JP6536552B2 - 太陽光発電システム - Google Patents

太陽光発電システム Download PDF

Info

Publication number
JP6536552B2
JP6536552B2 JP2016240478A JP2016240478A JP6536552B2 JP 6536552 B2 JP6536552 B2 JP 6536552B2 JP 2016240478 A JP2016240478 A JP 2016240478A JP 2016240478 A JP2016240478 A JP 2016240478A JP 6536552 B2 JP6536552 B2 JP 6536552B2
Authority
JP
Japan
Prior art keywords
solar
output voltage
target output
lower limit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016240478A
Other languages
English (en)
Other versions
JP2018098880A (ja
Inventor
大典 佐藤
大典 佐藤
高弘 平野
高弘 平野
三好 達也
達也 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016240478A priority Critical patent/JP6536552B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to CA2988232A priority patent/CA2988232C/en
Priority to US15/835,715 priority patent/US10476274B2/en
Priority to BR102017026507-2A priority patent/BR102017026507B1/pt
Priority to EP17206244.0A priority patent/EP3333665B1/en
Priority to RU2017142935A priority patent/RU2666123C1/ru
Priority to MYPI2017704739A priority patent/MY186150A/en
Priority to TW106143391A priority patent/TWI649524B/zh
Priority to KR1020170169099A priority patent/KR101980456B1/ko
Priority to CN201711307418.7A priority patent/CN108233514B/zh
Publication of JP2018098880A publication Critical patent/JP2018098880A/ja
Application granted granted Critical
Publication of JP6536552B2 publication Critical patent/JP6536552B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Description

本開示は、太陽光発電システムに関する。
特許文献1には、太陽光発電システムが開示されている。特許文献1記載の太陽光発電システムは、太陽電池モジュール、電力変換回路、制御回路及び負荷を有する。太陽電池モジュールは、所定起電力の複数の太陽電池セルをアレイ状に配列して構成される。
ところで、複数の太陽電池セルが直列接続された太陽電池モジュールにおいては、日陰となった太陽電池セルが電気回路における負荷となって電力を消費する。その結果、日陰となった太陽電池セルが異常発熱するおそれがある。異常発熱を回避するために、バイパスダイオードを用いた太陽電池モジュールが知られている。例えば、特許文献2には、バイパスダイオードと複数の太陽電池セルとが並列接続された太陽電池モジュールが開示されている。
特開2004−280220号公報 特開2011−249790号公報
しかしながら、バイパスダイオードがオープン故障した場合、日陰となった太陽電池セルに電流が流れ、異常発熱が発生してしまう。本技術分野では、制御により太陽電池セルの異常発熱を抑制することができる太陽光発電システムが望まれている。
本開示の一側面に係る太陽光発電システムは、複数の太陽電池セルが直列接続された太陽電池モジュールと、太陽電池モジュールに接続され、太陽電池モジュールの出力電圧を目標出力電圧に制御する電力変換部と、目標出力電圧を決定する制御部と、を備え、制御部は、目標出力電圧の下限値を数式(1)を用いて設定する。
Figure 0006536552

TL(Irr,T)は、使用光量Irr、温度Tにおける目標出力電圧の下限値であり、VOC(Irr,T)は使用光量Irr、温度Tにおける太陽電池モジュールの開放電圧であり、nは直列接続された複数の太陽電池セルの枚数であり、VBD(T)は、温度Tにおける1枚の太陽電池セルの逆方向降伏電圧の正値であり、αは許容誤差である。
この太陽光発電システムでは、数式(1)を用いて目標出力電圧の下限値が設定される。太陽電池セルの少なくとも一部が日陰となり、かつ、数式(1)を用いて設定された下限値より下回る目標出力電圧の場合、日陰となった太陽電池セルが逆方向降伏状態で通電する。この場合、日陰となった太陽電池セルにて電力が消費され、発熱してしまう。数式(1)を用いて目標出力電圧の下限値が設定されることにより、太陽電池セルが逆方向降伏状態で通電することを回避することができる。よって、この太陽光発電システムは、制御により太陽電池セルの異常発熱を抑制することができる。
一実施形態において、太陽電池セルの少なくとも一部が日陰になっているか否かを判定する日陰判定部を備えてもよい。この場合、制御部は、日陰判定部により太陽電池セルの少なくとも一部が日陰になっていると判定されたときに、目標出力電圧の下限値を数式(1)を用いて設定する。
上記構成を有する太陽光発電システムでは、日陰判定部により太陽電池セルの少なくとも一部が日陰になっていると判定されたときに、つまり、異常発熱の発生条件を満たす可能性があるときに、目標出力電圧の下限値を設定することができる。
一実施形態において、太陽光発電システムは、第一ダイオードと、第二ダイオードと、第一ダイオード及び第二ダイオードの少なくとも一方がオープン故障しているか否かを判定する故障判定部と、を備えてもよい。この場合、直列接続された複数の太陽電池セルは、第一太陽電池セル直列群と第二太陽電池セル直列群とに少なくとも分けられ、第一ダイオードと第一太陽電池セル直列群とが並列接続され、第二ダイオードと第二太陽電池セル直列群とが並列接続されており、制御部は、故障判定部により第一ダイオード及び第二ダイオードの少なくとも一方がオープン故障していると判定された場合、目標出力電圧の下限値を数式(1)を用いて設定する。
上記構成を有する太陽光発電システムでは、故障判定部により第一ダイオード及び第二ダイオードの少なくとも一方がオープン故障していると判定されたときに、つまり、異常発熱の発生条件を満たす可能性があるときに、目標出力電圧の下限値を設定することができる。
本開示によれば、制御により太陽電池セルの異常発熱を抑制することができる。
第一実施形態に係る太陽光発電システムを示すブロック図である。 図1の太陽電池モジュールを示す平面図である。 図1の太陽電池モジュールの電流−電圧特性を示すグラフである。 図1の太陽光発電システムの出力決定処理を説明するフローチャートである。 変形例に係る太陽電池モジュールを示す平面図である。 第二実施形態に係る太陽光発電システムを示すブロック図である。 目標出力電圧の決定処理を示すフローチャートである。 第三実施形態に係る太陽光発電システムを示すブロック図である。 目標出力電圧の決定処理を示すフローチャートである。
以下、図面を参照して、本開示の実施形態について説明する。なお、以下の説明において、同一又は相当要素には同一符号を付し、重複する説明は繰り返さない。
[第一実施形態]
[太陽光発電システム100の構成]
図1は、第一実施形態に係る太陽光発電システム100を示すブロック図である。図2は、図1の太陽電池モジュール1を示す平面図である。太陽光発電システム100は、太陽光を用いて発電し、その電力を蓄電するシステムである。図1及び図2に示されるように、太陽光発電システム100は、太陽電池モジュール1、電圧計2、電流計3、DC−DCコンバータ4(電力変換部の一例)、蓄電池5及び制御部6を備える。
太陽電池モジュール1は、太陽光を用いて発電する複数の素子を組み立ててユニット化した部品である。太陽電池モジュール1は、電力を出力する。太陽電池モジュール1は、複数の太陽電池セル10、及び、出力端子13,14を有する。
太陽電池セル10は、エネルギー変換素子である。太陽電池セル10は、受光面に太陽光を受光すると、受光した太陽光のエネルギーを電力に変換して出力する。太陽電池セル10としては、特定の構成に限定されず、公知の太陽電池セルが採用される。
太陽電池セル10それぞれは、同一構成であり、直列接続されている。つまり、太陽電池セル10それぞれは電気的に互いに直列に接続されている。これらの太陽電池セル10は、複数の太陽電池セル直列群11を形成している。太陽電池セル直列群11それぞれは、直列接続されている。本実施形態において、これらの太陽電池セル10は、3つの太陽電池セル直列群11を形成している。具体的な一例として、太陽電池セル10の枚数は全部で36枚であり、太陽電池セル直列群11を形成している太陽電池セル10の枚数は12枚である。
出力端子13は、太陽電池モジュール1における低電位の電力出力端に設けられた端子である。出力端子13は、例えばDC−DCコンバータ4の低電位の電力入力端子に電気的に接続される。出力端子14は、太陽電池モジュール1における高電位の電力出力端に設けられた端子である。出力端子14は、例えばDC−DCコンバータ4の高電位の電力入力端子に電気的に接続される。
電圧計2は、電気回路中の電圧(電位差)を計測する計測器である。電圧計2は、太陽電池モジュール1と並列に接続される。より具体的な一例として、電圧計2は、太陽電池モジュール1の出力端子13と出力端子14との間に電気的に接続されており、太陽電池モジュール1により出力される電圧を計測する。電流計3は、電気回路中の電流を計測する計測器である。電流計3は、太陽電池モジュール1と直列に接続される。より具体的な一例として、電流計3は、太陽電池モジュール1の出力端子14に対して電気的に接続されており、太陽電池モジュール1から出力される電流を計測する。
DC−DCコンバータ4は、電力を変換する機器である。DC−DCコンバータ4は、太陽電池モジュール1に接続される。図中では、DC−DCコンバータ4は、太陽電池モジュール1と蓄電池5との間に電気的に接続されている。DC−DCコンバータ4は、太陽電池モジュール1の出力電圧を目標出力電圧に制御する。そして、DC−DCコンバータ4は、目標出力電圧に制御された出力電圧を所定電圧へ変換する。より具体的な一例としては、DC−DCコンバータ4は、太陽電池モジュール1により出力される電圧及び電流を変換し、蓄電池5に出力する。DC−DCコンバータ4としては、特定の構成に限定されず、公知のDC−DCコンバータが採用される。
蓄電池5は、太陽電池モジュール1により電力が入力されることで充電可能なバッテリである。蓄電池5は、繰り返し充放電可能なバッテリであれば特定のバッテリに限定されない。
制御部6は、演算装置であり、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備えた一般的なコンピュータとして構成される。制御部6は、DC−DCコンバータ4に接続され、DC−DCコンバータ4の動作を制御する。具体的な一例としては、制御部6は、DC−DCコンバータ4の目標出力電圧を決定する。
制御部6は、一例として、太陽電池モジュール1の出力電力が最大となる目標出力電圧を決定する。制御部6は、種々の公知の手法を採用することができる。例えば、制御部6は、太陽光発電システム100においてMPPT(Maximum Power Point Tracking)制御を実行するように、DC−DCコンバータ4の動作を制御する。MPPT制御とは、太陽電池モジュール1の出力電圧を変化させ、電圧の変化前後における電力を比較して、より電力が大きくなる電圧を採用する制御方法である。より具体的な一例としては、制御部6は、電圧計2により計測された電圧、及び、電流計3により計測された電流に基づいて、太陽電池モジュール1により発電された電力を算出する。
さらに、制御部6は、目標出力電圧の下限値を数式(1)を用いて設定する。
Figure 0006536552

ここで、VTL(Irr,T)は、使用光量Irr、温度Tにおける目標出力電圧の下限値であり、VOC(Irr,T)は使用光量Irr、温度Tにおける太陽電池モジュールの開放電圧であり、nは直列接続された複数の太陽電池セルの枚数であり、VBD(T)は、温度Tにおける1枚の太陽電池セルの逆方向降伏電圧の正値であり、αは許容誤差である。このような下限値を採用する理由は、日陰となった太陽電池セル10が発熱することを回避するためである。詳細については後述する。
太陽電池モジュール1の開放電圧VOCは、例えばIEC(International Electro-technical Commission)規格であるIEC60904−1に規定された測定方法で測定される。開放電圧VOCは、使用光量Irrに依存する。数式(1)に用いる開放電圧VOCは、例えば、太陽電池モジュール1が使用光量(使用環境下における光量)上限の太陽光を受光した場合における太陽電池モジュール1の開放電圧(出力端子13と出力端子14との間の開放電圧)としてもよい。より具体的な一例として、使用光量の上限値の具体的な範囲は、例えば300W/m〜1000W/mである。また、太陽電池モジュール1の開放電圧VOCは、温度Tに依存する。例えば、太陽電池モジュール1の開放電圧VOCは、太陽電池セル10が低温になるに連れて上昇する温度依存性を有している。数式(1)に用いる開放電圧VOCは、使用環境下における太陽電池セル10の下限温度での太陽電池モジュール1の開放電圧としてもよい。下限温度の具体的な温度範囲は−30℃〜90℃である。
また、太陽電池セル10の逆方向降伏電圧VBDは、太陽電池セル10の電流−電圧特性に基づいて規定される。逆方向降伏電圧VBDは、温度Tに依存する。例えば、逆方向降伏電圧VBDは、太陽電池セル10が低温になるに連れて低下する温度依存性を有している。太陽電池セル10の逆方向降伏電圧VBDは、使用環境下における太陽電池セル10の下限温度での太陽電池モジュール1の逆方向降伏電圧としてもよい。下限温度の具体的な温度範囲は−30℃〜90℃である。太陽電池セル10の逆方向降伏電圧VBDの詳細な規定方法については後述する。
許容誤差αは、許容電流Iと寄生直列抵抗Rとの積で表現される。許容電流Iとは、温度Tにおいて、日陰となる太陽電池セル10に通電させたとしても発熱が許容範囲内である電流値である。例えば、許容電流Iは、電流Iのときの発熱量であるVBD・I[W]が太陽電池モジュール1の耐熱性に応じて許容される範囲となるように設定される。許容範囲内の発熱の一例としては、20W〜30Wである。寄生直列抵抗Rは、太陽電池モジュール1と太陽電池モジュール1から電圧計2が接続されている点までの経路の寄生直列抵抗の合計である。
制御部6は、下限値を設定することにより、下限値以上の目標出力電圧を決定する。下限値を用いて目標出力電圧を決定する手法は幾つか存在する。第一の手法として、制御部6は、最初に下限値以上の電圧範囲を設定し、設定された電圧範囲内において目標出力電圧を公知の手法で決定する。第二の手法として、制御部6は、最初に目標出力電圧を公知の手法で仮決定し、仮決定された目標出力電圧を下限値と比較する。そして、制御部6は、仮決定された目標出力電圧が下限値以上であれば、仮決定された目標出力電圧をそのまま目標出力電圧として採用する。一方、制御部6は、仮決定された目標出力電圧が下限値未満であれば、仮決定された目標出力電圧を破棄し、次に条件の良い目標出力電圧と下限値との比較を行う。制御部6は、上記処理を繰り返すことで目標出力電圧を決定する。
制御部6は、決定された目標出力電圧に対応する制御値をDC−DCコンバータ4に出力する。制御値の一例は、DC−DCコンバータ4のデューティ(Duty)比である。
[異常発熱の原理]
太陽電池セル10が異常発熱する条件を説明する。太陽電池モジュール1がバイパスダイオードを有していない場合、異常発熱の発生条件は、2つの条件を満たしたときとなる。第一条件は、太陽電池モジュール1の少なくとも1つの太陽電池セル10の受光面の一部領域又は全領域が日陰となることである。日陰とは、日光のあたる状況下において日光が遮られ、影となることをいう。一部の太陽電池セル10の日光が遮られる原因は、例えば、天候、鳥類の糞などの遮蔽物の付着、飛来物の衝突などによるセル表面層の破損や改質などが考えられる。なお、太陽電池セル10の全てが日陰となる場合は、当然に異常発熱は発生しない。以下では、太陽電池セル10の全てが日陰となる場合は除外して説明する。
少なくとも1つの太陽電池セル10が日陰となる場合、太陽電池モジュール1の出力電流は日陰となっている太陽電池セル10の電流値に律速される。第二条件は、太陽電池モジュール1の出力電圧が所定範囲となることである。以下では、異常発熱となる太陽電池モジュール1の出力電圧の範囲の詳細を説明する。
図3は、図1の太陽電池モジュール1の電流−電圧特性を示すグラフである。図3において、横軸は太陽電池モジュール1により出力される電圧Vを表し、縦軸は太陽電池モジュール1により出力される電流Iを表す。図3の第一象限(V>0、I>0)では、太陽電池モジュール1は電池として機能する(順バイアス)。図3の第二象限(V<0、I>0)では、太陽電池モジュール1は負荷として機能する(逆バイアス)。
破線のグラフXは、1枚の太陽電池セル10が日陰となった場合(当該太陽電池セル10の受光面の一部分又は全面が日陰となった場合)の当該太陽電池セル10の電流−電圧特性を示している。グラフXは、1枚の太陽電池セルの開放電圧VCELLで横軸と交わる。グラフXは、電圧が低下するに連れて電流が上昇するものの、太陽電池セルが日陰となっているため、低い電流値で飽和する(図中A1)。
グラフXに示されるように、当該太陽電池セル10に印加される電圧が逆方向となり(図中の第一電圧範囲RV1)、電圧が所定値まで低下(逆方向の電圧の絶対値が所定値まで増大)したときに、電流が急激且つ直線的に増大する(図中A2)。太陽電池セル10の逆方向降伏電圧VBDは、グラフXのA2部分を直線で近似した線(図中A3)が横軸と交わる点における電圧の正値と定義することができる。
実線のグラフYは、日陰となった1枚の太陽電池セル10を含む太陽電池モジュール1の電流−電圧特性である。太陽電池モジュール1は、第一象限の領域で動作が制御される。グラフYは、n枚の太陽電池セル10を有する太陽電池モジュール1の開放電圧VOCで横軸と交わる。グラフYは、出力電圧が低下するに連れて電流が上昇するものの、1枚の太陽電池セル10が日陰となっているため当該太陽電池セル10を流れることができる出力電流が上限とされ、その結果、低い電流値で飽和する(図中A4、第三電圧範囲RV3)。
さらに、グラフYに示されるように、日陰となった太陽電池セル10に印加される逆方向の電圧が、n−1枚の太陽電池セル10の開放電圧に相当する出力電圧から逆方向降伏電圧VBDを差し引いた出力電圧まで低下(逆方向の電圧の絶対値が所定値まで増大)したときに、出力電流が急激且つ直線的に増大する(図中A5、第二電圧範囲RV2)。第二電圧範囲RV2を数式(2)で示す。
Figure 0006536552
太陽電池モジュール1の目標出力電圧が第二電圧範囲RV2内である場合、日陰となった太陽電池セル10が逆方向降伏状態で導通する。この場合、当該太陽電池セル10が発熱する。
なお、制御部6がMPPT制御で目標出力電圧を決定している場合、第一電力点M1が出力最大値と選択され得る。そして、第一電力点M1を基準として目標出力電圧が第二電圧範囲RV2内に固定されることから、日陰となった太陽電池セル10が異常発熱する状態が継続する場合がある。つまり、制御部6がMPPT制御で目標出力電圧を決定している場合、太陽電池セル10の異常発熱の問題がより顕著となる。
[目標出力電圧の下限値]
上述したとおり、目標出力電圧が第二電圧範囲RV2内に設定された場合には、発熱する。制御部6は、目標出力電圧の下限値を上述した数式(1)を用いて設定することにより、目標出力電圧が第二電圧範囲RV2内に設定されることを回避する。これにより、異常発熱の発生条件である第二条件が満たされることが無くなる。図3の例では、第一電力点M1は選択されず、第二電力点M2が選択される。このように、太陽光発電システム100は、制御により太陽電池セル10の異常発熱を抑制することができる。
なお、上述した説明においては、1枚の太陽電池セル10が日陰となった場合を例示しているが、例えばm枚(mは2以上)の太陽電池セル10が日陰となった場合、上記の式(1)の−VBDに係数mが係ることとなる。このとき、上記の式(1)の左辺の値は一層減少する。従って、上記の説明のように1枚の太陽電池セル10が日陰となった場合において上記の式(1)を満たしていれば、m枚の太陽電池セル10が日陰となった場合においても上記の式(1)が満たされることとなる。
[太陽光発電システム100の下限値設定処理]
図4は、太陽光発電システム100の出力決定処理を説明するフローチャートである。図4に示されるフローチャートは、太陽電池モジュール1から出力を得る際に、制御部6により実行される。
図4に示されるように、制御部6は、下限値設定処理(S12)から開始する。制御部6は、下限値設定処理(S12)として、目標出力電圧の下限値を設定する。制御部6は、数式(1)を用いて算出された下限値を、目標出力電圧の下限値として設定する。
続いて、制御部6は、目標出力電圧決定処理(S14)として、下限値設定処理(S12)にて設定された下限値以上の範囲内において、太陽電池モジュール1からの出力が最大となるように目標出力電圧を決定する。制御部6は、例えばMPPT制御で用いられる目標出力電圧を決定する。制御部6は、太陽光発電システム100の電源OFFなどのMPPT制御の終了条件が満たされるまで、つまり、MPPT制御の実行中においては、目標出力電圧を所定のタイミング又は周期で決定する。制御部6は、目標出力電圧決定処理(S14)を終了すると、図4に示される出力決定処理のフローチャートを終了する。なお、制御部6は、MPPT制御の実行中において目標出力電圧の下限値の設定を動的に行ってもよい。この場合には、制御部6は、下限値設定処理(S12)を繰り返し実行し、時々刻々と設定される下限値を目標出力電圧決定処理(S14)に反映することにより実現する。以上の処理により、目標出力電圧の下限値が設定され、下限値以上の目標出力電圧が決定される。
[変形例1]
太陽電池モジュール1は、その一部が日陰となった太陽電池セル直列群11の入出力をバイパスさせる手段を備えていてもよい。図5は、変形例1に係る太陽電池モジュール1Aを示す平面図である。図5に示されるように、太陽電池モジュール1Aは、太陽電池モジュール1と比べて、バイパスダイオード12A〜12Cを備える点で相違し、その他の構成は同一である。なお、以下では、バイパスダイオード12A〜12Cは、バイパスダイオード12と総称する場合がある。
直列接続された複数の太陽電池セル10は、複数の太陽電池セル直列群11に分けられている。図中では、直列接続された複数の太陽電池セル10は、太陽電池セル直列群11A(第一太陽電池セル直列群の一例)、太陽電池セル直列群11B(第二太陽電池セル直列群の一例)及び太陽電池セル直列群11Cに分けられている。なお、以下では、太陽電池セル直列群11A〜11Cは、太陽電池セル直列群11と総称する場合がある。
バイパスダイオード12は、整流作用を有する素子である。バイパスダイオード12は、太陽電池セル直列群11に対して1つ設けられている。バイパスダイオード12は、太陽電池セル直列群11における高電位の電力出力端及び低電位の電力出力端を接続するように設けられている。すなわち、バイパスダイオード12は、太陽電池セル直列群11と並列接続されている(電気的に互いに並列に接続されている。)。例えば、バイパスダイオード12A(第一ダイオードの一例)は、太陽電池セル直列群11Aと並列接続される。バイパスダイオード12B(第二ダイオードの一例)は、太陽電池セル直列群11Bと並列接続される。バイパスダイオード12Cは、太陽電池セル直列群11Cと並列接続される。
バイパスダイオード12は、太陽電池セル直列群11における低電位の電力出力端から高電位の電力出力端に向かう方向が順方向となるように設けられている。バイパスダイオード12では、順方向に所定以上の電圧が印加されると、太陽電池セル直列群11における低電位の電力入力端から高電位の電力出力端に向かって電流が流れる。このため、バイパスダイオード12は、太陽電池セル10が日陰となった場合には、当該太陽電池セル10を含む太陽電池セル直列群11を流れることができない電流を迂回させるように作用する。なお、制御部6が目標出力電圧の下限値を設定することにより、バイパスダイオード12がオープン故障した場合において、一部の太陽電池セル10が日陰となったときであっても、当該太陽電池セル10の異常発熱を抑制することができる。
[第一実施形態のまとめ]
以上、第一実施形態に係る太陽光発電システム100によれば、数式(1)を用いて目標出力電圧の下限値が設定される。太陽電池セル10の少なくとも一部が日陰となり、かつ、数式(1)を用いて設定された下限値より下回る目標出力電圧の場合、日陰となった太陽電池セル10が逆方向降伏状態で通電する。この場合、日陰となった太陽電池セル10にて電力が消費され、発熱してしまう。数式(1)を用いて目標出力電圧の下限値が設定されることにより、太陽電池セル10が逆方向降伏状態で通電することを回避することができる。よって、この太陽光発電システム100は、制御により太陽電池セル10の異常発熱を抑制することができる。
また、制御部6がMPPT制御で目標出力電圧を決定している場合、太陽電池セル10の異常発熱の問題がより顕著となる。第一実施形態に係る太陽光発電システム100によれば、MPPT制御で目標出力電圧を決定する場合であっても、制御により太陽電池セル10の異常発熱を抑制することができる。
[第二実施形態]
第一実施形態に係る太陽光発電システム100では、制御部6が数式(1)を用いて目標出力電圧の下限値を常に設定している。しかし、日陰となる太陽電池セル10が存在しない場合には、数式(1)を用いて設定される下限値以下に目標出力電圧を決定したとしても異常発熱は発生しない。したがって、異常発熱が発生する可能性があるときに限り下限値を設定することができれば、異常発熱が発生する可能性がないときには目標出力電圧の設定可能な電圧範囲を拡大することができる。結果として、太陽光発電システム100の総発電量が向上する場合がある。第二実施形態に係る太陽光発電システム100Aでは、異常発熱が発生する可能性があるときに目標出力電圧の下限値を設定した上で目標出力電圧を決定し、異常発熱が発生する可能性がないときには目標出力電圧の下限値を設定することなく目標出力電圧を決定する。
[太陽光発電システム100Aの構成]
図6は、第二実施形態に係る太陽光発電システム100Aを示すブロック図である。太陽光発電システム100Aは、第一実施形態に係る太陽光発電システム100と比較して、撮像装置7及び日陰判定部8を備える点、及び制御部の機能が相違し、その他の構成は同一である。
撮像装置7と日陰判定部8とは、情報のやり取りが可能に構成される。制御部6Aと日陰判定部8とは、情報のやり取りが可能に構成される。情報のやり取りの手法については、特に限定されない。例えば、両者は、配線などにより電気的に接続されていてもよいし、無線通信又は有線通信可能に接続されていてもよいし、共有の外部記憶媒体を参照可能に構成されていてもよい。
撮像装置7は、画像素子を備える装置である。撮像装置7は、太陽電池セル10の表面を撮像した画像を取得するように配置される。撮像装置7は、一例としてカメラである。
日陰判定部8は、演算装置であり、例えばCPU、ROM、RAMなどを備えた一般的なコンピュータとして構成される。日陰判定部8は、撮像装置7により取得された画像を取得する。そして、日陰判定部8は、撮像装置7により取得された画像を解析し、太陽電池セル10の少なくとも一部が日陰になっているか否かを判定する。解析手法としては、公知の画像処理技術を採用することができる。
制御部6Aは、制御部6と比べて、条件を満たしたときだけ目標出力電圧の下限値を設定する点が相違し、その他は同一である。制御部6Aは、日陰判定部8の判定結果を取得する。そして、制御部6Aは、日陰判定部8により太陽電池セル10の少なくとも一部が日陰になっていると判定された場合、目標出力電圧の下限値を数式(1)を用いて設定する。
[太陽光発電システム100Aの下限値設定処理]
図7は、太陽光発電システム100Aの出力決定処理を説明するフローチャートである。図7に示されるフローチャートは、太陽電池モジュール1から出力を得る際に、日陰判定部8及び制御部6Aにより実行される。
図7に示されるように、太陽光発電システム100Aは、日陰判定処理(S20)から開始する。日陰判定部8は、日陰判定処理(S20)として、撮像装置7により取得された画像に基づいて、太陽電池セル10の少なくとも一部が日陰になっているか否かを判定する。
制御部6Aは、太陽電池セル10の少なくとも一部が日陰になっていると判定された場合(S20:YES)、下限値設定処理(S22)として、目標出力電圧の下限値を設定する。制御部6Aは、数式(1)を用いて算出された下限値を、目標出力電圧の下限値として設定する。続いて、目標出力電圧決定処理(S24)が実行される。
制御部6Aは、目標出力電圧決定処理(S24)として、下限値設定処理(S22)にて設定された下限値以上の範囲内において、太陽電池モジュール1からの出力が最大となるように目標出力電圧を決定する。
一方、制御部6Aは、太陽電池セル10の少なくとも一部が日陰になっていないと判定された場合(S20:NO)、下限値設定処理(S22)を実行することなく、目標出力電圧決定処理(S24)を実行する。制御部6Aは、目標出力電圧決定処理(S24)として、電圧範囲に制限を受けること無く太陽電池モジュール1からの出力が最大となるように目標出力電圧を決定する。
太陽光発電システム100Aは、目標出力電圧決定処理(S24)を終了すると、図7に示される出力決定処理のフローチャートを終了する。太陽光発電システム100Aは、目標出力電圧の設定を動的に行う場合には、終了した出力決定処理のフローチャートを最初から再実行する。以上の処理により、異常発熱の発生条件を満たす可能性があるときに目標出力電圧の下限値が設定され、下限値以上の目標出力電圧が決定される。
なお、第二実施形態に係る太陽光発電システム100Aは、第一実施形態に係る変形例1を採用してもよい。
[第二実施形態のまとめ]
以上、第二実施形態に係る太陽光発電システム100Aによれば、日陰判定部8により太陽電池セル10の少なくとも一部が日陰になっていると判定されたときに、つまり、異常発熱の発生条件を満たす可能性があるときに、数式(1)を用いて目標出力電圧の下限値が設定される。太陽光発電システム100Aは、下限値の設定を動的に行うことにより、制御により太陽電池セル10の異常発熱を抑制しつつ、太陽光発電システム100Aの総発電量を向上させることができる。
[第三実施形態]
第一実施形態に係る太陽光発電システム100では、バイパスダイオードを備える太陽電池モジュール1Aを採用した場合であっても、制御部6が数式(1)を用いて目標出力電圧の下限値を常に設定している。しかし、バイパスダイオードがオープン故障していない場合には、数式(1)を用いて設定される下限値以下に目標出力電圧を決定したとしても異常発熱は発生しない。したがって、異常発熱が発生する可能性があるときに限り下限値を設定することができれば、異常発熱が発生する可能性がないときには目標出力電圧の設定可能な電圧範囲を拡大することができる。結果として、太陽光発電システム100の総発電量が向上する場合がある。第三実施形態に係る太陽光発電システム100Bでは、第二実施形態と同様に、異常発熱が発生する可能性があるときに目標出力電圧の下限値を設定した上で目標出力電圧を決定し、異常発熱が発生する可能性がないときには目標出力電圧の下限値を設定することなく目標出力電圧を決定する。
[太陽光発電システム100Bの構成]
図8は、第三実施形態に係る太陽光発電システム100Bを示すブロック図である。太陽光発電システム100Bは、第一実施形態に係る太陽光発電システム100の変形例1(バイパスダイオードを含む太陽電池モジュール1Aを備える例)と比較して、故障判定部9を備える点、及び制御部の機能が相違し、その他の構成は同一である。
太陽電池モジュール1Aと故障判定部9とは、情報のやり取りが可能に構成される。制御部6Bと故障判定部9とは、情報のやり取りが可能に構成される。情報のやり取りの手法については、特に限定されない。例えば、両者は、配線などにより電気的に接続されていてもよいし、無線通信又は有線通信可能に接続されていてもよいし、共有の外部記憶媒体を参照可能に構成されていてもよい。
故障判定部9は、演算装置であり、例えばCPU、ROM、RAMなどを備えた一般的なコンピュータとして構成される。故障判定部9は、バイパスダイオード12のオープン故障を判定するための計測情報を太陽電池モジュール1Aから取得する。計測情報の一例は、例えばバイパスダイオード12それぞれに流れる電流値及び電圧値などである。
故障判定部9は、例えば、正常時のバイパスダイオード12の電流−電圧特性と、計測情報に基づくバイパスダイオード12の電流−電圧特性とを比較して、バイパスダイオード12がオープン故障しているか否かを判定してもよい。あるいは、故障判定部9は、逆電圧印加時の太陽電池モジュール1Aの負極から正極に向けて流れる電流値に基づいて、バイパスダイオード12がオープン故障しているか否かを判定してもよい。
さらに他の例として、故障判定部9は、太陽電池モジュール1Aに設けられた判定回路を用いて故障を判定してもよい。判定回路は、太陽電池モジュール1Aの太陽電池セル直列群11ごとに設けられる。つまり、故障判定部9は、バイパスダイオード12ごとにオープン故障を判定する。判定回路は、バイパスダイオード12と互いの順方向を揃えて並列接続されるLED及びLED駆動回路の直列回路と、極性切替スイッチとを備える。極性切替スイッチは、バイパスダイオード12と直列回路との並列回路のアノード側端及びカソード側端と、外部接続する正極端子及び負極端子と、の間の接続極性を切り替える。故障判定部9は、太陽光を受光して発電している状態においてLEDが消灯しており、続いて極性を切り替えたときにLEDが点灯した場合にはオープン故障していると判定する。これにより、故障判定部9は、バイパスダイオード12A〜12Cの少なくとも1つがオープン故障しているか否かを判定する。
制御部6Bは、制御部6と比べて、条件を満たしたときだけ目標出力電圧の下限値を設定する点が相違し、その他は同一である。制御部6Bは、故障判定部9の判定結果を取得する。そして、制御部6Bは、バイパスダイオード12A〜12Cの少なくとも1つがオープン故障していると判定された場合、目標出力電圧の下限値を数式(1)を用いて設定する。
[太陽光発電システム100Bの下限値設定処理]
図9は、太陽光発電システム100Bの出力決定処理を説明するフローチャートである。図9に示されるフローチャートは、太陽電池モジュール1Aから出力を得る際に、故障判定部9及び制御部6Bにより実行される。
図9に示されるように、太陽光発電システム100Bは、故障判定処理(S30)から開始する。故障判定部9は、故障判定処理(S30)として、計測情報に基づいて、バイパスダイオード12A〜12Cの少なくとも1つがオープン故障しているか否かを判定する。
制御部6Bは、バイパスダイオード12A〜12Cの少なくとも1つがオープン故障していると判定された場合(S30:YES)、下限値設定処理(S32)として、目標出力電圧の下限値を設定する。制御部6Bは、数式(1)を用いて算出された下限値を、目標出力電圧の下限値として設定する。続いて、目標出力電圧決定処理(S34)が実行される。
制御部6Bは、目標出力電圧決定処理(S34)として、下限値設定処理(S32)にて設定された下限値以上の範囲内において、太陽電池モジュール1Aからの出力が最大となるように目標出力電圧を決定する。
一方、制御部6Bは、バイパスダイオード12A〜12Cの全てがオープン故障していないと判定された場合(S30:NO)、下限値設定処理(S32)を実行することなく、目標出力電圧決定処理(S34)を実行する。制御部6Bは、目標出力電圧決定処理(S34)として、電圧範囲に制限を受けること無く太陽電池モジュール1Aからの出力が最大となるように目標出力電圧を決定する。
太陽光発電システム100Bは、目標出力電圧決定処理(S34)を終了すると、図9に示される出力決定処理のフローチャートを終了する。太陽光発電システム100Bは、目標出力電圧の設定を動的に行う場合には、終了した出力決定処理のフローチャートを最初から再実行する。以上の処理により、異常発熱の発生条件を満たす可能性があるときに目標出力電圧の下限値が設定され、下限値以上の目標出力電圧が決定される。
[第三実施形態のまとめ]
以上、第三実施形態に係る太陽光発電システム100Bによれば、故障判定部9によりバイパスダイオード12A〜12Cの少なくとも1つがオープン故障していると判定されたときに、つまり、異常発熱の発生条件を満たす可能性があるときに、数式(1)を用いて目標出力電圧の下限値が設定される。太陽光発電システム100Bは、下限値の設定を動的に行うことにより、制御により太陽電池セル10の異常発熱を抑制しつつ、太陽光発電システム100Bの総発電量を向上させることができる。
本発明は、上述した実施形態に限られない。本発明は、上述した実施形態に対して当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。
制御部6,6A,6Bは、MPPT制御を実行しなくてもよい。例えば、制御部6,6A,6Bは、太陽電池モジュール1,1Aから出力される電圧を広範囲にわたってスキャンして電力の最大値を探索するスキャニング制御を実行してもよい。この場合でも、太陽光発電システム100,100A,100Bにおいて本実施形態の作用効果が奏される。
1,1A…太陽電池モジュール、4…DC−DCコンバータ、5…蓄電池、6,6A,6B…制御部、8…日陰判定部、9…故障判定部、10…太陽電池セル、11,11A,11B,11C…太陽電池セル直列群、12,12A,12B,12C…バイパスダイオード、100,100A,100B…太陽光発電システム。

Claims (3)

  1. 複数の太陽電池セルが直列接続された太陽電池モジュールと、
    前記太陽電池モジュールに接続され、前記太陽電池モジュールの出力電圧を目標出力電圧に制御する電力変換部と、
    前記目標出力電圧を決定する制御部と、
    を備え、
    前記制御部は、前記目標出力電圧の下限値を数式(1)を用いて設定する、
    太陽光発電システム。
    Figure 0006536552

    TL(Irr,T)は、使用光量Irr、温度Tにおける前記目標出力電圧の前記下限値であり、VOC(Irr,T)は使用光量Irr、温度Tにおける前記太陽電池モジュールの開放電圧であり、nは直列接続された前記複数の太陽電池セルの枚数であり、VBD(T)は、温度Tにおける1枚の前記太陽電池セルの逆方向降伏電圧の正値であり、αは許容誤差である。
  2. 前記太陽電池セルの少なくとも一部が日陰になっているか否かを判定する日陰判定部を備え、
    前記制御部は、前記日陰判定部により前記太陽電池セルの少なくとも一部が日陰になっていると判定された場合、前記目標出力電圧の前記下限値を数式(1)を用いて設定する、請求項1に記載の太陽光発電システム。
  3. 第一ダイオードと、
    第二ダイオードと、
    前記第一ダイオード及び前記第二ダイオードの少なくとも一方がオープン故障しているか否かを判定する故障判定部と、
    を備え、
    直列接続された前記複数の太陽電池セルは、第一太陽電池セル直列群と第二太陽電池セル直列群とに少なくとも分けられ、
    前記第一ダイオードと前記第一太陽電池セル直列群とが並列接続され、
    前記第二ダイオードと前記第二太陽電池セル直列群とが並列接続されており、
    前記制御部は、前記故障判定部により前記第一ダイオード及び前記第二ダイオードの少なくとも一方がオープン故障していると判定された場合、前記目標出力電圧の前記下限値を数式(1)を用いて設定する、請求項1又は2に記載の太陽光発電システム。
JP2016240478A 2016-12-12 2016-12-12 太陽光発電システム Active JP6536552B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2016240478A JP6536552B2 (ja) 2016-12-12 2016-12-12 太陽光発電システム
US15/835,715 US10476274B2 (en) 2016-12-12 2017-12-08 Solar power generation system
BR102017026507-2A BR102017026507B1 (pt) 2016-12-12 2017-12-08 Sistema de geração de energia solar
EP17206244.0A EP3333665B1 (en) 2016-12-12 2017-12-08 Solar power generation system
RU2017142935A RU2666123C1 (ru) 2016-12-12 2017-12-08 Использующая энергию солнца система генерирования энергии
MYPI2017704739A MY186150A (en) 2016-12-12 2017-12-08 Solar power generation system
CA2988232A CA2988232C (en) 2016-12-12 2017-12-08 Solar power generation system
TW106143391A TWI649524B (zh) 2016-12-12 2017-12-11 太陽能發電系統
KR1020170169099A KR101980456B1 (ko) 2016-12-12 2017-12-11 태양광 발전 시스템
CN201711307418.7A CN108233514B (zh) 2016-12-12 2017-12-11 太阳能发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016240478A JP6536552B2 (ja) 2016-12-12 2016-12-12 太陽光発電システム

Publications (2)

Publication Number Publication Date
JP2018098880A JP2018098880A (ja) 2018-06-21
JP6536552B2 true JP6536552B2 (ja) 2019-07-03

Family

ID=60654799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016240478A Active JP6536552B2 (ja) 2016-12-12 2016-12-12 太陽光発電システム

Country Status (10)

Country Link
US (1) US10476274B2 (ja)
EP (1) EP3333665B1 (ja)
JP (1) JP6536552B2 (ja)
KR (1) KR101980456B1 (ja)
CN (1) CN108233514B (ja)
BR (1) BR102017026507B1 (ja)
CA (1) CA2988232C (ja)
MY (1) MY186150A (ja)
RU (1) RU2666123C1 (ja)
TW (1) TWI649524B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676092B (zh) * 2018-10-31 2019-11-01 國立中山大學 太陽光伏系統之最大功率點追蹤及部分遮陰判斷方法
TWI696837B (zh) * 2018-11-06 2020-06-21 國立中山大學 太陽光伏系統之最大功率及定功率的追蹤方法
JP2020205332A (ja) * 2019-06-17 2020-12-24 三菱重工業株式会社 光発電モジュール装置
CN110289638A (zh) * 2019-07-22 2019-09-27 珠海格力电器股份有限公司 光伏组件接入过多保护方法、装置、变流器和光伏系统
JP7149534B2 (ja) * 2019-10-01 2022-10-07 株式会社アイテス 太陽電池パネルの検査装置、及び検査方法
CN112928989B (zh) * 2021-02-25 2023-03-31 阳光电源股份有限公司 一种故障诊断方法及装置
EP4376296A1 (en) * 2022-11-23 2024-05-29 Commissariat à l'énergie atomique et aux énergies alternatives Method for estimating a breakdown voltage of a photovoltaic cell

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294346B2 (ja) 2003-03-13 2009-07-08 一隆 板子 太陽光発電システムおよびその最大電力点追従制御方法
RU2279705C2 (ru) * 2004-09-20 2006-07-10 Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" Способ питания нагрузки от солнечной батареи
RU2308752C1 (ru) * 2006-03-27 2007-10-20 Открытое акционерное общество "Научно-производственный центр "Полюс" (ОАО "НПЦ "Полюс") Способ управления потреблением энергии солнечной батареи в режиме максимальной мощности
WO2010045566A2 (en) * 2008-10-16 2010-04-22 Enphase Energy, Inc. Method and apparatus for determining an operating voltage for preventing photovoltaic cell reverse breakdown during power conversion
US9324885B2 (en) * 2009-10-02 2016-04-26 Tigo Energy, Inc. Systems and methods to provide enhanced diode bypass paths
TWI444809B (zh) * 2010-03-31 2014-07-11 Hitachi Ltd Solar power generation system and control system
JP2011228598A (ja) * 2010-04-23 2011-11-10 Hitachi Ltd 太陽光発電システムおよび太陽光発電制御装置
JP2011249790A (ja) 2010-04-28 2011-12-08 Kyocera Corp 太陽電池装置
US9118215B2 (en) * 2010-10-05 2015-08-25 Alencon Acquistion Co., Llc High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
JP5487084B2 (ja) * 2010-11-19 2014-05-07 株式会社メガチップス 電源装置
JP5732873B2 (ja) * 2011-01-31 2015-06-10 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム
KR101732984B1 (ko) * 2011-04-12 2017-05-08 엘지전자 주식회사 태양광 모듈 및 그 제어방법
US20120310427A1 (en) * 2011-05-31 2012-12-06 Williams B Jeffery Automatic Monitoring and Adjustment of a Solar Panel Array
JP5852455B2 (ja) 2012-01-30 2016-02-03 Jx日鉱日石エネルギー株式会社 故障検知装置及び故障検知方法
JP5759911B2 (ja) * 2012-01-30 2015-08-05 Jx日鉱日石エネルギー株式会社 太陽電池ユニット及び太陽電池モジュール
EP2811536A4 (en) * 2012-01-30 2015-08-26 Jx Nippon Oil & Energy Corp SOLAR ENERGY GENERATION SYSTEM AND DEVICE RECOGNITION METHOD THEREFOR
US8965596B2 (en) * 2012-03-02 2015-02-24 Tsmc Solar Ltd. Solar array with electrical transmission line communication
EP2722726B1 (en) * 2012-10-16 2021-01-20 Mitsubishi Electric R&D Centre Europe B.V. Device for controlling the occurrence of a power curve measurement
AU2013331304C1 (en) * 2012-10-16 2015-11-26 Solexel, Inc. Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules
KR101462642B1 (ko) 2013-03-29 2014-11-25 한서대학교 산학협력단 부분 차광시 전력 손실을 줄이는 태양광 발전 시스템 및 방법
US20150349708A1 (en) * 2013-04-13 2015-12-03 Solexel, Inc. Solar photovoltaic module power control and status monitoring system utilizing laminate-embedded remote access module switch
US10211631B2 (en) * 2013-12-17 2019-02-19 Enphase Energy, Inc. Voltage clipping
JP2015197870A (ja) 2014-04-03 2015-11-09 日立アプライアンス株式会社 太陽光発電システム
KR101508334B1 (ko) * 2014-12-09 2015-04-08 에디슨솔라이텍(주) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력점 추적방법
TWI553440B (zh) * 2015-02-26 2016-10-11 國立中山大學 太陽光伏發電之最大功率追蹤方法
JP6113220B2 (ja) * 2015-05-08 2017-04-12 日置電機株式会社 太陽電池検査装置および太陽電池検査方法

Also Published As

Publication number Publication date
US20180166882A1 (en) 2018-06-14
CA2988232C (en) 2019-10-22
TW201827765A (zh) 2018-08-01
JP2018098880A (ja) 2018-06-21
US10476274B2 (en) 2019-11-12
EP3333665B1 (en) 2021-02-17
MY186150A (en) 2021-06-28
EP3333665A1 (en) 2018-06-13
RU2666123C1 (ru) 2018-09-10
TWI649524B (zh) 2019-02-01
BR102017026507B1 (pt) 2023-04-11
KR20180067433A (ko) 2018-06-20
BR102017026507A2 (pt) 2018-07-17
CN108233514B (zh) 2021-01-15
CN108233514A (zh) 2018-06-29
CA2988232A1 (en) 2018-06-12
KR101980456B1 (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
JP6536552B2 (ja) 太陽光発電システム
KR101304729B1 (ko) 전압 균등화 장치, 방법, 프로그램을 기록한 컴퓨터 판독 가능한 기억 매체, 및 전력 저장 시스템
JP6941789B2 (ja) 電力供給装置、蓄電システム、及び充電方法
US8716891B2 (en) Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
US8629647B2 (en) Battery charger apparatus and method for a photovoltaic system
US20070027644A1 (en) Method of finding a maximum power of a photovoltaic generator
US8933721B2 (en) Power source arrangement and method of diagnosing a power source arrangement
US9337682B2 (en) Charging control device, solar power generation system and charging control method
JP6330122B2 (ja) 太陽電池発電装置の電子的管理システムならびに太陽電池発電装置およびその製造方法
JP6245558B2 (ja) 電源装置、蓄電装置、及び蓄電システム
JP2013065797A (ja) 太陽電池アレイの診断装置、パワーコンディショナ、太陽電池アレイの診断方法、及びプログラム
KR102340591B1 (ko) 채널 감시 기능을 구비한 태양광 전력 변환 장치
Chao et al. Solar-powered boat design using standalone distributed PV system
CN111010087B (zh) 一种光伏组串中失配组件的定位方法、装置及光伏系统
US20120033466A1 (en) Partial power micro-converter architecture
US9685789B2 (en) Current diversion for power-providing systems
JP6320723B2 (ja) 太陽光発電システム、それに用いる動作点補正装置、および動作点補正方法
US20130250630A1 (en) Method for controlling alternating current output of photovoltaic device and alternating current photovoltaic device
JP2018098879A (ja) 太陽電池モジュールの製造方法
JP2017225303A (ja) 太陽電池監視システム、および太陽電池監視プログラム
JP4653202B2 (ja) 充電回路および充電方法
JP5086484B2 (ja) 太陽電池システム
Ribeiro et al. Fault diagnosis in a multi-input power interface for a photovoltaic wind supply system for telecommunications
JP2013026242A (ja) 太陽光発電システム
JP2011039876A (ja) 太陽光発電設備

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190520

R151 Written notification of patent or utility model registration

Ref document number: 6536552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151