JP6524104B2 - 重量の削減されたガス排出プレートを備えたcvd反応炉のガス注入素子 - Google Patents

重量の削減されたガス排出プレートを備えたcvd反応炉のガス注入素子 Download PDF

Info

Publication number
JP6524104B2
JP6524104B2 JP2016544797A JP2016544797A JP6524104B2 JP 6524104 B2 JP6524104 B2 JP 6524104B2 JP 2016544797 A JP2016544797 A JP 2016544797A JP 2016544797 A JP2016544797 A JP 2016544797A JP 6524104 B2 JP6524104 B2 JP 6524104B2
Authority
JP
Japan
Prior art keywords
gas
gas discharge
gas distribution
core
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016544797A
Other languages
English (en)
Other versions
JP2017503925A (ja
Inventor
ゴピ、バスカル、パガダラ
ロング、ミヒャエル
ゲルスドルフ、マルクス
Original Assignee
アイクストロン、エスイー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイクストロン、エスイー filed Critical アイクストロン、エスイー
Publication of JP2017503925A publication Critical patent/JP2017503925A/ja
Application granted granted Critical
Publication of JP6524104B2 publication Critical patent/JP6524104B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、CVDプロセスを実行するための装置に関する。その装置は、反応炉ハウジングの中に配置されたガス注入素子を含み、プロセスチャンバーに面するガス排出プレートを含む。ガス排出プレートは、多孔質材と多数のガス排出開口を含み、ガス排出開口はガス注入素子の中に配置されたガス分配ボリュームからプロセスガスを供給される。
特許文献1にCVD反応炉が記載されている。特許文献1では、ガス注入素子の最も低いプレートであってプロセスチャンバーに面する最も低いプレートが、多孔質ボディからプロセスチャンバーの中にプロセスガスを注入するために構成される。ガス排出素子の水冷のより低い壁がその多孔質ボディの上に位置している。
特許文献2は、CVD反応炉のためのプロセスガス源を記載する。そのプロセスガス源の中では固体発泡体が使用される。
特許文献3は、特許文献4と同様に、拡散器として働き、ガス注入素子で使用される固体発泡体を記載する。
独国特許公開第10 2006 018 515号公報 国際公開第2012/175124号パンフレット ヨーロッパ特許第1 869 691号公報 独国特許公開第102 11 442号公報
本発明の基礎にある問題は、ガス注入素子の生産的側面、特に大きなコーティングエリアを持つCVD反応炉に対するガス注入素子の生産的側面を改善することである。
この問題は、請求項に記載される本発明によって解決される。
最初に、そして本質的に、ガス排出プレートが多孔質のコアを含み、プロセスガスと接触するその表面部分が密封されることが提案される。表面の密封はコーティングであることができる。コーティングは、セラミックまたは金属材料でされることができる。コーティングは、ガス排出プレートの広い面の上に堆積された薄いプレートによって構成されることができる。特に、コアを構成する多孔質ボディの2つの広い面であってお互いに離れて向く2つの広い面は、気密の薄いプレートまたはフィルムで各々コーティングされる。また、ガス排出開口の壁は同様の方法で密封される。密封の効果は、多孔質ボディの細孔が密封の領域で閉じられることである。本実施形態の結果として、固体材料で作られる従来のガス排出プレートよりもずっと軽量にガス排出プレートが作られる。ガス排出プレートの1つの広い面は、直接プロセスチャンバーの方向を向く。それはプロセスチャンバーの屋根を形成する。ガス排出プレートの反対側の広い面はガス注入素子の方向を向いており、特にガス注入素子の内側におけるガス分配ボリュームの壁またはガス注入素子の内側における冷却チャンバーの壁を形成することができる。このようにして作られたガス排出プレートは、大面積のガス排出プレートが重力の影響の元で下方に変形する傾向を有するという効果を弱める。本発明に係るガス排出プレートの”サンドイッチデザイン”は軽量発泡体ボディを使うが、それは中央領域においてガス排出プレートが垂れ下がることを防ぐ。多孔質ベースボディの2つの広い面上でセラミック接着剤を用いてコーティングが行われることができる。ガス排出開口の壁のコーティングはスリーブによって形成されることができる。この目的のために、多孔質のコアが両面を密封された後でガス排出プレートに多数の孔がドリルで開けられ、その孔の中に金属またはセラミックのスリーブが挿入される。また、セラミック接着剤でここに接続を生じさせることができる。広い面をそれぞれ密封する2つの層は、望ましくは同じ材料で作られる。多孔質のコアの空洞にプロセスガスが浸透することができないように密封が生じることができる。けれどもまた、その装置が真空プロセスで使われるときに圧力の平衡が生じることができるために、対象とされる方法では、多孔質のボディの表面領域を密封しないように定められる。特に、ガスが多孔質のボディに入ることができ、そこから出ることができるように、ガス排出プレートの輪郭にそって走る狭い面が密封されないか、または密封されない部分を含むように定められる。望ましくは、コアの材料は固体発泡体を含む。それはカーボン、例えばグラファイトで作られることができる。しかし、また、セラミック材料、例えば炭化ケイ素で作られることができる。多孔質のボディは耐熱であり、開口細孔を有する。それはインチ当たりおよそ100個の細孔の多孔率を有する。細孔は固体ボディを通って不規則に走る。それらは網状の構造を形成する。固体発泡体はガス排出プレートのコアを形成するが、それは導電性であることができる。ガス排出プレートが調節されることになるとき、これは特に有利である。接触エリアの形で電極がガス排出プレート上に与えられることができ、その電極を用いて電圧がガス排出プレートに印加されることができ、それで電流がガス排出プレートを通って流れることができる。これはガス排出プレートの加熱に導く。接触エリアは広い面のコーティングによって構成されることができる。そのとき、後者は導電性の材料で作られ、お互いに接続されない。そのとき、狭い面のコーティングは非導電性、例えばセラミック材料で作られることができる。けれどもまた、接触エリアは狭い面に割り当てられることができる。この場合には、広い面のコーティングは非導電性材料または不完全に導電性の材料、例えばセラミック材料で作られる。固体発泡体の全ての表面部分が密封されるように、密封は真空状態の下で起こることができる。これの効果は、本発明に従って設置されたガス注入素子が真空状態の下で使われるとき、固体発泡体の内部で圧力が増大しないことである。スリーブなどを使って、固体、例えばフィルムを貼り付けることによってそのコーティングを行うことができる。けれどもまた、電気めっき、例えば電気めっき槽を利用して、またはCVDプロセスを用いてコーティングが実行されるように定められる。多孔質のコアのCVD密封は、特に炭化ケイ素の固体発泡体上に炭化ケイ素の層を堆積させることによって起こる。本発明の変形によれば、ガス注入素子がガス排出プレートを含み、ガス排出プレートが複数のガス排出開口を含み、ガス排出開口を通ってお互いに異なるプロセスガスがプロセスチャンバーに入ることができるように定められる。複数のガス排出開口は、各場合において異なるガス分配ボリュームに割り当てられる。そのとき、異なるガス分配ボリュームが異なるガス排出開口に供給する。また、複数のガス分配経路が与えられ、その各々が複数のガス排出開口に供給する。望ましくは、ガス分配経路はガス排出プレートの内部を走る。流れに関してお互いに接続されていない2つのガス分配ボリュームが与えられ、それらは別々の供給ラインによって供給される。各ガス分配ボリュームは多数のガス排出開口に供給する。それらのガス排出開口は、異なるガス分配ボリュームに属するが、列の形でお互いのそばに並べられることができる。1つの列は、各場合においてガス分配経路に割り当てられることができる。パイプがガス分配経路の底面から離れて導くことができ、それらのパイプがガス排出プレートのガス排出エリアに現れる。望ましくは、ガス分配ボリュームはガス分配プレートのボリュームの内部に完全に配置されることができる。このボリュームは、ガス排出プレートの2つの広い面の間に広がる。そのガス分配ボリュームは、くし状または格子状に並べられた複数のガス分配経路によって構成されることができる。上記ガス分配経路の間に、流れに関してガス排出プレートの上に配置されたガス分配ボリュームに接続されたガス分配経路が走ることができる。それらのガス分配経路は開いた経路として構成されることができ、その経路の底はパイプを経由してガス排出エリアに接続されることができる。けれどもまた、それらのガス分配経路は閉じた経路として構成されることができ、例えばそれらの経路は金属層によって閉じられることができる。隣り合ったガス分配経路の間には、多孔質のコアの材料が配置される。
本発明の実施形態が、添付図面を参照して以下に説明される。
主要な機能素子のみが図示されたCVD反応炉のハウジングの断面図である。 第1の実施形態に係る図1のIIの詳細を示す。 第2の実施形態に係る図2と同じ部分を示す。 第3の実施形態に係る図1と同様の断面図を示す。 図4のVの詳細を示す。 第4の実施形態に係る図5と同じ部分を示す。 図8のVII−VII線に沿う第5の実施形態に係るガス排出素子2の断面図である。 図7のVIII−VIII線に沿う断面図である。
図1に示されるCVD反応炉はハウジング1を含み、ハウジング1は環境に対してその内側を気密に封止する。ガス注入素子2がCVD反応炉1の内側に配置されている。ガス注入素子2は、空洞の空間を形成するボディである。空洞の空間は、ガス分配ボリューム7を形成し、供給ライン15を通って外部からプロセスガスを供給される。図1には、1つのガス分配ボリューム7のみが示されている。本実施形態には示されていないが、複数のガス分配ボリュームが存在することができる。それらはお互いから分離されており、対応する供給ラインを通ってそれらの中に異なるプロセスガスが供給されることができる。
ガス注入素子2は、ガス排出プレート8を含む。ガス排出プレート8は、多数のガス排出開口9を含み、シャワーヘッドの方法で配置される。ガス分配ボリューム7に供給されるプロセスガスは、ガス排出開口9を通って排出されることができる。従って、ガス分配ボリューム7は、特にグリッドポイント上に配置された多数のガス排出開口9に供給する。
複数のガス分配ボリュームが与えられるならば、各ガス分配ボリュームはそれぞれのガス分配ボリュームに個別に割り当てられたガス排出開口9に接続され、それらのガス排出開口を通ってガス注入素子2の下に配置されたプロセスチャンバー3にプロセスガスが流れることができる。
本実施形態には示されていないが、ガス排出プレート8の真上に冷却チャンバーが与えられ、その冷却チャンバーを通って冷却液、例えば水が流れることができる。そのような実施形態の場合には、ガス注入素子2に面しているガス排出プレート8の広い面が冷却チャンバーの壁を形成する。
図1に示される実施形態では、ガス注入素子2に面しているガス排出プレート8の壁はガス分配ボリューム7の内壁を形成する。
ガスバッフル板がガス分配ボリューム7の内側に配置される。ガスバッフル板は、ガスの一様な分配およびガス排出開口9からのガス排出流の一様な形成のために必要である。
ガス排出プレート8は水平に広がる。サセプタ4は水平に置かれ、ガス排出プレート8の下に配置される。サセプタ4はグラファイト、特にコーティングされたグラファイト、モリブデンまたは他の適切な材料で作られることができる。コーティングされる基板5がサセプタ4の上にある。
サセプタ4の下にヒーター6が配置される。それは、抵抗ヒーターまたはRFヒーターであることができる。サセプタ4はこのヒーター6によってプロセス温度に加熱される。ガス排出開口9からプロセスチャンバー3に導入されるプロセスガスはその温度で熱分解されるか、またはお互いに化学反応を起こすことができ、それで薄い一様な層が基板5の上に堆積することができる。
図1と同様に図4は、ハウジング1、その中に配置されたガス注入素子2、およびコーティングされるべき1つ以上の基板5が置かれるためのサセプタ4を有するOVPD反応炉の構造を図示する。OVPDシステムでは、OLEDディスプレイを生産するために有機層を堆積する。これは本質的に凝結プロセスで起こり、そこにおいて基板5が冷却されたサセプタ4の上に置かれる。この目的のために、サセプタ4は、例えば冷却管20の形で冷却チャンバーを含み、冷却管20を通って液体冷却媒体がサセプタ4の中を流れる。この実施形態において、ガス注入素子2は加熱される。特に、ガス排出プレート8は抵抗加熱されるように定められる。この目的のために、それは導電性材料から作られることができ、それを通って電流が流れることができる。
本実施形態では、ガス排出プレート8はガス注入素子2にその端でのみ接続される。ガス排出プレート8の中央領域が下にたわむことを防ぐために、本発明に係るガス排出プレート8は軽量構造技術で製造される。それは低密度のコアを含み、プロセスガスと接触するコアの表面部分は密封される。密封は、連続した表面が密封のために使われる材料から形成されるように実行される。本実施形態では、お互いから離れて向く2つの広い面10,11は全体的に密封される。更に、ガス排出開口9の壁は密封層13で覆われる。
サセプタ4の底部エリアは、ガス排出プレート8の底部エリアと一致しているが、数平方メートルに達することができる。サセプタ4とガス排出プレート8の底部エリアは、円形、多角形、例えば正方形であることができる。
図2,図3,図5,および図6に示される実施形態では、ガス排出プレート8はコア12を含み、コア12は耐熱の多孔質材で製造される。ここで、それはインチ当たりおよそ100個の細孔密度を持った固体発泡体を含む。固体発泡体は、インチ当たり50から200個の細孔密度を持つものが使用されることができる。それは開口細孔の固体発泡体を含み、その固体発泡体は炭化ケイ素またはグラファイトで作られる。けれどもまた、その固体発泡体は他の適切なセラミック材料または金属で作られることができる。CVDコーティングがコーティング10,11,13を生じることができ、細孔が閉じられるように、例えば発泡体の表面をCVDプロセスにおいて炭化ケイ素または金属でコーティングすることができる。望ましくは、これは真空状態の下で起こる。
図2に示される実施形態では、薄いプレートが密封層10,11を形成するために使用された。それは金属プレートであることができるが、またセラミックプレートであることもできる。そのプレートは耐熱性のセラミック接着剤によって多孔質のコア12に接続される。
ガス排出開口はドリルで穴をあけることによって作られる。それから、穴の壁が密封材料、例えば金属層13で密封される。
図3に示される第2の実施形態では、多孔質材で作られるコア12の広い面は数ミクロンの厚さの薄い層10,11でそれぞれコーティングされる。それらの層は薄膜の材料であることができる。けれどもまた、電気めっきまたはCVDプロセスで層10,11を堆積することができる。それらの層は1ミクロンの厚さまでであることができる。ガス排出プレートの全体の面積は5mまでまたはそれ以上であることができる。
ここでもまた、ガス排出開口9は穴によって構成され、それらは発泡体12の2つの広い面が密封された後で作られる。それから、スリーブ14が作成済みの穴に挿入される。それらのスリーブは半径方向に外の方へ向くカラーを含むことができる。それらのスリーブの端は例えばセラミック接着剤によって端面密封に接続され、それで気密接続が生じる。
密封は真空状態の下で起こる。特に、ガス排出プレート8の全ての表面部分が密封され、それで発泡体の内側がその外側に対して気密に密封されるように定められる。従って、外側からガスが多孔質のコアの細孔の中に入ることはできない。けれどもまた、対象とされる方法では、ガス排出プレート8の表面部分は密封されず、密封されていない領域で圧力の平衡が起こることができるように定められる。従って、圧力が変化した場合には、ガスはガス排出プレート8の中に入ることができ、またガス排出プレート8から出ることができる。
図5と図6に示される実施形態は、電気回路を用いて加熱されることができるガス排出プレート8を示す。図5に示される実施形態では、2つの広い面10,11は導電性の材料、例えば金属で作られる。従って、2つの相互に向かい合う広い面のコーティング10,11は、接触エリアを形成する。それらはお互いから電気的に分離される。広い面のコーティング10は接触端子16に接続され、広い面のコーティング11は接触端子17に接続される。加熱電圧UHが両方の接触端子16,17に印加されることができる。これは、後者を加熱するために、例えばグラファイト発泡体で作られたガス排出プレート8を通る電流に導く。
図6に示される実施形態では、2つの広い面のコーティング10,11は非導電性の材料、例えばセラミック材料で作られる。金属の接触エリア18,19が2つの相互に対向する狭い面に堆積される。接触エリア18,19は、基本的にそれぞれの狭い面の全体の長さに渡って広がる。接触エリア18,19には接触端子16,17が与えられ、それで加熱電圧UHをガス排出プレート8に印加することができる。これは、ガス排出プレート8を通って流れる電流およびガス排出プレート8の加熱に導く。
図7と図8に示される第5の実施形態では、ガス注入素子2は流れの観点からお互いに接続されない供給ライン15,30を含む。供給ライン15は、ガス排出プレート8の上に配置されたガス分配ボリューム7に供給する。このガス分配ボリューム7は溝の形状のガス分配経路21に接続され、ガス分配経路21はガス排出プレート8の内側に延びる。また、ガス分配経路21の深さは0であることができる。そのとき、ガス分配経路21の側壁の高さは0であり、ガス分配経路21の底23は金属層10で平らに終わり、金属層10はガス分配ボリューム7に対して多孔質のコア12を分離する。けれども、本実施形態では、ガス分配経路21はガス排出プレート8の材料の厚さのおおよそ半分に渡って延びる。そして、その材料の厚さは基本的に多孔質のコア12によって形成され、その広い面10,11は金属の層を含む。
ガス注入素子2の幅全体に渡って延びる2つのガス分配経路21の間にいずれの場合にも、ガス分配ボリューム7に対して閉じられたガス分配経路26が延びる。ガス分配経路21は狭い壁25で端を閉じられているのに対して、全てのガス分配経路26はそれらの狭い側の端でお互いに接続されている。これは、ガス注入素子2の外壁31に沿って走る横向きの経路を介して起こる。その経路システムは第2のガス分配ボリューム7’を形成する。第2のガス分配ボリューム7’は、供給ライン30と30’を通ってプロセスガスを供給される。長方形の横断面を持つガス分配経路21,26は2つの側壁22,27を有している。2つの側壁22,27は、お互いから離れて間隔を空けられており、お互いに平行に、そして他の各ガス分配経路26,21の側壁27,22と平行に走る。ガス分配経路21,26は底面23,28を形成する。底面23,28は、ガス排出プレートのガス排出エリアに複数のパイプ29によって各々接続される。
従って、列の形で並べられたガス排出開口9は、流れに関してガス分配経路21に接続され、ガス排出開口9’はガス分配経路26に接続される。ここでまた、ガス排出プレート8は多孔質材で作られたコアを含み、広い面10,11のみが金属プレートを含む。
図7と図8に示される実施形態では、異なるガス分配ボリュームに接続された2つのガス分配経路26,21がお互いに交互に配置される。けれどもまた、いずれの場合にも異なるガス分配ボリュームに接続された3つ以上のガス分配経路がお互いに交互に配置されるように定められる。この場合、2つの異なるプロセスガスが異なるガス排出開口9,9’を通ってプロセスチャンバーに送られることができるのみならず、2つ以上の異なるプロセスガスがいずれの場合にも個別に割り当てられたガス排出開口を通ってプロセスチャンバーに送られることができる。
上述した解説は、本出願によって全体としてカバーされ、少なくとも以下の特徴の組み合わせによって各々の場合に独立して先行技術を更に改善する本発明を説明するために役立つ。すなわち:
多孔質材がガス排出プレート8のコア12を形成し、プロセスガスと接触するその表面部分が密封されることを特徴とする装置。
プロセスガスと接触するコアの表面部分が、コーティング、特にセラミックまたは金属層によって密封されることを特徴とする装置。
コア12の細孔が閉じられるように、お互いから離れて向くガス排出プレート8の2つの広い面10,11が密封されることを特徴とする装置。
ガス排出プレート8のコア12の細孔が閉じられるように、またはガス排出プレート8のコア12の表面部分が密封されず、それで圧力が変化した場合にはガスがガス排出プレート8の中に入ることができ、そこから出ることができるように、穴によって形成されるガス排出開口9の壁13が密封されることを特徴とする装置。
コア12の材料が固体発泡体、特にカーボン、グラファイトまたは炭化ケイ素または金属で作られた固体発泡体であるか、またはコア12が耐熱材料から作られることを特徴とする装置。
コア12は導電性材料で作られる接触エリア10,11;18,19を含み、それらは接触端子16,17に接続され、ガス注入素子2を加熱するために接触端子16,17に電気加熱電圧UHが印加されることができることを特徴とする装置。
コア12がインチ当たり100個の細孔の多孔率を有する開口細孔の固体発泡体であることを特徴とする装置。
ガス排出開口9,9’の壁が穴に挿入されるスリーブ14またはパイプ24,29によって構成されることを特徴とする装置。
ガス排出プレート8の2つの密封された広い面において、下方を向く広い面11がプロセスチャンバー3の屋根を形成し、上方を向く広い面10がガス分配ボリューム7の壁を形成することを特徴とする装置。
ガス排出プレート8の中を走り、いずれの場合にも複数のガス排出開口9,9’に供給するガス分配経路21,26を特徴とする装置。
流れに関してお互いに接続されておらず、別々の供給ライン15,30によって供給される少なくとも2つのガス分配ボリューム7,7’が、流れに関して異なるガス排出開口9,9’に接続されていることを特徴とする装置。
お互いのそばに直接並べられたガス分配経路21,26が異なるガス分配ボリューム7,7’に割り当てられており、異なるプロセスガスがプロセスチャンバーの中にお互いから分離されて供給されることができることを特徴とする装置。
ガス分配ボリューム7’が、ガス排出プレート8の広い面10,11によって境界を形成されるガス排出プレート8のボリュームの内部に配置されることを特徴とする装置。
開示される全ての特徴は(それら自体で、しかしまた、お互いとの組み合わせで)本発明に不可欠である。従ってまた、関連した/添付する優先権書類(先願のコピー)の開示内容は、これらの書類の特徴を本出願の請求項に導入する目的のために、本出願の開示における全体の内容の中に含まれる。従属項は、特にこれらの請求項に基づいて分割出願をすることができるように、それらの特徴で先行技術の独立した発明の改良を特徴づける。
1…反応炉のハウジング
2…ガス注入素子
3…プロセスチャンバー
4…サセプタ
5…基板
6…ヒーター
7,7’…ガス分配ボリューム
8…ガス排出プレート
9,9’…ガス排出開口
10…広い面のコーティング
11…広い面のコーティング
12…コア
13…壁、(密封)層
14…スリーブ
15…供給ライン
16…接触端子
17…接触端子
18…接触エリア
19…接触エリア
20…冷却管
21…ガス分配経路
22…側壁
23…底面
24…パイプ
25…狭い壁
26…ガス分配経路
27…側壁
28…底面
29…パイプ
30,30’…供給ライン
31…外壁
UH…加熱電圧

Claims (13)

  1. 反応炉ハウジング(1)の中に配置されたガス注入素子(2)を含み、プロセスチャンバー(3)に面するガス排出プレート(8)を含み、当該ガス排出プレート(8)が多孔質材と多数のガス排出開口(9)を含み、当該ガス排出開口(9)が前記ガス注入素子(2)の中に配置されたガス分配ボリューム(7)からプロセスガスを供給され、
    前記多孔質材が前記ガス排出プレート(8)のコア(12)を形成し、当該コア(12)の細孔が閉じられるように、お互いから離れて向く前記ガス排出プレート(8)の2つの広い面(10,11)と前記ガス排出開口(9)の壁(13)とが密封される、
    ことを特徴とするCVDプロセスを実行するための装置。
  2. プロセスガスと接触する前記コア(12)の表面部分が、セラミックまたは金属層によって密封されることを特徴とする請求項1に記載の装置。
  3. 前記コア(12)の材料が固体発泡体であるか、または前記コア(12)が耐熱材料から作られることを特徴とする請求項1または2に記載の装置。
  4. 前記固体発泡体が、カーボン、グラファイトまたは炭化ケイ素または金属で作られた固体発泡体であることを特徴とする請求項に記載の装置。
  5. 導電性の前記コア(12)が導電性材料で作られる接触エリア(10,11;18,19)を含み、当該接触エリア(10,11;18,19)が接触端子(16,17)に接続され、当該接触端子(16,17)に前記ガス注入素子(2)を加熱するために電気加熱電圧(UH)が印加されることができることを特徴とする請求項1ないしのいずれか1項に記載の装置。
  6. 前記コア(12)がインチ当たり100個の細孔の多孔率を有する開口細孔の固体発泡体であることを特徴とする請求項1ないしのいずれか1項に記載の装置。
  7. 前記ガス排出開口(9)の壁が穴に挿入されるスリーブ(14)によって構成されることを特徴とする請求項1ないしのいずれか1項に記載の装置。
  8. 前記ガス排出プレート(8)の2つの密封された広い面において、下方を向く広い面(11)が前記プロセスチャンバー(3)の屋根を形成し、上方を向く広い面(10)が前記ガス分配ボリューム(7)の壁を形成することを特徴とする請求項1ないしのいずれか1項に記載の装置。
  9. 前記ガス排出プレート(8)が、前記ガス排出開口(9)とは異なる多数のガス排出開口(9’)を含み、
    前記ガス排出プレート(8)の中を走り、多数の前記ガス排出開口(9,9’)にプロセスガスを供給するガス分配経路(21、26)を有する、
    ことを特徴とする請求項1ないしのいずれか1項に記載の装置。
  10. 前記ガス分配ボリューム(7)と流れに関して接続されておらず、前記ガス排出開口(9’)にプロセスガスを供給するガス分配ボリューム(7’)を有し、
    前記2つのガス分配ボリューム(7,7’)が別々の供給ライン(15,30)によってプロセスガスを供給される、
    とを特徴とする請求項に記載の装置。
  11. 前記ガス注入素子(2)の全体の長さに渡って延びる前記ガス分配経路(21,26)が列の形でお互いのそばに並べられていることを特徴とする請求項9または10に記載の装置。
  12. お互いのそばに直接並べられた前記ガス分配経路(21,26)が異なる前記ガス分配ボリューム(7,7’)に割り当てられており、異なるプロセスガスが前記プロセスチャンバーの中にお互いから分離されて供給されることができることを特徴とする請求項10に記載の装置。
  13. 前記ガス分配ボリューム(7’)が、前記ガス排出プレート(8)の広い面(10,11)によって境界を形成される前記ガス排出プレート(8)のボリュームの内部に配置されることを特徴とする請求項10または12に記載の装置。
JP2016544797A 2014-01-10 2014-12-17 重量の削減されたガス排出プレートを備えたcvd反応炉のガス注入素子 Expired - Fee Related JP6524104B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102014100252.0 2014-01-10
DE102014100252 2014-01-10
DE102014118704.0A DE102014118704A1 (de) 2014-01-10 2014-12-16 Gaseinlassorgan eines CVD-Reaktors mit gewichtsverminderter Gasaustrittsplatte
DE102014118704.0 2014-12-16
PCT/EP2014/078262 WO2015104155A1 (de) 2014-01-10 2014-12-17 Gaseinlassorgan eines cvd-reaktors mit gewichtsverminderter gasaustrittsplatte

Publications (2)

Publication Number Publication Date
JP2017503925A JP2017503925A (ja) 2017-02-02
JP6524104B2 true JP6524104B2 (ja) 2019-06-05

Family

ID=53484815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544797A Expired - Fee Related JP6524104B2 (ja) 2014-01-10 2014-12-17 重量の削減されたガス排出プレートを備えたcvd反応炉のガス注入素子

Country Status (7)

Country Link
US (1) US10323322B2 (ja)
JP (1) JP6524104B2 (ja)
KR (1) KR20160106169A (ja)
CN (1) CN105899709B (ja)
DE (1) DE102014118704A1 (ja)
TW (1) TWI652371B (ja)
WO (1) WO2015104155A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6855958B2 (ja) * 2017-06-23 2021-04-07 三菱マテリアル株式会社 プラズマ処理装置用電極板およびプラズマ処理装置用電極板の製造方法
CN111167683A (zh) * 2018-11-13 2020-05-19 耿晋 一种进气装置及干燥单元
DE102020117669A1 (de) 2020-07-03 2022-01-05 Aixtron Se CVD-Reaktor mit aus einem Graphitschaum bestehenden gasleitenden Bauteilen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123989A (en) * 1977-09-12 1978-11-07 Mobil Tyco Solar Energy Corp. Manufacture of silicon on the inside of a tube
US5248253A (en) * 1992-01-28 1993-09-28 Digital Equipment Corporation Thermal processing furnace with improved plug flow
JPH10298763A (ja) * 1997-04-25 1998-11-10 Ulvac Japan Ltd Cvd装置用ガス導入ノズル
JP4371543B2 (ja) * 2000-06-29 2009-11-25 日本電気株式会社 リモートプラズマcvd装置及び膜形成方法
DE10211442A1 (de) 2002-03-15 2003-09-25 Aixtron Ag Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat
CN101151702B (zh) 2005-04-05 2010-05-19 松下电器产业株式会社 用于等离子体处理设备的气体喷头盘
DE102006018515A1 (de) 2006-04-21 2007-10-25 Aixtron Ag CVD-Reaktor mit absenkbarer Prozesskammerdecke
JP2008205219A (ja) 2007-02-20 2008-09-04 Masato Toshima シャワーヘッドおよびこれを用いたcvd装置
US20090226614A1 (en) * 2008-03-04 2009-09-10 Tokyo Electron Limited Porous gas heating device for a vapor deposition system
US7816200B2 (en) * 2008-04-22 2010-10-19 Applied Materials, Inc. Hardware set for growth of high k and capping material films
JP5264938B2 (ja) * 2011-01-13 2013-08-14 株式会社半導体理工学研究センター 中性粒子照射型cvd装置
WO2012175124A1 (en) 2011-06-22 2012-12-27 Aixtron Se Vapor deposition material source and method for making same

Also Published As

Publication number Publication date
US20160326644A1 (en) 2016-11-10
US10323322B2 (en) 2019-06-18
TWI652371B (zh) 2019-03-01
CN105899709A (zh) 2016-08-24
TW201533264A (zh) 2015-09-01
WO2015104155A1 (de) 2015-07-16
JP2017503925A (ja) 2017-02-02
KR20160106169A (ko) 2016-09-09
CN105899709B (zh) 2019-12-24
DE102014118704A1 (de) 2015-07-16

Similar Documents

Publication Publication Date Title
JP7292256B2 (ja) モノリシックセラミックガス分配プレート
US11746414B2 (en) Temperature control assembly for substrate processing apparatus and method of using same
JP6524104B2 (ja) 重量の削減されたガス排出プレートを備えたcvd反応炉のガス注入素子
KR20180070971A (ko) 기판 처리 장치
TWI828737B (zh) 用於提供多種材料至處理腔室的噴淋頭
JP6050860B1 (ja) プラズマ原子層成長装置
JP2017521563A (ja) 複数の液体または固体の原材料からcvdまたはpvd装置のために蒸気を生成する蒸気発生装置および蒸気発生方法
JP2016225325A (ja) 原子層成長装置
KR101010389B1 (ko) 플라즈마 cvd 장치 및 성막방법
CN109312457A (zh) 涂层装置以及涂层方法
JP2021521648A (ja) 加熱されるセラミック面板
KR101202425B1 (ko) 실리콘카바이드 코팅 장치
KR101585924B1 (ko) 탄화규소 써멀 화학기상증착장치의 가스반응로
CN101325836A (zh) 等离子体cvd装置及成膜方法
KR101034032B1 (ko) 박막증착장치
US20200270744A1 (en) Systems and methods for vaporization and vapor distribution
JP2001247970A (ja) 多孔質複合材料の製造方法
KR20120110823A (ko) 박막 균일도 개선을 위한 복층형 박막증착장치
WO2023054531A1 (ja) シャワープレート
TWI835740B (zh) 單片陶瓷氣體分配板
KR101512329B1 (ko) 배치식 기판처리 장치
KR20190068323A (ko) 화학 기상 침착 장치
JP4505366B2 (ja) アモルファス炭素膜の成膜方法
KR101033165B1 (ko) 폴리실리콘 증착장치
KR101497373B1 (ko) 반응가스의 혼합 및 가열수단을 구비한 서셉터 제조장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6524104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees