP4.
- the electromagnetic wave as a detection target is not limited to light from a light emitting diode or laser light.
- the electromagnetic wave as the detection target may be invisible light such as infrared rays or ultraviolet rays, X-rays, or the like.
- the detection target may be a magnetic force.
- the generator generates a magnetic field or a magnetic field by magnetic force.
- the detection unit performs sensing by detecting a change related to a magnetic force caused by a change in physical quantity (for example, passage of an object) in the detection region. Since the detection target is a magnetic force, a change in the detection area can be detected by a change in the magnetic force.
- the detection target may be sound waves including ultrasonic waves, ions such as plasma, cathode rays (electron beams), and the like.
- the detection target may be anything that changes due to a change in the physical quantity of the configuration provided in the detection area.
- the change in the physical quantity may be due to the linear motion of the linear motion body existing in the detection area.
- the linear motion of the linear motion body can be targeted for sensing by the sensor.
- the sensor can function as a linear encoder.
- the linear encoder is detected when the detection unit detects a change in the detection target caused by a configuration (for example, a scale or the like) that linearly moves in the detection region relative to the first portion 51 and the second portion 52.
- the sensor that functions as the sensor performs sensing related to the linear motion of the configuration. Therefore, the presence / absence and the operation position of the linear motion body connected to the encoder according to the present invention can be detected.
- the change in physical quantity may be due to a change in the concentration or quantity of gas, liquid or solid existing in the detection area.
- the sensor functions as a sensor for detecting these concentrations or amounts (for example, a passing amount or a flow rate passing through the detection region).
- the concentration or amount of the solid is, for example, the concentration or amount per unit space volume of fine objects such as particles, dust, and small pieces that pass through the detection region.
- the concentration or amount of the solid may be the amount or concentration of the minute matter contained in the liquid.
- an electromagnetic wave such as light is used as a detection target.
- a change in the concentration or amount of gas, liquid, or solid existing in the detection region can be targeted for sensing by the sensor.
- the sensor may be a torque sensor. That is, the torque can be measured according to the present invention.
- Embodiment 2 which functions as a torque sensor will be described.
- FIG. 22 is an exploded perspective view for explaining main components of the torque sensor 101 according to the second embodiment.
- FIG. 23 is an explanatory diagram illustrating the arrangement of the generating units 41AT and 41BT, the optical scales 11AT and 11BT, and the detecting unit of the torque sensor 101 according to the second embodiment.
- FIG. 24 is an explanatory diagram schematically illustrating the arrangement of the optical scale and the detection unit of the torque sensor according to the second embodiment.
- the torque sensor 101 will be described in detail with reference to FIGS.
- the torque sensor 101 includes a first rotating shaft 110A, a second rotating shaft 110B, a torsion bar 129, an optical scale 11AT, a detection unit 35AT, a light source 41AT, and an optical scale 11BT. It includes a detection unit 35BT and a light source 41BT.
- the torque sensor 101 is called an axial type torque sensor.
- One end of the torsion bar 129 is attached to the first rotating shaft 110A, and the other end (the end opposite to the end attached to the first rotating shaft 110A) is attached to the second rotating shaft 110B. It is done. That is, the first rotating shaft 110A is provided at one end of the torsion bar 129, and the second rotating shaft 110B is provided at the other end. 110 A of 1st rotating shafts are connected with an input shaft, for example. The second rotating shaft 110B is connected to the output shaft. 110A of 1st rotating shafts and the 2nd rotating shaft 110B are rotatably supported by the housing 120 via the bearing 126A and the bearing 126B.
- the first rotation shaft 110A may be formed integrally with the input shaft
- the second rotation shaft 110B may be formed integrally with the output shaft.
- the input shaft, the first rotating shaft 110A, the torsion bar 129, the second rotating shaft 110B, and the output shaft are arranged coaxially.
- the first rotating shaft 110A and one end of the torsion bar 129 are coupled so as not to rotate
- the other end of the torsion bar 129 and the second rotating shaft 110B are coupled so as not to rotate.
- the torsion bar 129 is twisted when torque is input. That is, the torque input via the first rotating shaft 110A causes a rotational displacement between the first rotating shaft 110A and the second rotating shaft 110B, and the torsion bar 129 is twisted.
- the first rotating shaft 110A is a substantially cylindrical member.
- the first rotary shaft 110A has an optical scale 11AT formed on the outer periphery.
- the optical scale 11AT protrudes from the outer periphery of the first rotating shaft 110A and is arranged in an annular shape in the circumferential direction of the first rotating shaft 110A.
- the second rotating shaft 110B is a substantially cylindrical member.
- the second rotary shaft 110B has an optical scale 11BT formed on the outer periphery.
- the optical scale 11BT protrudes from the outer periphery of the second rotating shaft 110B and is arranged in an annular shape in the circumferential direction of the second rotating shaft 110B.
- At least two sets of light sources 41AT and 41BT functioning as generation units and sensors 31AT and 31BT functioning as detection units are arranged and provided.
- two sets of light sources 41AT (41BT) and optical sensors 35AT (35BT) are provided as two sets of generation units and detection units, but the number of light sources and optical sensors is not limited thereto.
- the light sources 41AT and 41BT and the optical sensors 35AT and 35BT form a pair by combining the same light source and the optical sensor, for example, and are arranged in the housing 120.
- Each set of light source and optical sensor is provided on one substrate. That is, on the substrate 50AT of the sensor 31AT, the first portion 51AT provided with the light source 41AT functioning as a generation unit and the second portion 52AT provided with the optical sensor 35AT functioning as a detection unit are integrated.
- the substrate 50BT of the sensor 31BT is integrated with a first portion 51BT provided with a light source 41BT that functions as a generation unit and a second portion 52BT provided with an optical sensor 35BT that functions as a detection unit.
- the optical scale 11AT is located in the detection area between the light source 41AT and the optical sensor 35AT.
- the optical scale 11BT is located in the detection area between the light source 41BT and the optical sensor 35BT.
- the substrate 50AT has a connection portion 53AT that connects the first portion 51AT and the second portion 52AT.
- the substrate 50BT has a connection portion 53BT that connects the first portion 51BT and the second portion 52BT.
- the connection portion 53AT is located outside the outer periphery of the optical scale 11AT, and the light source 41AT provided in the first portion 51AT and the optical sensor 35AT provided in the second portion 52AT are the detection area in the optical scale 11AT. It is provided in the position which can pinch
- connection portion 53BT is located outside the outer periphery of the optical scale 11BT, and the light source 41BT provided in the first portion 51BT and the optical sensor 35BT provided in the second portion 52BT are in the detection region and the optical scale 11BT. It is provided in the position which can pinch
- the connection parts 53AT and 53BT may have wiring connected to the generation part or the detection part as in the first embodiment.
- the specific configuration of the substrates 50AT and 50BT may be the same as that of the substrate 50 in the first embodiment. That is, the substrates 50AT and 50BT may be the same as the substrate 50.
- the first portions 51AT and 51BT may be the same as the first portion 51.
- the second parts 52AT and 52BT may be the same as the second part 52.
- connection parts 53AT and 53BT may be the same as the connection part 53. More specific configurations within a range satisfying the invention-specific matters of the present invention, such as specific shapes of the respective parts of the substrates 50AT and 50BT, may be different from the specific configuration of the substrate 50 in the first embodiment.
- the torque sensor 101 reads the relative displacement (rotational displacement) between the first rotation shaft 110A and the second rotation shaft 110B connected by the torsion bar 129, and reads the optical scale 11AT or the optical scale 11BT. The detection is reflected in the detection change of the sensor 31BT.
- the optical scales 11AT and 11BT are made of, for example, silicon, glass, or a polymer material.
- the optical scales 11AT and 11BT have a signal track T1 on one or both plate surfaces.
- the light source 41AT is disposed at a position facing the optical sensor 35AT via the optical scale 11AT.
- the light source 41BT is disposed at a position facing the optical sensor 35BT via the optical scale 11BT.
- FIG. 25 is an explanatory diagram for explaining the arrangement of the optical scale and the optical sensor of the torque sensor according to the second embodiment.
- the optical sensor 35AT shown in FIG. 25 can read the signal track T1 of the optical scale 11AT, and the light source 41AT is disposed at a position facing the optical sensor 35AT via the optical scale 11AT.
- the light source light 71AT of the light source 41AT passes through the signal track T1 of the optical scale 11AT, and the optical sensor 35AT detects this transmitted light 73AT as incident light.
- the relationship between the optical sensor 35BT, the optical scale 11BT, and the light source 41BT is the same as the relationship between the optical sensor 35AT, the optical scale 11AT, and the light source 41AT.
- the light source light 71BT of the light source 41BT passes through the signal track T1 of the optical scale 11BT, and the optical sensor 35BT detects the transmitted light 73BT as incident light.
- FIG. 26 is a block diagram of the torque detection device according to the second embodiment.
- the torque detection device 200 includes the above-described torque sensor 101 and the arithmetic device 3A.
- the optical sensor 35AT, the optical sensor 35BT, and the arithmetic device 3A of the torque sensor 101 are connected. Yes.
- the arithmetic device 3A is connected to a control unit 5A of a rotary machine such as a motor.
- the torque detector 200 detects the transmitted light 73AT and 73BT that are transmitted through and incident on the optical scale 11AT and the optical scale 11BT by the optical sensor 35AT and the optical sensor 35BT.
- the arithmetic device 3A calculates the relative position between the first rotating shaft 110A of the torque sensor 101 and the sensor 31AT from the detection signal of the optical sensor 35AT.
- the arithmetic device 3A calculates the relative position between the second rotation shaft 110B of the torque sensor 101 and the sensor 31BT from the detection signal of the optical sensor 35BT.
- the arithmetic device 3A stores the elastic modulus of torsion in the torsion bar 129 in the RAM 4E and the internal storage device 4F.
- the torque is proportional to the elastic modulus of torsion at the torsion bar 129. Therefore, the calculation device 3A calculates the rotational displacement (deviation amount) between the rotation angle of the first rotation shaft 110A and the rotation angle of the second rotation shaft 110B in order to obtain the twist.
- the arithmetic device 3A can calculate torque from the elastic coefficient of the torsion bar 129 and information on the relative positions of the first rotating shaft 110A and the second rotating shaft 110B.
- the arithmetic device 3A outputs the control signal to the control unit 5A such as a rotating machine (motor).
- the arithmetic unit 3A is a computer such as a personal computer (PC), and includes an input interface 4A, an output interface 4B, a CPU (Central Processing Unit) 4C, a ROM (Read Only Memory) 4D, and a RAM (Random Access Memory). 4E and an internal storage device 4F.
- the input interface 4A, output interface 4B, CPU 4C, ROM 4D, RAM 4E and internal storage device 4F are connected by an internal bus.
- the arithmetic device 3A may be configured with a dedicated processing circuit.
- the input interface 4A receives input signals from the optical sensor 35AT and the optical sensor 35BT of the torque sensor 101, and outputs them to the CPU 4C.
- the output interface 4B receives a control signal from the CPU 4C and outputs it to the control unit 5A.
- ROM4D stores programs such as BIOS (Basic Input Output System).
- BIOS Basic Input Output System
- the internal storage device 4F is, for example, an HDD (Hard Disk Drive), a flash memory, or the like, and stores an operating system program and application programs.
- the CPU 4C implements various functions by executing programs stored in the ROM 4D and the internal storage device 4F while using the RAM 4E as a work area.
- the internal storage device 4F stores, for example, a database in which the polarization direction by the optical scale 11AT and the optical scale 11BT is associated with the output of the optical sensors 35AT and 35BT.
- FIG. 27 is an explanatory diagram illustrating an example of a wire grid pattern of the optical scales 11AT and 11BT according to the second embodiment.
- the signal track T1 shown in FIG. 27 is the same as the signal track T1 of the optical scale 11 according to the first embodiment. That is, in the optical scales 11AT and 11BT, adjacent metal thin wires g are linearly arranged in parallel as the signal track T1.
- the optical scales 11AT and 11BT according to the second embodiment are different from the optical scale 11 according to the first embodiment in that the optical scales 11AT and 11BT further have holes through which the torsion bars 129 are inserted.
- the generators (light sources 41AT and 41BT) and the detectors (optical sensors 35AT and 35BT) according to the second embodiment have the same configuration as the generator 41 and the detector 35 according to the first embodiment, for example. It is not limited to this.
- the optical sensors 35AT and 35BT according to the second embodiment may be configured using a part of the detection unit 35 according to the first embodiment.
- the first light receiving part PD1 having the polarizing layer PP1 and the third light receiving part PD3 having the polarizing layer PP3 in the configuration shown in FIG. 12 are omitted. It may be a configuration.
- optical sensors 35AT and 35BT according to the second embodiment have a configuration in which the second light receiving unit PD2 having the polarizing layer PP2 and the fourth light receiving unit PD4 having the polarizing layer PP4 are omitted from the configuration shown in FIG. May be.
- the torque detection device 200 detects torque using the torsion bar torsion. 110A of 1st rotating shafts and the 2nd rotating shaft 110B are connected by the torsion bar 129 which a twist generate
- the calculation device 3A which is a calculation means, calculates the relative rotation angle between the optical scale 11AT and the optical sensor 35AT and calculates the relative rotation angle between the optical scale 11BT and the optical sensor 35BT.
- the rotational displacement of the first rotating shaft 110A and the second rotating shaft 110B is calculated.
- the optical sensor detects the rotation angles of the plurality of optical scales that operate in association with the rotations of the first rotation shaft and the second rotation shaft, in the polarization state in which the transmitted light is polarized and separated. For this reason, compared with the case where the light intensity of the transmitted light is directly detected, the torque detection device can reduce the influence of fluctuations in the detected light amount due to foreign matter or the like even if an optical torque sensor is used. Thereby, since the tolerance
- the torque detection device can reduce the influence of fluctuations in the detected light amount due to the accuracy of the optical path (distance from the optical scale to the optical sensor) even when an optical torque sensor is used like the torque sensor according to the second embodiment. Can do. As a result, a degree of freedom can be given to the arrangement of the light source and the optical sensor. Thereby, the torque sensor of a torque detection apparatus can also be reduced in size. Further, the torque detection device can increase the resolution as compared with the magnetic torque sensor.
- the harness portion is not shown, but at least one part of the first portion 51AT (51BT), the second portion 52AT (52BT), and the connection portion 53AT (53BT) depending on the wiring. You may make it extend from.
- the optical sensors 35AT and 35BT in the torque sensor may be in another form.
- FIG. 28 is an explanatory diagram for describing a modification of the optical sensor according to the second embodiment.
- FIG. 29 is an explanatory diagram for describing a modification of the optical sensor according to the second embodiment.
- the optical sensor includes a first optical sensor 36A and a second optical sensor 36B.
- the first optical sensor 36A includes an electrode base portion 36KA, a sensor base portion 36Ka connected to the electrode base portion 36KA, and a first light receiving portion 36a, and can detect the light intensity in the first polarization direction.
- the first light receiving unit 36a includes a first polarizing layer that separates incident light in the first polarization direction, and receives the first separated light separated by the first polarizing layer.
- the second optical sensor 36B includes an electrode base portion 36KB, a sensor base portion 36Kb connected to the electrode base portion 36KB, and a second light receiving portion 36b, and can detect the light intensity in the second polarization direction.
- the second light receiving unit 36b includes a second polarizing layer that separates the incident light in the second polarization direction, and receives the second separated light separated by the second polarizing layer.
- the 1st light-receiving part 36a and the 2nd light-receiving part 36b are formed in the comb-tooth shape which mutually meshes
- the electrode base portion 36KA and the electrode base portion 36KB are made of a conductor such as Au, and can energize the first light receiving portion 36a and the second light receiving portion 36b, respectively. More preferably, the first polarization direction and the second polarization direction are relatively different from each other by 90 °. This makes it easier to calculate the polarization angle.
- the optical sensors 35AT and 35BT in the torque sensor are not only rectangular in outer shape, but may have a shape in which the outer diameter is along an arc as shown in FIG.
- the first light receiving unit 36a and the second light receiving unit 36b can receive the same amount of light with respect to the incident light.
- the configuration provided in the detection area in the torque sensor is not limited to the optical scales 11AT and BT that generate polarized light, as in the case of the rotary encoder, and can be changed as appropriate.
- the optical scales 11AT and BT instead of the optical scales 11AT and BT, a plate-like shape provided with a hole or a transmission part that selectively transmits or transmits light according to the rotation angle of the first rotation shaft 110A and the second rotation shaft 110B. These members may be provided.
- the change in the rotation angle appears as a change in the position and timing at which light is detected by the detection unit.
- Such a detection unit may not have a polarizing layer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Transform (AREA)
Abstract
センサは、所定の検出対象を発生させる発生部と、被検出領域を挟んで発生部により発生した検出対象を検出する検出部と、発生部及び検出部が設けられる基板とを備え、基板は、発生部が設けられる第1部分と検出部が設けられる第2部分とが一体である。
Description
本発明は、センサ及びセンサの製造方法に関する。
ロータリエンコーダの構成として、光を発する発光素子が設けられた基板と、発光素子から発せられた光を検出する受光素子が設けられた基板とをロータリエンコーダの筐体内に収める構成が知られている(例えば特許文献1)。
しかしながら、特許文献1に記載のロータリエンコーダは発光素子と受光素子とが別個の基板に存することから、組み立てにおいて発光素子から発せられる光の照射範囲と受光素子による受光範囲との関係を決定するための位置決めを行わなければならないという問題がある。
上記のような特許文献1のロータリエンコーダに係る問題は、光の検出によるロータリエンコーダに限らず、検出対象(例えば光等)を発する発生部と、発生部により発生した検出対象を検出する検出部とが別個の基板に設けられたセンサに共通する問題である。
本発明は、発生部と検出部との位置決めがより容易なセンサ及びセンサの製造方法を提供することを目的とする。
上記の目的を達成するための本発明のセンサは、所定の検出対象を発生させる発生部と、被検出領域を挟んで前記発生部により発生した前記検出対象を検出する検出部と、前記発生部及び前記検出部が設けられる基板とを備え、前記基板は、前記発生部が設けられる第1部分と前記検出部が設けられる第2部分とが一体である。
従って、発生部が設けられる第1部分と検出部が設けられる第2部分とが分離しないので、基板を折り曲げる又は湾曲させる等の簡易な作業により発生部と検出部との位置決めを行うことができる。このように、本発明のセンサによれば、発生部と検出部との位置決めがより容易になる。
本発明のセンサでは、前記基板は、前記第1部分と前記第2部分とが平行になるよう設けられる。
従って、第1部分に設けられた発生部と第2部分に設けられた検出部との位置関係を平行に設けられた第1部分と第2部分との関係に基づいて調整することができる。このため、発生部が指向性を有する場合に発生部による検出対象の発生領域内に検出部を収めるための位置調整ならびに発生部及び検出部を基板に設ける際の位置角度に関する設計がより容易になる。
本発明のセンサでは、前記基板は、前記第1部分と前記第2部分とを接続する接続部を有する。
従って、接続部により第1部分と第2部分との間の領域を設けることができる。このため、発生部と検出部との間の被検出領域をより容易に設けることができる。
本発明のセンサでは、前記接続部は、前記発生部又は前記検出部に接続される配線を有する。
従って、発生部又は検出部に接続される配線と接続部とを一体化することができる。このため、接続部及び当該配線を有する基板をよりコンパクトにすることができる。
本発明のセンサでは、前記接続部は、前記第1部分及び前記第2部分に比して、前記第1部分と前記第2部分との間での前記接続部の延設方向に直交する方向であって前記基板の板面に沿う方向の幅が小さい。
従って、接続部を挟んだ第1部分と第2部分とを含む基板の幅を一様にした場合に比して基板の面積をより小さくすることができる。このため、基板をより軽量化することができる。
本発明のセンサでは、前記基板は、前記第1部分と前記接続部との境目及び前記第2部分と前記接続部との境目で折り曲げられる。
従って、基板の折り曲げにより発生部と検出部との間に被検出領域を設けることができる。また、折り曲げ箇所を明確にすることができる。
本発明のセンサでは、前記第1部分又は前記第2部分の一方は、前記接続部により中空に支持され、前記一方は、他方よりも小さい。
従って、接続部により基板単独で第1部分又は第2部分の一方を中空で支持して発生部と検出部との間の被検出領域を設けることができる。また、当該一方が他方よりも小さいことで、当該一方の重量をより軽くすることができる。このため、接続部に求められる強度等の要件をより易しい要件にすることができることに加えて、基板全体の重心を土台である他方側により近づけることができる。よって、接続部による支持をより容易に実現することができる。
本発明のセンサでは、前記基板は、前記発生部と前記検出部とが対向する形状に折り曲げられる。
従って、一般的な機械の筐体を構成する平面に当該形状の基板の一部を沿わせることができる等、センサを筐体内に設ける場合の取り扱いがより容易になる。
本発明のセンサでは、前記基板は、フレキシブル基板である。
従って、第1部分及び第2部分が同一平面に存する状態で発生部及び検出部を含む部品を基板に実装した後に発生部と検出部との間に被検出領域を設けるために基板を加工するという一連の作業をより容易に行うことができる。
本発明のセンサでは、前記基板は、前記発生部及び前記検出部に接続される配線を含むハーネス部を備える。
従って、ハーネス部を備える基板に発生部及び検出部を含むセンサの構成に接続される配線を纏めて設けることができる。すなわち、ハーネス部を備えることで、配線が必要な部品(回路等)から個別に配線を引き出す必要がない。このため、基板と配線とを別個に取り扱う必要がなくなり、より容易にセンサを取り扱うことができる。
本発明のセンサでは、前記検出部は、前記被検出領域における物理量の変化により生じる前記検出対象の変化を検出する。
従って、物理量の変化を生じる対象物をセンサによるセンシングの対象にすることができる。
本発明のセンサでは、前記検出対象は、電磁波である。
従って、電磁波の変化により被検出領域における変化を検出することができる。
本発明のセンサでは、前記検出対象は、磁力である。
従って、磁力の変化により被検出領域における変化を検出することができる。
本発明のセンサでは、前記物理量の変化は、前記被検出領域に存する回転体の回転による。
従って、回転体の回転運動をセンサによるセンシングの対象にすることができる。
本発明のセンサは、ロータリエンコーダである。
従って、本発明によりロータリエンコーダに連結された回動動作体の回動角度等の角位置を検出することができる。
本発明のセンサでは、前記物理量の変化は、前記被検出領域に存する直動体の直動による。
従って、直動体の直動をセンサによるセンシングの対象にすることができる。
本発明のセンサは、エンコーダである。
従って、本発明によりエンコーダに連結された直動体の動作の有無及び動作位置を検出することができる。
本発明のセンサは、トルクセンサである。
従って、本発明によりトルクを計測することができる。
本発明のセンサでは、前記物理量の変化は、前記被検出領域に存する気体、液体又は固体の濃度又は量の変化による。
従って、被検出領域に存する気体、液体又は固体の濃度又は量の変化をセンサによるセンシングの対象にすることができる。
上記の目的を達成するための本発明のセンサの製造方法は、所定の検出対象を発生させる発生部が設けられる第1部分と、被検出領域を挟んで前記発生部により発生した前記検出対象を検出する検出部が設けられる第2部分とが一体である基板を形成し、前記基板の前記第1部分に前記発生部を設け、前記第2部分に前記検出部を設ける。
従って、発生部が設けられる第1部分と検出部が設けられる第2部分とが分離しないので、基板を折り曲げる又は湾曲させる等の簡易な作業により発生部と検出部との位置決めを行うことができる。このように、本発明のセンサの製造方法によれば、発生部と検出部との位置決めがより容易になる。
本発明のセンサ及びセンサの製造方法によれば、発生部と検出部との位置決めをより容易とすることができる。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
(実施形態1)
図1は、実施形態1に係るセンサ31の構成図である。図2は、実施形態1に係るセンサ31の外観斜視図である。図1は、図2の断面模式図である。図3は、発生部41、光学スケール11及び検出部35の配置の一例を説明する説明図である。図4は、実施形態1に係る光学式エンコーダ2のブロック図である。図5は、実施形態1に係る光学スケール11のパターンの一例を示す説明図である。センサ31は、電磁波(例えば光)からなる検出対象を発生させる発生部41と、被検出領域を挟んで発生部41により発生した検出対象を検出する検出部35と、発生部41及び検出部35が設けられる基板50と、を備える。実施形態1では、センサ31は、さらに、モータ等の回転機械に連結されたシャフト12及び当該シャフト12の端部に取り付けられて被検出領域で回転可能に設けられる回転体(光学スケール11)を有するロータ10と、ステータ20とを有している。なお、被検出領域とは、発生部41と検出部35との間の領域である。
図1は、実施形態1に係るセンサ31の構成図である。図2は、実施形態1に係るセンサ31の外観斜視図である。図1は、図2の断面模式図である。図3は、発生部41、光学スケール11及び検出部35の配置の一例を説明する説明図である。図4は、実施形態1に係る光学式エンコーダ2のブロック図である。図5は、実施形態1に係る光学スケール11のパターンの一例を示す説明図である。センサ31は、電磁波(例えば光)からなる検出対象を発生させる発生部41と、被検出領域を挟んで発生部41により発生した検出対象を検出する検出部35と、発生部41及び検出部35が設けられる基板50と、を備える。実施形態1では、センサ31は、さらに、モータ等の回転機械に連結されたシャフト12及び当該シャフト12の端部に取り付けられて被検出領域で回転可能に設けられる回転体(光学スケール11)を有するロータ10と、ステータ20とを有している。なお、被検出領域とは、発生部41と検出部35との間の領域である。
図6は、基板50の一例を示す斜視図である。図7は、折り曲げられる前の基板50の一例を示す平面図である。基板50は、発生部41が設けられる第1部分51と検出部35が設けられる第2部分52とが一体である。図8は、ステータ20のボディ21及びボディ21に設けられている構成の一例を示す斜視図である。図9は、ステータ20のシャシ22に設けられている構成の一例を示す斜視図である。図10は、回路実装前の基板の一例を示す平面図である。図11は、被検出領域に光学スケール11を設けるためのステータ20の組み立ての一例を示す図である。例えば図6、図7に示すように、基板50は、半円弧状の第1部分51、円状の第2部分52を含む一つの基板である。基板50は、例えばフレキシブルプリント基板(Flexible printed circuits:FPC)からなり、発生部41及び検出部35を含む各種の回路(例えば図6に示す回路60~62等)が実装されている。より具体的には、FPCは、例えばポリイミド膜又はフォトソルダーレジスト膜からなる絶縁体をベースフィルムとして、ベースフィルム上に接着層及び導体層を形成し、導体層のうち端子部(はんだ付け部を含む)を除く部分を絶縁体で被覆した可撓性を有する配線基板である。導体層は、銅等の電気伝導体からなり、導体層のパターンにより各種の回路等の部品に接続される信号線及び電力線が設けられる。本発明に採用可能なフレキシブル基板の具体的構成は、これに限られるものでなく適宜変更可能である。回路60~62は、例えば後述する図18に示すプリアンプAMP、差動演算回路DS、フィルター回路NR、逓倍回路AP等を構成する。
基板50は、第1部分51と第2部分52とを接続する接続部53を有する。具体的には、例えば図6、図7に示すように、接続部53は、第1部分51と第2部分52との間で、第1部分51の円弧の外周部と第2部分52の円弧の外周部とを接続するよう設けられている。
接続部53は、発生部41(又は検出部35)に接続される配線を有する。実施形態1では、接続部53は、発生部41に接続される信号線及び電力線を具備する。具体的には、接続部53の配線は、例えばFPCに実装された信号線及び電力線として設けられている。なお、実施形態1の接続部53には回路が設けられていないが、接続部53に回路等の部品を設けることもできる。
図6、図7に示すように、実施形態1の接続部53は、第1部分51及び第2部分52に比して、第1部分51と第2部分52との間での接続部53の延設方向に直交する方向であって基板50の板面に沿う方向の幅が小さい。
基板50は、発生部41及び検出部35に接続される配線を含むハーネス部54を備える。具体的には、例えば図6、図7に示すように、ハーネス部54は、第1部分51から接続部53の反対側に延出されるよう設けられている。ハーネス部54は、発生部41、検出部35及び基板50に設けられた各種の回路に接続される信号線及び電力線を具備する。具体的には、ハーネス部54の配線は、例えばFPCに実装された信号線及び電力線として設けられている。実施形態1では、発生部41の配線は、第1部分51、接続部53及びハーネス部54に設けられている。また、検出部35の配線は、第2部分52及びハーネス部54に設けられている。
また、ハーネス部54は、例えば図1に示すように、コネクタCNTと接続されている。コネクタCNTは、センサ31と他の装置(例えば演算装置3)とを接続するインターフェースである。センサ31は、コネクタCNTを介して演算装置3と接続されている。すなわち、ハーネス部54は、基板50に設けられた各種の回路と他の装置(例えば演算装置3)とを接続する配線として機能する。なお、ハーネス部54に回路等の部品を設けてもよい。
基板50は、第1部分51と第2部分52とが平行になるよう設けられる。具体的には、基板50は、図1、図6に示すように、発生部41と検出部35とが対向する形状(コの字状)に折り曲げられる。実施形態1では、基板50は、第1部分51と接続部53との境目55a及び第2部分52と接続部53との境目55bで折り曲げられる。すなわち、実施形態1の基板50は、接続部53に対して第1部分51及び第2部分52が直角になるよう折り曲げられ、かつ、第1部分51と第2部分52とが対向する位置に存する。これにより、第1部分51と第2部分52とが平行に設けられて、発生部41と検出部35とが対向する。
第1部分51において発生部41が設けられる側の面と、第2部分52において検出部35が設けられる側の面とは、基板50における同一の面である。発生部41が設けられる側の面と検出部35が設けられる側の面とが対向するよう設けられることで、発生部41と検出部35との位置関係は、図3等に示すように、発生部41により発生した検出対象(例えば光)が検出部35により検出可能な位置関係になる。また、対向する発生部41と検出部35の間の領域が被検出領域になる。
第1部分51又は第2部分52の一方は、接続部53により中空に支持され、一方は、他方よりも小さい。具体的には、例えば図6に示すように、発生部41が設けられた第1部分51は、接続部53により中空に支持されている。また、図6、図7に示すように、第1部分51は、第2部分52よりも小さい。より具体的には、実施形態1における円弧状の第1部分51の径は、円状の第2部分52の径と略同一である。ただし、第1部分51は半円弧状であり、半円状のFPCの内周側に半円状の切欠部51aが設けられている。このため、基板50に占める第1部分51の面積は、第2部分52の面積よりも小さい。
検出部35は、被検出領域における物理量の変化により生じる検出対象(例えば光等の電磁波)の変化を検出する。物理量の変化は、例えば被検出領域に存する回転体の回転による。具体的には、例えば図1~図3に示すように、被検出領域にはロータ10の光学スケール11が設けられる。実施形態1に係るセンサ31は、回転体としての光学スケール11の回転による検出対象の検出結果の変化に応じた出力を行うセンサである。すなわち、実施形態1に係るセンサ31は、ロータ10に回転動作を伝達するよう接続された回転駆動体の角位置を検出するロータリエンコーダとして機能する。
ロータ10は、図5に示す円板形状(又は多角形形状)の部材である光学スケール11を有している。光学スケール11は例えば、シリコン、ガラス、高分子材料などで形成されている。光学スケール11は円輪状もしくは中空であってもよい。図5に示す光学スケール11は、信号トラックT1を一方の板面に有している。また、ロータ10には、光学スケール11の取り付けられた板面に対し他方の板面にシャフト12が取り付けられている。光学スケール11は、傾斜していても傾斜角度が小さい場合には偏光分離の機能に影響がない。すなわち、光学スケール11は、回転中心Zrと直交する平面に対して傾斜していても、偏光分離素子として機能する。
ステータ20は、軸受26a,26bと、シャフト12と、シャフト12の端部に取り付けられた光学スケール11と、検出部35とを囲む、遮光性の部材でできている。このため、ステータ20の内部では、外来の光ノイズを抑制できる。図8、図9に示すように、ステータ20は、ボディ21と、シャシ22と、カバー23とを備えている。ボディ21は、軸受26a,26bを介してシャフト12を回転可能に支持する。ボディ21の内周が軸受26a,26bの外輪に固定されており、シャフト12の外周が軸受26a,26bの内輪に固定されている。シャフト12がモータ等回転機械からの回転により回転すると、シャフト12に連動して光学スケール11が回転中心Zrを軸中心として回転する。ボディ21は、基板50が設けられたシャシ22をボディ21に取り付けるための開口部21aを有する。シャシ22は、基板50の第2部分52のうち、検出部35が設けられた側の反対側の面(裏面)の少なくとも一部分と当接して基板50を支持する。具体的には、基板50の裏面には、センサを構成する部品としての集積回路(例えばQFNパッケージのIC)が設けられている。シャシ22は、裏面の集積回路を外側から覆うとともに基板50の裏面の外周部と当接して基板50を支持する。コの字状に折り曲げられた基板50の接続部53は、シャシ22に支持された第2部分52から立設するように位置する。このように、実施形態1では、基板50は、シャシ22に固定されている。カバー23は、ステータ20の円筒状の外周面の一部を形成する部材である。カバー23は、ボディ21の開口部21a側、すなわち、シャシ22からハーネス部54が延出される切欠部21bの反対側に設けられる。ボディ21とシャシ22とが組み付けられた状態で、さらにカバー23が開口部21aを覆うように組み付けられることで、ボディ21、シャシ22及びカバー23は円筒状のステータ20を形成し、ステータ20の内部を外部の光ノイズから遮光する。
上述したロータ10のシャフト12が回転すると、図3に示すように、光学スケール11が、例えばR方向に検出部35に対して相対的に移動する。これにより、光学スケール11の信号トラックT1が検出部35に対して相対的に移動する。光学スケール11は、面内における偏光子の偏光方向Pmが所定の方向を向いており、かつ偏光方向Pmが回転により変化する。検出部35は、発生部41の光源光71が光学スケール11に透過して入射する入射光(透過光)73を受光して、図5に示す光学スケール11の信号トラックT1を読み取ることができる。
光学式エンコーダ2は、上述したセンサ31と、演算装置3と、を備えており、図4に示すように、センサ31と、演算装置3とが接続されている。演算装置3は、例えばモータ等の回転機械の制御部5と接続されている。
光学式エンコーダ2は、光学スケール11に光源光71が透過して入射する入射光73を検出部35で検出する。演算装置3は、検出部35の検出信号からセンサ31のロータ10と検出部35との相対位置を演算し、相対位置の情報を制御信号として、モータ等の回転機械の制御部5へ出力する。
演算装置3は、例えばパーソナルコンピュータ(PC)等のコンピュータであり、入力インターフェース4aと、出力インターフェース4bと、CPU(Central Processing Unit)4cと、ROM(Read Only Memory)4dと、RAM(Random Access Memory)4eと、内部記憶装置4fと、を含んでいる。入力インターフェース4a、出力インターフェース4b、CPU4c、ROM4d、RAM4e及び内部記憶装置4fは、内部バスで接続されている。なお、演算装置3は、専用の処理回路で構成してもよい。
入力インターフェース4aは、センサ31の検出部35からの入力信号を受け取り、CPU4cに出力する。出力インターフェース4bは、CPU4cから制御信号を受け取り、制御部5に出力する。
ROM4dには、BIOS(Basic Input Output System)等のプログラムが記憶されている。内部記憶装置4fは、例えばHDD(Hard Disk Drive)やフラッシュメモリ等であり、オペレーティングシステムプログラムやアプリケーションプログラムを記憶している。CPU4cは、RAM4eをワークエリアとして使用しながらROM4dや内部記憶装置4fに記憶されているプログラムを実行することにより、種々の機能を実現する。
内部記憶装置4fには、光学スケール11による偏光方向Pmと検出部35の出力とを対応付けたデータベースが記憶されている。または、内部記憶装置4fには、後述する距離Dの値と、光学スケール11の位置情報とを対応付けたデータベースが記憶されている。
図5に示す信号トラックT1は、ワイヤーグリッドパターンとよばれる金属細線(ワイヤー)gの配列が図1に示す光学スケール11に形成されている。光学スケール11は、信号トラックT1として、隣り合う金属細線gを平行に直線的に配置している。このため、光学スケール11は、光源光71が照射される位置によらず同じ偏光軸となり、面内における偏光子の偏光方向が一方向を向いている。
また、ワイヤーグリッドパターンとよばれる金属細線gを有する光学スケール11は、光誘起の偏光板に比較して、耐熱性を高めることができる。また、光学スケール11は、局所的にも、交差するような部分のないラインパターンとなっているため、高精度で誤差の少ない光学スケール11とすることができる。また、光学スケール11は、一括した露光またはナノインプリント技術により安定して製造することもできるため、高精度で誤差の少ない光学スケール11とすることができる。なお、光学スケール11は、光誘起の偏光板としてもよい。
複数の金属細線gは、交差せず配置されている。隣り合う金属細線gの間は、光源光71の全部又は一部が透過可能な透過領域dである。金属細線gの幅及び隣り合う金属細線gの間隔、つまり金属細線gの幅及び透過領域dの幅は、発生部41の光源光71の波長より十分小さくする場合、光学スケール11は、光源光71の入射光73を偏光分離することができる。このため、光学スケール11は、面内における偏光方向Pmが一様な偏光子を有している。光学スケール11は、回転する周方向において、検出部35へ入射する入射光73の偏光軸が光学スケール11の回転に応じて変化する。実施形態1において、偏光軸の変化は、光学スケール11の1回転に対して2回の増減を繰り返すことになる。
光学スケール11は、偏光方向の異なるセグメントを細かくする必要がない。そして、光学スケール11は、一様な偏光方向Pmを有しているため、偏光方向Pmの異なる領域の境界がなく、この境界による入射光73の偏光状態の乱れを抑制できる。実施形態1の光学式エンコーダ2は、誤検出またはノイズを生じさせる可能性を低減することができる。
図12は、実施形態1に係る検出部35の一例を説明するための説明図である。図13は、実施形態1に係る検出部35の第1受光部PD1の一例を説明するための説明図である。図14は、実施形態1に係る検出部35の第3受光部PD3の一例を説明するための説明図である。図3及び図12に示すように、検出部35は、ユニット基材30の表面30b上に、偏光層PP1を有する第1受光部PD1と、偏光層PP2を有する第2受光部PD2と、偏光層PP3を有する第3受光部PD3と、偏光層PP4を有する第4受光部PD4とを含む。図12に示すように、平面視で第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4は、ユニット基材30の表面30bの配置中心S0から等距離に配置されている。
発生部41は、例えば発光ダイオード、半導体レーザ光源である。図3に示すように、発生部41から照射される光源光71は、上述した光学スケール11を透過して、入射光73として、偏光層PP1、偏光層PP2、偏光層PP3及び偏光層PP4を透過し、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4に入射する。
図3に示すように、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれから配置中心S0までの距離を等しくすることが好ましい。この構造により、演算手段であるCPU4cの演算負荷を軽減することができる。
また、第1受光部PD1が配置中心S0を介して第3受光部PD3と点対称の位置に配置され、第2受光部PD2が配置中心S0を介して第4受光部PD4と点対称の位置に配置されている。第1受光部PD1が配置中心S0を介して第3受光部PD3と距離W離して配置されており、第2受光部PD2が配置中心S0を介して第4受光部PD4と距離W離して配置されている。なお、第1受光部PD1、第3受光部PD3、第2受光部PD2及び第4受光部PD4が有する幅wがあり、距離Wは、幅2wより小さくならない制約がある。実施形態1では、第1受光部PD1、配置中心S0及び第3受光部PD3を通過するユニット基材30の表面30b上の仮想軸をx軸とし、第2受光部PD2、配置中心S0及び第4受光部PD4を通過するユニット基材30の表面30b上の仮想軸をy軸とする。図12において、x軸はy軸とユニット基材30の表面30b上で直交している。図3に示すように、発生部41の出射面と、配置中心S0との距離をDとする。x軸とy軸とによるxy平面は、発生部41の出射面と配置中心S0とを結ぶz軸と直交している。
図3に示すように、z軸方向から平面視でみると、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれが発生部41の周囲に配置されている。第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれから配置中心S0までの距離を等しくすることが好ましい。この構造により、演算手段であるCPU4cの演算負荷を軽減することができる。
図13に示すように、第1受光部PD1は、シリコン基板34と、受光部37と、第1偏光層39aとを含む。また、図14に示すように、第3受光部PD3は、シリコン基板34と、受光部37と、第2偏光層39bとを含む。例えば、シリコン基板34はn型半導体であり、受光部37はp型半導体であり、シリコン基板34と受光部37とによりPN接合で形成されたフォトダイオードを構成することができる。第1偏光層39a及び第2偏光層39bは、光誘起の偏光層、または金属細線を平行に配列したワイヤーグリッドパターン等で形成することができる。第1偏光層39aは、図3に示す光学スケール11に光源光71から入射する入射光73を第1の偏光方向に分離し、第2偏光層39bは、上記入射光73を第2の偏光方向に分離する。これら第1の分離光の偏光軸と、第2の分離光の偏光軸とは、相対的に90°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
同様に、図13及び図14を用いて説明すると、第2受光部PD2は、シリコン基板34と、受光部37と、第1偏光層39aとを含む。また、図14に示すように、第4受光部PD4は、シリコン基板34と、受光部37と、第2偏光層39bとを含む。例えば、シリコン基板34はn型半導体であり、受光部37はp型半導体であり、シリコン基板34と受光部37とによりPN接合で形成されたフォトダイオードを構成することができる。第1偏光層39a及び第2偏光層39bは、光誘起の偏光層、または金属細線を平行に配列したワイヤーグリッドパターン等で形成することができる。第1偏光層39aは、図3に示す光学スケール11に光源光71から入射する入射光73を第1の偏光方向に分離し、第2偏光層39bは、上記入射光73を第2の偏光方向に分離する。これら第1の分離光の偏光軸と、第2の分離光の偏光軸とは、相対的に90°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4は、入射光73をそれぞれ異なる偏光方向に分離する偏光層PP1、PP2、PP3及びPP4を介して受光する。このため、偏光層PP1が分離する偏光軸と、偏光層PP2が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP2が分離する偏光軸と、偏光層PP3が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP3が分離する偏光軸と、偏光層PP4が分離する偏光軸とは、相対的に45°異なることが好ましい。偏光層PP4が分離する偏光軸と、偏光層PP1が分離する偏光軸とは、相対的に45°異なることが好ましい。この構成により、演算装置3のCPU4cは、偏光角度の演算を容易とすることができる。
図15、図16及び図17は、実施形態1に係る光学スケール11による偏光成分の分離を説明するための説明図である。図15のように、光学スケール11の信号トラックT1により偏光方向Pmに偏光された入射光が入射する。図15において、センシング範囲には、異物D1及び異物D2がある。入射光の偏光方向Pmは、上述した第1の偏光方向の成分の光強度PI(-)と、第2の偏光方向の成分の光強度PI(+)と、で表現することができる。上述したように、第1の偏光方向と、第2の偏光方向とは、90°異なる方向であることが好ましく、基準方向に対して例えば+45°成分と-45°成分のようになっている。図15、図16及び図17において、ワイヤーグリッドの軸方向は、紙面に対して平行に示されているが、紙面に対して同一の角度で傾斜していても傾斜角度が小さい場合には偏光分離の機能に影響がない。すなわち、光学スケール11は、回転軸に対して傾斜していても、偏光分離素子として機能する。
第1受光部PD1は、図16に示すように、入射光を第1の偏光方向に分離する第1偏光層39aを介して検知するため、第1の偏光方向の成分の光強度PI(-)を検知する。第3受光部PD3は、図17に示すように、入射光を第2の偏光方向に分離する第2偏光層39bを介して検知するため、第2の偏光方向の成分の光強度PI(+)を検知する。同様に、第2受光部PD2は、図16に示すように、入射光を第1の偏光方向に分離する第1偏光層39aを介して検知するため、第1の偏光方向の成分の光強度PI(-)を検知する。第4受光部PD4は、図17に示すように、入射光を第2の偏光方向に分離する第2偏光層39bを介して検知するため、第2の偏光方向の成分の光強度PI(+)を検知する。
図18は、実施形態1に係る光学式エンコーダ2の機能ブロック図である。図19は、実施形態1に係る光学スケール11の回転角度と各受光部の偏光成分の光強度変化を説明するための説明図である。図18に示すように、発生部41は、基準信号に基づいた発光を行い、光学スケール11に光源光71を照射する。透過光である入射光73は、検出部35に受光される。差動演算回路DSは、検出部35から出力されてプリアンプAMPにより増幅された検出信号を用いた差動演算処理を行う。検出部35の出力の大きさに応じてプリアンプAMPは省略可能である。
差動演算回路DSは、検出部35の検出信号である、第1の偏光方向の成分(第1分離光)の光強度PI(-)と、第2の偏光方向の成分(第2分離光)の光強度PI(+)とを取得する。この光強度PI(-)と、光強度PI(+)とに対応する、第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれの出力は、例えば、図19のように、光学スケール11の回転に応じて、位相がずれた光強度I1、I2、I3及びI4である。
差動演算回路DSは、式(1)及び式(2)に従って、第1の偏光方向の成分の光強度PI(-)及び第2の偏光方向の成分の光強度PI(+)から、光学スケール11の回転に依存した差動信号Vc及びVsを演算する。
Vc=(I1-I3)/(I1+I3)…(1)
Vs=(I2-I4)/(I2+I4)…(2)
Vc=(I1-I3)/(I1+I3)…(1)
Vs=(I2-I4)/(I2+I4)…(2)
このように、差動演算回路DSは、光強度I1及び光強度I3に基づいて、光強度の和[I1+I3]と、光強度の差[I1-I3]を演算し、光強度の差[I1-I3]を光強度の和[I1+I3]で除した差動信号Vcを演算する。また、差動演算回路DSは、光強度I2及び光強度I4に基づいて、光強度の和[I2+I4]と、光強度の差[I2-I4]を演算し、光強度の差[I2-I4]を光強度の和[I2+I4]で除した差動信号Vsを演算する。式(1)及び式(2)により演算した差動信号Vc及びVsには、光源光71の光強度の影響を受けるパラメータが含まれておらず、センサ31の出力は、検出部35と光学スケール11との距離、発生部41の光強度のばらつき等の影響を低減することができる。差動信号Vc及びVsは、光学スケール11の回転角度となる光学スケール11の偏光軸の回転角度(以下、偏光角という)βの関数となる。ただし、発生部41に設けられた光源の光量を一定に制御するオートパワーコントロール(APC)を備えている場合は、上述の除算は不要である。
図18に示すように、差動信号Vc及びVsは、フィルター回路NRに入力され、ノイズ除去される。次に、逓倍回路APでは、差動信号Vc及びVsから図20に示すリサージュパターンを演算し、初期位置から回転したロータ10の回転角度の絶対角度を特定することができる。差動信号Vc及びVsは、λ/4位相がずれた差動信号であるので、差動信号Vcのコサインカーブを横軸へ、差動信号Vsのサインカーブを縦軸にとったリサージュパターンを演算し、回転角度に応じて、リサージュ角が定まることになる。例えば、図20に示すリサージュパターンは、ロータ10が1回転すると2周する。演算装置3は、光学スケール11の回転位置が0°以上180°未満の範囲にあるか、180°以上360°未満の範囲にあるかを記憶する機能を有する。これにより、光学式エンコーダ2は、ロータ10の絶対位置が演算できるアブソリュートエンコーダとすることができる。
図21は、実施形態1に係る発生部41を説明するための図である。図21に示す発生部41は、発光ダイオード、垂直共振器面発光レーザ等のレーザ光源、フィラメント等の発光デバイス41Uをパッケージしたものである。発生部41は、ベース基板41Fと、スルーホールSHに埋め込まれた貫通導電層41Hと、貫通導電層41Hと電気的に接続された外部電極41Pと、ベース基板41Fに搭載された発光デバイス41Uと、発光デバイス41Uと貫通導電層41Hとを導通接続するボンディングワイヤ41Wと、発光デバイス41Uを保護する封止樹脂41Mと、遮光膜41Rとを備えている。
発生部41の遮光膜41Rは、発光デバイス41Uが放射する光源光71を出射面41Tの範囲に絞る光源光71の絞りの機能を奏している。出射面41Tにはレンズ面がなく、光源光71の配光分布は、出射面41Tの断面に対して所定角度2θoの配光分布を示す。図23は、実施形態1に係る検出部35の発生部41からの光の配光分布が一様な範囲以内にある受光部の位置を説明するための説明図である。配光分布の角度θoは、発生部41に依存する。角度θoは、例えば45°であるが、これより角度を大きくすることも小さくすることもできる。
実施形態1に係るセンサ31は、レンズのついていない発生部41を使用することができる。発生部41の出射面と、配置中心S0(検出部35)との距離Dを接近させることでSN比を向上させることができる。第1受光部PD1、第2受光部PD2、第3受光部PD3及び第4受光部PD4のそれぞれまでの距離Wは、発生部41の拡散する光の影響を減じて受光できる範囲に配置可能となる。このためセンサ31及び光学式エンコーダ2は、測定精度が向上する。無論、レンズのついた発生部41を使用してもよい。
次に、センサ31の製造方法について説明する。まず、発生部41が設けられる第1部分51と、検出部35が設けられる第2部分52とが一体である基板50を形成する。具体的には、例えば図10に示すように、半円弧状の第1部分51と、円状の第2部分52と、第1部分51と第2部分52とを接続する接続部53と、第1部分51から接続部53の反対側に延出されたハーネス部54とを有するFPCを形成する。この工程で、後の工程で基板50に実装される各種の回路に接続される信号線及び電力線等の配線が当該FPCに形成される。
次に、基板50にセンサを構成する各種の回路を設ける。具体的には、図7に示すように、基板50の第1部分51に発生部41を設け、基板50の第2部分52に検出部35を設ける。この他、前の工程で設けられた配線に応じて、センサを構成する各種の部品をこの工程で設ける。
次に、発生部41と検出部35とを対向させるように基板50を折り曲げる。具体的には、例えば図6に示すように、第1部分51と第2部分52とが平行になるようにコの字状に折り曲げられる。
その後、被検出領域で物理量を変ずる構成に応じた工程を経る。実施形態1に係るセンサ31の場合、例えば所定の平面を基準として、折り曲げられた基板50の第1部分51及び第2部分52並びに光学スケール11の板面が当該所定の平面に沿うようにする。この状態で、基板50及び光学スケール11を有するステータ20の少なくとも一方を当該所定の平面に沿う方向に移動させることで、被検出領域に光学スケール11が設けられるようにする。具体的には、例えばステータ20の円柱状の外周面のうち光学スケール11が設けられた位置において、光学スケール11の板面に沿った方向に基板50を挿入可能な開口部を設け、当該開口部に基板50が進入することで被検出領域に光学スケール11が設けられるようにする。この場合、基板50は、開口部に対してハーネス部54側から挿入されることで進入する。また、光学スケール11のうちロータ10が延出している側に半円弧状の第1部分51が進入し、光学スケール11のうちロータ10が延出していない側に円状の第2部分52が進入する。より具体的には、図11に示すように、第2部分52が固定されたシャシ22と、ロータ10が回転可能に設けられたボディ21とを、第1部分51及び第2部分52並びに光学スケール11が略平行となり、かつ、光学スケール11が第1部分51と第2部分52との間の被検出領域に位置する位置関係とする。すなわち、第1部分51及び第2部分52並びに光学スケール11が所定の平面に沿う位置関係とする。この位置関係で、ボディ21の開口部21aからシャシ22が入り込むよう、所定の平面に沿ってボディ21とシャシ22とを近接、当接させてボディ21とシャシ22とを組み立てる。これにより、被検出領域に光学スケール11が設けられる。ハーネス部54は、ボディ21の開口部21aと反対側に設けられた切欠部21bから延出する。その後、ボディ21の開口部21aを覆うようにカバー23を取り付ける。なお、図11では、検出部35等の一部の回路の図示を省略しているが、実際には既に検出部35を含む各種の回路が実装済みである。なお、シャシ22とカバー23とは一体であってもよい。
以上説明したように、実施形態1によれば、発生部41が設けられる第1部分51と検出部35が設けられる第2部分52とが分離しないので、基板50を折り曲げる又は湾曲させる等の簡易な作業により発生部41と検出部35との位置決めを行うことができる。このように、実施形態1によれば、発生部41と検出部35との位置決めがより容易になる。
また、第1部分51と第2部分52とが平行になるよう設けられることで、第1部分51に設けられた発生部41と第2部分52に設けられた検出部35との位置関係を平行に設けられた第1部分51と第2部分52との関係に基づいて調整することができる。このため、発生部41が指向性を有する場合に発生部41による検出対象の発生領域内に検出部35を収めるための位置調整ならびに発生部41及び検出部35を基板に設ける際の位置角度に関する設計がより容易になる。
また、接続部53により第1部分51と第2部分52との間の領域を設けることができる。このため、発生部41と検出部35との間の被検出領域をより容易に設けることができる。
また、接続部53が発生部41に接続される配線を有することで、発生部41に接続される配線と接続部53とを一体化することができる。このため、接続部53及び当該配線を有する基板をよりコンパクトにすることができる。
また、第1部分51及び第2部分52に比して接続部53の幅が小さいことで、接続部53を挟んだ第1部分51と第2部分52とを含む基板の幅を一様にした場合に比して基板の面積をより小さくすることができる。このため、基板をより軽量化することができる。
また、基板が第1部分51と接続部53との境目55a及び第2部分52と接続部53との境目55bで折り曲げられることで、基板の折り曲げにより発生部41と検出部35との間に被検出領域を設けることができる。また、折り曲げ箇所を明確にすることができる。
また、第1部分51が接続部53により中空に支持され、第1部分51が第2部分52よりも小さいことで、接続部53により基板単独で第1部分51を中空で支持して発生部41と検出部35との間の被検出領域を設けることができる。また、第1部分51が第2部分52よりも小さいことで、第1部分51の重量をより軽くすることができる。このため、接続部53に求められる強度等の要件をより易しい要件にすることができることに加えて、基板全体の重心を土台である第2部分52側により近づけることができる。よって、接続部53による支持をより容易に実現することができる。
また、基板が発生部と検出部とが対向する形状(例えばコの字状)に折り曲げられることで、ステータ20内の平面(例えばシャシ22の平面部等)に基板50の一部(例えば第2部分52等)を沿わせることができる等、センサを筐体内に設ける場合の取り扱いがより容易になる。
また、基板がフレキシブル基板であることで、第1部分51及び第2部分52が同一平面に存する状態で発生部41及び検出部35を含む部品を基板に実装した後に発生部41と検出部35との間に被検出領域を設けるために基板を加工するという一連の作業をより容易に行うことができる。
また、基板が発生部41及び検出部35に接続される配線を含むハーネス部54を備えることで、基板に発生部41及び検出部35を含むセンサ31の構成に接続される配線を纏めて設けることができる。すなわち、ハーネス部54を備えることで、配線が必要な部品(回路等)から個別に配線を引き出す必要がない。このため、基板と配線とを別個に取り扱う必要がなくなり、より容易にセンサを取り扱うことができる。
また、検出部35が被検出領域における物理量の変化により生じる検出対象の変化を検出することで、物理量の変化を生じる対象物をセンサによるセンシングの対象にすることができる。
また、検出対象が電磁波(例えば光)であることで、電磁波の変化により被検出領域における変化を検出することができる。
また、物理量の変化が被検出領域に存する回転体(例えば光学スケール11)の回転によることで、回転体の回転運動をセンサによるセンシングの対象にすることができる。
また、センサがロータリエンコーダとして機能することで、当該センサに連結された回動動作体の回動角度等の角位置を検出することができる。
なお、第1部分51と第2部分52の位置関係は逆でもよい。すなわち、シャシ22側に発生部41及び第1部分51があり、被検出領域を挟んで接続部53により中空で支持されている側に検出部35及び第2部分52があってもよい。
また、第1部分51と第2部分52とが平行でなくてもよい。第1部分51と第2部分52との関係は、発生部41と検出部35との間に被検出領域を設けることができ、第1部分51に設けられた発生部41により発生した検出対象を第2部分52に設けられた検出部35により検出することができる関係であればよく、第1部分51及び第2部分52の詳細な配置については適宜変更可能である。
接続部53は、配線を具備していなくてもよい。この場合、接続部53は、例えば第1部分51又は第2部分52のいずれか一方を中空に支持する。また、当該一方が他方よりも小さいことは必須でない。第1部分51と第2部分52は同じ大きさであってもよいし、接続部53により支持される側が大きくてもよい。また、ステータ20等が接続部53及び実施形態1における第1部分51の少なくとも一方を支持するための支持部を有していてもよい。また、係る支持部に接続部53及び実施形態1における第1部分51の少なくとも一方を固定するための構成(例えば接着剤やテープ、突起等の係止部等)を設けてもよい。
基板50の折り曲げ位置は、第1部分51と接続部53との境目55a及び第2部分52と接続部53との境目55bに限らない。例えば、第1部分51と第2部分52との間に折り目を含む接続部53を別途設けてもよい。また、基板50の折り曲げは必須でない。例えば、基板50をU字状に湾曲させるようにして発生部41と検出部35とを対向させるようにしてもよい。
基板50はフレキシブル基板に限らない。本発明における基板は、発生部41と検出部35との間に被検出領域を設けることができ、第1部分51に設けられた発生部41により発生した検出対象を第2部分52に設けられた検出部35により検出することができ、かつ、第1部分51と第2部分52とが一体である基板であればよい。例えば、加熱等の処理により処理部分を折り曲げ又は湾曲可能な素材で構成された基板を採用し、第1部分と第2部分との間の部分(例えば接続部等)に当該処理を加えて折り曲げ又は湾曲させて第1部分と第2部分とを対向させるようにしてもよい。また、リジッドフレキシブル基板のように、変形しにくい部分と変形しやすい部分の両方を有する基板を採用してもよい。この場合、変形しにくい部分を第1部分と第2部分に用いると共に変形しやすい部分を第1部分と第2部分との間の部分(例えば接続部等)に用いることで、第1部分と第2部分とを対向させることができる。
ハーネス部54は、適宜省略してもよい。また、ハーネス部として機能する延出部は、二つ以上であっても構わない。
光学スケール11の信号トラックT1の具体的なパターン及び検出部35に設けられる偏光層PP1~PP4のパターンは適宜変更可能である。係るパターンは、被検出領域に設けられて偏光を生じさせる構成(例えば光学スケール11)のパターンと、検出に際して光を通過させる構成(例えば偏光層)パターンとの関係を考慮して決定される。
被検出領域に設けられる構成は、偏光を生じさせる光学スケール11に限られない。例えば、光学スケール11に代えて、ロータ10の回動角度に応じて選択的に光を通過又は透過させる孔又は透過部が設けられた板状の部材が設けられてもよい。この場合、ロータ10の回動角度の変化は、検出部により光が検出される位置やタイミングの変化として現れる。係る検出部は、偏光層PP1~PP4を有しなくてもよい。センサから光が検出される位置を示す信号が出力されることで、シャフト12に連結された回転機械の角位置を検出することができる。
また、検出対象としての電磁波は、発光ダイオードからの光やレーザ光に限られない。検出対象としての電磁波は、赤外線や紫外線等の不可視光、X線等であってもよい。また、検出対象は磁力であってもよい。この場合、発生部は、磁力による磁場、磁界を発生させる。検出部は、被検出領域における物理量の変化(例えば物体の通過等)により生じる磁力に係る変化を検出することで、センシングを行う。検出対象が磁力であることで、磁力の変化により被検出領域における変化を検出することができる。また、検出対象は、電磁波や磁力の他に、超音波を含む音波、プラズマ等のイオン、陰極線(電子線)等であってもよい。検出対象は、被検出領域に設けられる構成の物理量の変化により変化が生じるものであればよい。
物理量の変化は、被検出領域に存する直動体の直動によってもよい。この場合、直動体の直動をセンサによるセンシングの対象にすることができる。また、センサは、リニアエンコーダとして機能することができる。具体的には、第1部分51及び第2部分52に対して相対的に被検出領域内を直動する構成(例えばスケール等)により生じる検出対象の変化を検出部が検出することでリニアエンコーダとして機能するセンサは、当該構成の直動に関するセンシングを行う。従って、本発明によりエンコーダに連結された直動体の動作の有無及び動作位置を検出することができる。
また、物理量の変化は、被検出領域に存する気体、液体又は固体の濃度又は量の変化によってもよい。この場合、センサは、これらの濃度又は量(例えば被検出領域を通過する通過量、流量等)を検出するセンサとして機能する。なお、固体の濃度又は量は、例えば被検出領域を通過する粒子、粉じん、小片等の微小物の単位空間体積あたりの濃度又は量である。また、固体の濃度又は量は、液体中に含まれる微小物の量又は濃度であってもよい。この場合、検出対象には例えば光等の電磁波が用いられる。このように、本発明は、被検出領域に存する気体、液体又は固体の濃度又は量の変化をセンサによるセンシングの対象にすることができる。
(実施形態2)
センサは、トルクセンサであってもよい。すなわち、本発明によりトルクを計測することができる。以下、トルクセンサとして機能する実施形態2について説明する。図22は、実施形態2に係るトルクセンサ101の主要構成部品を説明するための分解斜視図である。図23は、実施形態2に係るトルクセンサ101の発生部41AT,41BT、光学スケール11AT,11BT及び検出部の配置を説明する説明図である。図24は、実施形態2に係るトルクセンサの光学スケール及び検出部の配置を模式的に説明する説明図である。図22から図24を用いて、トルクセンサ101について詳細に説明する。
センサは、トルクセンサであってもよい。すなわち、本発明によりトルクを計測することができる。以下、トルクセンサとして機能する実施形態2について説明する。図22は、実施形態2に係るトルクセンサ101の主要構成部品を説明するための分解斜視図である。図23は、実施形態2に係るトルクセンサ101の発生部41AT,41BT、光学スケール11AT,11BT及び検出部の配置を説明する説明図である。図24は、実施形態2に係るトルクセンサの光学スケール及び検出部の配置を模式的に説明する説明図である。図22から図24を用いて、トルクセンサ101について詳細に説明する。
トルクセンサ101は、ハウジング120内に、第1の回転軸110Aと、第2の回転軸110Bと、トーションバー129と、光学スケール11ATと、検出部35ATと、光源41ATと、光学スケール11BTと、検出部35BTと、光源41BTとを含む。トルクセンサ101は、アキシャル型トルクセンサとよばれる。
トーションバー129は、一端部が第1の回転軸110Aに、他端部(第1の回転軸110Aに取り付けられる側の端部とは反対側の端部)が第2の回転軸110Bに取り付けられる。つまり、トーションバー129の一端部には第1の回転軸110Aが設けられ、他端部には第2の回転軸110Bが設けられる。第1の回転軸110Aは、例えば入力軸に連結される。また、第2の回転軸110Bは、出力軸に連結される。第1の回転軸110A及び第2の回転軸110Bは、ハウジング120に、軸受126A、軸受126Bを介して回転可能に支持される。
なお、トルクセンサ101は、第1の回転軸110Aを入力軸と一体に、第2の回転軸110Bを出力軸と一体に形成してもよい。上記構成により入力軸と、第1の回転軸110Aと、トーションバー129と、第2の回転軸110Bと、出力軸とは同軸に配置される。実施形態2において、第1の回転軸110Aとトーションバー129の一端部とは回転不動に結合され、また、トーションバー129の他端部と第2の回転軸110Bとは回転不動に結合される。トーションバー129は、トルクが入力されることでねじれが発生する。つまり、第1の回転軸110Aを介して入力されたトルクによって、第1の回転軸110Aと、第2の回転軸110Bとの間に回転変位が生じ、トーションバー129にねじれが発生する。
第1の回転軸110Aは、略円筒形状の部材である。第1の回転軸110Aは、光学スケール11ATが外周部に形成される。実施形態2では、光学スケール11ATは、第1の回転軸110Aの外周から突出し第1の回転軸110Aの周方向に向かって円環状に配置されている。
第2の回転軸110Bは、略円筒形状の部材である。第2の回転軸110Bは、光学スケール11BTが外周部に形成される。実施形態2では、光学スケール11BTは、第2の回転軸110Bの外周から突出し第2の回転軸110Bの周方向に向かって円環状に配置されている。
図22~図24に示すように、第1の回転軸110A及び第2の回転軸110Bの外側には、第1の回転軸110A及び第2の回転軸110Bの回転軸Zr方向に向かって、少なくとも2組の、発生部として機能する光源41AT、41BT及び検出部として機能するセンサ31AT、31BTが配列されて設けられる。実施形態2では、2組の発生部及び検出部として2組の光源41AT(41BT)及び光学センサ35AT(35BT)が設けられるが、光源及び光学センサの数はこれに限定されるものではない。光源41AT、41BT及び光学センサ35AT、35BTは、例えば同一光源及び光学センサが組み合わされて対を構成し、ハウジング120内に配置される。
各組の光源及び光学センサは、一つの基板に設けられる。すなわち、センサ31ATの基板50ATは、発生部として機能する光源41ATが設けられる第1部分51ATと検出部として機能する光学センサ35ATが設けられる第2部分52ATとが一体である。また、センサ31BTの基板50BTは、発生部として機能する光源41BTが設けられる第1部分51BTと検出部として機能する光学センサ35BTが設けられる第2部分52BTとが一体である。光源41ATと光学センサ35ATとの間の被検出領域には、光学スケール11ATが位置する。光源41BTと光学センサ35BTとの間の被検出領域には、光学スケール11BTが位置する。
基板50ATは、第1部分51ATと第2部分52ATとを接続する接続部53ATを有する。基板50BTは、第1部分51BTと第2部分52BTとを接続する接続部53BTを有する。基板50ATは、接続部53ATが光学スケール11ATの外周より外側に位置し、第1部分51ATに設けられた光源41ATと第2部分52ATに設けられた光学センサ35ATとが被検出領域で光学スケール11ATを挟むことができる位置に設けられる。基板50BTは、接続部53BTが光学スケール11BTの外周より外側に位置し、第1部分51BTに設けられた光源41BTと第2部分52BTに設けられた光学センサ35BTとが被検出領域で光学スケール11BTを挟むことができる位置に設けられる。接続部53AT,53BTは、上記の実施形態1と同様に、発生部又は検出部に接続される配線を有していてもよい。その他、基板50AT,50BTに係る具体的構成は、上記の実施形態1における基板50と同様であってよい。すなわち、基板50AT,50BTは、基板50と同様であってよい。また、第1部分51AT,51BTは、第1部分51と同様であってよい。また、第2部分52AT,52BTは、第2部分52と同様であってよい。また、接続部53AT,53BTは、接続部53と同様であってよい。基板50AT,50BTの各部の具体的形状等、本発明の発明特定事項を満たす範囲内でのより具体的な構成は、実施形態1における基板50の具体的な構成と異なっていてもよい。
トルクセンサ101は、トーションバー129で連結された第1の回転軸110Aと第2の回転軸110Bとの相対的な変位(回転変位)を、光学スケール11ATを読み取るセンサ31AT又は光学スケール11BTを読み取るセンサ31BTの検出変化に反映させて検出するものである。
光学スケール11AT、11BTは例えば、シリコン、ガラス、高分子材料などで形成されている。光学スケール11AT、11BTは、信号トラックT1を一方または両方の板面に有している。そして、図23及び図24に示すように、光源41ATは、光学スケール11ATを介して、光学センサ35ATと対向する位置に配置されている。また、光源41BTは、光学スケール11BTを介して、光学センサ35BTと対向する位置に配置されている。
図25は、実施形態2に係るトルクセンサの光学スケール及び光学センサの配置を説明する説明図である。図25に示す光学センサ35ATは、光学スケール11ATの信号トラックT1を読み取り可能であり、光源41ATは、光学スケール11ATを介して、光学センサ35ATと対向する位置に配置されている。この構成により、光源41ATの光源光71ATが光学スケール11ATの信号トラックT1を透過し、この透過した透過光73ATを入射光として光学センサ35ATが検知する。光学センサ35BTと、光学スケール11BTと、光源41BTとの関係も光学センサ35ATと、光学スケール11ATと、光源41ATとの関係と同じである。この構成により、光源41BTの光源光71BTが光学スケール11BTの信号トラックT1を透過し、この透過した透過光73BTを入射光として光学センサ35BTが検知する。
第1の回転軸110Aが回転すると、光学スケール11ATの信号トラックT1が光学センサ35ATに対して相対的に移動する。また、第2の回転軸110Bが回転すると、光学スケール11BTの信号トラックT1が光学センサ35BTに対して相対的に移動する。
図26は、実施形態2に係るトルク検出装置のブロック図である。トルク検出装置200は、上述したトルクセンサ101と、演算装置3Aと、を備えており、図26に示すように、トルクセンサ101の光学センサ35AT、光学センサ35BT、及び演算装置3Aが接続されている。演算装置3Aは、モータ等の回転機械の制御部5Aと接続されている。
トルク検出装置200は、光学スケール11AT、光学スケール11BTに光源光71AT、71BTが透過して入射する透過光73AT、73BTを光学センサ35AT、光学センサ35BTで検出する。演算装置3Aは、光学センサ35ATの検出信号からトルクセンサ101の第1の回転軸110Aとセンサ31ATとの相対位置を演算する。演算装置3Aは、光学センサ35BTの検出信号からトルクセンサ101の第2の回転軸110Bとセンサ31BTとの相対位置を演算する。
演算装置3Aは、RAM4E及び内部記憶装置4Fにトーションバー129におけるねじれの弾性係数を記憶している。トルクは、トーションバー129におけるねじれの弾性係数に比例する。このため、演算装置3Aは、ねじれを求めるために、第1の回転軸110Aの回転角度と第2の回転軸110Bの回転角度の回転変位(ずれ量)を演算する。そして、演算装置3Aは、トーションバー129の弾性係数と、第1の回転軸110A及び第2の回転軸110Bの相対位置の情報からトルクを演算することができる。演算装置3Aは、制御信号として、回転機械(モータ)等の制御部5Aへ出力する。
演算装置3Aは、パーソナルコンピュータ(PC)等のコンピュータであり、入力インターフェース4Aと、出力インターフェース4Bと、CPU(Central Processing Unit)4Cと、ROM(Read Only Memory)4Dと、RAM(Random Access Memory)4Eと、内部記憶装置4Fと、を含んでいる。入力インターフェース4A、出力インターフェース4B、CPU4C、ROM4D、RAM4E及び内部記憶装置4Fは、内部バスで接続されている。なお、演算装置3Aは、専用の処理回路で構成してもよい。
入力インターフェース4Aは、トルクセンサ101の光学センサ35AT及び光学センサ35BTからの入力信号を受け取り、CPU4Cに出力する。出力インターフェース4Bは、CPU4Cから制御信号を受け取り、制御部5Aに出力する。
ROM4Dには、BIOS(Basic Input Output System)等のプログラムが記憶されている。内部記憶装置4Fは、例えばHDD(Hard Disk Drive)やフラッシュメモリ等であり、オペレーティングシステムプログラムやアプリケーションプログラムを記憶している。CPU4Cは、RAM4Eをワークエリアとして使用しながらROM4Dや内部記憶装置4Fに記憶されているプログラムを実行することにより、種々の機能を実現する。
内部記憶装置4Fには、例えば光学スケール11AT及び光学スケール11BTによる偏光方向と光学センサ35AT、35BTの出力とを対応付けたデータベース等が記憶されている。
図27は、実施形態2に係る光学スケール11AT,11BTのワイヤーグリッドパターンの一例を示す説明図である。図27に示す信号トラックT1は、実施形態1に係る光学スケール11の信号トラックT1と同様である。すなわち、光学スケール11AT,11BTは、信号トラックT1として、隣り合う金属細線gを平行に直線的に配置している。ただし、実施形態2に係る光学スケール11AT,11BTは、トーションバー129を挿通させるための孔をさらに有する点で、実施形態1に係る光学スケール11と異なる。
実施形態2に係る発生部(光源41AT,41BT)及び検出部(光学センサ35AT,35BT)は、例えば実施形態1に係る発生部41及び検出部35と同様の構成であるが、一例であってこれに限られるものでない。例えば、実施形態2に係る光学センサ35AT,35BTは、実施形態1に係る検出部35の一部分を用いた構成であってもよい。具体的には、例えば実施形態2に係る光学センサ35AT,35BTは、図12に示す構成のうち偏光層PP1を有する第1受光部PD1及び偏光層PP3を有する第3受光部PD3が省略された構成であってもよい。また、実施形態2に係る光学センサ35AT,35BTは、図12に示す構成のうち、偏光層PP2を有する第2受光部PD2及び偏光層PP4を有する第4受光部PD4が省略された構成であってもよい。
トルク検出装置200は、トーションバーのねじれを利用してトルクを検出するものである。第1の回転軸110A及び第2の回転軸110Bは、トルクが入力されることでねじれが発生するトーションバー129で連結されている。そして、トルク検出装置200は、第1の回転軸110A及び第2の回転軸110Bのそれぞれの回転に対応して連動する光学スケール11AT及び光学スケール11BTと、光学スケール11AT及び光学スケール11BTと対をなし、かつ光学スケール11AT及び光学スケール11BTに照射される光源光が透過する位置によって変化する透過光の偏光状態を検出する光学センサ35AT及び35BTとを含む。トルク検出装置200は、演算手段である演算装置3Aが、光学スケール11ATと光学センサ35ATとの相対的な回転角度を演算しかつ光学スケール11BTと光学センサ35BTとの相対的な回転角度を演算し、第1の回転軸110A及び第2の回転軸110Bの回転変位を演算する。
この構成により、光学センサは、第1の回転軸及び第2の回転軸のそれぞれの回転に対応して連動する複数の光学スケールの回転角度を、透過光を偏光分離した偏光状態で検出する。このため、透過光の光強度を直接検出する場合に比較して、トルク検出装置は、光学式トルクセンサを用いても異物等による検出光量の変動の影響を低減することができる。これにより、異物の許容範囲が広くなるため使用環境を広げることができる。また、トルク検出装置は、実施形態2に係るトルクセンサのように光学式のトルクセンサを用いても光路(光学スケールから光学センサまでの距離)の精度による検出光量の変動の影響を低減することができる。その結果、光源及び光学センサの配置に自由度を与えることができる。これにより、トルク検出装置のトルクセンサは、小型とすることもできる。また、トルク検出装置は、磁気式トルクセンサに比較して、分解能を高くすることができる。
上記で説明したトルクセンサでは、ハーネス部の図示が省略されているが、配線に応じて第1部分51AT(51BT)、第2部分52AT(52BT)及び接続部53AT(53BT)の少なくともいずれか一部分から延出するようにしてもよい。
トルクセンサにおける光学センサ35AT,35BTは、別の形態であってもよい。図28は、実施形態2に係る光学センサの変形例を説明するための説明図である。図29は、実施形態2に係る光学センサの変形例を説明するための説明図である。図28に示すように、光学センサは、第1の光学センサ36Aと、第2の光学センサ36Bとを含む。第1の光学センサ36Aは、電極基部36KAと、電極基部36KAと接続するセンサ基部36Kaと、第1受光部36aと、を含み、第1の偏光方向の光強度を検出することができる。第1受光部36aは、入射光を第1の偏光方向に分離する第1偏光層を備えており、この第1偏光層で分離した第1分離光を受光する。
第2の光学センサ36Bは、電極基部36KBと、電極基部36KBと接続するセンサ基部36Kbと、第2受光部36bと、を含み、第2の偏光方向の光強度を検出することができる。第2受光部36bは、上述した入射光を第2の偏光方向に分離する第2偏光層を備えており、この第2偏光層で分離した第2分離光を受光する。そして、図28に示すように、第1受光部36aと第2受光部36bとは、互いに一定距離を隔てて噛み合う櫛歯状に形成されている。なお、電極基部36KA、電極基部36KBは、Au等の導電体で構成され、第1受光部36a及び第2受光部36bにそれぞれ通電可能としている。第1の偏光方向と第2の偏光方向とは、相対的に90°異なる方向であることがより好ましい。これにより、偏光角度の演算がより容易になる。
トルクセンサにおける光学センサ35AT,35BTは、外形が矩形だけでなく、図29に示すように、外径が円弧に沿った形状であってもよい。例えば、入射する入射光が円形である場合、第1受光部36aと第2受光部36bとは、入射光に対して同程度受光することができる。
なお、トルクセンサにおいて被検出領域に設けられる構成についても、ロータリエンコーダの場合と同様、偏光を生じさせる光学スケール11AT,BTに限られず、適宜変更可能である。例えば、光学スケール11AT,BTに代えて、第1の回転軸110A、第2の回転軸110Bの回動角度に応じて選択的に光を通過又は透過させる孔又は透過部が設けられた板状の部材が設けられてもよい。この場合、回動角度の変化は、検出部により光が検出される位置やタイミングの変化として現れる。係る検出部は、偏光層を有しなくてもよい。
2 光学式エンコーダ
3 演算装置
5 制御部
10 ロータ
11 光学スケール
12 シャフト
20 ステータ
21 ボディ
22 シャシ
23 カバー
31 センサ
35 検出部
41 発生部
50 基板
51 第1部分
52 第2部分
53 接続部
54 ハーネス部
55a,55b 境目
3 演算装置
5 制御部
10 ロータ
11 光学スケール
12 シャフト
20 ステータ
21 ボディ
22 シャシ
23 カバー
31 センサ
35 検出部
41 発生部
50 基板
51 第1部分
52 第2部分
53 接続部
54 ハーネス部
55a,55b 境目
Claims (20)
- 所定の検出対象を発生させる発生部と、
被検出領域を挟んで前記発生部により発生した前記検出対象を検出する検出部と、
前記発生部及び前記検出部が設けられる基板とを備え、
前記基板は、前記発生部が設けられる第1部分と前記検出部が設けられる第2部分とが一体である
センサ。 - 前記基板は、前記第1部分と前記第2部分とが平行になるよう設けられる
請求項1に記載のセンサ。 - 前記基板は、前記第1部分と前記第2部分とを接続する接続部を有する
請求項1又は2に記載のセンサ。 - 前記接続部は、前記発生部又は前記検出部に接続される配線を有する
請求項3に記載のセンサ。 - 前記接続部は、前記第1部分及び前記第2部分に比して、前記第1部分と前記第2部分との間での前記接続部の延設方向に直交する方向であって前記基板の板面に沿う方向の幅が小さい
請求項3又は4に記載のセンサ。 - 前記基板は、前記第1部分と前記接続部との境目及び前記第2部分と前記接続部との境目で折り曲げられる
請求項3から5のいずれか一項に記載のセンサ。 - 前記第1部分又は前記第2部分の一方は、前記接続部により中空に支持され、
前記一方は、他方よりも小さい
請求項3から6のいずれか一項に記載のセンサ。 - 前記基板は、前記発生部と前記検出部とが対向する形状に折り曲げられる
請求項1から6のいずれか一項に記載のセンサ。 - 前記基板は、フレキシブル基板である
請求項1から8のいずれか一項に記載のセンサ。 - 前記基板は、前記発生部及び前記検出部に接続される配線を含むハーネス部を備える
請求項1から9のいずれか一項に記載のセンサ。 - 前記検出部は、前記被検出領域における物理量の変化により生じる前記検出対象の変化を検出する
請求項1から10のいずれか一項に記載のセンサ。 - 前記検出対象は、電磁波である
請求項1から11のいずれか一項に記載のセンサ。 - 前記検出対象は、磁力である
請求項1から11のいずれか一項に記載のセンサ。 - 前記物理量の変化は、前記被検出領域に存する回転体の回転による
請求項1から13のいずれか一項に記載のセンサ。 - 前記センサは、ロータリエンコーダである
請求項1から14のいずれか一項に記載のセンサ。 - 前記物理量の変化は、前記被検出領域に存する直動体の直動による
請求項1から13のいずれか一項に記載のセンサ。 - 前記センサは、エンコーダである
請求項1から13又は16のいずれか一項に記載のセンサ。 - 前記センサは、トルクセンサである
請求項1から13のいずれか一項に記載のセンサ。 - 前記物理量の変化は、前記被検出領域に存する気体、液体又は固体の濃度又は量の変化による
請求項1から13のいずれか一項に記載のセンサ。 - 所定の検出対象を発生させる発生部が設けられる第1部分と、被検出領域を挟んで前記発生部により発生した前記検出対象を検出する検出部が設けられる第2部分とが一体である基板を形成し、
前記基板の前記第1部分に前記発生部を設け、前記第2部分に前記検出部を設ける
センサの製造方法。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-160465 | 2014-08-06 | ||
JP2014-160468 | 2014-08-06 | ||
JP2014-160467 | 2014-08-06 | ||
JP2014160465A JP5999147B2 (ja) | 2014-08-06 | 2014-08-06 | センサ及びセンサの製造方法 |
JP2014160468A JP2016038253A (ja) | 2014-08-06 | 2014-08-06 | 光センサ及び光学式エンコーダユニット |
JP2014160467A JP6036761B2 (ja) | 2014-08-06 | 2014-08-06 | センサ |
JP2014160466A JP5954372B2 (ja) | 2014-08-06 | 2014-08-06 | 光学式センサ |
JP2014-160466 | 2014-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021647A1 true WO2016021647A1 (ja) | 2016-02-11 |
Family
ID=55263908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072249 WO2016021647A1 (ja) | 2014-08-06 | 2015-08-05 | センサ及びセンサの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016021647A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6312939A (ja) * | 1986-07-04 | 1988-01-20 | Sumitomo Electric Ind Ltd | 空間結合型センサ |
JPH1019694A (ja) * | 1996-06-28 | 1998-01-23 | Harmonic Drive Syst Ind Co Ltd | エンコーダ内蔵型光学式トルク検出装置 |
JP2001141433A (ja) * | 1999-11-18 | 2001-05-25 | Seiko Instruments Inc | 回転角検出装置 |
JP2003004489A (ja) * | 2001-06-20 | 2003-01-08 | Namiki Precision Jewel Co Ltd | 光学式エンコーダ |
JP2008241454A (ja) * | 2007-03-27 | 2008-10-09 | Nidec Copal Corp | 光学式エンコーダ |
US20090236507A1 (en) * | 2007-10-07 | 2009-09-24 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Shaft-mounted detector for optical encoder |
WO2013098935A1 (ja) * | 2011-12-27 | 2013-07-04 | 株式会社安川電機 | エンコーダ及びサーボモータ |
-
2015
- 2015-08-05 WO PCT/JP2015/072249 patent/WO2016021647A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6312939A (ja) * | 1986-07-04 | 1988-01-20 | Sumitomo Electric Ind Ltd | 空間結合型センサ |
JPH1019694A (ja) * | 1996-06-28 | 1998-01-23 | Harmonic Drive Syst Ind Co Ltd | エンコーダ内蔵型光学式トルク検出装置 |
JP2001141433A (ja) * | 1999-11-18 | 2001-05-25 | Seiko Instruments Inc | 回転角検出装置 |
JP2003004489A (ja) * | 2001-06-20 | 2003-01-08 | Namiki Precision Jewel Co Ltd | 光学式エンコーダ |
JP2008241454A (ja) * | 2007-03-27 | 2008-10-09 | Nidec Copal Corp | 光学式エンコーダ |
US20090236507A1 (en) * | 2007-10-07 | 2009-09-24 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Shaft-mounted detector for optical encoder |
WO2013098935A1 (ja) * | 2011-12-27 | 2013-07-04 | 株式会社安川電機 | エンコーダ及びサーボモータ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6369474B2 (ja) | 光学式エンコーダユニット及び光学式エンコーダ | |
JP6044599B2 (ja) | センサ | |
JP5999147B2 (ja) | センサ及びセンサの製造方法 | |
JP2016070668A (ja) | 小型エンコーダ | |
WO2016021647A1 (ja) | センサ及びセンサの製造方法 | |
JP6717352B2 (ja) | センサ | |
JP2016114590A (ja) | センサの製造方法及びセンサ | |
JP6361377B2 (ja) | センサ | |
JP6036761B2 (ja) | センサ | |
JP5954372B2 (ja) | 光学式センサ | |
WO2017145345A1 (ja) | センサ | |
WO2016021635A1 (ja) | 光センサ及び光学式エンコーダユニット | |
JP6446792B2 (ja) | 光学式エンコーダユニット及び光学式エンコーダ | |
JP6459467B2 (ja) | センサ及びセンサの製造方法 | |
JP6736887B2 (ja) | ロータリエンコーダ及び光センサの製造方法 | |
JP6380589B2 (ja) | 光学式エンコーダユニット | |
JP6539964B2 (ja) | センサ及びセンサの製造方法 | |
WO2017145344A1 (ja) | センサ、センサの基板及びセンサの製造方法 | |
WO2017022260A1 (ja) | センサの製造方法及びセンサ | |
JP6421577B2 (ja) | センサ | |
JP6354202B2 (ja) | 光学式エンコーダユニット及び光学式エンコーダ | |
JP2019035774A (ja) | 光学式エンコーダユニット及び光学式エンコーダ | |
JP2018072099A (ja) | 光センサの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15829818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15829818 Country of ref document: EP Kind code of ref document: A1 |