RU2666123C1 - Использующая энергию солнца система генерирования энергии - Google Patents

Использующая энергию солнца система генерирования энергии Download PDF

Info

Publication number
RU2666123C1
RU2666123C1 RU2017142935A RU2017142935A RU2666123C1 RU 2666123 C1 RU2666123 C1 RU 2666123C1 RU 2017142935 A RU2017142935 A RU 2017142935A RU 2017142935 A RU2017142935 A RU 2017142935A RU 2666123 C1 RU2666123 C1 RU 2666123C1
Authority
RU
Russia
Prior art keywords
output voltage
energy
solar cells
control device
target output
Prior art date
Application number
RU2017142935A
Other languages
English (en)
Inventor
Даисукэ САТО
Такахиро ХИРАНО
Тацуя МИЁСИ
Original Assignee
Тойота Дзидося Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тойота Дзидося Кабусики Кайся filed Critical Тойота Дзидося Кабусики Кайся
Application granted granted Critical
Publication of RU2666123C1 publication Critical patent/RU2666123C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Cистема, использующая энергию солнца для генерирования энергии, включает в себя фотоэлектрический модуль, преобразователь энергии и устройство управления. Преобразователь энергии сконфигурирован, чтобы управлять выходным напряжением фотоэлектрического модуля так, чтобы выходное напряжение соответствовало целевому выходному напряжению. Устройство управления сконфигурировано, чтобы определять нижнее предельное значение целевого выходного напряжения на основе предложенной формулы. Предложенная формула связывает нижнее предельное значение целевого выходного напряжения с напряжением разомкнутой цепи фотоэлектрического модуля, количеством подключенных последовательно солнечных элементов, положительным значением напряжения обратного пробоя одного из солнечных элементов и допустимой ошибкой. Заявленное изобретение обеспечивает снижение степени аномального тепловыделения посредством процесса управления. 3 з.п. ф-лы, 9 ил.

Description

1. Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к использующей энергию солнца системе генерирования энергии.
2. Описание предшествующего уровня техники
[0002] Использующая энергию солнца система генерирования энергии раскрыта в публикации не рассмотренной патентной заявки Японии №2004-280220 (JP 2004-280220 А). Использующая энергию солнца система генерирования энергии, описанная в JP 2004-280220 А, имеет фотоэлектрический модуль, схему преобразования энергии, схему управления и нагрузку. Фотоэлектрический модуль сконфигурирован путем размещения множества солнечных элементов, имеющих заранее заданную электродвижущую силу, на решетке.
[0003] В фотоэлектрическом модуле, в котором солнечные элементы соединены последовательно, затененный солнечный элемент выступает в качестве нагрузки в электрической цепи и потребляет энергию. Как следствие, затененный солнечный элемент может аномально генерировать тепло. Известно, что для предотвращения аномального выделения тепла фотоэлектрический модуль использует шунтирующий диод. Например, фотоэлектрический модуль, в котором шунтирующий диод соединен параллельно с множеством солнечных элементов, раскрыт в публикации не рассмотренной патентной заявки Японии №2011-249790 (JP 2011-249790 А).
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0004] Когда шунтирующий диод имеет обрыв цепи, ток течет в затененном солнечном элементе и вызывает аномальное тепловыделение. В данной области техники желательно предложить использующую энергию солнца систему генерирования энергии, которая может снизить степень аномального тепловыделения солнечного элемента посредством процесса управления.
[0005] Объект настоящего изобретения относится к использующей энергию солнца системе генерирования энергии, содержащей фотоэлектрический модуль, в котором множество солнечных элементов соединены последовательно, преобразователь энергии, подключенный к фотоэлектрическому модулю, и устройство управления, сконфигурированное для определения целевого выходного напряжения. Преобразователь энергии сконфигурирован для управления выходным напряжением фотоэлектрического модуля таким образом, чтобы выходное напряжение соответствовало целевому выходному напряжению. Устройство управления сконфигурировано для определения нижнего предельного значения целевого выходного напряжения на основе следующей общей формулы:
Figure 00000001
В этой общей формуле Irr обозначает интенсивность используемого света, и Т обозначает температуру. VTL(Irr, Т) обозначает нижнее предельное значение целевого выходного напряжения при определенной интенсивности используемого света и определенной температуре. VOC(Irr, Т) обозначает напряжение разомкнутой цепи фотоэлектрического модуля при определенной интенсивности используемого света и определенной температуре. Количество солнечных элементов, соединенных последовательно, обозначено n. VBD(T) обозначает положительное значение напряжения обратного пробоя одного из солнечных элементов при определенной температуре. Допустимая ошибка обозначена символом α.
[0006] Объект настоящего изобретения позволяет назначить нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1). Когда целевое выходное напряжение ниже нижнего предельного значения, назначенного с использованием общей формулы (1) для, по меньшей мере, части затененных солнечных элементов, затененный солнечный элемент вводится в состояние обратного пробоя. В этом случае затененный солнечный элемент потребляет энергию и выделяет тепло. Можно не допустить перевода солнечного элемента в состоянии обратного пробоя, установив нижнее предельное значение целевого выходного напряжения с помощью общей формулы (1). Таким образом, использующая энергию солнца система генерирования энергии может снизить степень аномального тепловыделения солнечных элементов посредством выполнения управления.
[0007] В использующей энергию солнца системе генерирования энергии в соответствии с объектом настоящего изобретения устройство управления может быть сконфигурировано, чтобы определять, затемнена ли, по меньшей мере, часть солнечных элементов. В этом случае устройство управления может быть сконфигурировано, чтобы назначать нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, часть солнечных элементов затенена.
[0008] Объект настоящего изобретения позволяет назначить нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, часть солнечных элементов затенена, то есть при наличии возможности аномального тепловыделения.
[0009] Использующая энергию солнца система генерирования энергии в соответствии с объектом настоящего изобретения может дополнительно содержать первый диод и второй диод. В этом случае солнечные элементы могут содержать первую группу последовательно соединенных солнечных элементов и вторую группу последовательно соединенных солнечных элементов. Первый диод и первая группа последовательно соединенных солнечных элементов могут быть соединены параллельно друг с другом.
Второй диод и вторая группа последовательно соединенных солнечных элементов могут быть соединены параллельно друг с другом. Устройство управления может быть сконфигурировано, чтобы определять, имеет или нет, по меньшей мере, либо первый диод, либо второй диод обрыв цепи. Устройство управления может быть сконфигурировано, чтобы назначать нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, либо первый диод, либо второй диод имеют обрыв цепи.
[0010] Объект настоящего изобретения позволяет назначить нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, либо первый диод, либо второй диод имеют обрыв цепи, то есть при наличии условия возможного аномального тепловыделения.
[0011] Использующая энергию солнца система генерирования энергии в соответствии с объектом настоящего изобретения может дополнительно содержать устройство формирования изображения, сконфигурированное, чтобы получать захваченное изображение поверхности солнечных элементов. Устройство управления может быть соединено с устройством формирования изображения и может быть сконфигурировано, чтобы определять, затенена или нет, по меньшей мере, часть солнечных элементов, на основе изображения, полученного устройством формирования изображения.
[0012] Настоящее изобретение позволяет уменьшить аномальное тепловыделение солнечных элементов посредством выполнения управления.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0013] Признаки, преимущества, а также техническая и промышленная значимость примеров осуществления изобретения будут описаны ниже со ссылкой на прилагаемые чертежи, на которых одинаковые ссылочные позиции обозначают одинаковые элементы, и где:
Фиг. 1 является схемой, иллюстрирующей использующую энергию солнца систему генерирования энергии в соответствии с первым примером осуществления изобретения;
Фиг. 2 является видом сверху, иллюстрирующим фотоэлектрический модуль, присутствующий на фиг. 1;
Фиг. 3 представляет график, иллюстрирующий вольт-амперную характеристику фотоэлектрического модуля, присутствующего на фиг. 1;
Фиг. 4 является блок-схемой, описывающей процесс определения выходной мощности использующей энергию солнца системы генерирования энергии, показанной на фиг. 1;
Фиг. 5 показывает вид сверху, иллюстрирующий фотоэлектрический модуль в соответствии с модифицированным примером;
Фиг. 6 является схемой, иллюстрирующей использующую энергию солнца систему генерирования энергии согласно второму примеру осуществления изобретения;
Фиг. 7 является блок-схемой, описывающей процесс определения целевого выходного напряжения;
Фиг. 8 является схемой, иллюстрирующей использующую энергию солнца систему генерирования энергии согласно третьему примеру осуществления изобретения; и
Фиг. 9 является блок-схемой, описывающей процесс определения целевого выходного напряжения.
ПОДРОБНОЕ ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ
ИЗОБРЕТЕНИЯ
[0014] Далее примеры осуществления настоящего изобретения будут описаны со ссылкой на чертежи. В последующем описании одни и те же или соответствующие элементы будут обозначены одинаковыми ссылочными позициями и будут описаны один раз.
Первый пример осуществления изобретения
Конфигурация использующей энергию солнца системы 100 генерирования энергии
[0015] На фиг. 1 показана схема, иллюстрирующая использующую энергию солнца систему 100 генерирования энергии согласно первому примеру осуществления изобретения. Фиг. 2 показывает вид сверху, иллюстрирующий фотоэлектрический модуль 1, присутствующий на фиг. 1. Использующая энергию солнца система 100 генерирования энергии представляет собой систему, которая генерирует энергию с использованием солнечного света и сохраняет энергию. Как показано на фиг. 1 и фиг. 2, использующая энергию солнца система 100 генерирования энергии включает в себя фотоэлектрический модуль 1, вольтметр 2, амперметр 3, преобразователь 4 постоянного тока в постоянный (один пример преобразователя энергии), аккумуляторную батарею 5 и устройство 6 управления.
[0016] Фотоэлектрический модуль 1 представляет собой компонент, сконфигурированный путем объединения в блок множества элементов, генерирующих электрическую энергию, используя солнечный свет. Фотоэлектрический модуль 1 вырабатывает электрическую энергию. Фотоэлектрический модуль 1 содержит множество солнечных элементов 10 и выходные контакты 13, 14.
[0017] Каждый солнечный элемент 10 представляет собой элемент преобразования энергии. Когда каждый солнечный элемент 10 принимает солнечный свет на его поверхности приема света, каждый солнечный элемент 10 преобразует энергию принятого солнечного света в электрическую энергию и выводит электрическую энергию. Каждый солнечный элемент 10 не ограничивается конкретной конфигурацией и использует известный солнечный элемент.
[0018] Солнечные элементы 10 имеют одинаковую конфигурацию и соединены последовательно. То есть солнечные элементы 10 электрически соединены друг с другом последовательно. Солнечные элементы 10 образуют множество групп 11 последовательно соединенных солнечных элементов. Группы 11 последовательно соединенных солнечных элементов соединены последовательно. В настоящем примере осуществления изобретения солнечные элементы 10 образуют три группы 11 последовательно соединенных солнечных элементов. В частности, общее количество солнечных элементов 10 равно 36, и количество солнечных элементов 10, образующих каждую группу 11 последовательно соединенных солнечных элементов, равно 12.
[0019] Выходной контакт 13 является контактом с низким электрическим потенциалом, который расположен на выходе фотоэлектрического модуля 1. Выходной контакт 13 электрически соединен, например, с входным контактом низкого электрического потенциала преобразователя 4 постоянного тока в постоянный. Выходной контакт 14 представляет собой контакт с высоким электрическим потенциалом, который расположен на выходе фотоэлектрического модуля 1. Выходной контакт 14 электрически соединен, например, с входным контактом высокого электрического потенциала преобразователя 4 постоянного тока в постоянный.
[0020] Вольтметр 2 представляет собой измеритель, который измеряет напряжение (разность электрических потенциалов) в электрической цепи. Вольтметр 2 соединен параллельно с фотоэлектрическим модулем 1. Более конкретно, вольтметр 2 электрически подсоединен между выходным контактом 13 и выходным контактом 14 фотоэлектрического модуля 1 и измеряет выходное напряжение фотоэлектрического модуля 1. Амперметр 3 представляет собой измеритель, который измеряет величину тока в электрической цепи. Амперметр 3 соединен последовательно с фотоэлектрическим модулем 1. Более конкретно, амперметр 3 электрически подсоединен к выходному контакту 14 фотоэлектрического модуля 1 и измеряет выходной ток фотоэлектрического модуля 1.
[0021] Преобразователь 4 постоянного тока в постоянный представляет собой устройство, которое преобразует энергию. Преобразователь 4 постоянного тока в постоянный подключен к фотоэлектрическому модулю 1. На фиг. 1 преобразователь 4 постоянного тока в постоянный электрически подсоединен между фотоэлектрическим модулем 1 и аккумуляторной батареей 5. Преобразователь 4 постоянного тока в постоянный управляет выходным напряжением фотоэлектрического модуля 1 так, чтобы выходное напряжение соответствовало целевому выходному напряжению. Выходное напряжение, которое управляется, чтобы соответствовать целевому выходному напряжению, преобразуется в заданное напряжение посредством преобразователя 4 постоянного тока в постоянный. В частности, преобразователь 4 постоянного тока в постоянный преобразует напряжение и выходной ток фотоэлектрического модуля 1 и выводит преобразованное напряжение и преобразованный ток в аккумуляторную батарею 5. Преобразователь 4 постоянного тока в постоянный не ограничен конкретной конфигурацией и использует известный преобразователь постоянного тока в постоянный.
[0022] Аккумуляторная батарея 5 представляет собой батарею, которая может заряжаться от энергии, поступающей от фотоэлектрического модуля 1. Аккумуляторная батарея 5 не ограничивается конкретной батареей и может быть любой батареей, которую можно заряжать и разряжать повторно.
[0023] Устройство 6 управления является вычислительным устройством и сконфигурировано как общий компьютер, содержащий, например, центральный процессор (ЦП), постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ). Устройство 6 управления соединено с преобразователем 4 постоянного тока в постоянный и управляет работой преобразователя 4 постоянного тока в постоянный. В частности, устройство 6 управления определяет целевое выходное напряжение преобразователя 4 постоянного тока в постоянный.
[0024] Устройство 6 управления, например, определяет целевое выходное напряжение, которое достигает оптимальной выходной мощности фотоэлектрического модуля 1. Устройство 6 управления может использовать различные известные способы. Например, устройство 6 управления управляет работой преобразователя 4 постоянного тока в постоянный таким образом, что осуществляется управление слежением за точкой максимальной мощности (maximum power point tracking - MPPT) в использующей энергию солнца системе 100 генерирования энергии. Управление МРРТ представляет собой способ управления, который изменяет выходное напряжение фотоэлектрического модуля 1, сравнивает мощность до и после изменения напряжения и использует напряжение, которое обеспечивает большую мощность. Более конкретно, устройство 6 управления вычисляет мощность, генерируемую фотоэлектрическим модулем 1, на основании значения напряжения, измеренного вольтметром 2, и значения тока, измеренного амперметром 3.
[0025] Устройство 6 управления назначает нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1).
Figure 00000002
В этой общей формуле Irr обозначает интенсивность используемого света, и Т обозначает температуру. VTL(Irr, Т) обозначает нижнее предельное значение целевого выходного напряжения при определенной интенсивности используемого света и определенной температуре. VOC(Irr, Т) обозначает напряжение разомкнутой цепи фотоэлектрического модуля 1 при определенной интенсивности используемого света и определенной температуре. Количество солнечных элементов, соединенных последовательно, обозначается n. VBD(T) обозначает положительное значение напряжения обратного пробоя одного из солнечных элементов при определенной температуре. Допустимая ошибка обозначается символом а. Причиной использования такого нижнего предельного значения является предотвращение выделения тепла солнечным элементом 10, который затемнен. Подробности будут описаны ниже.
[0026] Напряжение VOC разомкнутой цепи фотоэлектрического модуля 1 измеряется способом измерения, определенным, например, IEC60904-1, который является стандартом Международной электротехнической комиссии (IEC). Напряжение VOC разомкнутой цепи зависит от интенсивности используемого света. Напряжение VOC разомкнутой цепи, используемое в общей формуле (1), может представлять собой, например, напряжение разомкнутой цепи фотоэлектрического модуля 1 (напряжение разомкнутой цепи между выходным контактом 13 и выходным контактом 14), когда фотоэлектрический модуль 1 принимает солнечный свет, соответствующий верхнему предельному значению интенсивности используемого света (интенсивность света при использовании фотоэлектрического модуля 1). Более конкретно, конкретный диапазон верхнего предельного значения интенсивности используемого света составляет, например, от 300 W/m2 до 1000 W/m2. Напряжение VOC разомкнутой цепи фотоэлектрического модуля 1 зависит от температуры. Например, напряжение VOC разомкнутой цепи фотоэлектрического модуля 1 имеет температурную зависимость, так что напряжение VOC разомкнутой цепи увеличивается пропорционально уменьшению температуры каждого солнечного элемента 10. Напряжение VOC разомкнутой цепи, используемое в общей формуле (1), может быть напряжением разомкнутой цепи фотоэлектрического модуля 1 при более низкой предельной температуре каждого используемого солнечного элемента 10. Конкретный температурный диапазон нижней предельной температуры составляет от -30°С до 90°С.
[0027] Напряжение VBD обратного пробоя каждого солнечного элемента 10 определяется на основании вольт-амперной характеристики каждого солнечного элемента 10. Напряжение VBD обратного пробоя зависит от температуры. Например, напряжение VBD обратного пробоя имеет температурную зависимость, так что напряжение VBD обратного пробоя уменьшается пропорционально уменьшению температуры каждого солнечного элемента 10. Напряжение VBD обратного пробоя каждого солнечного элемента 10 может быть напряжением обратного пробоя фотоэлектрического модуля 1 при более низкой предельной температуре каждого используемого солнечного элемента 10. Конкретный температурный диапазон нижней предельной температуры составляет от -30°С до 90°С. Ниже будет подробно описан способ определения величины напряжения VBD обратного пробоя каждого солнечного элемента 10.
[0028] Допустимая ошибка а представлена произведением допустимого тока IT и паразитным последовательным сопротивлением R. Допустимый ток IT представляет собой текущее значение, которое вызывает выделение тепла в допустимом диапазоне, когда ток подается на затемненный солнечный элемент 10 при определенной температуре. Например, допустимый ток IT назначается таким образом, что генерируемое количество тепла VBD⋅I [W] при токе I попадает в допустимый диапазон, соответствующий термостойкости фотоэлектрического модуля 1. Допустимый диапазон для количества генерируемого тепла в составляет, например, от 20 W до 30 W. Паразитное последовательное сопротивление R представляет собой полное паразитное последовательное сопротивление фотоэлектрического модуля 1 и тракта от фотоэлектрического модуля 1 до точки, в которой подключен вольтметр 2.
[0029] Устройство 6 управления назначает нижнее предельное значение для определения целевого выходного напряжения, которое больше или равно нижнему предельному значению. Существует несколько способов определения целевого выходного напряжения с использованием нижнего предельного значения. В качестве первого способа устройство 6 управления сначала назначает диапазон напряжения, который больше или равен нижнему предельному значению, и определяет целевое выходное напряжение в пределах назначенного диапазона напряжений с использованием известного способа. В качестве второго способа устройство 6 управления сначала определяет предварительное целевое выходное напряжение с использованием известного способа и сравнивает определенное предварительное целевое выходное напряжение с нижним предельным значением. Когда определенное предварительное целевое выходное напряжение больше или равно нижнему предельному значению, то устройство 6 управления использует определенное предварительное целевое выходное напряжение в качестве целевого выходного напряжения. Когда определенное предварительное целевое выходное напряжение меньше, чем нижнее предельное значение, то устройство 6 управления отбрасывает определенное предварительное целевое выходное напряжение и сравнивает следующее доступное целевое выходное напряжение с нижним предельным значением. Устройство 6 управления повторяет процесс для определения целевого выходного напряжения.
[0030] Устройство 6 управления выводит управляющее значение, соответствующее определенному целевому выходному напряжению, на преобразователь 4 постоянного тока в постоянный. Управляющее значение представляет собой, например, рабочий цикл преобразователя 4 постоянного тока в постоянный.
Принцип аномального тепловыделения
[0031] Далее будет описано условие для аномального тепловыделения каждого солнечного элемента 10. Когда фотоэлектрический модуль 1 не имеет шунтирующего диода, то устанавливается условие аномального тепловыделения при выполнении двух условий. Первое условие состоит в том, что часть области или вся область поверхности приема света, по меньшей мере, одного солнечного элемента 10 фотоэлектрического модуля 1 затенена. Затемнение означает наличие тени, которая формируется, когда солнечный свет блокируется при условии падения солнечного света. Причиной блокирования солнечного света для части солнечных элементов 10 считается, например, погодные условия, прилипание блокирующего объекта, такого как помет птиц, или повреждение или изменения в поверхностном слое элемента из-за столкновения с летающим объектом. Когда все солнечные элементы 10 затемнены, то аномальное выделение тепла, очевидно, не происходит. Случай, когда все солнечные элементы 10 затемнены, будет исключен из следующего описания.
[0032] Когда, по меньшей мере, один солнечный элемент 10 затемнен, то выходной ток фотоэлектрического модуля 1 ограничивается величиной тока затемненного солнечного элемента 10. Второе условие состоит в том, что выходное напряжение фотоэлектрического модуля 1 находится в пределах заданного диапазона. Далее будет подробно описан диапазон выходного напряжения фотоэлектрического модуля 1, вызывающий аномальное тепловыделение.
[0033] На фиг. 3 показан график, иллюстрирующий вольт-амперную характеристику фотоэлектрического модуля 1 на фиг. 1. На фиг. 3 горизонтальная ось обозначает напряжение V, выдаваемое фотоэлектрическим модулем 1, и вертикальная ось обозначает ток I, выдаваемый фотоэлектрическим модулем 1. В первом квадранте (V>0 и I>0) фиг. 3 фотоэлектрический модуль 1 функционирует как батарея (прямое смещение). Во втором квадранте (V<0 и I>0) фиг. 3 фотоэлектрический модуль 1 функционирует как нагрузка (обратное смещение).
[0034] График X, показанный пунктирными линиями, иллюстрирует вольт-амперную характеристику одного затемненного солнечного элемента 10 (часть или вся поверхность приема света солнечного элемента 10 затемнена). График X пересекает горизонтальную ось при напряжении VCELL открытой цепи одного солнечного элемента 10. На графике X ток возрастает пропорционально уменьшению напряжения. Однако, поскольку солнечный элемент 10 затемнен, солнечный элемент 10 насыщается при сравнительно низком значении тока (А1 на фиг. 3).
[0035] Как показано на графике X, ток резко и линейно увеличивается (А2 на фиг. 3), когда обратное напряжение подается на солнечный элемент 10 (первый диапазон RV1 напряжения на фиг. 3) и уменьшается до заранее заданного значения (абсолютное значение обратного напряжения увеличивается до заданного значения). Напряжение VBD обратного пробоя солнечного элемента 10 может быть определено как положительное значение напряжения в точке, где линия (A3 на фиг. 3), полученная путем аппроксимации прямой линией части А2 графика X, пересекает горизонтальную ось.
[0036] График Y, показанный сплошной линией, является вольт-амперной характеристикой фотоэлектрического модуля 1, который включает в себя один затемненный фотоэлектрический элемент 10. Работа фотоэлектрического модуля 1 управляется в области первого квадранта.
График Y пересекает горизонтальную ось при напряжении VOC разомкнутой цепи фотоэлектрического модуля 1, имеющего n солнечных элементов 10. На графике Y ток возрастает пропорционально уменьшению выходного напряжения. Однако, поскольку один солнечный элемент 10 затемнен, то выходной ток, который может протекать в солнечном элементе 10, является верхним предельным значением выходного тока. Как следствие, фотоэлектрический модуль 1 насыщен при сравнительно низком значении тока (А4 и третьем диапазоне RV3 напряжения на фиг. 3).
[0037] Как показано на графике Y, выходной ток резко и линейно увеличивается (А5 и второй диапазон напряжения RV2 на фиг. 3), когда обратное напряжение, приложенное к затемненному солнечному элементу 10, уменьшается до выходного напряжения, полученного посредством вычитания величины напряжения VBD обратного пробоя из величины выходного напряжения, соответствующего напряжению разомкнутой цепи каждого из (n-1) солнечных элементов 10 (абсолютное значение обратного напряжения увеличивается до заданного значения). Второй диапазон RV2 напряжения представлен в общей формуле (2).
Figure 00000003
[0038] Когда целевое выходное напряжение фотоэлектрического модуля 1 находится во втором диапазоне RV2 напряжения, то затемненный солнечный элемент 10 переходит в состояние обратного пробоя. В этом случае солнечный элемент 10 генерирует тепло.
[0039] Когда устройство 6 управления определяет целевое выходное напряжение посредством МРРТ управления, первая точка мощности M1 может быть выбрана в качестве максимального выходного значения. Когда целевое выходное напряжение фиксируется во втором диапазоне RV2 напряжения с первой точкой мощности M1 в качестве эталона, то состояние аномальной генерации тепла затемненного солнечного элемента 10 может продолжаться. То есть проблема аномального тепловыделения солнечных элементов 10 более заметна, когда устройство 6 управления определяет целевое выходное напряжение посредством МРРТ управления.
Нижнее предельное значение целевого выходного напряжения
[0040] Как описано выше, тепло генерируется, когда целевое выходное напряжение назначается в пределах второго диапазона RV2 напряжения. Устройство 6 управления устанавливает нижнее предельное значение целевого выходного напряжения, используя общую формулу (1), чтобы исключить назначение целевого выходного напряжения в пределах второго диапазона RV2 напряжения. Соответственно, второе условие, которое является аномальным условием тепловыделения, не выполняется. В примере на фиг. 3 первая точка мощности M1 не выбрана, и выбрана вторая точка мощности М2. Соответственно, использующая энергию солнца система 100 генерирования энергии посредством управления может уменьшить аномальное тепловыделение солнечных элементов 10.
[0041] В описании, иллюстрирующем один затемненный солнечный элемент 10, когда, например, m (m больше или равно двум) солнечных элементов 10 затемнены, коэффициент m применим к - VBD в общей формуле (1). Величина в левой части общей формулы (1) дополнительно уменьшается. Соответственно, когда общая формула (1) верна в описании, когда затемнен один солнечный элемент 10, общая формула (1) также выполняется, когда т солнечных элементов 10 затемнены.
Процесс назначения нижнего предельного значения для использующей энергию солнца системы 100 генерирования энергии.
[0042] Фиг. 4 представляет собой блок-схему последовательности операций, иллюстрирующую процесс определения выходной мощности использующей энергию солнца системы 100 генерирования энергии. Процесс, проиллюстрированный блок-схемой, показанной на фиг.4, выполняется устройством 6 управления, когда выходная мощность получена из фотоэлектрического модуля 1.
[0043] Как показано на фиг. 4, устройство 6 управления начинает с процесса назначения нижнего предельного значения (S12). При выполнении процесса назначения нижнего предельного значения (S12) устройство 6 управления назначает нижнее предельное значение целевого выходного напряжения. Устройство 6 управления назначает нижнее предельное значение, вычисленное с использованием общей формулы (1), в качестве нижнего предельного значения целевого выходного напряжения.
[0044] Далее, при выполнении процесса (S14) определения выходного целевого напряжения устройство 6 управления определяет целевое выходное напряжение в диапазоне, большем или равном нижнему предельному значению, назначенному в процессе (S12) назначения нижнего предельного значения, для получения максимальной выходной мощности из фотоэлектрического модуля 1. Устройство 6 управления определяет целевое выходное напряжение, которое используется, например, для МРРТ управления. Устройство 6 управления определяет целевое выходное напряжение в заранее заданный момент времени или цикла до того, как будет выполнено условие завершения МРРТ управления, такое как выключение источника питания использующей энергию солнца системы 100 генерирования энергии, то есть во время выполнения МРРТ управления. Когда устройство 6 управления завершает процесс определения целевого выходного напряжения (S14), устройство 6 управления завершает процесс определения выходной мощности, как показано на фиг. 4. Устройство 6 управления может динамически назначать нижнее предельное значение целевого выходного напряжения во время выполнения МРРТ управления. Такой случай реализуется устройством 6 управления, которое повторно выполняет процесс назначения нижнего предельного значения (S12) и отражает назначенное нижнее предельное значение в каждый момент на этапе определения выходного напряжения (S14). Этот процесс назначает нижнее предельное значение целевого выходного напряжения и определяет целевое выходное напряжение, которое больше или равно нижнему предельному значению.
Пример 1 модификации
[0045] Фотоэлектрический модуль 1 может включать в себя блок, который обходит вход и выход группы 11 последовательно соединенных солнечных элементов, в которой часть фотоэлектрического модуля 1 затемнена. Фиг. 5 показывает вид сверху, иллюстрирующий фотоэлектрический модуль 1А в соответствии с модификацией 1 примера. Как показано на фиг. 5, фотоэлектрический модуль 1А имеет ту же конфигурацию, что и фотоэлектрический модуль 1, за исключением наличия шунтирующих диодов 12А-12С. В дальнейшем, шунтирующие диоды 12А-12С могут совместно упоминаться как шунтирующий диод 12.
[0046] Солнечные элементы 10, соединенные последовательно, делятся на группы 11 последовательно соединенных солнечных элементов. Как показано на фиг. 5, солнечные элементы 10, соединенные последовательно, разделены на группу 11А последовательно соединенных солнечных элементов (один пример первой группы последовательно соединенных солнечных элементов), группу 11В последовательно соединенных солнечных элементов (один пример второй группы последовательно соединенных солнечных элементов) и группу 11С последовательно соединенных солнечных элементов. В дальнейшем группы 11А-11С последовательно соединенных солнечных элементов могут в совокупности упоминаться как группа 11 последовательно соединенных солнечных элементов.
[0047] Шунтирующий диод 12 представляет собой элемент, который имеет выпрямляющее действие. Один шунтирующий диод 12 предназначен для группы 11 последовательно соединенных солнечных элементов. Шунтирующий диод 12 предназначен для соединения выхода с высоким электрическим потенциалом и выхода с низким электрическим потенциалом группы 11 последовательно соединенных солнечных элементов. То есть, шунтирующий диод 12 соединен параллельно с группой 11 последовательно соединенных солнечных элементов (электрически соединены параллельно друг с другом). Например, шунтирующий диод 12А (один пример первого диода) соединен параллельно с группой 11А последовательно соединенных солнечных элементов. Шунтирующий диод 12В (один пример второго диода) соединен параллельно с группой 11В последовательно соединенных солнечных элементов. Шунтирующий диод 12С соединен параллельно с группой 11С последовательно соединенных солнечных элементов.
[0048] Шунтирующий диод 12 расположен так, что он имеет прямое направление от выхода с низким электрическим потенциалом к выходу с высоким электрическим потенциалом в группе 11 последовательно соединенных солнечных элементов. Когда заранее заданное или более высокое прямое напряжение приложено к шунтирующему диоду 12, то ток течет от выхода с низким электрическим потенциалом к выходу с высоким электрическим потенциалом группы 11 последовательно соединенных солнечных элементов. Таким образом, когда солнечный элемент 10 затемнен, то шунтирующий диод 12 действует для обхода тока, который не может течь в группе 11 последовательно соединенных солнечных элементов, содержащейся в солнечном элементе 10. Устройство 6 управления назначает нижнее предельное значение целевого выходного напряжения. Таким образом, даже когда часть солнечных элементов 10 затемнена, то посредством шунтирующего диода 12, имеющего эффект обрыва цепи, аномальное тепловыделение солнечных элементов 10 может быть уменьшено.
Выводы, касающиеся первого примера осуществления изобретения
[0049] Использующая энергию солнца система 100 генерирования энергии в соответствии с первым примером осуществления изобретения назначает нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1). Когда целевое выходное напряжение становиться ниже нижнего предельного значения, назначенного с использованием общей формулы (1), по меньшей мере, с частично затемненными солнечными элементами 10, то затененный солнечный элемент 10 переходит в состояние обратного пробоя. В этом случае затененный солнечный элемент 10 потребляет энергию и генерирует тепло. Может быть предотвращен переход солнечного элемента 10 в состояние обратного пробоя путем назначения нижнего предельного значения целевого выходного напряжения с помощью общей формулы (1). Таким образом, использующая энергию солнца система 100 генерирования энергии может уменьшить аномальное тепловыделение солнечных элементов 10 посредством управления.
[0050] Проблема аномального тепловыделения солнечных элементов 10 более заметна, когда устройство 6 управления определяет целевое выходное напряжение посредством МРРТ управления. Использующая энергию солнца система 100 генерирования энергии согласно первому примеру осуществления изобретения может уменьшить аномальное тепловыделение солнечных элементов 10 посредством управления, даже когда использующая энергию солнца система 100 генерирования энергии определяет целевое выходное напряжение посредством МРРТ управления.
Второй пример осуществления изобретения
[0051] В использующей энергию солнца системе 100 генерирования энергии согласно первому примеру осуществления изобретения устройство 6 управления назначает нижнее предельное значение целевого выходного напряжения постоянно, используя общую формулу (1). Однако, когда отсутствует затененный солнечный элемент 10, аномальная генерация тепла не возникает даже тогда, когда определяется целевое выходное напряжение, которое меньше или равно нижнему предельному значению, назначенному с использованием общей формулы (1). Соответственно, при условии, что нижнее предельное значение может быть назначено, когда есть возможность возникновения аномального тепловыделения, назначаемый диапазон напряжения для целевого выходного напряжения может быть увеличен при отсутствии возможности возникновения аномального тепловыделения. Как следствие, общая мощность, генерируемая использующей энергию солнца системой 100 генерирования энергии, может быть увеличена. В использующей энергию солнца системе 100А генерирования энергии согласно второму примеру осуществления изобретения, когда есть возможность возникновения аномального тепловыделения, целевое выходное напряжение определяется после назначения нижнего предельного значения целевого выходного напряжения. Когда нет возможности возникновения аномального тепловыделения, целевое выходное напряжение определяется без назначения нижнего предельного значения целевого выходного напряжения.
Конфигурация использующей энергию солнца системы 100А генерирования энергии
[0052] На фиг. 6 показана схема, иллюстрирующая использующую энергию солнца систему 100А генерирования энергии согласно второму примеру осуществления изобретения. Использующая энергию солнца система 100А генерирования энергии имеет такую же конфигурацию, что и использующая энергию солнца система 100 генерирования энергии в соответствии с первым примером осуществления изобретения, за исключением наличия устройства 7 формирования изображения и блока 8 определения тени и имеет другую функцию устройства управления.
[0053] Устройство 7 формирования изображения и блок 8 определения тени выполнены с возможностью обмениваться информацией друг с другом. Устройство 6А управления и блок 8 определения тени выполнены с возможностью обмениваться информацией друг с другом. Способ обмена информацией особо не ограничивается. Например, устройство 6А управления и блок 8 определения тени могут быть электрически соединены посредством провода или тому подобное, могут быть подключены посредством беспроводной связи или проводной связи или могут быть выполнены с возможностью ссылаться на общий внешний носитель данных.
[0054] Устройство 7 формирования изображения представляет собой устройство, которое включает в себя элемент формирования изображения. Устройство 7 формирования изображения используется для получения захваченного изображения поверхности солнечных элементов 10. Устройство 7 формирования изображения представляет собой, например, камеру.
[0055] Блок 8 определения тени является вычислительным устройством и сконфигурирован как общий компьютер, включающий в себя, например, ЦП, ПЗУ и ОЗУ. Блок 8 определения тени получает изображение, полученное устройством 7 формирования изображения. Блок 8 определения тени анализирует изображение, полученное устройством 7 формирования изображения, и определяет, затенена ли, по меньшей мере, часть солнечных элементов 10. Способ анализа может использовать известную технологию обработки изображений.
[0056] Устройство 6А управления является таким же, как и устройство 6 управления, за исключением того, что нижнее предельное значение целевого выходного напряжения назначается при выполнении какого-либо условия. Устройство 6А управления получает результат определения от блока 8 определения тени. Когда блок 8 определения тени определяет, что, по меньшей мере, часть солнечных элементов 10 затенена, то устройство 6А управления назначает нижнее предельное значение целевого выходного напряжения.
Процесс назначения минимального предельного значения использующей энергию солнца системы 100А генерирования энергии
[0057] На фиг. 7 показана блок-схема последовательности операций, иллюстрирующая процесс определения выходной мощности использующей энергию солнца системы 100А генерирования энергии. Блок-схема, показанная на фиг. 7, выполняется блоком 8 определения тени и устройством 6А управления, когда выходная мощность получается из фотоэлектрического модуля 1.
[0058] Как показано на фиг. 7, использующая энергию солнца система 100А генерирования энергии инициирует процесс, который начинается с процесса определения тени (S20). В качестве процесса определения тени (S20) блок 8 определения тени определяет, затенена ли, по меньшей мере, часть солнечных элементов 10, на основании изображения, полученного устройством 7 формирования изображения.
[0059] Когда блок 8 определения тени определяет, что, по меньшей мере, часть солнечных элементов 10 затенена (ДА на этапе S20), устройство 6А управления назначает нижнее предельное значение целевого выходного напряжения в процессе назначения нижнего предельного значения (S22). Устройство 6А управления назначает нижнее предельное значение, рассчитанное с использованием общей формулы (1), в качестве нижнего предельного значения целевого выходного напряжения. Затем выполняется процесс определения целевого выходного напряжения (S24).
[0060] В качестве процесса определения целевого выходного напряжения (S24) устройство 6А управления определяет целевое выходное напряжение в диапазоне, большем или равном нижнему предельному значению, назначенному в процессе (S22) назначения нижнего предельного значения, так, чтобы получать максимальную выходную мощность из фотоэлектрического модуля 1.
[0061] Когда блок 8 определения тени не определяет, что, по меньшей мере, часть солнечных элементов 10 затенена (НЕТ на этапе S20), то устройство 6А управления выполняет процесс определения целевого выходного напряжения (S24) без выполнения процесса назначения нижнего предельного значения (S22). В процессе определения целевого выходного напряжения (S24) устройство 6А управления определяет целевое выходное напряжение без ограничений в диапазоне напряжений, так, чтобы получать максимальную выходную мощность из фотоэлектрического модуля 1.
[0062] Использующая энергию солнца система 100А генерирования энергии завершает процесс определения выходной мощности, показанный на фиг. 7, когда процесс определения целевого выходного напряжения (S24) прекращается. Когда целевое выходное напряжение назначается динамически, использующая энергию солнца система 100А генерирования энергии выполняет завершенный процесс определения выходной мощности с самого начала. Процесс назначает нижнее предельное значение целевого выходного напряжения, когда есть возможность выполнения условия генерации аномального тепловыделения, и определяет целевое выходное напряжение, которое больше или равно нижнему предельному значению.
[0063] Использующая энергию солнца система 100А генерирования энергии согласно второму примеру осуществления изобретения может использовать модификацию 1 примера в соответствии с первым примером осуществления изобретения.
Выводы, касающиеся второго примера осуществления изобретения
[0064] Использующая энергию солнца система 100А генерирования энергии согласно второму примеру осуществления настоящего изобретения назначает нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1), когда блок 8 определения тени определяет, что, по меньшей мере, часть солнечных элементов 10 является затененной, то есть, когда есть возможность возникновения аномального тепловыделения. Использующая энергию солнца система 100А генерирования энергии динамически назначает нижнее предельное значение и, таким образом, может уменьшить аномальное тепловыделение солнечных элементов 10 посредством управления и увеличить общее количество энергии, генерируемой использующей энергию солнца системой 100А генерирования энергии.
Третий пример осуществления изобретения
[0065] В использующей энергию солнца системе 100 генерирования энергии согласно первому примеру осуществления изобретения устройство 6 управления назначает нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1), даже если используется фотоэлектрический модуль 1А, включающий в себя шунтирующий диод 12. Однако, когда шунтирующий диод 12 не имеет обрыва цепи, то аномальная генерация тепла не возникает даже тогда, когда определяется, что целевое выходное напряженнее меньше или равно нижнему предельному значению, назначенному с использованием общей формулы (1). Соответственно, при условии, что нижнее предельное значение может быть назначено при наличии возможности генерации аномального тепловыделения, заданный диапазон напряжения для целевого выходного напряжения может быть увеличен при отсутствии возможности генерации аномального тепла. Как следствие, общая мощность, генерируемая использующей энергию солнца системой 100 генерирования энергии, может быть увеличена. В использующей энергию солнца системе 100В генерирования энергии в соответствии с третьим примером осуществления изобретения при наличии возможности генерации аномального тепла целевое выходное напряжение определяется после того, как задано нижнее предельное значение целевого выходного напряжения, таким же образом, как и во втором примере осуществления изобретения. Когда нет возможности генерации аномального тепловыделения, целевое выходное напряжение определяется без назначения нижнего предельного значения целевого выходного напряжения.
Конфигурация использующей энергию солнца системы 100В генерирования энергии
[0066] На фиг. 8 показана блок-схема, иллюстрирующая использующую энергию солнца систему 100В генерирования энергии в соответствии с третьим примером осуществления изобретения. Использующая энергию солнца система 100В генерирования энергии имеет ту же конфигурацию, что и в модификации 1 примера (примера, который содержит фотоэлектрический модуль 1А, включающий в себя шунтирующий диод 12) использующей энергию солнца системы 100 генерирования энергии в соответствии с первым примером осуществления изобретения, за исключением использования блока 9 определения неисправности и с другой функцией устройства управления.
[0067] Фотоэлектрический модуль 1А и блок 9 определения неисправности выполнены с возможностью обмениваться информацией друг с другом. Устройство 6В управления и блок 9 определения неисправности выполнены с возможностью обмениваться информацией друг с другом. Способ обмена информацией особо не ограничивается. Например, устройство 6В управления и блок 9 определения неисправности могут быть электрически соединены посредством провода или тому подобного, могут быть соединены посредством беспроводной связи или проводной связи или могут быть выполнены с возможностью ссылаться на общий внешний носитель данных.
[0068] Блок 9 определения неисправности является вычислительным устройством и сконфигурирован как общий компьютер, включающий, например, ЦП, ПЗУ и ОЗУ. Блок 9 определения неисправности получает информацию об измерении от фотоэлектрического модуля 1А, чтобы определить, имеет ли шунтирующий диод 12 обрыв цепи. Одним из примеров информации об измерении является, например, значение тока и значение напряжения в шунтирующем диоде 12.
[0069] Блок 9 определения неисправности может, например, сравнивать вольт-амперную характеристику шунтирующего диода 12 при нормальной работе с вольт-амперной характеристикой шунтирующего диода 12 на основе информации об измерении для определения того, имеет ли шунтирующий диод 12 обрыв цепи. В качестве альтернативы блок 9 определения неисправности может определять, имеет ли шунтирующий диод 12 обрыв цепи на основании значения тока, который течет от отрицательного электрода к положительному электроду фотоэлектрического модуля 1А, когда обратное напряжение подается на фотоэлектрический модуль 1А.
[0070] В качестве альтернативы блок 9 определения неисправности может определять неисправность с использованием схемы определения, которая расположена в фотоэлектрическом модуле 1А. Схема определения предназначена для каждой группы 11 последовательно соединенных солнечных элементов фотоэлектрического модуля 1А. То есть блок 9 определения неисправности определяет, имеет ли каждый шунтирующий диод 12 обрыв цепи. Схема определения включает в себя цепь последовательно соединенных СИД, схему управления СИД и переключатель полярности. Цепь последовательно соединенных СИД соединена параллельно с шунтирующим диодом 12 в том же прямом направлении. Переключатель полярности переключает полярность соединения между стороной анода и стороной катода параллельной цепи шунтирующего диода 12 и цепи последовательно соединенных СИД, и контактом положительного электрода и контактом отрицательного электрода, которые внешне соединены. Когда СИД выключен в состоянии генерирования энергии, принимая солнечный свет, затем включается во время переключения полярности, блок 9 определения неисправности определяет, что шунтирующий диод 12 имеет обрыв цепи. Соответственно, блок 9 определения неисправности определяет, имеет или нет, по меньшей мере, один из шунтирующих диодов 12А-12С обрыв цепи.
[0071] Устройство 6В управления является таким же, как и устройство 6 управления, за исключением назначения нижнего предельного значения целевого выходного напряжения при выполнении условия. Устройство 6В управления получает результат определения блока 9 определения неисправности. Когда блок 9 определения неисправности определяет, что, по меньшей мере, один из шунтирующих диодов 12А-12С имеет обрыв цепи, устройство 6В управления назначает нижнее предельное значение целевого выходное напряжение, используя общую формулу (1).
Процесс назначения нижнего предельного значения использующей энергию солнца системы 100В генерирования энергии
[0072] На фиг. 9 показана блок-схема последовательности операций, иллюстрирующая процесс определения выходной мощности использующей энергию солнца системы 100В генерирования энергии. Блок-схема, показанная на фиг. 9, выполняется блоком 9 определения неисправности и устройством 6В управления, когда выходная мощность получена от фотоэлектрического модуля 1А.
[0073] Как показано на фиг. 9, использующая энергию солнца система 100В генерирования энергии начинает процесс определения неисправности (S30). В качестве процесса определения неисправности (S30) блок 9 определения неисправности определяет, имеет или нет, по меньшей мере, один из шунтирующих диодов 12А-12С обрыв цепи на основе информации измерения.
[0074] Когда блок 9 определения неисправности определяет, что, по меньшей мере, один из шунтирующих диодов 12А-12С имеет обрыв цепи (ДА на этапе S30), устройство 6В управления назначает нижнее предельное значение целевого выходного напряжения как нижнее предельное значение (S32). Устройство 6В управления назначает нижнее предельное значение, рассчитанное с использованием общей формулы (1), в качестве нижнего предельного значения целевого выходного напряжения. Затем выполняется процесс определения целевого выходного напряжения (S34).
[0075] В процессе определения целевого выходного напряжения (S34) устройство 6В управления определяет целевое выходное напряжение в диапазоне, большем или равном нижнему предельному значению, назначенному в процессе (S32) назначения нижнего предельного значения, так что получают максимальный выходную мощность фотоэлектрического модуля 1А.
[0076] Когда блок 9 определения неисправности определяет, что все шунтирующие диоды 12А-12С не имеют обрыва цепи (НЕТ на этапе S30), устройство 6В управления выполняет процесс определения выходного напряжения (S34) без выполнения процесса назначения нижнего предельного значения (S32). В качестве процесса определения целевого выходного напряжения (S34) устройство 6В управления определяет целевое выходное напряжение без ограничений на диапазон напряжений, так что получают максимальную выходную мощность фотоэлектрического модуля 1А.
[0077] Использующая энергию солнца система 100В генерирования энергии завершает блок-схему процесса определения выходной мощности, проиллюстрированную на фиг. 9, когда процесс определения целевого выходного напряжения (S34) прекращается. Когда целевое выходное напряжение динамически назначается, использующая энергию солнца система 100В генерирования энергии выполняет завершенный процесс определения выводной мощности с самого начала. Этот процесс назначает нижнее предельное значение целевого выходного напряжения, когда есть возможность генерации аномального тепла, и определяет целевое выходное напряжение, которое больше или равно нижнему предельному значению.
Выводы, касающиеся третьего примера осуществления изобретения
[0078] Использующая энергию солнца система 100В генерирования энергии в соответствии с третьим примером осуществления изобретения назначает нижнее предельное значение целевого выходного напряжения с использованием общей формулы (1), когда блок 9 определения неисправности определяет, что, по меньшей мере, один из шунтирующих диодов 12А-12С имеет обрыв цепи, то есть, когда есть возможность генерации аномального тепловыделения. Использующая энергию солнца система 100В генерирования энергии динамически назначает нижнее предельное значение и, таким образом, может уменьшить аномальное тепловыделение солнечных элементов 10 посредством управления и увеличить общее количество энергии, генерируемой использующей энергию солнца системой 100В генерирования энергии.
[0079] Настоящее изобретение не ограничивается примерами осуществления изобретения. Настоящее изобретение может быть реализовано в различных формах, которые достигаются путем осуществления различных модификаций или усовершенствований примеров осуществления изобретения, основанных на знаниях специалистов в данной области техники.
[0080] Устройства 6, 6А, 6В управления могут не выполнять процесс МРРТ управления. Например, устройства 6, 6А, 6В управления могут выполнять процесс управления посредством сканирования, при котором сканируют широкий диапазон выходного напряжения от фотоэлектрических модулей 1, 1А для поиска максимального значения мощности. В этом случае также обеспечивается реализация и эффект примеров осуществления изобретения в использующих энергию солнца системах 100, 100А, 100В генерирования энергии.

Claims (20)

1. Использующая энергию солнца система генерирования энергии содержит:
фотоэлектрический модуль, в котором множество солнечных элементов соединены последовательно;
преобразователь энергии, подключенный к фотоэлектрическому модулю, причем преобразователь энергии сконфигурирован для управления выходным напряжением фотоэлектрического модуля таким образом, чтобы выходное напряжение соответствовало целевому выходному напряжению; и
устройство управления, сконфигурированное для определения целевого выходного напряжения, причем устройство управления сконфигурировано для определения нижнего предельного значения целевого выходного напряжения на основе следующей общей формулы:
Figure 00000004
,
где Irr обозначает интенсивность используемого света, Т обозначает температуру, VTL(Irr, Т) обозначает нижнее предельное значение целевого выходного напряжения при определенной интенсивности используемого света и определенной температуре, VOC(Irr,, T) обозначает напряжение разомкнутой цепи фотоэлектрического модуля при определенной интенсивности используемого света и определенной температуре, n обозначает количество соединенных последовательно солнечных элементов, VBD (Т) обозначает положительное значение напряжения обратного пробоя одного из солнечных элементов при определенной температуре и α обозначает допустимую ошибку.
2. Использующая энергию солнца система генерирования энергии по п. 1, в которой:
устройство управления сконфигурировано, чтобы определять, затенена ли, по меньшей мере, часть солнечных элементов; и
устройство управления сконфигурировано, чтобы назначать нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, часть солнечных элементов затенена.
3. Использующая энергию солнца система генерирования энергии по п. 1 или 2 дополнительно содержит:
первый диод; и
второй диод, при этом:
солнечные элементы включают в себя первую группу последовательно соединенных солнечных элементов и вторую группу последовательно соединенных солнечных элементов;
первый диод и первая группа последовательно соединенных солнечных элементов соединены параллельно друг с другом;
второй диод и вторая группа последовательно соединенных солнечных элементов соединены параллельно друг с другом;
устройство управления сконфигурировано, чтобы определять, имеет или нет, по меньшей мере, либо первый диод, либо второй диод обрыв цепи; и
устройство управления сконфигурировано, чтобы назначать нижнее предельное значение целевого выходного напряжения, когда устройство управления определяет, что, по меньшей мере, либо первый диод, либо второй диод имеют обрыв цепи.
4. Использующая энергию солнца система генерирования энергии по п. 2 дополнительно содержит устройство формирования изображения, которое сконфигурировано, чтобы получать захваченное изображение поверхности солнечных элементов, при этом:
устройство управления соединено с устройством формирования изображения; и
устройство управления сконфигурировано, чтобы определять, затенена или нет, по меньшей мере, часть солнечных элементов, на основе изображения, полученного устройством формирования изображения.
RU2017142935A 2016-12-12 2017-12-08 Использующая энергию солнца система генерирования энергии RU2666123C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240478A JP6536552B2 (ja) 2016-12-12 2016-12-12 太陽光発電システム
JP2016-240478 2016-12-12

Publications (1)

Publication Number Publication Date
RU2666123C1 true RU2666123C1 (ru) 2018-09-10

Family

ID=60654799

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017142935A RU2666123C1 (ru) 2016-12-12 2017-12-08 Использующая энергию солнца система генерирования энергии

Country Status (10)

Country Link
US (1) US10476274B2 (ru)
EP (1) EP3333665B1 (ru)
JP (1) JP6536552B2 (ru)
KR (1) KR101980456B1 (ru)
CN (1) CN108233514B (ru)
BR (1) BR102017026507B1 (ru)
CA (1) CA2988232C (ru)
MY (1) MY186150A (ru)
RU (1) RU2666123C1 (ru)
TW (1) TWI649524B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803314C1 (ru) * 2022-11-01 2023-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Солнечный модуль с блоком диагностики

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676092B (zh) * 2018-10-31 2019-11-01 國立中山大學 太陽光伏系統之最大功率點追蹤及部分遮陰判斷方法
TWI696837B (zh) * 2018-11-06 2020-06-21 國立中山大學 太陽光伏系統之最大功率及定功率的追蹤方法
JP2020205332A (ja) * 2019-06-17 2020-12-24 三菱重工業株式会社 光発電モジュール装置
CN110289638A (zh) * 2019-07-22 2019-09-27 珠海格力电器股份有限公司 光伏组件接入过多保护方法、装置、变流器和光伏系统
JP7149534B2 (ja) * 2019-10-01 2022-10-07 株式会社アイテス 太陽電池パネルの検査装置、及び検査方法
CN112928989B (zh) * 2021-02-25 2023-03-31 阳光电源股份有限公司 一种故障诊断方法及装置
EP4376296A1 (en) * 2022-11-23 2024-05-29 Commissariat à l'énergie atomique et aux énergies alternatives Method for estimating a breakdown voltage of a photovoltaic cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2279705C2 (ru) * 2004-09-20 2006-07-10 Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" Способ питания нагрузки от солнечной батареи
RU2308752C1 (ru) * 2006-03-27 2007-10-20 Открытое акционерное общество "Научно-производственный центр "Полюс" (ОАО "НПЦ "Полюс") Способ управления потреблением энергии солнечной батареи в режиме максимальной мощности
JP2012108071A (ja) * 2010-11-19 2012-06-07 Mega Chips Corp 電源装置
WO2012166713A2 (en) * 2011-05-31 2012-12-06 Solar Power Technologies, Inc. Automatic monitoring and adjustment of a solar panel array
EP2722726A1 (en) * 2012-10-16 2014-04-23 Mitsubishi Electric R&D Centre Europe B.V. Device for controlling the occurrence of a power curve measurement
KR101508334B1 (ko) * 2014-12-09 2015-04-08 에디슨솔라이텍(주) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력점 추적방법
US9118215B2 (en) * 2010-10-05 2015-08-25 Alencon Acquistion Co., Llc High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294346B2 (ja) 2003-03-13 2009-07-08 一隆 板子 太陽光発電システムおよびその最大電力点追従制御方法
WO2010045566A2 (en) * 2008-10-16 2010-04-22 Enphase Energy, Inc. Method and apparatus for determining an operating voltage for preventing photovoltaic cell reverse breakdown during power conversion
US9324885B2 (en) * 2009-10-02 2016-04-26 Tigo Energy, Inc. Systems and methods to provide enhanced diode bypass paths
TWI444809B (zh) * 2010-03-31 2014-07-11 Hitachi Ltd Solar power generation system and control system
JP2011228598A (ja) * 2010-04-23 2011-11-10 Hitachi Ltd 太陽光発電システムおよび太陽光発電制御装置
JP2011249790A (ja) 2010-04-28 2011-12-08 Kyocera Corp 太陽電池装置
JP5732873B2 (ja) * 2011-01-31 2015-06-10 株式会社日立製作所 太陽電池の特性演算方法及び太陽光発電システム
KR101732984B1 (ko) * 2011-04-12 2017-05-08 엘지전자 주식회사 태양광 모듈 및 그 제어방법
JP5852455B2 (ja) 2012-01-30 2016-02-03 Jx日鉱日石エネルギー株式会社 故障検知装置及び故障検知方法
JP5759911B2 (ja) * 2012-01-30 2015-08-05 Jx日鉱日石エネルギー株式会社 太陽電池ユニット及び太陽電池モジュール
EP2811536A4 (en) * 2012-01-30 2015-08-26 Jx Nippon Oil & Energy Corp SOLAR ENERGY GENERATION SYSTEM AND DEVICE RECOGNITION METHOD THEREFOR
US8965596B2 (en) * 2012-03-02 2015-02-24 Tsmc Solar Ltd. Solar array with electrical transmission line communication
AU2013331304C1 (en) * 2012-10-16 2015-11-26 Solexel, Inc. Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules
KR101462642B1 (ko) 2013-03-29 2014-11-25 한서대학교 산학협력단 부분 차광시 전력 손실을 줄이는 태양광 발전 시스템 및 방법
US20150349708A1 (en) * 2013-04-13 2015-12-03 Solexel, Inc. Solar photovoltaic module power control and status monitoring system utilizing laminate-embedded remote access module switch
US10211631B2 (en) * 2013-12-17 2019-02-19 Enphase Energy, Inc. Voltage clipping
JP2015197870A (ja) 2014-04-03 2015-11-09 日立アプライアンス株式会社 太陽光発電システム
TWI553440B (zh) * 2015-02-26 2016-10-11 國立中山大學 太陽光伏發電之最大功率追蹤方法
JP6113220B2 (ja) * 2015-05-08 2017-04-12 日置電機株式会社 太陽電池検査装置および太陽電池検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2279705C2 (ru) * 2004-09-20 2006-07-10 Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" Способ питания нагрузки от солнечной батареи
RU2308752C1 (ru) * 2006-03-27 2007-10-20 Открытое акционерное общество "Научно-производственный центр "Полюс" (ОАО "НПЦ "Полюс") Способ управления потреблением энергии солнечной батареи в режиме максимальной мощности
US9118215B2 (en) * 2010-10-05 2015-08-25 Alencon Acquistion Co., Llc High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems
JP2012108071A (ja) * 2010-11-19 2012-06-07 Mega Chips Corp 電源装置
WO2012166713A2 (en) * 2011-05-31 2012-12-06 Solar Power Technologies, Inc. Automatic monitoring and adjustment of a solar panel array
EP2722726A1 (en) * 2012-10-16 2014-04-23 Mitsubishi Electric R&D Centre Europe B.V. Device for controlling the occurrence of a power curve measurement
KR101508334B1 (ko) * 2014-12-09 2015-04-08 에디슨솔라이텍(주) 태양전지 어레이의 부분 음영 판단에 따른 태양광 발전 시스템의 최대전력점 추적방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2803314C1 (ru) * 2022-11-01 2023-09-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Солнечный модуль с блоком диагностики

Also Published As

Publication number Publication date
US20180166882A1 (en) 2018-06-14
JP6536552B2 (ja) 2019-07-03
CA2988232C (en) 2019-10-22
TW201827765A (zh) 2018-08-01
JP2018098880A (ja) 2018-06-21
US10476274B2 (en) 2019-11-12
EP3333665B1 (en) 2021-02-17
MY186150A (en) 2021-06-28
EP3333665A1 (en) 2018-06-13
TWI649524B (zh) 2019-02-01
BR102017026507B1 (pt) 2023-04-11
KR20180067433A (ko) 2018-06-20
BR102017026507A2 (pt) 2018-07-17
CN108233514B (zh) 2021-01-15
CN108233514A (zh) 2018-06-29
CA2988232A1 (en) 2018-06-12
KR101980456B1 (ko) 2019-08-30

Similar Documents

Publication Publication Date Title
RU2666123C1 (ru) Использующая энергию солнца система генерирования энергии
EP3091658B1 (en) Solar cell testing apparatus and solar cell testing method
US10090701B2 (en) Solar power generation system
US8933721B2 (en) Power source arrangement and method of diagnosing a power source arrangement
KR101911474B1 (ko) 감시기능을 가진 다채널 부스팅 방식의 태양광 발전 장치
CN109193777B (zh) 一种功率优化器以及光伏发电系统
KR102340591B1 (ko) 채널 감시 기능을 구비한 태양광 전력 변환 장치
WO2022178680A1 (zh) 一种光伏电池检测方法、装置、系统、介质及芯片
KR20120091451A (ko) 기상의 함수로서 광기전 전지의 전자 관리를 위한 시스템
AU2019300646A1 (en) Power conversion system, method for controlling converter circuit, and program
US9148021B2 (en) Method for controlling alternating current output of photovoltaic device and alternating current photovoltaic device
US11626834B2 (en) Power backfeed control method, converter, and photovoltaic power generation system
JP5086484B2 (ja) 太陽電池システム
KR100962338B1 (ko) 전력값 제어 모듈 및 이를 구비한 태양 전지판 장치, 태양 전지판의 전력값 제어 방법
EP2594951A1 (en) Apparatus for determining if a fault exists in a photovoltaic source
CN114667678B (zh) 组串式光伏逆变器反灌缓起电路
JP2018098879A (ja) 太陽電池モジュールの製造方法
Nouri et al. DC-DC Converter fault diagnostic in wind energy production system. Simulation study
CN114123293A (zh) 一种光伏发电系统和光伏发电系统的pid检测方法
CN112789489A (zh) 具有减少的老化的光伏装置
KR20210047172A (ko) 태양광 모듈 2장의 최대 전력 점을 추적하는 직·병렬 접속반을 제어하는 방법
KR20140020390A (ko) 역전압 방지 시스템 및 이를 이용한 역전압 방지 방법