WO2022178680A1 - 一种光伏电池检测方法、装置、系统、介质及芯片 - Google Patents

一种光伏电池检测方法、装置、系统、介质及芯片 Download PDF

Info

Publication number
WO2022178680A1
WO2022178680A1 PCT/CN2021/077511 CN2021077511W WO2022178680A1 WO 2022178680 A1 WO2022178680 A1 WO 2022178680A1 CN 2021077511 W CN2021077511 W CN 2021077511W WO 2022178680 A1 WO2022178680 A1 WO 2022178680A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic cell
output power
detected
photovoltaic
voltage
Prior art date
Application number
PCT/CN2021/077511
Other languages
English (en)
French (fr)
Inventor
于心宇
汪建强
万松
辛凯
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to AU2021429051A priority Critical patent/AU2021429051A1/en
Priority to EP21927125.1A priority patent/EP4297272A4/en
Priority to PCT/CN2021/077511 priority patent/WO2022178680A1/zh
Priority to CN202180066251.8A priority patent/CN116324873B/zh
Publication of WO2022178680A1 publication Critical patent/WO2022178680A1/zh
Priority to US18/454,211 priority patent/US20230421098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources

Definitions

  • the present application relates to the field of electric power technology, and in particular, to a photovoltaic cell detection method, device, system, medium and chip.
  • a photovoltaic power generation system may include multiple components such as photovoltaic modules, inverters, transformers, and cables. Among them, photovoltaic modules can convert the energy of sunlight into electricity. The health status of photovoltaic modules has a great impact on the amount of power that a photovoltaic power generation system can generate. If a photovoltaic module fails, it will significantly affect the power output and cause losses to the power generation and revenue of the photovoltaic power station.
  • the health state of photovoltaic cells can be detected using the photo luminescence (PL) detection method. Since the photovoltaic cell receives light of a specific wavelength, the electrons in the ground state in the photovoltaic cell will absorb photons and enter the excited state, and when they return to the ground state in a short time, they will emit infrared light.
  • PL detection method using this characteristic of photovoltaic cells, a high-sensitivity and high-resolution camera can be used to sense the infrared light emitted by photovoltaic cells, and images of photovoltaic cells (PL images) can be collected. By analyzing the PL image, it is possible to judge whether the photovoltaic cell is faulty.
  • a signal source needs to be added to the photovoltaic power station.
  • the signal source can output at least one modulation frequency, modulate the output power of the photovoltaic cell, make the photovoltaic cell work at two operating points of short circuit and open circuit, and then collect the images of the photovoltaic cell at these two operating points.
  • the short-circuit operating point is the voltage of the photovoltaic cell when the photovoltaic cell is short-circuited
  • the open-circuit operating point is the voltage at which the photovoltaic cell is in a no-load state.
  • the power/voltage characteristic curve of the photovoltaic cell is shown in Figure 1, the short-circuit operating point is K1, and the open-circuit operating point is K2.
  • the images corresponding to these two operating points are processed by difference processing, which can filter out the background noise generated by the sunlight irradiating the photovoltaic cells. By analyzing the processed images, the health status of the photovoltaic cells can be judged.
  • the photovoltaic cell is detected by this scheme, since the photovoltaic cell switches between the two operating points of the short-circuit operating point and the open-circuit operating point, the detected photovoltaic cell will fluctuate greatly in a short period of time. Therefore, the overall power of the photovoltaic power station will fluctuate greatly in a short period of time, which will easily cause the voltage flicker at the grid connection point of the photovoltaic power station and affect the quality of the grid connection.
  • the present application provides a photovoltaic cell detection method, device, system, medium and chip, which can be used to detect photovoltaic cells of a photovoltaic system in operation, and avoid large power fluctuations in the output power of the photovoltaic cells to be detected, It can also avoid large fluctuations in the output power of the photovoltaic system.
  • an embodiment of the present application provides a photovoltaic cell detection method, which is applied to a photovoltaic system and can be executed by a control device or a control device.
  • the method includes: determining a working voltage corresponding to a photovoltaic cell to be detected, the working voltage includes a first voltage and a second voltage; wherein, the output power of the photovoltaic cell to be detected operating at the first voltage is a first output power, the output power of the photovoltaic cell to be detected operating at the second voltage is the second output power, and the difference between the first output power and the second output power is less than a preset power difference threshold, Both the first output power and the second output power are greater than zero; control the photovoltaic cell to be detected to work at the first voltage, and obtain first infrared image information of the photovoltaic cell to be detected; control the photovoltaic cell to be detected Detecting that the photovoltaic cell works at the second voltage, and acquiring second infrared image information of the photovolt
  • the control device controls the photovoltaic cell to be detected to work at the first voltage, so that the output power of the photovoltaic cell to be detected is the first output power.
  • the control device controls the photovoltaic cell to be detected to work at the second voltage, so that the output power of the photovoltaic cell to be detected is the second output power.
  • the control device detects the photovoltaic cell to be detected, the infrared image information of the photovoltaic cell to be detected is collected.
  • the control device can detect the photovoltaic cells in the system during the operation of the photovoltaic system. In addition, during the detection process of the photovoltaic cells to be detected, the photovoltaic cells to be detected do not stop working.
  • the control device may acquire first infrared image information when the photovoltaic cell to be detected outputs the first output power, and acquire second infrared image information when the photovoltaic cell to be detected outputs the second output power. Because the difference between the first output power and the second output power is smaller than the preset power difference threshold, and both the first output power and the second output power are greater than zero, the control device can be detected when the In the process of infrared image information of photovoltaic cells, the output power of the detected photovoltaic cells changes little, so as to avoid large fluctuations in the output power of the detected photovoltaic cells, so as to avoid the total output power of the photovoltaic system when the photovoltaic cells are detected. fluctuates.
  • both the first output power and the second output power are less than a preset output power threshold.
  • the preset output power threshold is the maximum power point of the photovoltaic cell.
  • the first voltage is less than or equal to the voltage corresponding to the photovoltaic cell at the maximum power point
  • the second voltage is greater than the voltage corresponding to the photovoltaic cell at the maximum power point
  • the first output power is equal to the second output power, and the first voltage and the second voltage are not equal.
  • the difference between the first output power and the second output power is 0.
  • the output power of the photovoltaic cell to be detected does not change, so as to avoid the generation of large power in the photovoltaic system. fluctuation.
  • the method before the determining the operating voltage corresponding to the photovoltaic cell to be detected, the method further includes: determining the third output power corresponding to the photovoltaic cell to be detected; the determining the operating voltage corresponding to the photovoltaic cell to be detected , comprising: determining the voltage corresponding to the third output power as the working voltage corresponding to the photovoltaic cell to be detected based on the corresponding relationship of the output power of the photovoltaic cell to be detected under different voltages.
  • control device can determine the output power corresponding to the photovoltaic cell to be detected, and the control device can control the output power corresponding to the output of the photovoltaic cell to be detected by controlling the operating voltage of the photovoltaic cell to be detected.
  • the determining the third output power corresponding to the photovoltaic cell to be detected includes: determining the third output power according to a preset proportional parameter and the current output power of the photovoltaic cell to be detected; or , select a power from a preset power range as the third output power, wherein the preset power range is determined based on the power reference value corresponding to the photovoltaic cell to be detected and the first adjustment parameter, the to-be-detected photovoltaic cell The power reference value corresponding to the detected photovoltaic cell is determined based on the preset ratio parameter and the current output power of the photovoltaic cell to be detected; When the photovoltaic cell satisfies the infrared image information of the preset image detection condition, the output power of the photovoltaic cell to be detected before is determined as the third output power; If the image information does not meet the preset image detection conditions, the fourth output power is determined as the third output power, wherein the fourth output power is smaller than the last acquired inf
  • the manner in which the control device determines the third output power corresponding to the photovoltaic cell to be detected is relatively flexible.
  • the third output power corresponding to the photovoltaic cell to be detected can be determined according to a preset proportional parameter and the current output power of the photovoltaic cell to be detected, and the control device can also select a power value from the preset power range as the photovoltaic cell to be detected
  • the corresponding third output power can avoid output power fluctuations before and when the photovoltaic cell to be detected is detected.
  • the control device can also use the output power corresponding to the previous detected photovoltaic cell as the output power corresponding to the photovoltaic cell to be detected, so as to avoid switching the detection of the previous photovoltaic cell to the detection of the photovoltaic cell to be detected, the total power of the photovoltaic system. Volatility occurs.
  • the control device can adjust the third output power corresponding to the photovoltaic cell to be detected according to the infrared image information of the photovoltaic cell to be detected, and can realize dynamic adjustment of the output power corresponding to the photovoltaic cell to be detected. fault limit.
  • the method further includes: if the first infrared image information and the second infrared image information do not meet preset image detection conditions, re-determining the operating voltage corresponding to the photovoltaic cell to be detected. .
  • control device can adjust the third output power corresponding to the photovoltaic cell to be detected according to the infrared image information of the photovoltaic cell to be detected, so as to realize dynamic adjustment of the output power corresponding to the photovoltaic cell to be detected, and reduce the influence of factors such as illumination. Detects if a PV cell has a faulty limit.
  • the system further includes a DC/DC conversion module, and the photovoltaic cell to be detected is connected to the DC/DC conversion module; the controlling the photovoltaic cell to be detected to work at the first voltage, Including: sending a first control command carrying first indication information to the DC/DC conversion module, the first indication information is used to instruct the DC/DC conversion module to make the photovoltaic cell to be detected output the first control command voltage; the controlling the photovoltaic cell to be detected to work at the second voltage includes: sending a second control instruction carrying second indication information to the DC/DC conversion module, where the second indication information is used to indicate The DC/DC conversion module enables the photovoltaic cell to be detected to output the second voltage.
  • control device can make the DC/DC conversion module provide the working voltage of the photovoltaic cell to be detected by sending a control command to the DC/DC conversion module, so that the photovoltaic cell to be detected works at this voltage and can output the voltage.
  • the output power corresponding to this voltage can be made by sending a control command to the DC/DC conversion module, so that the photovoltaic cell to be detected works at this voltage and can output the voltage. The output power corresponding to this voltage.
  • the photovoltaic system includes multiple photovoltaic cells, and the photovoltaic cell to be detected is any one of the multiple photovoltaic cells; the controlling the photovoltaic cell to be detected to output the Before the first voltage, the method further includes: determining a power adjustment amount corresponding to at least one first photovoltaic cell according to the first output power and the current output power of the photovoltaic cell to be detected; or, according to the second The output power and the current output power of the photovoltaic cell to be detected, determine the power adjustment amount corresponding to at least one first photovoltaic cell; the first photovoltaic cell is the photovoltaic cell other than the photovoltaic cell to be detected among the plurality of photovoltaic cells The output power of the at least one first photovoltaic cell is adjusted based on the power adjustment amount corresponding to the at least one first photovoltaic cell.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module; the adjusting the output power of the at least one first photovoltaic cell includes: sending a data carrying the first photovoltaic cell to the DC/DC conversion module.
  • the photovoltaic system includes a plurality of photovoltaic cells, and the photovoltaic cell to be detected is any one of the photovoltaic cells; the control of the photovoltaic cell to be detected to work at all Before the first voltage is detected, the method further includes: determining the target of the photovoltaic system according to the preset output power threshold and the current output power of each photovoltaic cell of the plurality of photovoltaic cells except the photovoltaic cell to be detected output power summation; based on the preset power adjustment parameter and the target output power summation, determine the sum of the power adjustment amounts of the second photovoltaic cells of the plurality of photovoltaic cells except the photovoltaic cells to be detected; adjust according to the power A power adjustment amount corresponding to the at least one second photovoltaic cell is determined; based on the power adjustment amount corresponding to the at least one second photovoltaic cell, the output power of the at least one second photovoltaic cell is adjusted.
  • the control device adjusts the output power of other photovoltaic cells to stabilize the total output power of the photovoltaic system, or maintain the total output power of the photovoltaic system, so as to ensure the normal operation of the photovoltaic system.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module; and the adjusting the output power of the at least one second photovoltaic cell includes: sending a data carrying the first photovoltaic cell to the DC/DC conversion module.
  • the fourth control command includes four indication information, where the fourth indication information is used to instruct the DC/DC conversion module to change the output power of the at least one second photovoltaic cell based on the power adjustment amount.
  • an embodiment of the present application further provides a photovoltaic cell detection device, including a processor and a memory, wherein the memory stores programs, instructions or codes, and when the programs, instructions or codes are called by the processor, execute The following operations are performed: determine the working voltage corresponding to the photovoltaic cell to be detected, the working voltage includes a first voltage and a second voltage; wherein, the output power of the photovoltaic cell to be detected operating at the first voltage is the first output power , the output power of the photovoltaic cell to be detected operating at the second voltage is the second output power, the difference between the first output power and the second output power is less than a preset power difference threshold, the Both the first output power and the second output power are greater than zero; control the photovoltaic cell to be detected to work at the first voltage, and obtain first infrared image information of the photovoltaic cell to be detected; control the photovoltaic cell to be detected The battery operates at the second voltage, and the second infrared image information of the photovolt
  • both the first output power and the second output power are less than a preset output power threshold.
  • the preset output power threshold is the maximum power point of the photovoltaic cell.
  • the first voltage is less than or equal to the voltage corresponding to the photovoltaic cell at the maximum power point
  • the second voltage is greater than the voltage corresponding to the photovoltaic cell at the maximum power point
  • the first output power is equal to the second output power, and the first voltage and the second voltage are not equal.
  • the processor is further configured to: before determining the operating voltage corresponding to the photovoltaic cell to be detected, determine the third output power corresponding to the photovoltaic cell to be detected; When the corresponding working voltage is used, it is specifically used for: determining the voltage corresponding to the third output power as the working voltage corresponding to the photovoltaic cell to be detected based on the corresponding relationship between the output powers of the photovoltaic cells to be detected under different voltages .
  • the processor determines the third output power corresponding to the photovoltaic cell to be detected, it is specifically configured to: determine the a third output power; or, selecting a power from a preset power range as the third output power, where the preset power range is based on a power reference value corresponding to the photovoltaic cell to be detected and a first adjustment parameter It is determined that the power reference value corresponding to the photovoltaic cell to be detected is determined based on the preset ratio parameter and the current output power of the photovoltaic cell to be detected; or, if the photovoltaic system includes multiple photovoltaic cells, The output power of the previously detected photovoltaic cell when the infrared image information that satisfies the preset image detection conditions is obtained, is determined as the third output power; or, if the most recently acquired If the infrared image information of the photovoltaic cell to be detected does not meet the preset image detection conditions, the fourth output power is determined as the third output power, wherein the fourth output
  • the processor is further configured to: if the first infrared image information and the second infrared image information do not meet the preset image detection conditions, re-determine the operating voltage corresponding to the photovoltaic cell to be detected. .
  • the system further includes a DC/DC conversion module, and the photovoltaic cell to be detected is connected to the DC/DC conversion module; the processor controls the photovoltaic cell to be detected to work in the first step.
  • the voltage is one voltage, it is specifically used for: sending a first control command carrying first indication information to the DC/DC conversion module, where the first indication information is used to instruct the DC/DC conversion module to make the PV to be detected
  • the battery outputs the first voltage
  • the controlling the photovoltaic cell to be detected to work at the second voltage includes: sending a second control command carrying second indication information to the DC/DC conversion module, the first The second indication information is used to instruct the DC/DC conversion module to make the photovoltaic cell to be detected output the second voltage.
  • the photovoltaic system includes a plurality of photovoltaic cells, and the photovoltaic cell to be detected is any one of the plurality of photovoltaic cells; the processor is further configured to: in the control of the Before the photovoltaic cell to be detected outputs the first voltage, a power adjustment amount corresponding to at least one first photovoltaic cell is determined according to the first output power and the current output power of the photovoltaic cell to be detected; Two output power and the current output power of the photovoltaic cell to be detected, determine the power adjustment amount corresponding to at least one first photovoltaic cell; the first photovoltaic cell is the photovoltaic cell of the multiple photovoltaic cells except the photovoltaic cell to be detected. any other photovoltaic cell; adjust the output power of the at least one first photovoltaic cell based on the power adjustment amount corresponding to the at least one first photovoltaic cell.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module; when the processor adjusts the output power of the at least one first photovoltaic cell, the processor is specifically configured to: convert the DC/DC to the DC/DC conversion module.
  • the DC conversion module sends a third control command carrying third indication information, where the third indication information is used to instruct the DC/DC conversion module to change the output power of the at least one first photovoltaic cell based on the power adjustment amount.
  • the photovoltaic system includes a plurality of photovoltaic cells, and the photovoltaic cell to be detected is any one of the plurality of photovoltaic cells; the processor is further configured to: in the control of the Before the photovoltaic cell to be detected works at the first voltage, the output power of the photovoltaic system is determined according to the preset output power threshold and the current output power of each photovoltaic cell except the photovoltaic cell to be detected.
  • the total sum of target output powers based on the preset power adjustment parameters and the sum of the target output powers, determine the sum of the power adjustment amounts of the second photovoltaic cells of the plurality of photovoltaic cells except the photovoltaic cells to be detected; according to the power
  • the power adjustment amount corresponding to the at least one second photovoltaic cell is determined by summing the adjustment amounts; the output power of the at least one second photovoltaic cell is adjusted based on the power adjustment amount corresponding to the at least one second photovoltaic cell.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module; when the processor adjusts the output power of the at least one second photovoltaic cell, the processor is specifically configured to: convert the DC/DC to the DC/DC conversion module.
  • the DC conversion module sends a fourth control command carrying fourth indication information, where the fourth indication information is used to instruct the DC/DC conversion module to change the output power of the at least one second photovoltaic cell based on the power adjustment amount.
  • an embodiment of the present application provides a photovoltaic cell detection system, including a DC/DC conversion module, a collection device, and a control device; the control device is respectively connected to the DC/DC conversion module and the collection device, so that the The DC/DC conversion module is used to connect with multiple photovoltaic cells; the control device includes any photovoltaic cell detection device according to the second aspect and any possible design thereof; the acquisition device is used to collect the multiple photovoltaic cells.
  • the photovoltaic cell to be detected is any one of the plurality of photovoltaic cells; the control device is configured to control the to-be-detected photovoltaic cell through the DC/DC conversion module Detect the voltage of the photovoltaic cell.
  • an embodiment of the present application is a photovoltaic system, comprising a plurality of photovoltaic cells and the photovoltaic cell detection system according to the third aspect, where the photovoltaic cell detection system is used to detect whether there is any occurrence in the plurality of photovoltaic cells Malfunctioning photovoltaic cells.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium includes a computer program, and when the computer program runs on a processor, the processor causes the processor to execute the first embodiment of the present application. Aspect and any possible design technical solutions of the first aspect thereof.
  • an embodiment of the present application provides a chip, which is coupled to a memory and used to invoke and execute computer program instructions stored in the memory, so as to enable the first aspect and any possible design technology of the first aspect The plan is executed.
  • an embodiment of the present application provides a chip, the chip includes a memory and a processor, the memory stores computer program instructions, and the processor loads and invokes the computer program instructions to execute the embodiments of the present application.
  • a computer program product of the embodiments of the present application when the computer program product runs on an electronic device, enables the electronic device to execute the first aspect of the embodiments of the present application and any possibility of the first aspect thereof designed technical solutions.
  • Figure 1 is a schematic diagram of the relationship between power and voltage of a photovoltaic cell
  • Figure 2 is a schematic diagram of the relationship between the current and voltage of a healthy photovoltaic module
  • FIG. 3 is a schematic flowchart of a photovoltaic cell detection method
  • FIG. 4 is a schematic structural diagram of a photovoltaic system
  • FIG. 5 is a schematic diagram of the relationship between power and voltage of a photovoltaic cell
  • FIG. 6 is a schematic structural diagram of another photovoltaic system
  • FIG. 7 is a schematic structural diagram of another photovoltaic system
  • FIG. 8 is a schematic structural diagram of another photovoltaic system
  • FIG. 9 is a schematic structural diagram of another photovoltaic system
  • FIG. 10 is a schematic structural diagram of another photovoltaic system
  • FIG. 11 is a schematic structural diagram of another photovoltaic system
  • FIG. 12 is a schematic flowchart of a photovoltaic cell detection method
  • Figure 13 is a schematic diagram of the power and voltage relationship of a photovoltaic cell
  • Figure 14 is a schematic diagram of the power and voltage relationship of a photovoltaic cell
  • FIG. 15 is a schematic flowchart of another photovoltaic cell detection method
  • 16 is a schematic diagram showing the relationship between the voltage, output power and time at both ends of the photovoltaic cell in the process of detecting the photovoltaic cell;
  • Fig. 17 is a schematic diagram showing the relationship between the total power of the photovoltaic system and the voltage across the photovoltaic cell to be detected in the process of detecting the photovoltaic cell;
  • FIG. 18 is a schematic structural diagram of a photovoltaic cell detection device.
  • a photovoltaic power generation system may include multiple components such as photovoltaic modules, inverters, transformers, and cables. Among them, photovoltaic modules can convert the energy of sunlight into electricity. The health status of photovoltaic modules has a great impact on the amount of electricity that a photovoltaic power generation system can generate. If a photovoltaic module fails, it will significantly affect the power output and cause losses to the power generation and revenue of the photovoltaic system.
  • the detection methods for the health status of photovoltaic modules include the IV curve scanning method and the photovoltaic module image detection method.
  • the IV curve scanning method also known as the IV curve scanning technology of photovoltaic modules
  • the current-voltage curve (hereinafter referred to as "IV curve”).
  • the voltage at both ends of the photovoltaic module is controlled to scan from the open-circuit voltage to the short-circuit voltage, and the output current of the photovoltaic module at different voltages is collected, so as to draw the curve relationship between the output current and the voltage of the photovoltaic module.
  • the IV curve of a healthy PV module is parabolic, as shown in Figure 2. If the PV module is damaged, or the PV module is blocked, its IV curve will be distorted. By judging whether the IV curve is distorted, the health status of the PV module can be determined, which is convenient to provide a basis for maintaining the PV module.
  • Image detection methods for photovoltaic modules may include electro luminescence (EL) detection methods and PL detection methods.
  • EL detection method when a photovoltaic cell (which may include one or more photovoltaic modules) is biased and injected with a reverse current, the photovoltaic cell can be regarded as a light-emitting diode with low luminous efficiency equivalently.
  • the collected image of the photovoltaic cell is an image with a certain brightness formed by the photovoltaic cell emitting light, which can be recorded as an EL image.
  • By analyzing the EL image it can be judged whether the photovoltaic cell has faults, such as cracks, broken gates, sintering, impurities or defects.
  • the photovoltaic cell when the photovoltaic cell receives light of a specific wavelength, the electrons in the ground state in the photovoltaic cell will absorb photons and enter the excited state, and when they return to the ground state in a short time, they will emit infrared light.
  • a highly sensitive and high-resolution camera is used to photosensitive the infrared light emitted by photovoltaic cells, and the collected images of photovoltaic cells can be recorded as PL images. By analyzing the PL image, it is possible to judge whether the photovoltaic cell is faulty.
  • the module image detection method can intuitively determine the fault type and fault location of photovoltaic modules through the module image.
  • the photovoltaic modules are detected by the EL detection method and the PL detection method when the photovoltaic modules are shipped or installed.
  • new faults may also occur in the photovoltaic modules. Therefore, after the PV modules are installed in the power station, it is also necessary to determine the health status of the PV modules.
  • the EL detection method can be used to determine the health status of the photovoltaic cells at night.
  • the method of using the EL detection method to determine the health state of the photovoltaic cell at night requires adding an extra circuit in the power station and adding a back-feed control circuit in the controller, which increases the hardware cost of the photovoltaic system.
  • operation and maintenance personnel are also required to operate and maintain photovoltaic cells at night.
  • the health status of photovoltaic cells can be determined during the day. For example, using EL/PL detection methods.
  • a signal source is added to the photovoltaic system.
  • the signal source can output at least one modulation frequency to modulate the power acquired or output by the photovoltaic cell, so that the photovoltaic cell works under two different operating points (short-circuit operating point and open-circuit operating point).
  • the images of the photovoltaic cell at these two operating points such as EL images or PL images, are collected respectively.
  • the EL images or PL images corresponding to the two operating points of the photovoltaic cell are processed by difference processing to filter out the background noise generated by the sunlight irradiating the photovoltaic cell.
  • the health status of the photovoltaic cells can be judged.
  • the output power of the photovoltaic cell to be tested will jump at two operating points during the detection process.
  • the input power of the photovoltaic cell is also in the modulation mode, and the acquired power also jumps at two operating points.
  • the health state of photovoltaic cells can be detected during the day, which is friendly to operation and maintenance personnel.
  • the detected photovoltaic cells will fluctuate greatly in a short period of time, and the overall power of the photovoltaic system will also fluctuate greatly in a short period of time. , it is easy to cause the voltage flicker of the grid connection point of the photovoltaic system, which affects the quality of the grid connection.
  • the embodiments of the present application provide a photovoltaic cell detection method, system, device, medium and photovoltaic system, which can not only detect photovoltaic cells in the photovoltaic system, but also avoid fluctuations in the overall power of the photovoltaic system.
  • the above problems can be avoided.
  • the embodiments of the present application will be described below with reference to the accompanying drawings.
  • the photovoltaic cell detection method provided in this application can be applied to a photovoltaic system.
  • the photovoltaic system may include a plurality of photovoltaic cells and a DC/DC conversion module.
  • the DC/DC conversion module includes a plurality of DC-DC conversion circuits (DC/DC conversion circuits) and DC bus capacitors.
  • the photovoltaic system can supply power to the load, that is, supply power to the load.
  • a plurality of photovoltaic cells can be in one-to-one correspondence with the DC/DC conversion circuits in the DC/DC conversion module, and one photovoltaic cell is connected to one DC/DC conversion circuit.
  • Photovoltaic cells convert light energy into electricity.
  • Photovoltaic cells can convert light energy into DC current under the action of the voltage provided by the DC/DC conversion circuit, thereby generating output power.
  • the relationship between the voltage provided by the DC/DC conversion circuit for the photovoltaic cell and the output power of the photovoltaic cell may be the relationship between the voltage and the power shown in FIG. 5 .
  • the output power of the photovoltaic cell is P1.
  • V1 for the photovoltaic cell
  • V2 for the photovoltaic cell
  • the output power of the photovoltaic cell is also P1. It can be seen that the output power of the photovoltaic cell can be the same when the DC/DC conversion circuit provides two different voltages. In other words, when the photovoltaic cells work at different operating points, the output power of the photovoltaic cells can be the same.
  • the maximum output power Pmax of the photovoltaic cell may uniquely correspond to the voltage Vm, or the maximum power point to Pmax The only corresponding voltage Vm.
  • the maximum output power Pmax of the photovoltaic cell may also correspond to multiple voltages, or the maximum power point Pmax may correspond to multiple voltages VN.
  • the output power of the photovoltaic cell is the maximum output power Pmax.
  • multiple DC/DC conversion circuits in the DC/DC conversion module are connected in parallel. As shown in FIG. 6 , the first output terminal of each DC/DC conversion circuit is connected to the first terminal of the DC bus capacitor, and the second output terminal of each DC/DC conversion circuit is connected to the second terminal of the DC bus capacitor. The first input end of each DC/DC conversion circuit is connected to the first end of the photovoltaic cell, and the second input end of each DC/DC conversion circuit is connected to the second end of the photovoltaic cell.
  • One photovoltaic cell can be connected to each DC/DC conversion circuit.
  • Photovoltaic cells may include one photovoltaic string, or a plurality of photovoltaic strings connected in series.
  • Each DC/DC conversion circuit can adjust the voltage of the connected photovoltaic cells, that is, adjust the operating point of each photovoltaic cell.
  • Each DC/DC conversion circuit can also adjust the output power in its connected photovoltaic cells.
  • the photovoltaic system further includes a direct current/alternating current (DC/AC) conversion circuit, and the two input ends of the DC/AC conversion circuit are respectively connected to the first end and the second end of the DC bus capacitor, as shown in Figure 7
  • the DC/AC conversion circuit can convert direct current to alternating current.
  • the output end of the DC/AC conversion circuit can be connected to an AC power grid, and the AC power grid can be a three-phase AC power grid.
  • the photovoltaic system provided by the embodiment of the present application may be a photovoltaic system based on a string inverter, and may be applied to application scenarios such as a large photovoltaic power station based on a string inverter.
  • the photovoltaic system further includes a DC cable and a centralized inverter. As shown in FIG. 8 , the two input ends of the centralized inverter are respectively connected to the first end and the second end of the DC bus capacitor through a DC cable.
  • Centralized inverters can convert direct current to alternating current.
  • Central inverters can output AC power to the AC grid.
  • the photovoltaic system provided by the embodiment of the present application may be a photovoltaic system based on an MPPT combiner box and a centralized inverter, and may be applied to application scenarios such as a distributed large-scale photovoltaic power station.
  • each photovoltaic cell includes one photovoltaic string.
  • a plurality of photovoltaic cells may be in one-to-one correspondence with a plurality of DC/DC conversion circuits.
  • a plurality of DC/DC conversion circuits can be sequentially connected in series and then connected to the DC bus capacitor. As shown in FIG.
  • the negative output terminals of the DC/DC conversion circuits in the multiple DC/DC conversion circuits are connected to the positive output terminals of the adjacent DC/DC conversion circuits, wherein the first DC/DC conversion circuit
  • the positive output terminal of each DC/DC conversion circuit (such as DC/DC conversion circuit 1) is connected to the first terminal of the DC bus capacitor, and the negative output terminal of the last DC/DC conversion circuit (such as DC/DC conversion circuit N) Connect to the other end of the DC bus capacitor.
  • the DC/DC conversion circuit connected to the photovoltaic cells may be implemented as an optimizer, or a circuit including an optimizer.
  • the optimizer can be a circuit structure or topology structure of any existing optimizer.
  • the DC/DC conversion circuit can be any one of a buck circuit, a boost circuit, a buck-boost circuit, a buck type synchronous rectification circuit, a boost type synchronous rectification circuit, and a buck/boost type synchronous rectification circuit.
  • Each DC/DC conversion circuit can adjust the voltage of the connected photovoltaic cells, that is, adjust the operating point of each photovoltaic cell.
  • Each DC/DC conversion circuit can also adjust the output power of its connected photovoltaic cells.
  • the photovoltaic system further includes a string inverter. As shown in FIG. 10 , the two input ends of the string inverter are respectively connected to the first end and the second end of the DC bus capacitor. String inverters can be used to convert DC power to AC power, and can also provide AC power to the AC grid.
  • the AC grid may be a single-phase AC grid.
  • the photovoltaic system provided in the embodiments of the present application can be applied to a home photovoltaic power generation scenario.
  • the photovoltaic system provided by the embodiments of the present application may include a control device, as shown in FIG. 4 , the control device may be connected to a DC/DC conversion module.
  • a control device may be used to control each DC/DC conversion circuit.
  • the control device may also be connected to each DC/DC conversion circuit.
  • Each DC/DC conversion circuit can receive signals or commands. Signals or instructions may carry indication information.
  • the DC/DC conversion circuit can adjust the voltage across the photovoltaic cells connected to the DC/DC conversion circuit or the output power of the photovoltaic cells based on the indication information.
  • the indication information may be voltage parameter information and/or power parameter information.
  • the voltage parameter information can be used to instruct the DC/DC conversion circuit to control the voltage provided across the photovoltaic cells, or to instruct the DC/DC conversion circuit to increase or decrease the voltage value based on the voltage provided across the photovoltaic cells .
  • the power parameter information can be used to instruct the DC/DC conversion circuit to control the actual output power of the photovoltaic cell, or instruct the DC/DC conversion circuit to control the photovoltaic cell to increase or decrease the output power value based on the current output power.
  • the DC/DC conversion circuit 1 is connected to the photovoltaic cell 1 .
  • the DC/DC conversion circuit 1 can adjust the voltage across the photovoltaic cell A according to the voltage parameter information carried in the signal or command. It is also possible to change the voltage across the photovoltaic cell 1 according to the power parameter information carried in the signal or instruction, so that the photovoltaic cell 1 outputs output power corresponding to the power parameter information carried in the signal or instruction.
  • the control device may be used to perform the photovoltaic cell detection method.
  • the photovoltaic system may further include a collection device for acquiring infrared image information of the photovoltaic cell to be detected, so that the control device can jointly detect whether the photovoltaic cell fails according to at least two infrared image information of the photovoltaic cell to be detected.
  • the control device is connected to the sampling device.
  • the control device can control the sampling device to collect infrared image information of the photovoltaic cell.
  • the collection device can send the collected infrared image information of the photovoltaic cell to the control device, so that the control device can acquire the infrared image information of the photovoltaic cell.
  • the present application also provides a photovoltaic cell detection system, as shown in FIG. 11 .
  • the photovoltaic cell detection system may include a control device, a collection device, and any photovoltaic system provided by the embodiments of the present application.
  • the photovoltaic cell detection system can be used to detect whether the photovoltaic cells in the photovoltaic system are faulty.
  • the control device may be used to perform the photovoltaic cell detection method.
  • the embodiments of the present application provide a photovoltaic cell detection method, which can be applied to a photovoltaic system in operation.
  • the control device can detect the photovoltaic cells in the photovoltaic system during the operation of the photovoltaic system.
  • the operation process of the photovoltaic system can be understood as the process of the photovoltaic system providing power to the load, or the process of supplying power to the load, or the photovoltaic system is in a working state.
  • the control device can detect any photovoltaic cell in the photovoltaic system. As shown in Figure 12, the method may include the following steps:
  • the control device determines a working voltage corresponding to the photovoltaic cell to be detected, the working voltage includes a first voltage and a second voltage; wherein, the output power of the photovoltaic cell to be detected operating at the first voltage is the first output power, the output power of the photovoltaic cell to be detected operating at the second voltage is the second output power, and the difference between the first output power and the second output power is less than a preset power difference threshold, so Both the first output power and the second output power are greater than zero.
  • control device controls the photovoltaic cell to be detected to work at the first voltage, and acquires first infrared image information of the photovoltaic cell to be detected.
  • S103 controlling the photovoltaic cell to be detected to work at the second voltage, and acquiring second infrared image information of the photovoltaic cell to be detected; wherein the first infrared image information and the second infrared image information are used for Jointly detect whether the photovoltaic cell to be detected is faulty.
  • control device can control the photovoltaic cell to be tested to work in a specified voltage state by controlling the voltage provided by the DC/DC conversion circuit connected to the photovoltaic cell to be tested to the photovoltaic cell to be tested.
  • the control device can control the acquisition device to collect infrared image information of the photovoltaic cell to be detected.
  • control device may comprise a DC/DC conversion circuit connected to the photovoltaic cell to be tested.
  • the control device can use the PL detection method to jointly detect whether the photovoltaic cell is faulty based on at least two infrared image information of the photovoltaic cell to be detected.
  • the infrared image information of the photovoltaic cell in the embodiments of the present application may be a PL image of the photovoltaic cell.
  • Photovoltaic cells work in the output state (output power is greater than zero), and the photovoltaic cells can emit infrared light signals and reflect infrared light signals in the environment.
  • the infrared image information of the photovoltaic cell may include image information corresponding to the infrared light signal emitted by the photovoltaic cell and image information corresponding to the infrared light signal in the reflected environment.
  • the infrared light signal in the environment reflected by the photovoltaic cells can be regarded as backlight noise.
  • the control device can use the infrared image information of the photovoltaic cells working in different output states to detect whether the photovoltaic cells are faulty. That is, the control device can use at least two infrared image information in the state where the photovoltaic cell works at different operating points and the output power corresponding to each operating point is different, to detect whether the photovoltaic cell is faulty. It can also be said that whether the photovoltaic cell is faulty is jointly detected by using the at least two infrared image information.
  • control device may perform differential processing of two PL images of the photovoltaic cell to obtain image information of the photovoltaic cell with the backlight noise removed.
  • the control device can use any of the existing PL detection methods to determine whether the photovoltaic cell is faulty by using the image information after the aberration processing.
  • the control device can control the output power of the photovoltaic cell when acquiring the infrared image information of the photovoltaic cell by controlling the operating point of the photovoltaic cell when acquiring the infrared image information of the photovoltaic cell.
  • the operating voltage corresponding to the photovoltaic cell to be detected may include a first voltage and a second voltage, wherein the output power of the photovoltaic cell to be detected operating at the first voltage is the first output power, and the photovoltaic cell to be detected works
  • the output power at the second voltage is the second output power
  • the difference between the first output power and the second output power is less than a preset power difference threshold
  • the first output power and the first output power Both output powers are greater than zero.
  • the working voltage corresponding to the photovoltaic cell to be detected may be pre-configured, or may be determined during the process of controlling the detection of the photovoltaic cell in the photovoltaic system.
  • the control device controls the photovoltaic cell to be detected to work at the first voltage, and the output power of the photovoltaic cell to be detected is the first output power corresponding to the first voltage.
  • the control device may also control the duration of the photovoltaic cell to be detected to operate at the first voltage to be the first duration, or the duration of the photovoltaic cell to be detected to continuously output the first output power to be the first duration.
  • the control device controls the photovoltaic cell to be detected to work at the second voltage, and the output power of the photovoltaic cell to be detected is the second output power corresponding to the second voltage.
  • the control device may also control the duration of the photovoltaic cell to be detected to operate at the second voltage to be the second duration, or the duration of the photovoltaic cell to be detected to continuously output the second output power to be the second duration.
  • the control device controls the operating voltage of the photovoltaic cell to be detected, so that the output power when acquiring the infrared image information of the photovoltaic cell to be detected is the first output power and the second output power respectively, and the difference between the first output power and the second output power is The difference is less than the preset power difference threshold.
  • the preset power difference threshold is a value greater than zero.
  • the difference between the first output power and the second output power may refer to the absolute value of the result of the subtraction of the first output power and the second output power.
  • the control device may determine, according to at least one output power corresponding to the predetermined photovoltaic cell to be detected, the operating voltage corresponding to the photovoltaic cell to be detected according to the at least one output power.
  • the at least one output power may include the first output power and the second output power. That is, the control device may determine the operating voltage corresponding to the photovoltaic cell to be detected according to the predetermined first output power and/or the second output control.
  • control device determines at least one output power corresponding to the photovoltaic cell to be detected, so that the control device can make the output power of the photovoltaic cell to be detected equal to the output power of the photovoltaic cell to be detected by the control device by controlling the operating voltage of the photovoltaic cell to be detected. At least one output power corresponding to the photovoltaic cell.
  • the first output power and the second output power are equal, that is, the difference between the first output power and the second output power is zero. That is, the control device can determine a situation of an output power corresponding to the photovoltaic cell to be detected.
  • the control device can determine a situation of an output power corresponding to the photovoltaic cell to be detected.
  • the output power of the photovoltaic cells to be detected does not change.
  • the difference between the first output power and the second output power is 0, so during the detection process of the photovoltaic cell to be detected, a large power fluctuation of the photovoltaic system is avoided.
  • the control device determines the operating voltage corresponding to the photovoltaic cell to be detected, and also determines the operating voltage of the photovoltaic cell to be detected when acquiring the infrared image information of the photovoltaic cell to be detected (the operating voltage includes the first voltage and the second voltage. ), the control device can determine the output power Ptest corresponding to the photovoltaic cell to be detected. For example, the control device may arbitrarily select a power value within a preset power range as the output power Ptest corresponding to the photovoltaic cell to be detected when the photovoltaic cell to be detected is detected.
  • the preset power range may be determined based on the reference output power value Pref1 of the photovoltaic cell to be detected and the first adjustment parameter e1. As shown in FIG. 13, the power range may be [Pref1 ⁇ (1-e1), Pref1 ⁇ (1+ e1)].
  • the value of the first adjustment parameter e1 is usually small, for example, e1 may be 5%.
  • the output power value Pref1 may also be referred to as a preset output power threshold value of the photovoltaic cell to be detected.
  • the control device can determine the current output power P(t0) of the photovoltaic cell to be detected according to the operating voltage U(t0) currently provided to the photovoltaic cell to be detected by the DC/DC conversion circuit connected to the photovoltaic cell to be detected.
  • the output power Ptest corresponding to the photovoltaic cell to be detected determined by the control device may be any value within a preset power range.
  • the preset power range may also be based on the reference output power value Pref1 of the photovoltaic cell to be detected.
  • the preset power range may be (0, Pref11], and the output power Ptest corresponding to the photovoltaic cell to be detected may be any power value within the preset power range.
  • the control device can determine the voltage corresponding to the output power Ptest of the photovoltaic cell to be tested when the photovoltaic cell to be tested is detected, which is also the working voltage corresponding to the photovoltaic cell to be tested, and also the voltage corresponding to the photovoltaic cell to be tested, according to the relationship between the output power and voltage of the photovoltaic cell.
  • the operating point of the photovoltaic cell to be detected is also the working voltage corresponding to the photovoltaic cell to be tested.
  • the output power Ptest corresponding to the photovoltaic cell to be detected determined by the control device may be less than the maximum output power Pmax.
  • the working voltage corresponding to the output power Ptest includes two voltages, namely the first voltage V1 and the second voltage V2.
  • the output power of the photovoltaic cell to be detected when operating at the first voltage is Ptest, that is, the first output power is Ptest.
  • the output power when working at the second voltage is also Ptest, that is, the second output power is Ptest.
  • the control device when the control device determines the output power corresponding to the photovoltaic cell to be detected, it may also be based on the current output power P(t0) of the photovoltaic cell to be detected and the preset proportional parameter a. For example, the product of the current output power P(t0) and the preset proportional parameter a is taken as the output power of the photovoltaic cell to be detected, that is, the reference output power value Pref1 of the photovoltaic cell to be detected. The control device may determine the voltage corresponding to the reference output power value Pref1 of the photovoltaic cell to be detected as the working voltage corresponding to the photovoltaic cell to be detected.
  • the difference between the first output power and the second output power is greater than zero, and the difference is smaller than a preset power difference threshold. That is, the control device can determine the situation of the two output powers corresponding to the photovoltaic cells to be detected.
  • the output power of the photovoltaic cell to be detected changes little to avoid the occurrence of power fluctuation. Therefore, during the detection process of the photovoltaic cells to be detected, the photovoltaic system does not experience large power fluctuations.
  • the control device may first determine the operating voltage of the photovoltaic cell to be detected.
  • the difference between the first target output power and the second target output power is less than a preset power difference threshold.
  • the control device can arbitrarily select two powers within a preset power range, as the first target output power Pk1 and the second target output power Pj1 respectively.
  • the control device determines two voltages corresponding to the first target output power, respectively denoted as Vk1 and Vk2, and two voltages corresponding to the second target output power, denoted as Vj1 and Vj2, respectively, according to the relationship between the photovoltaic cell output power and the voltage.
  • the control device may select one voltage as the first voltage from the two voltages corresponding to the first target output power (ie Vk1 and Vk2 ), and from the two voltages corresponding to the second target output power (ie Vj1 and Vj2 ) ), select one voltage as the second voltage.
  • the voltages corresponding to the first target output power Pk1 are Vk1 and Vk2 respectively.
  • the voltages corresponding to the second target output power Pj1 are Vj1 and Vj2 respectively.
  • the control device may compare the voltages corresponding to the first target output power Pk1 and the second target output power Pj1 with the preset threshold Vm.
  • Vm can be the current voltage U(t0) across the photovoltaic cell to be detected, or it can be the maximum output power Pmax of the photovoltaic cell.
  • the only corresponding voltage is Vm.
  • the control device may use the voltage corresponding to the first target output power Pk1 less than Vm, that is, Vk1 as the first voltage, and the voltage corresponding to the second target output power Pj1 greater than Vm, that is, Vj2 as the second voltage.
  • the control device may use the voltage corresponding to the first target output power Pk1 greater than Vm, that is, Vk2 as the second voltage, and the voltage corresponding to the second target output power Pj1 less than Vm, that is, Vj1, as the first voltage.
  • the first target output power may be a value less than or equal to the maximum output power
  • the second target output power may be a value less than the maximum output power
  • the second target output power may be a value smaller than or equal to the maximum output power
  • the first target output power may be a value smaller than the maximum output power
  • the preset power range may be determined based on the reference output power Pref1 of the photovoltaic cell to be detected and the first adjustment parameter e1, for example [Pref1 ⁇ (1 ⁇ e1), Pref1 ⁇ (1+e1)].
  • the control device may control the photovoltaic cell to be detected to work under the first voltage state according to the determined first voltage, and obtain the first infrared image information. And according to the determined second voltage, the photovoltaic cell to be detected is controlled to work under the second voltage state, and the second infrared image information is acquired.
  • the output power of the photovoltaic cell to be detected operating in the first voltage state that is, the value of the first output power is equal to the first target output power.
  • the output power of the photovoltaic cell to be detected under the second voltage state that is, the value of the second output power is equal to the second target output power.
  • control device may arbitrarily select two powers within a preset power range, and the preset power range may be (0, Pref1].
  • Pref1 may be a preset output determined according to some test results.
  • the power threshold may also be determined based on the output power P(t0) of the photovoltaic cell to be detected and the preset ratio parameter a when the photovoltaic cell to be detected is not detected.
  • the control device can select the first target output power and the second target output power within this preset power range, and determine the operating voltage corresponding to the photovoltaic cell to be detected from the voltages corresponding to the first target output power and the second target output power .
  • the control device can use the acquired first infrared image information of the photovoltaic cell to be detected working under the first voltage state and the second infrared image information of the photovoltaic cell under the second voltage state to be able to easily determine the pending detection Whether the photovoltaic cell is faulty.
  • the difference between the first infrared image information and the second infrared image information is large, and based on the first infrared image information and the second infrared image information, the control device can easily determine whether the photovoltaic cell to be detected is faulty.
  • control device may further determine whether the first infrared image information and the second infrared image of the photovoltaic cell to be detected acquired by the control device satisfy the preset image detection conditions according to the preset image detection conditions.
  • the control device may make a difference between the first infrared image information and the second infrared image information to determine image difference information. If the image difference information can be used to determine whether the photovoltaic cell fails, the control device can determine that the first infrared image information and the second infrared image information satisfy the preset image detection conditions. If the image difference information cannot be used to determine whether the photovoltaic cell is faulty, the control device may determine that the first infrared image information and the second infrared image information do not meet the preset image detection conditions.
  • the control device re-acquires the infrared image information of the photovoltaic cell to be detected.
  • the control device may re-determine the output power of the photovoltaic cell to be detected during detection, wherein the output power of the re-determined photovoltaic cell to be detected during detection is smaller than the output determined previously power. Then, the control device can determine the voltage corresponding to the output power of the photovoltaic cell during detection according to the relationship between the output power of the photovoltaic cell and the voltage, as the working voltage of the photovoltaic cell during the detection.
  • any existing PL detection method can be used to determine whether the photovoltaic cell to be detected is faulty according to the two infrared image information .
  • the control device when the control device detects the photovoltaic cell to be detected, the control device may determine the working voltage of the previous photovoltaic cell that has completed the detection when acquiring the infrared image information as the work when acquiring the infrared image information of the photovoltaic cell to be detected. Voltage.
  • the previous photovoltaic cell that has completed the detection is photovoltaic cell 2 .
  • the operating voltages when acquiring the infrared image information of the photovoltaic cell 2 are the third voltage and the fourth voltage, and the acquired infrared image information of the photovoltaic cell 2 can be used to determine whether the photovoltaic cell 2 is faulty.
  • the control device may determine the third voltage and the fourth voltage as operating voltages corresponding to the photovoltaic cells to be detected when the infrared image information of the photovoltaic cells to be detected is acquired.
  • the control device when the control device detects the photovoltaic cell to be detected, the current output power of the photovoltaic cell to be detected is P(t0).
  • the first output power of , and the second output power operating in the second voltage state may be values close to P(t0).
  • the control device can determine the current output power of the photovoltaic cell to be detected as P(t0), the first output power of the photovoltaic cell to be detected in the first voltage state, and the second output power of the photovoltaic cell operating in the second voltage state.
  • the first photovoltaic cell is a photovoltaic cell other than the photovoltaic cell to be detected among the multiple photovoltaic cells.
  • the control device adjusts the output power of the first photovoltaic cell according to the determined power adjustment amount corresponding to the first photovoltaic cell.
  • the control device may determine the sum of the power adjustment amount according to the current output power of the photovoltaic cell to be detected as P(t0) and the first output power. If the first output power and the second output power are not equal, the control device may determine the sum of the power adjustment amount according to the current output power of the photovoltaic cell to be detected as P(t0) and the first output power. Alternatively, the control device may determine the sum of the power adjustment amount according to the current output power of the photovoltaic cell to be detected as P(t0) and the second output power.
  • control device may select at least one first photovoltaic cell, and determine a power adjustment amount corresponding to each first photovoltaic cell in the selected at least one first photovoltaic cell based on the sum of the power adjustment amounts.
  • the control device adjusts the output power of each first photovoltaic cell based on a power adjustment amount corresponding to each first photovoltaic cell in the at least one first photovoltaic cell.
  • the power adjustment amount corresponding to the photovoltaic cell 3 is pt.
  • the control device may determine the target output power of the photovoltaic cell 3 as PC+pt based on the current output power PC of the photovoltaic cell 3 and the power adjustment amount pt.
  • the control device may determine that the target output power of the photovoltaic cell 3 is PC+pt and the corresponding voltages are VC1 and VC2 according to the preset corresponding relationship between the power and the voltage of the photovoltaic cell.
  • the control device can control the photovoltaic cell 3 to work in the state of VC1 or VC2, so that the output power of the photovoltaic cell 3 is adjusted to PC+pt.
  • control device may determine the target output of the photovoltaic system according to the reference output power value Pref1 of the photovoltaic cell to be detected and the current output power of each photovoltaic cell except the photovoltaic cell to be detected in the plurality of photovoltaic cells. Sum of power.
  • control device may determine the sum of the output powers of the photovoltaic cells except the photovoltaic cell to be detected among the multiple photovoltaic cells according to the current output power of each photovoltaic cell except the photovoltaic cell to be detected.
  • the control device may determine the reference output power value Pref1 of the photovoltaic cell to be detected and the sum of the output powers of the photovoltaic cells except the photovoltaic cell to be detected among the multiple photovoltaic cells as the target output power sum Ptotal of the photovoltaic system.
  • the output power of the photovoltaic cell to be detected is determined based on the reference output power value Pref1, or is determined from a preset power range determined based on the reference output power value Pref1 . Therefore, when the infrared image information of the photovoltaic cell to be detected is acquired, the difference between the output power of the photovoltaic cell to be detected and the reference output power value Pref1 is small, or the power change is small.
  • control device When the control device detects the photovoltaic cells of the photovoltaic system in operation, it maintains the total output power of the photovoltaic system. It can not only avoid large power fluctuations in the output power of the photovoltaic system, but also make the photovoltaic system have a stable total output power.
  • the power of the second photovoltaic cell other than the photovoltaic cell to be detected may be determined based on the preset power adjustment threshold and the sum of the target output power. Sum of adjustments.
  • the total output power Ptotal may be any value within a preset total output power range.
  • the preset total output power range may be based on the second adjustment parameter e2 and the target output power sum Pref2.
  • the preset total output power range may be [Pref2 ⁇ (1 ⁇ e2), Pref2 ⁇ (1+e2)].
  • the control device determines, according to the second adjustment parameter e2 and the target output power sum Pref2, that the range of the sum of the power adjustment amounts is [0, 2Pref2 ⁇ e2].
  • the control device may select a value from the range of the sum of the power adjustment amounts as the sum of the power adjustment amounts of the second photovoltaic cells of the plurality of photovoltaic cells other than the photovoltaic cell to be detected.
  • the control device may also determine a power adjustment amount corresponding to the at least one second photovoltaic cell according to the sum of the power adjustment amounts. The control device can then perform power regulation on the at least one second photovoltaic cell. For example, the power adjustment amount corresponding to the photovoltaic cell 4 is pw.
  • the control device may determine the target output power of the photovoltaic cell 4 as PD+pw based on the current output power PD of the photovoltaic cell 4 and the power adjustment amount pw.
  • the control device may determine that the target output power of the photovoltaic cell 4 is PD+pw and the corresponding voltages are VD1 and VD2 according to the preset corresponding relationship between the power and the voltage of the photovoltaic cell.
  • the control device can control the photovoltaic cell 4 to work in the VD1 or VD2 state, so that the output power of the photovoltaic cell 4 is PD+pw.
  • Embodiments of the present application also provide a photovoltaic cell detection method, which can be executed by a control device.
  • the photovoltaic system includes a plurality of photovoltaic cells and DC/DC conversion modules.
  • the DC/DC conversion module includes a plurality of DC/DC conversion circuits.
  • a plurality of photovoltaic cells are in one-to-one correspondence with a plurality of DC/DC conversion circuits.
  • Each photovoltaic cell is connected to a corresponding DC/DC conversion circuit.
  • the control device is connected to the DC/DC conversion module, and the control device can be connected to each DC/DC conversion circuit to control the voltage provided by the DC/DC conversion circuit to the connected photovoltaic cells.
  • the voltage provided by the DC/DC conversion circuit to the connected photovoltaic cells is also the voltage of the input terminal of the DC/DC conversion circuit, which is recorded as the input voltage.
  • the connected photovoltaic cells form a current under the voltage applied by the DC/DC conversion circuit, which is input into the DC/DC conversion circuit. This enables photovoltaic cells to convert light energy into electrical energy.
  • the output power corresponding to the input current of the photovoltaic cell to the DC/DC conversion circuit is also the input power corresponding to the DC/DC conversion circuit.
  • the control device is connected with the acquisition device, and can control the acquisition device to collect the infrared image information of the photovoltaic cell. As shown in Figure 15, the method may include the following steps:
  • control device detects the input power of each DC/DC conversion circuit.
  • the input voltage of each DC/DC conversion circuit is also the voltage at both ends of the photovoltaic cell connected to the DC/DC conversion circuit, and is also the output voltage of the photovoltaic cell.
  • the input power of each DC/DC conversion circuit is the output power of the photovoltaic cell connected to the DC/DC conversion circuit.
  • the DC/DC conversion module includes N channels of DC/DC conversion circuits.
  • the photovoltaic cell to be detected may be any one of a plurality of photovoltaic cells, and the DC/DC conversion circuit connected to the photovoltaic cell to be detected may be recorded as the k-th DC/DC conversion circuit.
  • the control device may perform the operations of step S201 to step S209 in response to the received photovoltaic cell detection instruction.
  • the photovoltaic cell detection instruction may be a detection instruction for the photovoltaic cell k to be detected.
  • the photovoltaic cell detection instruction may carry the preset proportional parameter a corresponding to the k-th DC/DC conversion circuit connected to the photovoltaic cell to be detected.
  • the photovoltaic cell detection instruction may be triggered by an instruction input module provided by the control device, or may be sent to the control device by other terminals.
  • the other terminal may be a host computer.
  • control device determines the target input power of the DC/DC conversion circuit connected to the photovoltaic cell to be detected.
  • the control device Before acquiring the infrared image information of the photovoltaic cell to be detected, the control device determines that when acquiring the infrared image information of the photovoltaic cell to be detected, the output power of the photovoltaic cell to be detected is also the input power of the kth DC/DC conversion circuit.
  • the input power of the k-th DC/DC conversion circuit when acquiring the infrared image information of the photovoltaic cell to be detected is recorded as the target input power.
  • the control device may select one or two power values from the power range corresponding to the kth DC/DC conversion circuit as the target input power.
  • the power range corresponding to the kth DC/DC conversion circuit may be determined based on the reference input power Pref1 of the kth DC/DC conversion circuit (which is also the reference output power of the photovoltaic cell to be detected) and the first adjustment parameter e1, for example [ Pref1 ⁇ (1-e1), Pref1 ⁇ (1+e1)].
  • the first adjustment parameter e1 may be 5%.
  • the reference input power Pref1 is 0.5Pk(t0).
  • the control device may determine the target input power of the DC/DC conversion circuit corresponding to the last detected photovoltaic cell as the kth DC The target input power of the /DC converter circuit.
  • control device determines the total input power range of all the DC/DC conversion circuits.
  • the control device can make the total input power Ptotal of all DC/DC conversion circuits within a certain range during the detection process of the photovoltaic cells in the photovoltaic system, so as to prevent the total output power of the photovoltaic system from fluctuating greatly.
  • the control device may determine the input power summation range based on the input power summation reference value Pref2 and the second adjustment parameter e2.
  • the input power sum range can be [Pref2 ⁇ (1-e2), Pref2 ⁇ (1+e2)].
  • e2 may be 10%.
  • the input power sum reference value Pref2 may be determined according to the input power of each DC/DC conversion circuit except the kth DC/DC conversion circuit, and the target input power of the kth DC/DC conversion circuit.
  • the control device determines, according to the corresponding relationship between the power and voltage of the photovoltaic cell and the target input power, the working voltage of the DC/DC conversion circuit connected to the photovoltaic cell to be detected and provided to the photovoltaic cell to be detected, and the working voltage includes the first voltage and the second voltage. Voltage.
  • control device selects a power value from the power range corresponding to the kth DC/DC conversion circuit as the target input power value, then according to the corresponding relationship between photovoltaic cell power and voltage, the two voltages corresponding to the target input power value are used as the target input power value.
  • the k-th DC/DC conversion circuit When detecting the infrared image information of the photovoltaic cell, the k-th DC/DC conversion circuit provides the working voltage of the photovoltaic cell to be detected.
  • the control device selects two power values from the power range corresponding to the kth DC/DC conversion circuit as the target input power value.
  • the first power value corresponds to two voltage values
  • the second power value corresponds to two voltage values. From the four voltage values corresponding to the first power value and the second power value, a voltage value smaller than the input voltage Uk(t0) of the k-th DC/DC conversion circuit is selected as the first voltage, and a voltage value greater than the k-th DC/DC conversion circuit is selected as the first voltage.
  • the voltage value of the input voltage Uk(t0) of the DC conversion circuit is used as the second voltage.
  • the control device may also select a voltage value smaller than the voltage corresponding to the maximum input power of the kth DC/DC conversion circuit from the four voltages corresponding to the first power value and the second power value as the first voltage, and select a voltage value greater than the kth DC/DC conversion circuit.
  • the voltage value of the voltage corresponding to the maximum input power of the DC/DC conversion circuit is used as the second voltage.
  • control device controls the DC/DC conversion circuit connected to the photovoltaic cell to be detected to provide the operating voltage to the photovoltaic cell to be detected as the first voltage, and acquires first infrared image information that the photovoltaic cell to be detected operates at the first voltage.
  • the control device may control the operating voltage provided by the kth DC/DC conversion circuit to the photovoltaic cell to be detected to be the first voltage. It can also be said that the k-th DC/DC conversion circuit is controlled to be at the first operating point, or the photovoltaic cell to be detected operates at the first voltage, or the photovoltaic cell to be detected is at the first operating point.
  • the control device can control the operating voltage provided by the kth DC/DC conversion circuit to the photovoltaic cell to be detected to be the first voltage for a duration of a first duration T1, so that the photovoltaic cell to be detected can work at the first voltage for a duration of The first duration is T1.
  • the control device may also control the acquisition device to collect infrared image information of the photovoltaic cell to be detected working under the first voltage.
  • the first duration T1 may be 100 milliseconds.
  • control device controls the DC/DC conversion circuit connected to the photovoltaic cell to be detected to provide the operating voltage to the photovoltaic cell to be the second voltage, and acquires second infrared image information that the photovoltaic cell to be detected operates at the second voltage.
  • the control device may control the operating voltage provided by the kth DC/DC conversion circuit to the photovoltaic cell to be detected to be the second voltage. It can also be said that the k-th DC/DC conversion circuit is controlled to be at the second operating point, or the photovoltaic cell to be detected operates at the second voltage, or the photovoltaic cell to be detected is at the second operating point.
  • the control device can control the operating voltage provided by the kth DC/DC conversion circuit to the photovoltaic cell to be detected to be the second voltage and the duration is the second duration T2, so that the photovoltaic cell to be detected can work under the second voltage for a duration of The second duration T2.
  • the control device may also control the acquisition device to collect infrared image information of the photovoltaic cell to be detected working under the second voltage.
  • the second time period T2 may be 120 milliseconds.
  • control device may also perform the operation corresponding to step S205 first, and then perform the operation corresponding to step S206.
  • the control device may also perform the operation corresponding to step S206 first, and then perform the operation corresponding to step S205.
  • the control device selects a power value from the power range corresponding to the kth DC/DC conversion circuit as the target input power value Pm, as shown in FIG.
  • the two voltages (Vm1 and Vm2 respectively) corresponding to the input power value Pm are used as the operating voltages provided by the k-th DC/DC conversion circuit to the photovoltaic cells to be detected when acquiring infrared image information of the photovoltaic cells to be detected.
  • the control device controls the photovoltaic cell to be detected to work at Vm1 for a duration of a first duration T1, and controls the acquisition device to collect infrared image information of the photovoltaic cell to be detected.
  • the control device controls the photovoltaic cell to be detected to work at Vm2 for a second duration T2, and controls the acquisition device to collect infrared image information of the photovoltaic cell to be detected. From the relationship between the output power and time of the photovoltaic cell to be detected in Figure 16, it can be seen that the output power of the photovoltaic cell to be detected is stable at Pm during the process of detecting the photovoltaic cell to be detected by the control device.
  • control device maintains the sum of the input powers of all the DC/DC conversion circuits within the range of the sum of the input powers.
  • the control device can detect the input power of each DC/DC conversion circuit in real time. If the total input power Ptotal of all DC/DC conversion circuits is not in the range of the total input power, for example, Ptotal is less than the minimum power value Pmin in the range of the total input power, the control device Then the input power of at least one DC/DC conversion circuit except the k-th DC/DC conversion circuit will be increased by Pmin-Ptotal, so that the adjusted input power sum Ptotal' of all DC/DC conversion circuits is at the input. power sum range.
  • the control device will reduce the input power of at least one DC/DC conversion circuit except the kth DC/DC conversion circuit by Ptotal-Pmax, so that the adjustment The input power sum Ptotal' of all the DC/DC conversion circuits after that is in the input power sum range.
  • the control device may perform the operations of step S207 and step S206 synchronously, and may also perform the operations of step S207 and step S205 synchronously.
  • the control device controls the photovoltaic cell to be detected to work at a first voltage and controls the photovoltaic cell to be detected to work at a second voltage.
  • the process of voltage the relationship between the total input power Ptotal of all DC/DC conversion circuits and time.
  • the left part of FIG. 17 shows the relationship between the sum of the input power of all the DC/DC conversion circuits and the time during the process of determining the state of health of the photovoltaic cell by using the EL detection method at night.
  • control device can keep the sum of the input power of all the DC/DC conversion circuits basically constant through closed-loop control while detecting the photovoltaic cells, so as to ensure that the total output power of the photovoltaic system is basically constant.
  • grid power supply it can also avoid affecting the quality of grid-connected power.
  • control device determines whether the first infrared image information and the second infrared image information satisfy the image detection conditions, if yes, the next step is to perform step S209, and if not, the next step is to perform step S202.
  • the control device can determine whether the photovoltaic cell to be detected has a fault based on the difference-processed image of the first infrared image information and the second infrared image information.
  • the difference between the first infrared image information and the second infrared image information is relatively large, and the control device can determine whether the photovoltaic cell to be detected is faulty according to the image processed by the difference processing between the first infrared image information and the second infrared image information. .
  • the difference between the first infrared image information and the second infrared image information is small, and the control device cannot determine whether the photovoltaic cell to be detected is faulty according to the image processed by the difference processing of the first infrared image information and the second infrared image information.
  • the control device can determine whether the first infrared image information and the second infrared image information satisfy the image detection condition according to the difference between the first infrared image information and the second infrared image information, and if the difference is large, the image detection condition is satisfied, If the difference is small, the image detection conditions are not satisfied.
  • control device determines that the first infrared image information and the second infrared image information satisfy the image detection conditions, it can determine whether the battery to be detected is faulty according to the first infrared image information and the second infrared image information.
  • the control device determines that the first infrared image and the second infrared image information do not meet the image detection conditions, and can re-determine the target input power of the DC/DC conversion circuit connected to the photovoltaic cell to be detected when acquiring the infrared image information of the photovoltaic cell to be detected, and Re-acquire the infrared image information of the photovoltaic cell to be detected, and the next step is to perform step S202.
  • step S202 when the control device performs the operation of step S202 again, that is, it is determined again that the target input power of the k-th DC/DC conversion circuit should be smaller than the last determined k-th DC/DC conversion circuit.
  • the target input power of the circuit is determined again that the target input power of the k-th DC/DC conversion circuit should be smaller than the last determined k-th DC/DC conversion circuit.
  • control device determines whether the photovoltaic cell to be detected is faulty according to the first infrared image information and the second infrared image information.
  • the control device can adopt any of the existing PL detection methods, and use the first infrared image information and the second infrared image information to determine whether the photovoltaic cell to be detected is faulty. This application does not limit it too much.
  • An embodiment of the present application further provides a photovoltaic cell detection device, as shown in FIG. 18 , including: a memory 2001 and a processor 2002 .
  • the memory 2001 may be used to store programs, instructions or codes, the programs, instructions or codes.
  • the processor 2002 may call the program, instruction or code stored in the memory 2001 to execute any photovoltaic cell detection method provided by the embodiments of the present application.
  • the processor 2002 may perform the following operations: determine a working voltage corresponding to the photovoltaic cell to be detected, where the working voltage includes a first voltage and a second voltage; wherein the photovoltaic cell to be detected works at the first voltage
  • the output power under the voltage is the first output power
  • the output power of the photovoltaic cell to be detected working under the second voltage is the second output power
  • the difference between the first output power and the second output power is less than the preset power difference threshold, the first output power and the second output power are both greater than zero
  • the photovoltaic cell to be detected is controlled to work at the first voltage, and the first voltage of the photovoltaic cell to be detected is obtained.
  • Infrared image information control the photovoltaic cell to be detected to work at the second voltage, and obtain second infrared image information of the photovoltaic cell to be detected; wherein the first infrared image information and the second infrared image information It is used to jointly detect whether the photovoltaic cell to be detected is faulty.
  • both the first output power and the second output power are less than a preset output power threshold.
  • the preset output power threshold is the maximum power point of the photovoltaic cell.
  • the first voltage is less than or equal to the voltage corresponding to the photovoltaic cell at the maximum power point
  • the second voltage is greater than the voltage corresponding to the photovoltaic cell at the maximum power point
  • the first output power is equal to the second output power, and the first voltage and the second voltage are not equal.
  • the processor 2002 is further configured to: before the determining the operating voltage corresponding to the photovoltaic cell to be detected, determine the third output power corresponding to the photovoltaic cell to be detected;
  • the processor 2002 When determining the operating voltage corresponding to the photovoltaic cell to be detected, the processor 2002 is specifically configured to:
  • the voltage corresponding to the third output power is determined as the operating voltage corresponding to the photovoltaic cells to be detected.
  • the processor 2002 determines the third output power corresponding to the photovoltaic cell to be detected, the processor 2002 is specifically configured to:
  • the third output power is determined according to a preset proportional parameter and the current output power of the photovoltaic cell to be detected; or, a power is selected from a preset power range as the third output power, wherein the preset power
  • the power range is determined based on the power reference value corresponding to the photovoltaic cell to be detected and the first adjustment parameter, and the power reference value corresponding to the photovoltaic cell to be detected is based on the preset ratio parameter and the current photovoltaic cell to be detected.
  • the output power of the previously detected photovoltaic cell will be obtained when the infrared image information of the previous detected photovoltaic cell satisfies the preset image detection conditions power, which is determined as the third output power; or, if the most recently acquired infrared image information of the photovoltaic cell to be detected does not meet the preset image detection conditions, the fourth output power is determined as the third output power Output power, wherein the fourth output power is less than the output power of the photovoltaic cell to be detected when the last acquired infrared image information of the photovoltaic cell to be detected is obtained.
  • the processor 2002 is further configured to:
  • the operating voltage corresponding to the photovoltaic cell to be detected is re-determined.
  • the system further includes a DC/DC conversion module, and the photovoltaic cell to be detected is connected to the DC/DC conversion module;
  • the processor 2002 controls the photovoltaic cell to be detected to work at the first voltage
  • the processor 2002 is specifically configured to:
  • the controlling the photovoltaic cell to be detected to work at the second voltage includes:
  • a second control instruction carrying second indication information is sent to the DC/DC conversion module, where the second indication information is used to instruct the DC/DC conversion module to make the photovoltaic cell to be detected output the second voltage.
  • the photovoltaic system includes a plurality of photovoltaic cells, and the photovoltaic cell to be detected is any one of the photovoltaic cells;
  • Processor 2002 is also used to:
  • the controlling the photovoltaic cell to be detected to output the first voltage determine a power adjustment amount corresponding to at least one first photovoltaic cell according to the first output power and the current output power of the photovoltaic cell to be detected; Alternatively, according to the second output power and the current output power of the photovoltaic cell to be detected, a power adjustment amount corresponding to at least one first photovoltaic cell is determined; the first photovoltaic cell is obtained by dividing the number of photovoltaic cells among the plurality of photovoltaic cells. Any photovoltaic cell other than the photovoltaic cell to be detected;
  • the output power of the at least one first photovoltaic cell is adjusted based on the power adjustment amount corresponding to the at least one first photovoltaic cell.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module
  • the processor 2002 is specifically configured to:
  • the photovoltaic system includes a plurality of photovoltaic cells, and the photovoltaic cell to be detected is any one of the photovoltaic cells;
  • the processor 2002 is further configured to: before the control of the photovoltaic cells to be detected to work at the first voltage, according to the preset output power threshold and the photovoltaic cells other than the photovoltaic cells to be detected The current output power of each photovoltaic cell is determined, and the total target output power of the photovoltaic system is determined;
  • the output power of the at least one second photovoltaic cell is adjusted based on the power adjustment amount corresponding to the at least one second photovoltaic cell.
  • the plurality of photovoltaic cells are connected to a DC/DC conversion module
  • the processor 2002 is specifically configured to:
  • an embodiment of the present application further provides a chip.
  • the chip may be coupled to a memory that stores programs, instructions or codes.
  • the chip can call programs, instructions, or codes in the memory to execute any photovoltaic detection method provided by the embodiments of the present application.
  • the embodiments of the present application further provide a chip, which includes the aforementioned memory, so that the chip can execute any photovoltaic detection method provided by the embodiments of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium for storing computer software instructions that need to be executed to execute the above-mentioned processor, which includes a program to be executed to execute the above-mentioned processor.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本申请提供一种光伏电池检测方法、装置、系统、介质及芯片,可以用于对运行中的光伏系统的光伏电池进行检测,避免被检测的光伏电池输出的功率出现较大波动。方法包括:确定光伏电池对应的工作电压,工作电压包括第一电压和第二电压;光伏电池工作在第一电压下的输出功率为第一输出功率,光伏电池工作在第二电压下的输出功率为第二输出功率,第一输出功率和第二输出功率的差值小于预设功率差值阈值,第一输出功率和第二输出功率均大于零;控制光伏电池工作在第一电压,获取光伏电池的第一红外图像信息;控制光伏电池工作在第二电压,获取光伏电池的第二红外图像信息;第一红外图像信息和第二红外图像信息用于联合检测光伏电池是否存在故障。

Description

一种光伏电池检测方法、装置、系统、介质及芯片 技术领域
本申请涉及电力技术领域,尤其涉及一种光伏电池检测方法、装置、系统、介质及芯片。
背景技术
光作为一种可再生清洁能源,光伏发电技术被广泛研究,光伏发电产业在近年来得到迅猛发展。通常,光伏发电系统可以包括光伏组件、逆变器、变压器、线缆等多个部件。其中,光伏组件能够将太阳光照的能量转化为电能。光伏组件的健康状态对光伏发电系统能够发电的发电量影响很大。如果光伏组件出现故障,将会显著影响其输出的电能,给光伏电站的发电量和收益造成损失。
在白天,对光伏电池的健康状态进行检测,可以利用光致生光效应(photo luminescence,PL)检测方法。由于光伏电池在接收特定波长光照,光伏电池中处于基态的电子会吸收光子而进入激发态,在短时间内回到基态时,会发出红外光。在PL检测方法中,利用光伏电池的这个特性,可以采用高灵敏高分辨率的照相机对光伏电池发出的红外光进行感光,并采集光伏电池的图像(PL图像)。通过分析PL图像,可以判断光伏电池是否存在故障。
在一种PL检测方案中,需要在光伏电站中增加一个信号源。该信号源可以输出至少一个调制频率,对光伏电池输出功率进行调制,使光伏电池在短路和开路两种工作点上工作,然后采集光伏电池在这两个工作点时的图像。其中,短路工作点为对光伏电池进行短接,光伏电池的电压,开路工作点为光伏电池处于空载状态的电压。光伏电池的功率/电压特性曲线如图1所示,短路工作点为K1,开路工作点为K2。并将这两个工作点对应的图像作差处理,可以滤除太阳光照射到光伏电池上产生的背景噪声。通过分析作差处理后的图像,可以判断光伏电池的健康状态。
若利用该方案对光伏电池检测,由于光伏电池在短路工作点和开路工作点这两个工作点之间切换,会造成被检测的光伏电池在短时间内出现大幅波动。因而,也会使光伏电站整体功率的短时间内发生大幅波动,容易造成光伏电站并网点电压闪变,影响并网质量。
发明内容
本申请提供一种光伏电池检测方法、装置、系统、介质及芯片,可以用于对运行中的光伏系统的光伏电池进行检测,并且避免被检测的光伏电池的输出功率发生较大的功率波动,也可以避免光伏系统输出的功率出现较大的波动。
第一方面,本申请实施例提供一种光伏电池检测方法,应用于光伏系统,可以由控制设备或控制装置执行。所述方法包括:确定待检测光伏电池对应的工作电压,所述工作电压包括第一电压和第二电压;其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零;控制所述待检测光伏电池工作在所述第一电压,获取所述待检测光伏电池的第一红外图像信息;控制所述待检测光伏电池工作在所述第二电压, 获取所述待检测光伏电池的第二红外图像信息;其中,所述第一红外图像信息和所述第二红外图像信息用于联合检测所述待检测光伏电池是否存在故障。
上述技术方案中,控制设备控制待检测光伏电池工作在第一电压,可使待检测光伏电池的输出功率为第一输出功率。控制设备控制待检测光伏电池工作在第二电压,可使待检测光伏电池的输出功率为第二输出功率。控制设备对待检测光伏电池进行检测时,采集待检测光伏电池的红外图像信息。控制设备可以在光伏系统运行过程中对系统中的光伏电池进行检测。并且对待检测光伏进行检测过程中,待检测光伏电池不停止工作。其中,控制设备可以在待检测光伏电池输出第一输出功率时获取第一红外图像信息,在待检测光伏电池输出第二输出功率时获取第二红外图像信息。因所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零,可使控制设备在获取待检测光伏电池红外图像信息的过程中,被检测的光伏电池的输出功率变化较小,避免被检测的光伏电池输出的功率出现较大波动,从而避免对光伏电池进行检测时,光伏系统的总输出功率发生波动。
一种可能的实施方式中,所述第一输出功率和所述第二输出功率均小于预设输出功率阈值。
一种可能的实施方式中,所述预设输出功率阈值为所述光伏电池的最大功率点。
一种可能的实施方式中,所述第一电压小于或等于所述光伏电池在所述最大功率点对应的电压,所述第二电压大于所述光伏电池在所述最大功率点对应的电压。
一种可能的实施方式中,所述第一输出功率与所述第二输出功率相等,所述第一电压和所述第二电压不相等。
上述技术方案中,第一输出功率和第二输出功率的差值为0,控制设备对待检测光伏电池进行检测过程中,待检测光伏电池的输出功率不发生变化,避免光伏系统发生较大的功率波动。
一种可能的实施方式中,所述确定待检测光伏电池对应的工作电压之前,所述方法还包括:确定待检测光伏电池对应的第三输出功率;所述确定待检测光伏电池对应的工作电压,包括:基于所述待检测光伏电池在不同电压下的输出功率的对应关系,将所述第三输出功率对应的电压确定为所述待检测光伏电池对应的工作电压。
上述技术方案中,控制设备可以确定待检测光伏电池对应的输出功率,控制设备可以通过控制待检测光伏电池的工作电压,实现控制待检测光伏电池输出所对应的输出功率。
一种可能的实施方式中,所述确定待检测光伏电池对应的第三输出功率,包括:根据预设比例参数以及当前所述待检测光伏电池的输出功率,确定所述第三输出功率;或者,从预设功率范围中选择一个功率作为所述第三输出功率,其中,所述预设功率范围是基于所述待检测光伏电池对应的功率参考值和第一调整参数确定的,所述待检测光伏电池对应的功率参考值是基于所述预设比例参数以及所述待检测光伏电池当前的输出功率确定的;或者,若所述光伏系统包括多个光伏电池,将获取前一个被检测的光伏电池满足预设图像检测条件的红外图像信息时所述前一个被检测的光伏电池的输出功率,确定为所述第三输出功率;或者,若最近一次获取的所述待检测光伏电池的红外图像信息不满足所述预设图像检测条件,则将第四输出功率确定为所述第三输出功率,其中,所述第四输出功率小于所述最近一次获取的所述待检测光伏电池的红外图像信息时所述待检测光伏电池的输出功率。
上述技术方案中,控制设备确定待检测光伏电池对应的第三输出功率的方式较为灵活。例如,可以根据预设的比例参数以及当前待检测光伏电池的输出功率,确定对待检测光伏电池对应的第三输出功率,控制设备还可以从预设功率范围中选择一个功率值作为待检测光伏电池对应的第三输出功率,可以避免待检测光伏电池被检测前及被检测时的输出功率波动。控制设备还可以将前一个被检测的光伏电池对应的输出功率,作为待检测光伏电池对应的输出功率,可以避免在对前一个光伏电池检测时切换为对待检测光伏电池检测时,光伏系统总功率出现波动。控制设备可以根据待检测光伏电池的红外图像信息的情况,调整待检测光伏电池对应的第三输出功率,可以实现动态调整待检测光伏电池对应的输出功率,降低光照等因素对检测光伏电池是否具有故障的限制。
一种可能的实施方式中,所述方法还包括:若所述第一红外图像信息和所述第二红外图像信息不满足预设图像检测条件,重新确定所述待检测光伏电池对应的工作电压。
上述技术方案中,控制设备可以根据待检测光伏电池的红外图像信息的情况,调整待检测光伏电池对应的第三输出功率,可以实现动态调整待检测光伏电池对应的输出功率,降低光照等因素对检测光伏电池是否具有故障的限制。
一种可能的实施方式中,所述系统还包括直流/直流变换模块,所述待检测光伏电池与直流/直流变换模块连接;所述控制所述待检测光伏电池工作在所述第一电压,包括:向所述直流/直流变换模块发送携带第一指示信息的第一控制命令,所述第一指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第一电压;所述控制所述待检测光伏电池工作在所述第二电压,包括:向所述直流/直流变换模块发送携带第二指示信息的第二控制指令,所述第二指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第二电压。
上述技术方案中,控制设备可以通过向直流/直流变换模块发送控制命令的方式,使直流/直流变换模块提供给待检测光伏电池工作电压,以使待检测光伏电池工作在该电压下,可以输出该电压对应的输出功率。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;所述控制所述待检测光伏电池输出所述第一电压之前,所述方法还包括:根据所述第一输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;或者,根据所述第二输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;所述第一光伏电池为所述多个光伏电池中除所述待检测光伏电池之外的任一光伏电池;基于所述至少一个第一光伏电池对应的功率调整量,调整所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;所述调整所述至少一个第一光伏电池的输出功率,包括:向所述直流/直流变换模块发送携带第三指示信息的第三控制命令,所述第三指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;所述控制所述待检测光伏电池工作在所述第一电压之前,所述方法还包括:根据所述预设输出功率阈值以及所述多个光伏电池除所述待检测光伏电池之外的各光伏电池的当前输出功率,确定光伏系统的目标输出功率总和;基于预设功率调整参数和所述目标输出功率总和,确定所述多个光伏电池除所述待检测光伏电 池之外的第二光伏电池的功率调整量总和;根据所述功率调整量总和,确定至少一个所述第二光伏电池对应的功率调整量;基于所述至少一个第二光伏电池对应的功率调整量,调整所述至少一个第二光伏电池的输出功率。
上述技术方案中,控制设备对待检测光伏电池检测过程中,通过调整其它光伏电池的输出功率,以稳定光伏系统的总输出功率,或者维持光伏系统的总输出功率,可以保障光伏系统正常运行。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;所述调整所述至少一个第二光伏电池的输出功率,包括:向所述直流/直流变换模块发送携带第四指示信息的第四控制命令,所述第四指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第二光伏电池的输出功率。
第二方面,本申请实施例还提供一种光伏电池检测装置,包括处理器和存储器,所述存储器存储有程序、指令或代码,所述程序、指令或代码被所述处理器调用时,执行如下操作:确定待检测光伏电池对应的工作电压,所述工作电压包括第一电压和第二电压;其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零;控制所述待检测光伏电池工作在所述第一电压,获取所述待检测光伏电池的第一红外图像信息;控制所述待检测光伏电池工作在所述第二电压,获取所述待检测光伏电池的第二红外图像信息;其中,所述第一红外图像信息和所述第二红外图像信息用于联合检测所述待检测光伏电池是否存在故障。
一种可能的实施方式中,所述第一输出功率和所述第二输出功率均小于预设输出功率阈值。
一种可能的实施方式中,所述预设输出功率阈值为所述光伏电池的最大功率点。
一种可能的实施方式中,所述第一电压小于或等于所述光伏电池在所述最大功率点对应的电压,所述第二电压大于所述光伏电池在所述最大功率点对应的电压。
一种可能的实施方式中,所述第一输出功率与所述第二输出功率相等,所述第一电压和所述第二电压不相等。
一种可能的实施方式中,处理器还用于:在所述确定待检测光伏电池对应的工作电压之前,确定待检测光伏电池对应的第三输出功率;处理器在所述确定待检测光伏电池对应的工作电压时,具体用于:基于所述待检测光伏电池在不同电压下的输出功率的对应关系,将所述第三输出功率对应的电压确定为所述待检测光伏电池对应的工作电压。
一种可能的实施方式中,处理器在所述确定待检测光伏电池对应的第三输出功率时,具体用于:根据预设比例参数以及当前所述待检测光伏电池的输出功率,确定所述第三输出功率;或者,从预设功率范围中选择一个功率作为所述第三输出功率,其中,所述预设功率范围是基于所述待检测光伏电池对应的功率参考值和第一调整参数确定的,所述待检测光伏电池对应的功率参考值是基于所述预设比例参数以及所述待检测光伏电池当前的输出功率确定的;或者,若所述光伏系统包括多个光伏电池,将获取前一个被检测的光伏电池满足预设图像检测条件的红外图像信息时所述前一个被检测的光伏电池的输出功率,确定为所述第三输出功率;或者,若最近一次获取的所述待检测光伏电池的红外图像信息不满足所述预设图像检测条件,则将第四输出功率确定为所述第三输出功率,其中,所述 第四输出功率小于所述最近一次获取的所述待检测光伏电池的红外图像信息时所述待检测光伏电池的输出功率。
一种可能的实施方式中,处理器还用于:若所述第一红外图像信息和所述第二红外图像信息不满足预设图像检测条件,重新确定所述待检测光伏电池对应的工作电压。
一种可能的实施方式中,所述系统还包括直流/直流变换模块,所述待检测光伏电池与直流/直流变换模块连接;处理器在所述控制所述待检测光伏电池工作在所述第一电压时,具体用于:向所述直流/直流变换模块发送携带第一指示信息的第一控制命令,所述第一指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第一电压;所述控制所述待检测光伏电池工作在所述第二电压,包括:向所述直流/直流变换模块发送携带第二指示信息的第二控制指令,所述第二指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第二电压。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;处理器还用于:在所述控制所述待检测光伏电池输出所述第一电压之前,根据所述第一输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;或者,根据所述第二输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;所述第一光伏电池为所述多个光伏电池中除所述待检测光伏电池之外的任一光伏电池;基于所述至少一个第一光伏电池对应的功率调整量,调整所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;处理器在所述调整所述至少一个第一光伏电池的输出功率时,具体用于:向所述直流/直流变换模块发送携带第三指示信息的第三控制命令,所述第三指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;处理器还用于:在所述控制所述待检测光伏电池工作在所述第一电压之前,根据所述预设输出功率阈值以及所述多个光伏电池除所述待检测光伏电池之外的各光伏电池的当前输出功率,确定光伏系统的目标输出功率总和;基于预设功率调整参数和所述目标输出功率总和,确定所述多个光伏电池除所述待检测光伏电池之外的第二光伏电池的功率调整量总和;根据所述功率调整量总和,确定至少一个所述第二光伏电池对应的功率调整量;基于所述至少一个第二光伏电池对应的功率调整量,调整所述至少一个第二光伏电池的输出功率。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;处理器在所述调整所述至少一个第二光伏电池的输出功率时,具体用于:向所述直流/直流变换模块发送携带第四指示信息的第四控制命令,所述第四指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第二光伏电池的输出功率。
第三方面,本申请实施例提供一种光伏电池检测系统,包括直流/直流变换模块、采集设备以及控制设备;所述控制设备分别与所述直流/直流变换模块和所述采集设备连接,所述直流/直流变换模块用于与多个光伏电池连接;所述控制设备包括如第二方面及其任一可能的设计中任一光伏电池检测装置;所述采集设备,用于采集所述多个光伏电池中待检测光伏电池的红外图像信息,所述待检测光伏电池为所述多个光伏电池中的任意一个;所述控制设备,用于通过所述直流/直流变换模块控制所述待检测光伏电池的电压。
第四方面,本申请实施例一种光伏系统,包括多个光伏电池和如第三方面所述的光伏电池检测系统,所述光伏电池检测系统用于检测所述多个光伏电池中是否存在出现故障的光伏电池。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在处理器上运行时,使得所述处理器执行本申请实施例第一方面及其第一方面任一可能设计的技术方案。
第六方面,本申请实施例提供一种芯片,所述芯片与存储器耦合,用于调用执行所述存储器中存储的计算机程序指令,以使第一方面及其第一方面任一可能设计的技术方案被执行。
第七方面,本申请实施例提供一种芯片,所述芯片包括存储器和处理器,所述存储器存储有计算机程序指令,所述处理器加载、调用所述计算机程序指令,可以执行本申请实施例第一方面及其第一方面任一可能设计的技术方案。
第八方面,本申请实施例的中一种计算机程序产品,当所述计算机程序产品在电子设备上运行时,使得所述电子设备执行本申请实施例第一方面及其第一方面任一可能设计的技术方案。
另外,第二方面至第八方面中任一种可能设计方式所带来的技术效果可参见方法部分相关中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为光伏电池的功率和电压关系的示意图;
图2为健康光伏组件电流和电压关系的示意图;
图3为一种光伏电池检测方法的流程示意图;
图4为一种光伏系统的结构示意图;
图5为光伏电池的功率和电压关系的示意图;
图6为另一种光伏系统的结构示意图;
图7为又一种光伏系统的结构示意图;
图8为又一种光伏系统的结构示意图;
图9为又一种光伏系统的结构示意图;
图10为又一种光伏系统的结构示意图;
图11为又一种光伏系统的结构示意图;
图12为一种光伏电池检测方法示意流程图;
图13为光伏电池的功率和电压关系的示意图;
图14为光伏电池的功率和电压关系的示意图;
图15为另一种光伏电池检测方法示意流程图;
图16为检测光伏电池过程中光伏电池两端电压、输出功率以及时间的关系示意图;
图17为检测光伏电池过程中,光伏系统的总功率、待检测光伏电池两端电压之间的关系示意图;
图18为一种光伏电池检测装置结构示意图。
具体实施方式
光作为一种可再生清洁能源,光伏发电技术被广泛研究,光伏发电产业在近年来得到迅猛发展。通常,光伏发电系统可以包括光伏组件、逆变器、变压器、线缆等多个部件。其中,光伏组件能够将太阳光照的能量转化为电能。光伏组件的健康状态对光伏发电系统能够发电量影响很大。如果光伏组件出现故障,将会显著影响其输出的电能,给光伏系统的发电量和收益造成损失。
目前,光伏组件健康状态的检测方法包括IV曲线扫描方法和光伏组件图像检测方法。在IV曲线扫描方法(也可称为光伏组件的IV曲线扫描技术)中,需要在温度、光照强度一定的情况下,利用光伏组件的输出电流随其两端被施加的电压变化,绘制光伏组件的电流-电压曲线(以下简称“IV曲线”)。通常控制光伏组件的两端电压从开路电压扫描到短路电压,采集光伏组件在不同电压下的输出电流,从而绘制出光伏组件输出电流与电压的曲线关系。健康的光伏组件其IV曲线为抛物线形,如图2所示。如果光伏组件已经损坏,或光伏组件受到遮挡,其IV曲线会发生畸变,通过判断IV曲线是否有畸变,可以确定光伏组件的健康状态,便于为维护光伏组件提供依据。
光伏组件的图像检测方法可以包括电致生光效应(electro luminescence,EL)检测方法和PL检测方法。在EL检测方法中,对光伏电池(可包括一个或多个光伏组件)加偏压注入反灌电流时,光伏电池可等效的视为一个发光效率较低的发光二极管。在对光伏电池加偏压注入反灌电流后,采集的光伏电池的图像是光伏电池发光所形成具有一定亮度的图像,可记为EL图像。通过分析EL图像判断光伏电池是否存在故障,例如隐裂、断栅、烧结、存在杂质或者缺陷等问题。
在PL检测方法中,光伏电池在接收特定波长光照,光伏电池中处于基态的电子会吸收光子而进入激发态,在短时间内回到基态时,会发出红外光。基于光伏电池的这个特性,利用高灵敏高分辨率的照相机对光伏电池发出的红外光进行感光,所采集的光伏电池的图像可以记为PL图像。通过分析PL图像,可以判断光伏电池是否存在故障。
与IV曲线扫描方法相比,组件图像检测方法可以直观地通过组件图像确定光伏组件的故障类型和故障位置。目前,在光伏组件出厂时或者安装时,通过EL检测方法和PL检测方法对光伏组件进行检测。在实际应用场景中,在光伏组件在电站中完成安装后,光伏组件也可能出现新的故障。因此,在光伏组件在电站中完成安装后,确定光伏组件的健康状态也是非常必要的。
光伏组件在电站中完成安装后,可以在夜间利用EL检测方法确定光伏电池的健康状态。在夜间利用EL检测方法确定光伏电池的健康状态的方法,需要在电站中增加额外的电路,以及在控制器中增加反灌控制电路,增加了光伏系统的硬件成本。并且,还需要运维人员在夜间对光伏电池进行运维。
为避免运维人员在夜间处理光伏电池运维工作,可以在白天确定光伏电池的健康状态。例如,利用EL/PL检测方法。在该方法(如图3所示)中,在光伏系统中增加一个信号源。该信号源可以输出至少一个调制频率,对光伏电池获取或输出的功率进行调制,使光伏电池在两个不同的工作点下(短路工作点和开路工作点)工作。并分别采集光伏电池在这两个工作点时的图像,如EL图像,或者PL图像。然后将光伏电池在两个工作点对应的EL图像或者PL图像作差处理,可以滤除太阳光照射到光伏电池上产生的背景噪声。通过分析作差处理后的图像,可以判断光伏电池的健康状态。
但在获取PL图像过程中,由于光伏电池的获取功率处于调制模式,被检测的光伏电池,在检测过程中的输出功率会在两个工作点上发生跳变。在获取PL图像过程中,光伏电池的输入的功率也处于调制模式,获取功率也会在两个工作点上跳变。该方法中,在白天可以检测光伏电池的健康状态,对运维人员较为友好。但在对光伏电池检测过程中,光伏电池在两个不同的工作点工作时,会造成被检测的光伏电池在短时间内出现大幅波动,也会使光伏系统整体功率的短时间内发生大幅波动,容易造成光伏系统并网点电压闪变,影响并网质量。
为解决上述问题,本申请实施例提供一种光伏电池检测方法、系统、装置、介质及光伏系统,不仅可以对光伏系统中的光伏电池进行检测,并且可以避免光伏系统的整体功率发生波动,也可以避免上述问题。下面将结合附图对本申请实施例进行介绍。
本申请提供光伏电池检测方法可以应用于光伏系统,如图4所示,光伏系统可以包括多个光伏电池、直流/直流变换模块。直流/直流变换模块包括多个直流-直流变换电路(DC/DC变换电路)和直流母线电容。光伏系统可以向负载供电,也即向负载提供功率。
多个光伏电池可以与直流/直流变换模块中的DC/DC变换电路一一对应,一个光伏电池连接一个DC/DC变换电路。光伏电池可以将光能转化为电能。光伏电池可以在DC/DC变换电路提供的电压的作用下,将光能转化为直流电流,从而产生输出功率。示例性地,DC/DC变换电路为光伏电池提供的电压,与光伏电池的输出功率之间的关系可以是图5中示出的电压与功率之间的关系。
如图5所示,DC/DC变换电路为光伏电池提供电压V1(也可记为光伏电池的工作点为V1)时,光伏电池输出功率为P1。DC/DC变换电路为光伏电池提供电压V2时,光伏电池的输出功率也为P1。可见,光伏电池可以在DC/DC变换电路提供两种不同电压的情形下,输出功率可以相同。或者说,光伏电池工作在不同工作点时,光伏电池的输出功率可以是相同的。
本申请实施例中,DC/DC变换电路为光伏电池提供的电压,与光伏电池的输出功率之间的关系中,光伏电池的最大输出功率Pmax可以唯一对应电压Vm,或者说最大功率点对Pmax唯一对应电压Vm。光伏电池的最大输出功率Pmax也可以对应多个电压,或者说最大功率点Pmax可以对应多个电压VN。光伏电池工作在多个电压VN中的任意一个工作点时,光伏电池的输出功率都是最大输出功率Pmax。
一种可能的实施方式中,直流/直流变换模块中的多个DC/DC变换电路并联连接。如图6所示,每个DC/DC变换电路的第一输出端与直流母线电容的第一端连接,每个DC/DC变换电路的第二输出端与直流母线电容的第二端连接。每个DC/DC变换电路的第一输入端与光伏电池的第一端连接,每个DC/DC变换电路的第二输入端与光伏电池的第二端连接。
每个DC/DC变换电路可以连接一个光伏电池。光伏电池可以包括一个光伏组串,也包括多个串联连接的光伏组串。每个DC/DC变换电路可以对其连接的光伏电池的电压进行调整,也即调整各光伏电池的工作点。每个DC/DC变换电路也可以对其连接的光伏电池中的输出功率进行调整。
一种可能的设计中,光伏系统还包括直流/交流(DC/AC)变换电路,DC/AC变换电路的两个输入端分别与直流母线电容的第一端和第二端连接,如图7所示,DC/AC变换电路可以将直流电转换为交流电。DC/AC变换电路的输出端可以与交流电网连接,交流电网 可以是三相交流电网。
光伏系统中的多个DC/DC变换电路、直流母线电容和DC/AC变换电路可以组成组串式逆变器。本申请实施例提供的光伏系统可以是基于组串式逆变器的光伏系统,可以应用于基于组串式逆变器的大型光伏电站等应用场景中。
又一种可能的设计中,光伏系统还包括直流线缆、集中式逆变器。如图8所示,集中式逆变器的两个输入端分别通过直流线缆与直流母线电容的第一端和第二端连接。集中式逆变器可以将直流电转换为交流电。集中式逆变器可以将交流电输出至交流电网。
光伏系统中的多个DC/DC变换电路和直流母线电容可以组成最大功率点跟踪(maximum power point tracking,MPPT)汇流箱。本申请实施例提供的光伏系统可以是基于MPPT汇流箱及集中式逆变器的光伏系统,可以应用于集散式大型光伏电站等应用场景中。
又一种可能的实施方式中,每个光伏电池中包括一个光伏组串。多个光伏电池可以与多个DC/DC变换电路一一对应。多个DC/DC变换电路可以依次串联连接后与直流母线电容连接。如图9所示,多个DC/DC变换电路中DC/DC变换电路的负极输出端与相邻的直DC/DC变换电路的正极输出端连接,其中,所述DC/DC变换电路中首个DC/DC变换电路(如DC/DC变换电路1)的正极输出端与直流母线电容的第一端连接,最末一个DC/DC变换电路(如DC/DC变换电路N)的负极输出端与直流母线电容的另一端连接。
本申请实施例中,光伏电池连接的DC/DC变换电路可以实施为优化器,或者包括优化器的电路。优化器可以是现有任意一种优化器的电路结构或拓扑结构。DC/DC变换电路可以是buck电路、boost电路、buck-boost电路、buck型同步整流电路、boost型同步整流电路、buck/boost型同步整流电路任意一种电路。每个DC/DC变换电路可以对其连接的光伏电池的电压进行调整,也即调整各光伏电池的工作点。每个DC/DC变换电路也可以对其连接的光伏电池的输出功率进行调整。
一种可能的设计中,光伏系统还包括组串式逆变器,如图10所示,组串式逆变器的两个输入端分别与直流母线电容的第一端和第二端连接。组串式逆变器可以用于将直流电转换为交流电,也可以将交流电提供给交流电网。交流电网可以是单相交流电网。本申请实施例提供的光伏系统可以应用于家庭光伏发电场景中。
本申请实施例提供的光伏系统中可以包括控制设备,如图4所示,控制设备可以与直流/直流变换模块连接。控制设备可用于对各DC/DC变换电路进行控制。控制设备也可以与各DC/DC变换电路连接。
每个DC/DC变换电路可以接收信号或者指令。信号或者指令可以携带指示信息。DC/DC变换电路可以基于指示信息,调整DC/DC变换电路所连接的光伏电池两端电压,或者光伏电池的输出功率。
指示信息可以为电压参数信息和/或功率参数信息。作为一种举例,电压参数信息可以用于指示DC/DC变换电路控制提供给光伏电池两端的电压,或者指示DC/DC变换电路在提供给光伏电池两端的电压的基础上增大或减少电压值。功率参数信息可以用于指示DC/DC变换电路控制光伏电池的实际输出功率,或者指示DC/DC变换电路控制光伏电池在当前输出功率的基础上增大或减少输出功率值。
例如,DC/DC变换电路1连接光伏电池1。DC/DC变换电路1接收到控制设备发送的信号或者指令后,可以根据信号或者指令中携带的电压参数信息,调整光伏电池A两端电 压。也可以根据信号或者指令中携带的或者功率参数信息,改变光伏电池1两端电压以使光伏电池1输出所述信号或指令中携带的功率参数信息相应的输出功率。
控制设备可以用于执行光伏电池检测方法。光伏系统还可以包括采集设备,用于获取待检测光伏电池的红外图像信息,以使控制设备可以根据待检测光伏电池的至少两个红外图像信息联合检测光伏电池是否发生故障。如图4所示,控制设备与采样设备连接。控制设备可以控制采样设备采集光伏电池的红外图像信息。采集设备可以将采集的光伏电池的红外图像信息发送给控制设备,以使控制设备获取光伏电池的红外图像信息。
本申请还提供一种光伏电池检测系统,如图11所示。光伏电池检测系统可以包括控制设备、采集设备以及本申请实施例提供的任意一种光伏系统。光伏电池检测系统可以用于检测光伏系统中的光伏电池是否有故障。控制设备可以用于执行光伏电池检测方法。
本申请实施例提供一种光伏电池检测方法,可以应用于运行中的光伏系统。控制设备可以在光伏系统运行过程中对光伏系统中的光伏电池进行检测。光伏系统运行过程可以理解光伏系统为负载提供功率的过程,或者为负载供电的过程,或者称光伏系统处于工作状态。控制设备可以对光伏系统中任意一个光伏电池进行检测。如图12所示,方法可以包括如下步骤:
S101,控制设备确定待检测光伏电池对应的工作电压,所述工作电压包括第一电压和第二电压;其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零。
S102,控制设备控制所述待检测光伏电池工作在所述第一电压,获取所述待检测光伏电池的第一红外图像信息。
S103,控制所述待检测光伏电池工作在所述第二电压,获取所述待检测光伏电池的第二红外图像信息;其中,所述第一红外图像信息和所述第二红外图像信息用于联合检测所述待检测光伏电池是否存在故障。
本申请实施例中,控制设备可以通过控制与待检测光伏电池连接的DC/DC转换电路提供给待检测光伏电池的电压的方式,实现控制待检测光伏电池工作在指定的电压状态。控制设备可以控制采集设备采集待检测光伏电池的红外图像信息。可选地,控制设备可以包括与待检测光伏电池连接的DC/DC转换电路。
控制设备可以利用PL检测方法,基于待检测光伏电池的至少两个红外图像信息,联合检测光伏电池是否有故障。本申请实施例中的光伏电池的红外图像信息可以是光伏电池的PL图像。光伏电池工作在输出状态(输出功率大于零)下,光伏电池可以发射的红外光信号以及反射的环境中的红外光信号。光伏电池的红外图像信息可以包括光伏电池发射的红外光信号相应的图像信息以及反射的环境中的红外光信号相应的图像信息。通常,对光伏电池进行PL检测过程中,光伏电池反射的环境中的红外光信号可视为背光噪声。
控制设备可以利用光伏电池工作在不同输出状态下的红外图像信息,检测光伏电池是否具有故障。即控制设备可以利用光伏电池工作在不同工作点,且各工作点对应的输出功率不同的状态下的至少两个红外图像信息,检测光伏电池是否具有故障。也可以称,利用所述至少两个红外图像信息联合检测光伏电池是否具有故障。
作为一个举例,控制设备可以将光伏电池的两个PL图像作差处理,获得消除背光噪 声的光伏电池的图像信息。控制设备可以采用现有的任意一种PL检测方法,利用作差处理后的图像信息,确定光伏电池是否发生故障。
为避免控制设备获取光伏电池在不同工作点的至少两个PL图像时,光伏电池的输出功率发生较大波动,造成运行中的光伏系统的总输出功率也产生波动。控制设备可以通过控制获取光伏电池的红外图像信息时的光伏电池的工作点,实现控制获取光伏电池的红外图像信息时光伏电池的输出功率。
待检测光伏电池对应的工作电压可以包括第一电压和第二电压,其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零。待检测光伏电池对应的工作电压可以是预先配置的,也可以是控制在检测光伏系统中的光伏电池过程中确定的。
控制设备控制待检测光伏电池工作在第一电压,待检测光伏电池的输出功率为第一电压对应的第一输出功率。控制设备也可以控制待检测光伏电池工作在第一电压的持续时长为第一时长,也可使待检测光伏电池持续输出第一输出功率的时长为第一时长。
控制设备控制待检测光伏电池工作在第二电压,待检测光伏电池的输出功率为第二电压对应的第二输出功率。控制设备也可以控制待检测光伏电池工作在第二电压的持续时长为第二时长,也可使待检测光伏电池持续输出第二输出功率的时长为第二时长。控制设备通过控制待检测光伏电池的工作电压,使获取待检测光伏电池的红外图像信息时的输出功率分别为第一输出功率和第二输出功率,并且第一输出功率和第二输出功率之间的差值小于预设功率差值阈值。本申请实施例中,预设功率差值阈值为大于零的数值。第一输出功率和第二输出功率之间的差值可以指第一输出功率与第二输出功率相减后的结果的绝对值。这样的设计,使得对光伏电池进行检测过程中,被检测的光伏电池的输出功率变化较小,避免被检测的光伏电池的输出功率出现较大的波动,从而避免对光伏电池进行检测时,光伏系统的总输出功率发生波动。
控制设备可以根据预先确定的待检测光伏电池对应的至少一个输出功率,根据所述至少一个输出功率确定待检测光伏电池对应的工作电压。所述至少一个输出功率可以包括所述第一输出功率和所述第二输出功率。也即控制设备可以根据预先确定的第一输出功率和/或第二输出控制,确定待检测光伏电池对应的工作电压。
应理解的是,控制设备确定出待检测光伏电池对应的至少一个输出功率,便于控制设备通过控制待检测光伏电池的工作电压的方式,使控制设备对待检测光伏电池的输出功率为所述待检测光伏电池对应的至少一个输出功率。
一个示例中,第一输出功率和第二输出功率相等,即第一输出功率与第二输出功率的差值为零。也即控制设备可以确定待检测光伏电池对应的一个输出功率的情形。控制设备在获取待检测光伏电池分别工作在第一电压以及第二电压时的红外图像信息的过程中,待检测光伏电池的输出功率未发生变化。第一输出功率和第二输出功率的差值为0,因而在待检测光伏电池进行检测过程中,避免光伏系统发生较大的功率波动。
一种可能的实施方式中,控制设备确定待检测光伏电池对应的工作电压,也是确定获取待检测光伏电池的红外图像信息时待检测光伏电池的工作电压(工作电压包括第一电压和第二电压)的操作前,控制设备可以确定待检测光伏电池对应的输出功率Ptest。例如, 控制设备可以在预设功率范围内,任意选择一个功率值作为对待检测光伏电池进行检测时的待检测光伏电池对应的输出功率Ptest。
预设功率范围可以是基于待检测光伏电池的参考输出功率值Pref1和第一调整参数e1确定的,如图13所示,功率范围可以是[Pref1×(1-e1),Pref1×(1+e1)]。第一调整参数e1数值通常较小,如e1可以为5%。待检测光伏电池的参考输出功率值Pref1可以是基于待检测光伏电池的当前输出功率P(t0)和预设比例参数a确定的,例如Pref1=P(t0)×a,待检测光伏电池的参考输出功率值Pref1也可以称为待检测光伏电池的预设输出功率阈值。控制设备可以根据与待检测光伏电池连接的DC/DC变换电路当前提供给待检测光伏电池的工作电压U(t0),确定待检测光伏电池的当前输出功率P(t0)。
控制设备确定出的待检测光伏电池对应的输出功率Ptest可以是预设功率范围内的任意一个数值。这样的设计,控制设备对待检测光伏电池进行检测时,待检测光伏电池的输出功率由当前输出功率P(t0)切换为输出功率Ptest时,避免待检测光伏电池的输出功率发生较大功率波动,从而避免光伏系统输出的功率出现较大的波动。
可选地,预设功率范围还可以是基于待检测光伏电池的参考输出功率值Pref1的。例如,预设功率范围可以为(0,Pref11],待检测光伏电池对应的输出功率Ptest可以是该预设功率范围内的任一功率值。
然后,控制设备可以根据光伏电池输出功率与电压的关系,确定待检测光伏电池进行检测时的待检测光伏电池的输出功率Ptest对应的电压,也是待检测光伏电池对应的工作电压,也是对进行检测时待检测光伏电池的工作点。
可选地,控制设备确定的待检测光伏电池对应的输出功率Ptest可以小于最大输出功率Pmax。根据光伏电池输出功率与电压的关系(如图13所示),输出功率Ptest对应的工作电压包括两个电压,也即第一电压V1和第二电压V2。本发明实施例中,待检测光伏电池工作在第一电压时的输出功率为Ptest,也即第一输出功率为Ptest。并且工作在第二电压时的输出功率也为Ptest,也即第二输出功率为Ptest。
另一种可能的实施方式中,控制设备确定对待检测光伏电池对应的输出功率时,也可以基于待检测光伏电池的当前输出功率P(t0)和预设比例参数a。例如,将当前输出功率P(t0)和预设比例参数a的乘积作为待检测光伏电池进行检测时的输出功率,也即前述待检测光伏电池的参考输出功率值Pref1。控制设备可以将待检测光伏电池的参考输出功率值Pref1对应的电压确定为待检测光伏电池对应的工作电压。
另一个示例中,第一输出功率与第二输出功率的差值大于零,且差值小于预设功率差值阈值。也即,控制设备可以确定待检测光伏电池对应的两个输出功率的情形下。控制设备在对光伏电池检测过程中,或者说获取待检测光伏电池分别工作在第一电压以及第二电压时的红外图像信息的过程中,待检测光伏电池的输出功率变化较小,避免出现功率波动。从而对待检测光伏电池进行检测过程中,光伏系统未发生较大的功率波动。
一种可能的实施方式中,控制设备确定获取待检测光伏电池的红外图像信息时待检测光伏电池的工作电压(也即第一电压和第二电压)的操作中,控制设备可以先确定待检测光伏电池进行检测时的第一目标输出功率和第二目标输出功率。其中,第一目标输出功率和第二目标输出功率的差值小于预设功率差值阈值。
如图14所示,控制设备可以在预设功率范围内任意选择两个功率,分别作为第一目标输出功率Pk1和第二目标输出功率Pj1。控制设备根据光伏电池输出功率与电压的关系, 确定第一目标输出功率对应的两个电压,分别记为Vk1和Vk2,以及第二目标输出功率对应的两个电压,分别记为Vj1和Vj2。控制设备可以从第一目标输出功率对应的两个电压中(也即Vk1和Vk2),选择一个电压作为第一电压,以及从第二目标输出功率对应的两个电压中(也即Vj1和Vj2),选择一个电压作为第二电压。
例如,第一目标输出功率Pk1对应的电压分别为Vk1和Vk2。第二目标输出功率Pj1对应的电压分别为Vj1和Vj2。控制设备可以第一目标输出功率Pk1和第二目标输出功率Pj1对应的电压与预设阈值Vm进行比较。示例性地,Vm可以是当前待检测光伏电池两端的电压U(t0),也可以是光伏电池的最大输出功率Pmax唯一对应电压为Vm,下面以Vm为当前待检测光伏电池两端的电压为例,如图14中示出的光伏电池的功率和电压的关系,其中,Vk1和Vj1均小于Vm,Vk2和Vj2均大于Vm。
控制设备可以将第一目标输出功率Pk1对应的小于Vm的电压,也即Vk1作为第一电压,以及将第二目标输出功率Pj1对应的大于Vm的电压,也即Vj2作为第二电压。或者,控制设备可以将第一目标输出功率Pk1对应的大于Vm的电压,也即Vk2作为第二电压,以及将第二目标输出功率Pj1对应的小于Vm的电压,也即Vj1作为第一电压。
根据一些实施例,第一目标输出功率可以为小于或等于最大输出功率的数值,第二目标输出功率可以为小于最大输出功率的数值。或者,第二目标输出功率为小于或等于最大输出功率的数值,第一目标输出功率可以为小于最大输出功率的数值。
一些可能的情形中,预设功率范围可以是基于待检测光伏电池的参考输出功率Pref1和第一调整参数e1确定的,例如[Pref1×(1-e1),Pref1×(1+e1)]。
控制设备可以按照所确定的第一电压,控制待检测光伏电池工作在第一电压状态下,获取第一红外图像信息。以及按照所确定的第二电压,控制待检测光伏电池工作在第二电压状态下,获取第二红外图像信息。
其中,待检测光伏电池工作在第一电压状态下的输出功率,也即第一输出功率的数值等于第一目标输出功率。待检测光伏电池工作在第二电压状态下的输出功率,也即第二输出功率的数值等于第二目标输出功率。
一些可能的情形中,控制设备可以在预设功率范围内任意选择两个功率的操作中,预设功率范围可以是(0,Pref1]。Pref1可以是根据一些测试结果,确定出的预设输出功率阈值,也可以是基于未对待检测光伏电池检测时当前待检测光伏电池的输出功率P(t0)和预设比例参数a确定的。
控制设备可以在此预设功率范围内选取的第一目标输出功率和第二目标输出功率,并从第一目标输出功率和第二目标输出功率对应的电压中确定待检测光伏电池对应的工作电压。这样的设计中,控制设备利用所获取待检测光伏电池工作在第一电压状态下的第一红外图像信息,和工作在第二电压状态下的第二红外图像信息,可以较为容易判断出待检测光伏电池是否有故障。或者说,第一红外图像信息与第二红外图像信息的差异较大,基于第一红外图像信息和第二红外图像信息,控制设备可以较为容易判断出待检测光伏电池是否有故障。
又一个示例中,控制设备还可以根据预设图像检测条件,确定控制设备获取的待检测光伏电池的第一红外图像信息和第二红外图像是否满足预设图像检测条件。控制设备可以将第一红外图像信息和第二红外图像信息作差,确定图像差值信息。若图像差值信息可以用于确定光伏电池是否发生故障,则控制设备可以确定第一红外图像信息和第二红外图像 信息满足预设图像检测条件。若图像差值信息不可以用于确定光伏电池是否发生故障,则控制设备可以确定第一红外图像信息和第二红外图像信息不满足预设图像检测条件。
控制设备若确定获取的待检测光伏电池的第一红外图像信息和第二红外图像不满足预设图像检测条件,则重新获取待检测光伏电池的红外图像信息。在重新获取待检测光伏电池的红外图像信息之前,控制设备可以重新确定待检测光伏电池进行检测时的输出功率,其中,重新确定的待检测光伏电池进行检测时的输出功率小于前一次确定的输出功率。然后控制设备可以根据光伏电池输出功率与电压的关系,确定光伏电池进行检测时的输出功率对应的电压,作为光伏电池进行检测时的工作电压。
控制设备可以确定重新获取的待检测光伏电池的两个红外图像信息满足预设图像检测条件后,可以采用现有任意一种PL检测方法,根据两个红外图像信息确定待检测光伏电池是否有故障。
一种可能的实施方式中,控制设备在对待检测光伏电池进行检测时,可以将前一个完成检测的光伏电池获取红外图像信息时的工作电压,确定为获取待检测光伏电池红外图像信息时的工作电压。
例如,前一个完成检测的光伏电池为光伏电池2。获取光伏电池2的红外图像信息时的工作电压为第三电压和第四电压,获取的光伏电池2的红外图像信息可以用于确定光伏电池2是否有故障。控制设备可以将第三电压和第四电压确定为获取待检测光伏电池的红外图像信息时待检测光伏电池对应的工作电压。
又一个示例中,控制设备为对待检测光伏电池进行检测时,待检测光伏电池当前的输出功率为P(t0),对待检测光伏电池进行检测过程中,待检测光伏电池工作在第一电压状态下的第一输出功率,以及工作在第二电压状态下的第二输出功率可能是接近P(t0)的数值。
对光伏电池进行检测中,为稳定光伏系统的总输出功率。控制设备可以根据待检测光伏电池的当前的输出功率为P(t0),待检测光伏电池在第一电压状态下的第一输出功率,以及工作在第二电压状态下的第二输出功率,确定至少一个第一光伏电池的功率调整量。其中,第一光伏电池为多个光伏电池中除了待检测光伏电池之外的光伏电池。控制设备根据确定出的第一光伏电池对应的功率调整量,调整第一光伏电池的输出功率。
若第一输出功率和第二输出功率相等,控制设备可以根据待检测光伏电池的当前的输出功率为P(t0),以及第一输出功率,确定功率调整量总和。若第一输出功率和第二输出功率不相等,控制设备可以根据待检测光伏电池的当前的输出功率为P(t0),以及第一输出功率,确定功率调整量总和。或者,控制设备可以根据待检测光伏电池的当前的输出功率为P(t0),以及第二输出功率,确定功率调整量总和。
然后,控制设备可以选择至少一个第一光伏电池,基于功率调整量总和,确定选择出的至少一个第一光伏电池中各第一光伏电池对应的功率调整量。控制设备基于至少一个第一光伏电池中各第一光伏电池对应功率调整量,调整各第一光伏电池的输出功率。
例如,光伏电池3对应的功率调整量为pt。控制设备可以基于光伏电池3当前的输出功率PC和功率调整量pt,确定光伏电池3的目标输出功率为PC+pt。控制设备可以根据预设光伏电池的功率和电压对应关系,确定光伏电池3的目标输出功率为PC+pt对应的电压为VC1和VC2。控制设备可以控制光伏电池3工作在VC1或者VC2状态下,使得光伏电池3输出功率被调整为PC+pt。
一种可能的实施方式中,控制设备可以根据待检测光伏电池的参考输出功率值Pref1和多个光伏电池中除了待检测光伏电池之外的各光伏电池的当前输出功率,确定光伏系统的目标输出功率总和。
例如,控制设备可以根据多个光伏电池中除了待检测光伏电池之外的各光伏电池的当前输出功率,确定多个光伏电池中除了待检测光伏电池之外的光伏电池的输出功率总和。控制设备可以将待检测光伏电池的参考输出功率值Pref1以及多个光伏电池中除了待检测光伏电池之外的光伏电池的输出功率总和之和,确定为光伏系统的目标输出功率总和Ptotal。
根据一些实施例,获取待检测光伏电池红外图像信息时,待检测光伏电池的输出功率是基于参考输出功率值Pref1确定的,或者是从基于参考输出功率值Pref1确定的预设功率范围中确定的。因而获取待检测光伏电池红外图像信息时,待检测光伏电池的输出功率与参考输出功率值Pref1的差异较小,或者说功率变化较小。
控制设备在对运行中的光伏系统的光伏电池进行检测时,维持光伏系统的总输出功率。不仅可以避免光伏系统的输出功率出现较大的功率波动,还可以使光伏系统具有稳定的总输出功率。
一种可能的设计中,控制设备维持光伏系统的总输出功率时,可以基于预设功率调整阈值和目标输出功率总和,确定多个光伏电池除待检测光伏电池之外的第二光伏电池的功率调整量总和。
例如,总输出功率Ptotal可以是在预设总输出功率范围内的任意数值。预设总输出功率范围可以是基于第二调整参数e2和目标输出功率总和Pref2。例如,预设总输出功率范围可以是[Pref2×(1-e2),Pref2×(1+e2)]。控制设备在对任意光伏电池进行检测时,可以维持光伏系统总输出功率在预设总输出功率范围内。
又例如,控制设备在控制待检测光伏电池工作在第一电压或第二电压之前,控制设备根据第二调整参数e2和目标输出功率总和Pref2,确定功率调整量总和的范围为[0,2Pref2×e2]。控制设备可以从功率调整量总和的范围内任选一个数值作为多个光伏电池除待检测光伏电池之外的第二光伏电池的功率调整量总和。
控制设备还可以根据功率调整量总和,确定至少一个第二光伏电池对应的功率调整量。然后控制设备可以对至少一个第二光伏电池进行功率调整。例如,光伏电池4对应的功率调整量为pw。控制设备可以基于光伏电池4当前的输出功率PD和功率调整量pw,确定光伏电池4的目标输出功率为PD+pw。控制设备可以根据预设光伏电池的功率和电压对应关系,确定光伏电池4的目标输出功率为PD+pw对应的电压为VD1和VD2。控制设备可以控制光伏电池4工作在VD1或者VD2状态下,使得光伏电池4输出功率为PD+pw。
本申请实施例还提供一种光伏电池检测方法,该方法可以由控制设备执行。光伏系统包括多个光伏电池、直流/直流变换模块。直流/直流变换模块包括多个DC/DC变换电路。多个光伏电池与多个DC/DC变换电路一一对应。各光伏电池与对应的DC/DC变换电路连接。控制设备与直流/直流变换模块连接,控制设备可以与各DC/DC变换电路连接,控制DC/DC变换电路提供给相连接的光伏电池的电压。DC/DC变换电路提供给相连接的光伏电池的电压也是DC/DC变换电路的输入端的电压,记为输入电压。相连接的光伏电池在DC/DC变换电路施加的电压下,形成电流,输入DC/DC变换电路中。从而实现光伏电池将光能转化为电能。光伏电池产生电流输入DC/DC变换电路对应的输出功率,也是DC/DC变换电路对应的输入功率。控制设备与采集设备连接,可以控制采集设备采集光伏电池的 红外图像信息。如图15所示,方法可以包括如下步骤:
S201,控制设备检测各DC/DC变换电路的输入功率。
各DC/DC转换电路的输入电压,也是与该DC/DC变换电路连接的光伏电池两端的电压,也是该光伏电池的输出电压。各DC/DC变换电路的输入功率为与该DC/DC转换电路连接的光伏电池的输出功率。
假设,直流/直流变换模块包括N路DC/DC变换电路。待检测光伏电池可以是多个光伏电池中的任意一个光伏电池,待检测光伏电池连接的DC/DC变换电路可记为第k路DC/DC变换电路。
一种可能的实施方式中,控制设备可以响应于接收的光伏电池检测指令,执行步骤S201至步骤S209的操作。其中,光伏电池检测指令可以是针对待检测光伏电池k的检测指令。光伏电池检测指令中可以携带待检测光伏电池所连接的第k路DC/DC变换电路对应的预设比例参数a。
光伏电池检测指令可以是通过控制设备提供的指令输入模块触发的,也可以是其它终端发送给控制设备的。示例性地,其它终端可以为上位机。
S202,控制设备确定待检测光伏电池连接的DC/DC变换电路的目标输入功率。
控制设备在获取待检测光伏电池的红外图像信息之前,确定获取待检测光伏电池的红外图像信息时,待检测光伏电池的输出功率,也是第k路DC/DC变换电路的输入功率。本申请实施例中,将获取待检测光伏电池的红外图像信息时第k路DC/DC变换电路的输入功率记为目标输入功率。
控制设备可以从第k路DC/DC变换电路对应的功率范围中选择一个或者两个功率值作为目标输入功率。第k路DC/DC变换电路对应的功率范围可以是基于第k路DC/DC变换电路的参考输入功率Pref1(也是待检测光伏电池的参考输出功率)和第一调整参数e1确定的,例如[Pref1×(1-e1),Pref1×(1+e1)]。示例性地,第一调整参数e1可为5%。
第k路DC/DC变换电路的参考输入功率Pref1可以是根据DC/DC变换电路当前的输入功率Pk(t0)和预设比例参数a确定的,例如,参考输入功率Pref1=Pk(t0)×a。示例性地,a可为50%时,参考输入功率Pref1为0.5Pk(t0)。
一种可能的实施方式中,若待检测光伏电池为非首个被检测的光伏电池,控制设备可以将最近一个检测的光伏电池对应的DC/DC变换电路的目标输入功率确定为第k路DC/DC变换电路的目标输入功率。
S203,控制设备确定全部DC/DC变换电路的输入功率总和范围。
控制设备可以在对光伏系统中光伏电池进行检测过程中,全部DC/DC变换电路的输入功率总和Ptotal在一定范围内,避免光伏系统的总输出功率不发生较大波动。
控制设备可以基于输入功率总和参考值Pref2和第二调整参数e2确定输入功率总和范围。例如输入功率总和范围可以是[Pref2×(1-e2),Pref2×(1+e2)]。示例性地,e2可为10%。输入功率总和参考值Pref2可以是根据除第k路DC/DC变换电路之外的各DC/DC变换电路的输入功率,以及第k路DC/DC变换电路的目标输入功率确定的,例如Pref2可以是小于或等于∑ j=1,2,3,…,N,j≠kPj(t0)+Pk(t0)的数值。
S204,控制设备根据光伏电池功率与电压对应关系以及目标输入功率,确定与待检测光伏电池连接的DC/DC转换电路的提供给待检测光伏电池的工作电压,工作电压包括第一电压和第二电压。
若控制设备从第k路DC/DC变换电路对应的功率范围中选择一个功率值作为目标输入功率值,则根据光伏电池功率与电压对应关系,将目标输入功率值对应的两个电压作为获取待检测光伏电池的红外图像信息时第k路DC/DC变换电路提供给待检测光伏电池的工作电压。
若控制设备从第k路DC/DC变换电路对应的功率范围中选择两个功率值作为目标输入功率值。根据光伏电池功率与电压对应关系,第一个功率值对应两个电压值,第二功率值对应两个电压值。从第一功率值和第二功率值对应的四个电压值中,选择小于第k路DC/DC变换电路的输入电压Uk(t0)的电压值作为第一电压,选择大于第k路DC/DC变换电路的输入电压Uk(t0)电压值的作为第二电压。控制设备也可以从第一功率值和第二功率值对应的四个电压中,选择小于第k路DC/DC变换电路的最大输入功率对应的电压的电压值作为第一电压,选择大于第k路DC/DC变换电路的最大输入功率对应的电压的电压值作为第二电压。
S205,控制设备控制与待检测光伏电池连接的DC/DC转换电路提供给待检测光伏电池的工作电压为第一电压,获取待检测光伏电池工作在第一电压下的第一红外图像信息。
控制设备可以控制第k路DC/DC变换电路提供给待检测光伏电池的工作电压为第一电压。也可以称控制第k路DC/DC变换电路处于第一工作点,或者待检测光伏电池工作在第一电压下,或者待检测光伏电池处于第一工作点。
控制设备可以控制第k路DC/DC变换电路提供给待检测光伏电池的工作电压为第一电压的持续时长为第一时长T1,使得待检测光伏电池可以工作在第一电压下的持续时长为第一时长T1。控制设备还可以控制采集设备采集待检测光伏电池工作在第一电压下的红外图像信息。示例性地,第一时长T1可为100毫秒。
S206,控制设备控制与待检测光伏电池连接的DC/DC转换电路提供给待检测光伏电池的工作电压为第二电压,获取待检测光伏电池工作在第二电压下的第二红外图像信息。
控制设备可以控制第k路DC/DC变换电路提供给待检测光伏电池的工作电压为第二电压。也可以称控制第k路DC/DC变换电路处于第二工作点,或者待检测光伏电池工作在第二电压下,或者待检测光伏电池处于第二工作点。
控制设备可以控制第k路DC/DC变换电路提供给待检测光伏电池的工作电压为第二电压的持续时长为第二时长T2,使得待检测光伏电池可以工作在第二电压下的持续时长为第二时长T2。控制设备还可以控制采集设备采集待检测光伏电池工作在第二电压下的红外图像信息。示例性地,第二时长T2可为120毫秒。
本申请实施例中,控制设备也可以先执行步骤S205对应的操作,然后执行步骤S206对应的操作。控制设备也可以先执行步骤S206对应的操作,然后执行步骤S205对应的操作。
根据一些实施例,控制设备从第k路DC/DC变换电路对应的功率范围中选择一个功率值作为目标输入功率值Pm,如图16所示,则根据光伏电池功率与电压对应关系,将目标输入功率值Pm对应的两个电压(分别为Vm1和Vm2)作为获取待检测光伏电池的红外图像信息时第k路DC/DC变换电路提供给待检测光伏电池的工作电压。
控制设备在控制待检测光伏电池工作在Vm1的持续时间为第一时长T1,并控制采集设备采集待检测光伏电池的红外图像信息。控制设备在控制待检测光伏电池工作在Vm2的持续时间为第二时长T2,并控制采集设备采集待检测光伏电池的红外图像信息。由图 16中待检测光伏电池的输出功率和时间的关系,可见控制设备对待检测光伏电池进行检测的过程中,待检测光伏电池的输出功率稳定在Pm。
S207,控制设备维持全部DC/DC变换电路的输入功率总和在输入功率总和范围中。
控制设备可以实时检测各DC/DC变换电路的输入功率,若全部DC/DC变换电路的输入功率总和Ptotal不在输入功率总和范围中,例如Ptotal小于输入功率总和范围中的最小功率值Pmin,控制设备则将对除了第k路DC/DC变换电路之外的至少一个DC/DC变换电路的输入功率增大Pmin-Ptotal,以使调整后的全部DC/DC变换电路的输入功率总和Ptotal’在输入功率总和范围中。又如,Ptotal大于输入功率总和范围中的最大功率Pmax,控制设备则将对除了第k路DC/DC变换电路之外的至少一个DC/DC变换电路的输入功率减少Ptotal-Pmax,以使调整后的全部DC/DC变换电路的输入功率总和Ptotal’在输入功率总和范围中。
控制设备可以同步执行步骤S207和步骤S206的操作,也可以同步执行步骤S207和步骤S205的操作。
根据一些实施例,如图17中右侧部分所示,控制设备对待检测光伏电池进行检测过程中,也即控制设备控制待检测光伏电池工作在第一电压以及控制待检测光伏电池工作在第二电压的过程中,全部DC/DC变换电路的输入功率总和Ptotal与时间的关系。图17中左侧部分示出一种在夜间利用EL检测方法确定光伏电池的健康状态过程中,全部DC/DC变换电路的输入功率总和与时间的关系。本申请实施例中,控制设备可以在对光伏电池进行检测的同时,通过闭环控制保持全部DC/DC变换电路的输入功率总和基本恒定,从而保障光伏系统的总输出功率基本恒定,在光伏系统为电网供电的场景中,还可以避免影响并网电能质量。
S208,控制设备判断第一红外图像信息和第二红外图像信息是否满足图像检测条件,若是,下一步执行步骤S209,若否下一步执行步骤S202。
控制设备可以根据第一红外图信息和第二红外图像信息作差处理的图像,是否可以用于确定待检测光伏电池是否具有故障。一般来说,第一红外图像信息与第二红外图像信息之间的差异较大,控制设备可以根据第一红外图信息和第二红外图像信息作差处理的图像确定待检测光伏电池是否具有故障。第一红外图像信息与第二红外图像信息之间的差异较小,控制设备无法根据第一红外图信息和第二红外图像信息作差处理的图像确定待检测光伏电池是否具有故障。控制设备可以根据确定第一红外图像信息和第二红外图像信息之间的差异,确定第一红外图像信息和第二红外图像信息是否满足图像检测条件,若差异较大,则满足图像检测条件,若差异较小则不满足图像检测条件。
控制设备确定第一红外图像信息和第二红外图像信息满足图像检测条件,则可以根据第一红外图像信息和第二红外图像信息确定待检测电池是否有故障。
控制设备确定第一红外图像和第二红外图像信息不满足图像检测条件,则可以重新确定获取待检测光伏电池的红外图像信息时待检测光伏电池连接的DC/DC变换电路的目标输入功率,并重新获取待检测光伏电池的红外图像信息,下一步执行步骤S202。
在本次对待检测光伏电池检测过程中,控制设备再次执行步骤S202的操作时,也即再次确定第k路DC/DC变换电路的目标输入功率应小于最近一次确定的第k路DC/DC变换电路的目标输入功率。
S209,控制设备根据第一红外图像信息和第二红外图像信息,确定待检测光伏电池是 否有故障。
控制设备可以采用现有任意一种PL检测方法,利用第一红外图像信息和第二红外图像信息,确定待检测光伏电池是否有故障。本申请对此不作过多限定。
本申请实施例还提供一种光伏电池检测装置,如图18所示,包括:存储器2001和处理器2002。
存储器2001可以用于存储程序、指令或代码,所述程序、指令或代码。处理器2002可以调用存储器2001存储的程序、指令或代码,执行本申请实施例提供的任意一种光伏电池检测方法。
作为一种举例,处理器2002可以执行如下操作:确定待检测光伏电池对应的工作电压,所述工作电压包括第一电压和第二电压;其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零;控制所述待检测光伏电池工作在所述第一电压,获取所述待检测光伏电池的第一红外图像信息;控制所述待检测光伏电池工作在所述第二电压,获取所述待检测光伏电池的第二红外图像信息;其中,所述第一红外图像信息和所述第二红外图像信息用于联合检测所述待检测光伏电池是否存在故障。
一种可能的实施方式中,所述第一输出功率和所述第二输出功率均小于预设输出功率阈值。
一种可能的实施方式中,所述预设输出功率阈值为所述光伏电池的最大功率点。
一种可能的实施方式中,所述第一电压小于或等于所述光伏电池在所述最大功率点对应的电压,所述第二电压大于所述光伏电池在所述最大功率点对应的电压。
一种可能的实施方式中,所述第一输出功率与所述第二输出功率相等,所述第一电压和所述第二电压不相等。
一种可能的实施方式中,处理器2002还用于:在所述确定待检测光伏电池对应的工作电压之前,确定待检测光伏电池对应的第三输出功率;
处理器2002在所述确定待检测光伏电池对应的工作电压时,具体用于:
基于所述待检测光伏电池在不同电压下的输出功率的对应关系,将所述第三输出功率对应的电压确定为所述待检测光伏电池对应的工作电压。
一种可能的实施方式中,处理器2002在所述确定待检测光伏电池对应的第三输出功率时,具体用于:
根据预设比例参数以及当前所述待检测光伏电池的输出功率,确定所述第三输出功率;或者,从预设功率范围中选择一个功率作为所述第三输出功率,其中,所述预设功率范围是基于所述待检测光伏电池对应的功率参考值和第一调整参数确定的,所述待检测光伏电池对应的功率参考值是基于所述预设比例参数以及所述待检测光伏电池当前的输出功率确定的;或者,若所述光伏系统包括多个光伏电池,将获取前一个被检测的光伏电池满足预设图像检测条件的红外图像信息时所述前一个被检测的光伏电池的输出功率,确定为所述第三输出功率;或者,若最近一次获取的所述待检测光伏电池的红外图像信息不满足所述预设图像检测条件,则将第四输出功率确定为所述第三输出功率,其中,所述第四输出功率小于所述最近一次获取的所述待检测光伏电池的红外图像信息时所述待检测光伏电池的输出功率。
一种可能的实施方式中,处理器2002还用于:
若所述第一红外图像信息和所述第二红外图像信息不满足预设图像检测条件,重新确定所述待检测光伏电池对应的工作电压。
一种可能的实施方式中,所述系统还包括直流/直流变换模块,所述待检测光伏电池与直流/直流变换模块连接;
处理器2002在所述控制所述待检测光伏电池工作在所述第一电压时,具体用于:
向所述直流/直流变换模块发送携带第一指示信息的第一控制命令,所述第一指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第一电压;
所述控制所述待检测光伏电池工作在所述第二电压,包括:
向所述直流/直流变换模块发送携带第二指示信息的第二控制指令,所述第二指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第二电压。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;
处理器2002还用于:
在所述控制所述待检测光伏电池输出所述第一电压之前,根据所述第一输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;或者,根据所述第二输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;所述第一光伏电池为所述多个光伏电池中除所述待检测光伏电池之外的任一光伏电池;
基于所述至少一个第一光伏电池对应的功率调整量,调整所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;
处理器2002在所述调整所述至少一个第一光伏电池的输出功率时,具体用于:
向所述直流/直流变换模块发送携带第三指示信息的第三控制命令,所述第三指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第一光伏电池的输出功率。
一种可能的实施方式中,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;
处理器2002还用于:在所述控制所述待检测光伏电池工作在所述第一电压之前,根据所述预设输出功率阈值以及所述多个光伏电池除所述待检测光伏电池之外的各光伏电池的当前输出功率,确定光伏系统的目标输出功率总和;
基于预设功率调整参数和所述目标输出功率总和,确定所述多个光伏电池除所述待检测光伏电池之外的第二光伏电池的功率调整量总和;
根据所述功率调整量总和,确定至少一个所述第二光伏电池对应的功率调整量;
基于所述至少一个第二光伏电池对应的功率调整量,调整所述至少一个第二光伏电池的输出功率。
一种可能的实施方式中,所述多个光伏电池与直流/直流变换模块连接;
处理器2002在所述调整所述至少一个第二光伏电池的输出功率时,具体用于:
向所述直流/直流变换模块发送携带第四指示信息的第四控制命令,所述第四指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第二光伏电池的 输出功率。
相应地,本申请实施例还提供一种芯片。芯片可以与存储器耦合,存储器存储有程序、指令或代码。芯片可以调用存储器中的程序、指令或代码,以执行本申请实施例提供的任意一种光伏检测方法。
本申请实施例还提供一种芯片,芯片中包括前述存储器,以使芯片可以执行本申请实施例提供的任意一种光伏检测方法。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。

Claims (18)

  1. 一种光伏电池检测方法,其特征在于,应用于光伏系统,所述方法包括:
    确定待检测光伏电池对应的工作电压,所述工作电压包括第一电压和第二电压;其中,所述待检测光伏电池工作在所述第一电压下的输出功率为第一输出功率,所述待检测光伏电池工作在所述第二电压下的输出功率为第二输出功率,所述第一输出功率和所述第二输出功率的差值小于预设功率差值阈值,所述第一输出功率和所述第二输出功率均大于零;
    控制所述待检测光伏电池工作在所述第一电压,获取所述待检测光伏电池的第一红外图像信息;
    控制所述待检测光伏电池工作在所述第二电压,获取所述待检测光伏电池的第二红外图像信息;
    其中,所述第一红外图像信息和所述第二红外图像信息用于联合检测所述待检测光伏电池是否存在故障。
  2. 如权利要求1所述的方法,其特征在于,所述第一输出功率和所述第二输出功率均小于预设输出功率阈值。
  3. 如权利要求2所述的方法,其特征在于,所述预设输出功率阈值为所述光伏电池的最大功率点。
  4. 如权利要求3所述的方法,其特征在于,所述第一电压小于或等于所述光伏电池在所述最大功率点对应的电压,所述第二电压大于所述光伏电池在所述最大功率点对应的电压。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述第一输出功率与所述第二输出功率相等,所述第一电压和所述第二电压不相等。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述确定待检测光伏电池对应的工作电压之前,所述方法还包括:
    确定待检测光伏电池对应的第三输出功率;
    所述确定待检测光伏电池对应的工作电压,包括:
    基于所述待检测光伏电池在不同电压下的输出功率的对应关系,将所述第三输出功率对应的电压确定为所述待检测光伏电池对应的工作电压。
  7. 如权利要求6所述的方法,其特征在于,所述确定待检测光伏电池对应的第三输出功率,包括:
    根据预设比例参数以及当前所述待检测光伏电池的输出功率,确定所述第三输出功率;或者,
    从预设功率范围中选择一个功率作为所述第三输出功率,其中,所述预设功率范围是基于所述待检测光伏电池对应的功率参考值和第一调整参数确定的,所述待检测光伏电池对应的功率参考值是基于所述预设比例参数以及所述待检测光伏电池当前的输出功率确定的;或者,
    若所述光伏系统包括多个光伏电池,将获取前一个被检测的光伏电池满足预设图像检测条件的红外图像信息时所述前一个被检测的光伏电池的输出功率,确定为所述第三输出功率;或者,
    若最近一次获取的所述待检测光伏电池的红外图像信息不满足所述预设图像检测条 件,则将第四输出功率确定为所述第三输出功率,其中,所述第四输出功率小于所述最近一次获取的所述待检测光伏电池的红外图像信息时所述待检测光伏电池的输出功率。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    若所述第一红外图像信息和所述第二红外图像信息不满足预设图像检测条件,重新确定所述待检测光伏电池对应的工作电压。
  9. 如权利要求1-8所述的方法,其特征在于,所述系统还包括直流/直流变换模块,所述待检测光伏电池与直流/直流变换模块连接;
    所述控制所述待检测光伏电池工作在所述第一电压,包括:
    向所述直流/直流变换模块发送携带第一指示信息的第一控制命令,所述第一指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第一电压;
    所述控制所述待检测光伏电池工作在所述第二电压,包括:
    向所述直流/直流变换模块发送携带第二指示信息的第二控制指令,所述第二指示信息用于指示所述直流/直流变换模块使所述待检测光伏电池输出所述第二电压。
  10. 如权利要求1所述的方法,其特征在于,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;
    所述控制所述待检测光伏电池输出所述第一电压之前,所述方法还包括:
    根据所述第一输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;或者,根据所述第二输出功率和所述待检测光伏电池当前的输出功率,确定至少一个第一光伏电池对应的功率调整量;所述第一光伏电池为所述多个光伏电池中除所述待检测光伏电池之外的任一光伏电池;
    基于所述至少一个第一光伏电池对应的功率调整量,调整所述至少一个第一光伏电池的输出功率。
  11. 如权利要求10所述的方法,其特征在于,所述多个光伏电池与直流/直流变换模块连接;
    所述调整所述至少一个第一光伏电池的输出功率,包括:
    向所述直流/直流变换模块发送携带第三指示信息的第三控制命令,所述第三指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第一光伏电池的输出功率。
  12. 如权利要求2所述的方法,其特征在于,所述光伏系统包括多个光伏电池,所述待检测光伏电池为所述多个光伏电池中的任意一个光伏电池;
    所述控制所述待检测光伏电池工作在所述第一电压之前,所述方法还包括:
    根据所述预设输出功率阈值以及所述多个光伏电池除所述待检测光伏电池之外的各光伏电池的当前输出功率,确定光伏系统的目标输出功率总和;
    基于预设功率调整参数和所述目标输出功率总和,确定所述多个光伏电池除所述待检测光伏电池之外的第二光伏电池的功率调整量总和;
    根据所述功率调整量总和,确定至少一个所述第二光伏电池对应的功率调整量;
    基于所述至少一个第二光伏电池对应的功率调整量,调整所述至少一个第二光伏电池的输出功率。
  13. 如权利要求12所述的方法,其特征在于,所述多个光伏电池与直流/直流变换模块连接;
    所述调整所述至少一个第二光伏电池的输出功率,包括:
    向所述直流/直流变换模块发送携带第四指示信息的第四控制命令,所述第四指示信息用于指示所述直流/直流变换模块基于所述功率调整量改变所述至少一个第二光伏电池的输出功率。
  14. 一种光伏电池检测装置,其特征在于,包括处理器和存储器,所述存储器存储有程序、指令或代码,所述程序、指令或代码被所述处理器调用时,如权利要求1-13任一项所述的方法被执行。
  15. 一种光伏电池检测系统,其特征在于,包括直流/直流变换模块、采集设备以及控制设备;
    所述控制设备分别与所述直流/直流变换模块和所述采集设备连接,所述直流/直流变换模块用于与多个光伏电池连接;所述控制设备包括如权利要求14所述的光伏电池检测装置;
    所述采集设备,用于采集所述多个光伏电池中待检测光伏电池的红外图像信息,所述待检测光伏电池为所述多个光伏电池中的任意一个;
    所述控制设备,用于通过所述直流/直流变换模块控制所述待检测光伏电池的电压。
  16. 一种光伏系统,其特征在于,包括多个光伏电池和如权利要求15所述的光伏电池检测系统,所述光伏电池检测系统用于检测所述多个光伏电池中是否存在出现故障的光伏电池。
  17. 一种计算机可读存储介质,其特征在于,包括计算机程序指令,所述计算机程序指令被处理器调用执行时,如权利要求1-13任一项所述的方法被执行。
  18. 一种芯片,其特征在于,所述芯片与存储器耦合,用于调用执行所述存储器中存储的计算机程序指令,以使如权利要求1-13任一项所述的方法被执行。
PCT/CN2021/077511 2021-02-23 2021-02-23 一种光伏电池检测方法、装置、系统、介质及芯片 WO2022178680A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2021429051A AU2021429051A1 (en) 2021-02-23 2021-02-23 Photovoltaic cell testing method and apparatus, and system, medium, and chip
EP21927125.1A EP4297272A4 (en) 2021-02-23 2021-02-23 METHOD AND DEVICE FOR TESTING PHOTOVOLTAIC CELLS AS WELL AS SYSTEM, MEDIUM AND CHIP
PCT/CN2021/077511 WO2022178680A1 (zh) 2021-02-23 2021-02-23 一种光伏电池检测方法、装置、系统、介质及芯片
CN202180066251.8A CN116324873B (zh) 2021-02-23 2021-02-23 一种光伏电池检测方法、装置、系统、介质及芯片
US18/454,211 US20230421098A1 (en) 2021-02-23 2023-08-23 Photovoltaic Cell Detection Method, Apparatus, and System, Medium, and Chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077511 WO2022178680A1 (zh) 2021-02-23 2021-02-23 一种光伏电池检测方法、装置、系统、介质及芯片

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/454,211 Continuation US20230421098A1 (en) 2021-02-23 2023-08-23 Photovoltaic Cell Detection Method, Apparatus, and System, Medium, and Chip

Publications (1)

Publication Number Publication Date
WO2022178680A1 true WO2022178680A1 (zh) 2022-09-01

Family

ID=83048610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077511 WO2022178680A1 (zh) 2021-02-23 2021-02-23 一种光伏电池检测方法、装置、系统、介质及芯片

Country Status (5)

Country Link
US (1) US20230421098A1 (zh)
EP (1) EP4297272A4 (zh)
CN (1) CN116324873B (zh)
AU (1) AU2021429051A1 (zh)
WO (1) WO2022178680A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996022A (zh) * 2023-02-21 2023-04-21 华能新疆吉木萨尔新能源有限公司 一种光伏组件故障检测方法及系统
CN116109604A (zh) * 2023-02-21 2023-05-12 天合光能(宿迁)光电有限公司 用于TOPCon结构太阳能电池板的栅线检测方法
CN116298497A (zh) * 2023-05-16 2023-06-23 合肥联宝信息技术有限公司 一种电子设备的功率检测方法、装置、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656035A (zh) * 2016-12-13 2017-05-10 烟台中飞海装科技有限公司 一种光伏电站故障检测方法
KR20170124796A (ko) * 2016-05-03 2017-11-13 주식회사 트라이디더블유 태양광패널 검사시스템 및 검사방법
CN107659266A (zh) * 2017-09-19 2018-02-02 华为数字技术(苏州)有限公司 太阳能发电系统的el检测方法和el检测系统
WO2019115843A1 (es) * 2017-12-14 2019-06-20 Acciona Energía, S. A. Sistema y método automatizados de inspección de una planta fotovoltaica
CN110535435A (zh) * 2019-08-12 2019-12-03 华为技术有限公司 一种光伏电站的电池片检测方法、装置及系统
CN111555716A (zh) * 2020-03-13 2020-08-18 远景智能国际私人投资有限公司 光伏阵列工作状态的确定方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT508834B1 (de) * 2009-10-09 2012-09-15 Fronius Int Gmbh Verfahren und vorrichtung zur fehlererkennung in einer photovoltaik-anlage
EP2594951A1 (en) * 2011-11-21 2013-05-22 Mitsubishi Electric R&D Centre Europe B.V. Apparatus for determining if a fault exists in a photovoltaic source
DE102012107316B4 (de) * 2012-08-09 2019-08-14 Solarzentrum Stuttgart GmbH Verfahren und Vorrichtung zum Prüfen von Photovoltaikmodulen
DE102014208462B4 (de) * 2014-05-06 2016-04-14 Forschungszentrum Jülich GmbH Verfahren zur Messung und Bewertung von Leistungsverlusten in Solarzelle, Solarmodul und Solaranlagen durch fotografische Lumineszenz- und Thermografiemessungen
MA52142B1 (fr) * 2018-03-16 2022-10-31 Sumitomo Electric Industries Système d'inspection d'un appareil photovoltaïque à concentration, et procédé d'inspection d'une partie de réception de lumière
CN108649892B (zh) * 2018-04-23 2020-08-04 华北电力科学研究院有限责任公司 光伏电站的缺陷诊断方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170124796A (ko) * 2016-05-03 2017-11-13 주식회사 트라이디더블유 태양광패널 검사시스템 및 검사방법
CN106656035A (zh) * 2016-12-13 2017-05-10 烟台中飞海装科技有限公司 一种光伏电站故障检测方法
CN107659266A (zh) * 2017-09-19 2018-02-02 华为数字技术(苏州)有限公司 太阳能发电系统的el检测方法和el检测系统
WO2019115843A1 (es) * 2017-12-14 2019-06-20 Acciona Energía, S. A. Sistema y método automatizados de inspección de una planta fotovoltaica
CN110535435A (zh) * 2019-08-12 2019-12-03 华为技术有限公司 一种光伏电站的电池片检测方法、装置及系统
CN111555716A (zh) * 2020-03-13 2020-08-18 远景智能国际私人投资有限公司 光伏阵列工作状态的确定方法、装置、设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4297272A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996022A (zh) * 2023-02-21 2023-04-21 华能新疆吉木萨尔新能源有限公司 一种光伏组件故障检测方法及系统
CN116109604A (zh) * 2023-02-21 2023-05-12 天合光能(宿迁)光电有限公司 用于TOPCon结构太阳能电池板的栅线检测方法
CN116109604B (zh) * 2023-02-21 2023-11-07 天合光能(宿迁)光电有限公司 用于TOPCon结构太阳能电池板的栅线检测方法
CN115996022B (zh) * 2023-02-21 2024-01-23 华能新疆吉木萨尔新能源有限公司 一种光伏组件故障检测方法及系统
CN116298497A (zh) * 2023-05-16 2023-06-23 合肥联宝信息技术有限公司 一种电子设备的功率检测方法、装置、系统及存储介质

Also Published As

Publication number Publication date
EP4297272A1 (en) 2023-12-27
EP4297272A4 (en) 2024-04-10
CN116324873A (zh) 2023-06-23
US20230421098A1 (en) 2023-12-28
CN116324873B (zh) 2024-04-12
AU2021429051A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2022178680A1 (zh) 一种光伏电池检测方法、装置、系统、介质及芯片
US10050446B2 (en) Device and method for global maximum power point tracking
US9048692B2 (en) Controlled converter architecture with prioritized electricity supply
US8531855B2 (en) Power conversion apparatus
US20120161526A1 (en) Dc power source conversion modules, power harvesting systems, junction boxes and methods for dc power source conversion modules
WO2018006681A1 (zh) 无功补偿方法、装置、光伏并网逆变器及计算机存储介质
US8335090B2 (en) Low cost high efficiency high power solar power conversion system circuit and solar power supply system
US20210376790A1 (en) Optimizer, photovoltaic power generation system, and iv curve scanning method for photovoltaic module
US11171489B2 (en) Control method and controller for string inverter, inverter, and inverter system
US8432143B2 (en) Electrically parallel connection of photovoltaic modules in a string to provide a DC voltage to a DC voltage bus
US20220376513A1 (en) Power systems with inverter input voltage control
KR102246043B1 (ko) Tcs 태양광 발전 시스템 및 발전 방법
KR20230111323A (ko) 성능 상태 회로와 우회 회로가 장착된 태양광 모듈용 직렬 연결 차동 전력 변환기
US11626834B2 (en) Power backfeed control method, converter, and photovoltaic power generation system
KR101099919B1 (ko) 태양전지를 이용한 전력변환 제어 장치
KR101236953B1 (ko) 고효율 태양광 발전방법
JP2020191698A (ja) 電力システム
KR20140093355A (ko) 스트링 전압 승압기를 포함하는 태양광 발전시스템
KR20240069650A (ko) 전력변환장치
KR20230099351A (ko) 성능상태회로와 우회회로가 장착된 태양광 모듈용 직렬 연결 차동 전력변환기
CN114024341A (zh) 一种分布式光伏控制器及光伏发电系统
KR20210047172A (ko) 태양광 모듈 2장의 최대 전력 점을 추적하는 직·병렬 접속반을 제어하는 방법
KR20170029199A (ko) 태양광 발전 장치
KR20120091720A (ko) 전원 공급 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021429051

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021429051

Country of ref document: AU

Date of ref document: 20210223

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021927125

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021927125

Country of ref document: EP

Effective date: 20230921