JP6519264B2 - 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極およびこれを用いた非水電解質二次電池 Download PDF

Info

Publication number
JP6519264B2
JP6519264B2 JP2015064797A JP2015064797A JP6519264B2 JP 6519264 B2 JP6519264 B2 JP 6519264B2 JP 2015064797 A JP2015064797 A JP 2015064797A JP 2015064797 A JP2015064797 A JP 2015064797A JP 6519264 B2 JP6519264 B2 JP 6519264B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015064797A
Other languages
English (en)
Other versions
JP2016184528A (ja
Inventor
高谷 真弘
真弘 高谷
新田 芳明
芳明 新田
健児 小原
健児 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015064797A priority Critical patent/JP6519264B2/ja
Publication of JP2016184528A publication Critical patent/JP2016184528A/ja
Application granted granted Critical
Publication of JP6519264B2 publication Critical patent/JP6519264B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用正極およびこれを用いた非水電解質二次電池に関する。
現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池が商品化されている。非水電解質二次電池は、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持させた電解質層を介して接続された構成を有している。そして、リチウムイオン等のイオンが電極活物質中に吸蔵・放出されることにより、電池の充放電反応が起こる。
ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池は、携帯機器等だけでなく、ハイブリッド自動車(HEV)、電気自動車(EV)、および燃料電池自動車等の電動車両の電源装置にも利用されつつある。
電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。電動車両用の非水電解質二次電池の正極に使用する正極活物質としては、層状複合酸化物であるリチウムコバルト系複合酸化物が、4V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安がある。また、コバルトの原料価格が高騰する可能性もある。そこで、コバルトの含有比率の少ない複合酸化物が望まれている。
この様な複合酸化物として、リチウム−ニッケル−マンガン−コバルト複合酸化物(以下、「NMC複合酸化物」とも称する)が提案されている。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有する。遷移金属Mの1原子あたり1個のLi原子が含まれ、高い容量を有しうる。加えて、高い熱安定性を有しているため、正極活物質として特に期待されている。
一方、活物質層の厚さを厚膜化したり、活物質層の密度を高めたりすることにより非水電解質二次電池の高出力化および高容量化を図ることも検討されている。例えば、特許文献1では、特定の構造を有する導電助剤粒子を用いることにより、活物質層を厚膜化・高密度化した場合であっても、活物質と電解液とを良好に接触させることができるため、高出力な電池を得ることができる、としている。
特開2012−28215号公報
しかしながら、本発明者らの検討によると、NMC複合酸化物を用いて正極活物質層の厚膜化および高密度化を試みたところ、正極活物質層の剥離強度が低下したり、電解液吸液性が低下したりして、十分な電池性能が得られない場合があることが判明した。
そこで本発明は、NMC複合酸化物を含み、厚膜化および高密度化された正極活物質層を有する非水電解質二次電池用正極において、正極活物質層の剥離強度および電解液吸液性を向上させる手段を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意研究を行った。そして、NMC複合酸化物の真密度に対するタップ密度の割合を所定の範囲とすることにより、上記課題が解決されることを見出し、本発明を完成させた。
すなわち、本発明の非水電解質二次電池用正極は、正極集電体の表面に正極活物質層が形成されてなる。当該正極活物質層は、密度が3.0〜3.6g/cmであり、厚さが120〜150μmであり、正極活物質として一般式:LiNiMnCoで表される組成を有するNMC複合酸化物を含む。ここで、一般式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である。そして、NMC複合酸化物は、(タップ密度/真密度)×100[%]で表される充填率が49.5〜60%であることを特徴とする。
本発明によれば、NMC複合酸化物の充填率を49.5%以上とすることにより、正極活物質層用スラリー中の、正極活物質と他の成分(例えば、バインダ、導電助剤など)との分散性が良好になり、正極活物質層の剥離強度を向上させることができる。一方、NMC複合酸化物の充填率を60%以下とすることにより、正極活物質の空孔に電解液が浸透しやすくなるため、十分な電解液吸液性を確保することが可能となる。
非水電解質二次電池の一実施形態である、扁平型(積層型)の双極型でないリチウムイオン二次電池の基本構成を示す断面概略図である。図2に示すA−A線に沿った断面概略図である。 非水電解質二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
本発明の一形態に係る非水電解質二次電池用正極は、正極集電体の表面に正極活物質層が形成されてなる。当該正極活物質層は、密度が3.0〜3.6g/cmであり、厚さが120〜150μmであり、正極活物質として一般式:LiNiMnCoで表される組成を有するNMC複合酸化物を含む。ここで、一般式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である。そして、NMC複合酸化物は、(タップ密度/真密度)×100[%]で表される充填率が49.5〜60%であることを特徴とする。
本形態の非水電解質二次電池用正極は、上記構成を有することにより、厚膜化および高密度化された正極活物質層を有する非水電解質二次電池用正極において、正極活物質層の剥離強度および電解液吸液性を向上させることができる。
以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
本明細書では、非水電解質二次電池用正極を単に「正極」と、非水電解質二次電池を単に「二次電池」または「電池」とも称する。
<非水電解質二次電池>
まず、本発明に係る非水電解質二次電池の全体構造について、図面を用いて説明する。図1は、本発明の一実施形態であるリチウムイオン二次電池の概要を模式的に表した断面概略図である。なお、本明細書においては、図1に示す扁平型(積層型)の双極型でないリチウムイオン二次電池を例に挙げて詳細に説明するが、本発明の技術的範囲はかような形態のみに制限されない。
[電池の全体構造]
図1は、扁平型(積層型)の双極型ではないリチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態のリチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示すリチウムイオン二次電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するとも言える。
なお、発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面正極活物質層が配置されているようにしてもよい。
正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接などにより取り付けられていてもよい。
なお、図1では、扁平型(積層型)の双極型ではないリチウムイオン二次電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。以下、本発明の一実施形態であるリチウムイオン二次電池を構成する各部材について説明する。
[正極]
正極は、集電体の表面に正極活物質を含む正極活物質層が形成されてなる。正極は、負極とともにリチウムイオンの授受により電気エネルギーを生み出す機能を有する。
(集電体)
集電体は導電性材料から構成され、その一方の面または両面に正極活物質層が配置される。集電体を構成する材料に特に制限はなく、例えば、金属や、導電性高分子材料または非導電性高分子材料に導電性フィラーが添加された導電性を有する樹脂が採用されうる。
金属としては、アルミニウム、ニッケル、鉄、ステンレス鋼(SUS)、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、あるいはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。これらのうち、導電性や電池作動電位の観点からは、アルミニウム、ステンレス鋼、または銅を用いることが好ましい。
また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE))、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、およびポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限されないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限されないが、アセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群から選択される少なくとも1種を含むことが好ましい。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。
集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はないが、通常は1〜100μm程度である。
(正極活物質層)
本形態において、正極活物質層は、正極活物質としてリチウム−ニッケル−マンガン−コバルト複合酸化物(以下、「NMC複合酸化物」とも称する)を必須に含む。
リチウム−ニッケル−マンガン−コバルト複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有する。遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン複合酸化物の2倍、つまり供給能力が2倍になり、高い容量を有しうる。加えて、高い熱安定性を有しているため、正極活物質として特に有利である。
本明細書において、NMC複合酸化物は、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Mnの原子比を表し、dは、Coの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。なお、上記NMC複合酸化物は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。
一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。
また、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である複合酸化物の正極活物質であると、容量と寿命特性とのバランスを向上させるという観点からは好ましい。
本形態において、NMC複合酸化物は、(タップ密度/真密度)×100[%]で表される充填率が49.5〜60%であることを必須とする。ここで、真密度は、物体の表面や内部の空孔の部分を除いた物体そのものの体積で、物体の質量を割った値を意味する。一方、タップ密度は、粒子を容器に詰める際に振動させてより充填させて測定した嵩密度を意味する。したがって、上記充填率の値が大きいほど、粒子の表面や内部の空孔が少ないことを意味する。なお、本明細書のおけるNMC複合酸化物のタップ密度および真密度は、それぞれ、後述の実施例に記載の方法によって得られる値を採用するものとする。
本形態では、上記充填率は必須に49.5〜60%であり、好ましくは51〜58%であり、より好ましくは51〜52.85%である。充填率を49.5%以上とすることにより、正極活物質層の剥離強度が向上する。より詳細には、集電体と正極活物質層との密着性、または、正極活物質層中における各成分同士の密着性が高まる。このような作用効果が得られる理由は不明であるが、本発明者らは、以下のように推測している。すなわち、充填率を49.5%以上とすることにより、粒子の空孔が相対的に減少する。これにより、正極活物質層用スラリーを調製した際に、スラリー中の正極活物質と、バインダーや導電助剤等の添加剤とが良好に分散するため、正極活物質層を構成する各成分同士の密着性が高まり、結果的に正極活物質層の剥離強度が向上するものと考えられる。一方、充填率を60%以下とすることにより、粒子がある程度空孔を有することになるため、粒子の空孔内部に電解液が浸透しやすくなる。その結果、正極活物質層への電解液の吸液性が向上するものと考えられる。なお、上記で説明したメカニズムはあくまでも推測であり、当該メカニズムによって本発明が限定的に解釈されることはない。
本形態において、NMC複合酸化物の真密度は、4.4〜4.8g/cmであることが好ましく、4.5〜4.7g/cmであることがより好ましい。真密度が4.4g/cm以上であると、活物質同士が適度に密着するため体積エネルギー密度が向上できる点で好ましい。一方、真密度が4.8g/cm以下であると、活物質内に適度な空隙が存在し充放電サイクルに伴う膨張収縮による構造の歪みを抑制、また粒子間の剥がれを抑制し長期間使用による容量の低下を抑制できる点で好ましい。
また、本形態において、NMC複合酸化物のタップ密度は、2.2〜2.8g/cmであることが好ましく、2.3〜2.5g/cmであることがより好ましい。タップ密度が2.2g/cm以上であると、粒子の空孔が減少するため、粒子の割れなどが抑制される。そのため、正極活物質層用スラリーを調製した際に、微粒子が生じにくく、スラリーの高粘度化が抑えられるため、正極活物質層の異常(表面のブツ、凹凸、白やけ等)が生じにくくなる。一方、タップ密度が2.8g/cm以下であると、電解液吸液性の向上や、NMC活物質製造上の観点から好ましい。
本形態において、NMC複合酸化物は、上記の真密度およびタップ密度との関係を有することに加え、所定の粒径分布を有することが好ましい。具体的には、粒径分布の小粒径側から10%に位置する粒子の粒径として定義されるD10は、2.6μm以上であることが好ましく、3μm以上であることがより好ましい。また、粒径分布の小粒径側から50%に位置する粒子の粒径として定義されるD50(メディアン径)は、7μm以上であることが好ましく、8μm以上であることがより好ましい。D10および/またはD50が上記範囲であると、正極活物質層用スラリーの粘度が高くなり過ぎないため、集電体上にスラリーを良好に塗布することができ、正極活物質層の異常(表面のブツ、凹凸、白やけ等)が生じにくくなる。一方、D10および/またはD50の上限値は特に制限されないが、初期の効率向上等の観点から、一般には、D10は10μm以下であることが好ましく、D50は20μm以下であることが好ましい。本明細書のおけるNMC複合酸化物のD10およびD50は、それぞれ、後述の実施例に記載の方法によって得られる値を採用するものとする。
本形態におけるNMC複合酸化物は、溶融塩法、共沈法、スプレードライ法など、種々公知の方法を選択して調製することができるが、粒子の粒径分布(D10および/またはD50)を容易に制御可能な観点から、共沈法を用いることが好ましい。具体的に、NMC複合酸化物の合成方法としては、例えば、特開2011−105588号に記載の方法のように、共沈法によりニッケル−コバルト−マンガン複合酸化物を製造した後、ニッケル−コバルト−マンガン複合酸化物と、リチウム化合物とを混合して焼成することにより得ることができる。また、所定の充填率を有する粒子は、焼成後のNMC活物質を、粉砕機等を用いて再加工することにより得ることができる。以下、具体的に説明する。
複合酸化物の原料化合物、例えば、Ni化合物、Mn化合物およびCo化合物を、所望の活物質材料の組成となるように水などの適用な溶媒に溶解させる。Ni化合物、Mn化合物およびCo化合物としては、例えば、当該金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シュウ酸塩、酸化物、水酸化物、ハロゲン化物などが挙げられる。具体的には、Ni化合物、Mn化合物およびCo化合物としては、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガン、酢酸ニッケル、酢酸コバルト、酢酸マンガンなどが挙げられるが、これらに制限されるものではない。この過程で、必要に応じて、さらに所望の活物質材料の組成になるように、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素として、例えば、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCr等の少なくとも1種の金属元素を含む化合物を更に混入させてもよい。
上記原料化合物とアルカリ溶液とを用いた中和、沈殿反応により共沈反応を行うことができる。これにより、上記原料化合物に含まれる金属を含有する金属複合水酸化物、金属複合炭酸塩が得られる。アルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、中和反応用に水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。加えて、錯体反応用にアンモニア水溶液やアンモニウム塩を用いることが好ましい。
中和反応に用いるアルカリ溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて添加することが好ましい。
錯体反応に用いるアンモニア水溶液やアンモニウム塩の添加量は、反応液中のアンモニア濃度が0.01〜2.00mol/Lの範囲で添加することが好ましい。反応溶液のpHは10.0〜13.0の範囲に制御することが好適である。また、反応温度は30℃以上が好ましく、より好ましくは30〜60℃である。
共沈反応で得られた複合水酸化物は、その後、吸引ろ過し、水洗して、乾燥することが好ましい。
次いで、ニッケル−コバルト−マンガン複合水酸化物をリチウム化合物と混合して焼成することによりリチウム−ニッケル−マンガン−コバルト複合酸化物を得ることができる。Li化合物としては、例えば、水酸化リチウムまたはその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウム等がある。
焼成処理は、2段階(仮焼成および本焼成)で行うことが好ましい。2段階の焼成により、効率よく複合酸化物を得ることができる。仮焼成条件としては、特に限定されるものではないが、昇温速度は室温から1〜20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700〜1000℃であることが好ましく、650〜750℃であることがより好ましい。さらに、焼成時間は3〜20時間であることが好ましく、4〜6時間であることがより好ましい。本焼成の条件としては、特に限定されるものではないが、昇温速度は室温から1〜20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700〜1000℃であることが好ましく、850〜1100℃であることがより好ましい。さらに、焼成時間は3〜20時間であることが好ましく、8〜12時間であることがより好ましい。
必要に応じて、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素を微量添加する場合、該方法としては、あらかじめニッケル、コバルト、マンガン酸塩と混合する方法、ニッケル、コバルト、マンガン酸塩と同時に添加する方法、反応途中で反応溶液に添加する方法、Li化合物とともにニッケル−コバルト−マンガン複合酸化物に添加する方法などいずれの手段を用いても構わない。
本形態において、NMC複合酸化物は、反応溶液のpH、反応温度、反応濃度、添加速度、撹拌出力、撹拌速度などの反応条件を適宜調整することにより製造することができる。
さらに、上記焼成後の活物質材料は、以下の方法によりタップ密度を制御することにより、所定の充填率を有する粒子へと加工することができる。具体的には、活物質材料を粉砕機などを用いて粉砕処理をする。この際、粒子の突起部が、衝突や摩擦等を通じて、活物質粒子本体にダメージ(結晶構造の歪みやひび割れ等)を与えることなく、当該突起部が小さくなり、均一な粒子形状となるように、粉砕装置の回転部材や回転速度等を調整すればよい。粉砕装置の回転部材や回転速度等は、活物質の組成等によって適宜調整されることが好ましく、タップ密度と、粉砕機の回転部材や回転子や回転速度等との相関関係を、予備実験を通じて予め確認しておくのが望ましい。
本形態において、正極活物質層は、上記NMC複合酸化物以外の、他の正極活物質を含んでもよい。他の正極活物質としては、特に制限されないが、例えば、LiMn、LiCoO、LiNiO、およびこれらの遷移金属の一部が上記他の元素により置換されたもの等の層状のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、スピネル系リチウムマンガン複合酸化物等が挙げられる。これら他の正極活物質は1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。
正極活物質層に含まれる正極活物質の総量に対する他の正極活物質の含有量は、特に制限されないが、本発明の効果をより一層発揮させる観点から、80質量%以下であることが好ましく、50質量%以下であることがより好ましく、0質量%である(すなわち、正極活物質として上記特徴を有するNMC複合酸化物のみを含む)ことが最も好ましい。
正極活物質層に含まれる正極活物質全体としての平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは2次粒子の平均粒子径で6〜11μm、より好ましくは7〜10μmである。また、1次粒子の平均粒子径は、0.4〜0.65μm、より好ましくは0.45〜0.55μmである。なお、本明細書における「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。また、「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
正極活物質層は上述した正極活物質の他、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。ただし、正極活物質層および後述の負極活物質層中、活物質として機能しうる材料の含有量は、85〜99.5重量%であることが好ましい。
正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド−ヘキサフルオロプロピレン系フッ素ゴム(VDF−HFP系フッ素ゴム)、ビニリデンフルオライド−ヘキサフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−HFP−TFE系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン系フッ素ゴム(VDF−PFP系フッ素ゴム)、ビニリデンフルオライド−ペンタフルオロプロピレン−テトラフルオロエチレン系フッ素ゴム(VDF−PFP−TFE系フッ素ゴム)、ビニリデンフルオライド−パーフルオロメチルビニルエーテル−テトラフルオロエチレン系フッ素ゴム(VDF−PFMVE−TFE系フッ素ゴム)、ビニリデンフルオライド−クロロトリフルオロエチレン系フッ素ゴム(VDF−CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
正極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5〜15重量%であり、より好ましくは1〜10重量%である。
正極活物質層は、必要に応じて、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、ケッチェンブラック、アセチレンブラック等のカーボンブラック、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。
電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
本形態において、正極活物質層の密度は、必須に3.0〜3.6g/cmであり、好ましくは3.2〜3.4g/cmである。また、正極活物質層の厚さは、必須に120〜150μmであり、好ましくは125〜140μmである。本発明者らは、NMC複合酸化物を含む正極活物質層を厚膜化および高密度化した場合に、正極活物質層の剥離強度や電解液吸液性の低下の問題が顕著に発現することを見出し、この問題を解決すべく、本発明を完成させた。したがって、従来の一般的な密度(3.0g/cm未満)および厚さ(120μm未満)の正極活物質層を有する正極においては、正極活物質層の剥離強度や電解液吸液性の低下の問題も比較的小さい。
本形態の正極は、上述のように剥離強度および電解液吸液性に優れる。よって、当該正極を用いて非水電解質二次電池を作製することにより、特に、充放電サイクルを繰り返すことによる電池容量の低下を防ぐことができる。
[負極]
負極は、集電体の表面に負極活物質層が形成されてなる。負極は、正極とともにリチウムイオンの授受により電気エネルギーを生み出す機能を有する。
(集電体)
負極に用いられうる集電体は、正極に用いられうる集電体と同様であるため、ここでは説明を省略する。
[負極活物質層]
負極活物質層は負極活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤については、上記正極活物質層の欄で述べたものと同様である。
負極活物質は、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵できる組成を有する。負極活物質は、リチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、負極活物質の例としては、SiやSnなどの金属、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物、Li−Pb系合金、Li−Al系合金、Li、または炭素粉末、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが好ましく挙げられる。このうち、リチウムと合金化する元素を用いることにより、従来の炭素系材料に比べて高いエネルギー密度を有する高容量および優れた出力特性の電池を得ることが可能となる。上記負極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。上記のリチウムと合金化する元素としては、以下に制限されることはないが、具体的には、Si、Ge、Sn、Pb、Al、In、Zn、H、Ca、Sr、Ba、Ru、Rh、Ir、Pd、Pt、Ag、Au、Cd、Hg、Ga、Tl、C、N、Sb、Bi、O、S、Se、Te、Cl等が挙げられる。
上記負極活物質のうち、炭素材料、ならびに/またはSi、Ge、Sn、Pb、Al、In、およびZnからなる群より選択される少なくとも1種以上の元素を含むことが好ましく、炭素材料、Si、またはSnの元素を含むことがより好ましく、炭素材料を用いることが特に好ましい。
前記炭素材料としては、リチウム対比放電電位が低い炭素質粒子が好ましく、例えば、天然黒鉛、人造黒鉛、天然黒鉛と人造黒鉛とのブレンド、天然黒鉛に非晶質をコートした材料、ソフトカーボン、ハードカーボン等を使用し得る。炭素質粒子の形状は、特に制限されず、塊状、球状、繊維状等のいずれの形状であってもよいが、鱗片状ではないことが好ましく、球状、塊状であることが好ましい。鱗片状でないものは、性能および耐久性の観点から好ましい。
また、炭素質粒子は、その表面を非晶質炭素で被覆したものが好ましい。その際、非晶質炭素は、炭素質粒子の全表面を被覆していることがより好ましいが、一部の表面のみの被覆であってもよい。炭素質粒子の表面が非晶質炭素で被覆されていることにより、電池の充放電時に、黒鉛と電解液とが反応することを防止できる。黒鉛粒子の表面に非晶質炭素を被覆する方法としては、特に制限はない。例えば、非晶質炭素を溶媒に溶解、または分散させた混合溶液に核となる炭素質粒子(粉末)を分散・混合した後、溶媒を除去する湿式方式が挙げられる。他にも、炭素質粒子と非晶質炭素を固体同士で混合し、その混合物に力学エネルギーを加え非晶質炭素を被覆する乾式方式、CVD法などの気相法等が挙げられる。炭素質粒子が非晶質炭素で被覆されていることは、レーザー分光法などの方法により確認することができる。
負極活物質の平均粒子径は、特に制限されないが、負極活物質の高容量化、反応性、サイクル耐久性の観点からは、1〜100μmであることが好ましく、1〜20μmであることがより好ましい。
負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。
水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。
水系バインダーとしては、具体的にはスチレン系高分子(スチレン−ブタジエンゴム、スチレン−酢酸ビニル共重合体、スチレン−アクリル共重合体等)、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン−プロピレン−ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200〜4000、より好適には、1000〜3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98〜30/70モル比の共重合体の酢酸ビニル単位のうちの1〜80モル%ケン化物、ポリビニルアルコールの1〜50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド−(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1〜4)エステル−(メタ)アクリル酸塩共重合体など]、スチレン−マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素−ホルマリン樹脂、メラミン−ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン−エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。
上記水系バインダーは、結着性の観点から、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、メタクリル酸メチル−ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン−ブタジエンゴムを含むことが好ましい。
水系バインダーとしてスチレン−ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン−ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン−ブタジエンゴムと、カルボキシメチルセルロース(塩)とを組み合わせることが好ましい。スチレン−ブタジエンゴムと、水溶性高分子との含有重量比は、特に制限されるものではないが、スチレン−ブタジエンゴム:水溶性高分子=1:0.1〜10であることが好ましく、0.5〜2であることがより好ましい。
負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80〜100重量%であることが好ましく、90〜100重量%であることが好ましく、100重量%であることが好ましい。
[セパレータ(電解質層)]
セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4〜60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により
十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
また、上述したように、セパレータは、電解質を含む。本形態に係る電気デバイスにおいては、電解質が環状スルホン酸エステルを添加剤として含むことが好ましい。環状スルホン酸エステルの具体的な構成について特に制限はなく、従来公知の知見が適宜参照されうる。環状スルホン酸エステルの一例として、1,3−プロパンスルトン、1,3−プロペンスルトン、メチレンメタンジスルホン酸エステルなどが挙げられるほか、特開2011−209011号公報に記載のものも同様に用いられうる。
なお、電解質は、上述した環状スルホン酸エステル以外の添加剤をさらに含んでもよい。かような添加剤の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネート、1−メチル−1−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−1−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1−ジメチル−2−メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
電解質としては、リチウムイオンのキャリヤーとしての機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性(サイクル特性)が向上する。
液体電解質は、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HEP)、ポリ(メチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ(耐熱絶縁層付セパレータ)であることが好ましい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
耐熱性粒子の目付けは、特に限定されるものではないが、5〜15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
耐熱絶縁層におけるバインダーは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止される。
耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダーとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100重量%に対して、2〜20重量%であることが好ましい。バインダーの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダーの含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
[正極集電板および負極集電板]
集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板27と負極集電板25とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[正極リードおよび負極リード]
また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[電池外装材]
外装材としては、従来公知の金属缶ケースやラミネートフィルムを用いることができるが、高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミニウムを含むラミネートフィルムがより好ましい。ラミネートフィルムは、例えば、ポリプロピレン、アルミニウム、ナイロンがこの順に積層されてなる3層構造として構成されうる。このようなラミネートフィルムを用いることにより、外装材の開封、容量回復材の添加、外装材の再封止を容易に行うことができる。
[セルサイズ]
図2は、非水電解質二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。このリチウムイオン二次電池のように、本発明における好ましい実施形態によれば、アルミニウムを含むラミネートフィルムからなる電池外装体に前記発電要素が封入されてなる構成を有する扁平積層型ラミネート電池が提供される。
図2に示すように、扁平なリチウムイオン二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1に示すリチウムイオン二次電池10の発電要素21に相当するものである。発電要素57は、正極(正極活物質層)15、電解質層17および負極(負極活物質層)13で構成される単電池層(単セル)19が複数積層されたものである。
なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものであって、好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
また、図2に示すタブ58、59の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図2に示すものに制限されるものではない。
一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセルおよび充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。具体的には、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
[体積エネルギー密度および定格放電容量]
一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、電池の体積エネルギー密度は157Wh/L以上であることが好ましく、かつ定格容量は20Wh以上であることが好ましい。
ここで、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、本形態に係る非水電解質二次電池では、電池面積や電池容量の関係から電池の大型化が規定される。具体的には、本形態に係る非水電解質二次電池は扁平積層型ラミネート電池であって、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上であることが好ましい。このように大面積かつ大容量の電池とされると、上述したような、NMC複合酸化物を含む厚膜化・高密度化された正極活物質層において、剥離強度や電解液吸液性の低下の問題がよりいっそう顕著に発現しうるのである。一方、従来の民生型電池のような、上記のように大面積かつ大容量ではない電池においては、NMC複合酸化物を含む厚膜化・高密度化された正極活物質層における剥離強度や電解液吸液性の低下といった問題がさほど顕在化せず、したがって、電池性能(例えば、充放電を繰り返すことによる容量低下、出力低下等)の問題も比較的小さい。
さらに、矩形状の電極のアスペクト比は1〜3であることが好ましく、1〜2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは、電池を少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
[車両]
本発明の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
以下、実施例により本発明をさらに詳細に説明するが、本発明が以下の実施例のみに限定されるわけではない。
〈NMC複合酸化物の物性測定〉
[真密度]
各実施例および比較例で用いたNMC複合酸化物の真密度は、株式会社セイシン企業製、オートトゥルーデンサーMAT−7000を用いて、液相置換法(ピクノメーター法)により測定した。置換媒体はエタノールを用い、測定温度25±5℃で測定した。
[タップ密度]
各実施例および比較例で用いたNMC複合酸化物のタップ密度は、一定容積の容器に紛体(活物質)を目一杯充填しタッピングした後、その内容積を体積として測定した。タップ回数は200回とした。
[D10およびD50]
レーザー解析法により、NMC複合酸化物の粒子の粒径分布の小粒径側から10%に位置する粒子の粒径をD10として求めた。同様に、粒径分布の小粒径側から50%に位置する粒子の粒径をD50として求めた。
〈非水電解質二次電池用正極の作製〉
[実施例1]
正極活物質としてのNMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.507g/cm、タップ密度:2.32g/cm、充填率:52.73%、D10:3.1μm、D50:10μm)90質量部と、導電助剤としてのアセチレンブラック(平均粒子径(一次粒子の平均粒子径):35μm)5質量部と、バインダーとしてのポリフッ化ビニリデン(PVdF)5質量部とを、N−メチル−2−ピロリドン(NMP)に分散させて、正極活物質層用スラリーを調製した。正極集電体としてのアルミニウム箔(厚さ:20μm)に正極活物質層用スラリーを塗工機を用いて塗布し、NMPを乾燥により除去した。その後、圧延処理を行い、厚さ:130μm、電極密度:3.2g/cm、縦横サイズ:100mm×150mmの正極活物質層を有する正極を得た。
[実施例2]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.515g/cm、タップ密度:2.33g/cm、充填率:52.95%、D10:3.7μm、D50:8.4μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
[実施例3]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.55g/cm、タップ密度:2.27g/cm、充填率:49.9%、D10:2.6μm、D50:7.5μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
[比較例1]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.62g/cm、タップ密度:2.25g/cm、充填率:48.7%、D10:1.2μm、D50:6μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
[比較例2]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.8g/cm、タップ密度:2.2g/cm、充填率:45.8%、D10:1.4μm、D50:5.5μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
[比較例3]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.85g/cm、タップ密度:2.1g/cm、充填率:43.3%、D10:1.4μm、D50:5μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
[比較例4]
正極活物質として、NMC複合酸化物(組成:LiNi0.5Mn0.3Co0.2、真密度:4.48g/cm、タップ密度:2.75g/cm、充填率:61.4%、D10:4μm、D50:10μm)を用いたこと以外は、実施例1と同様の方法で正極を作製した。
〈非水電解質二次電池用負極の作製〉
負極活物質としてのグラファイト(黒鉛)粉末95質量部、バインダーとしてのPVdF 5質量部とを、NMPに分散させて、負極活物質層用スラリーを調製した。負極集電体としての銅箔(厚さ:10μm)に負極活物質用スラリーを塗工機を用いて塗布し、NMPを乾燥により除去した。その後、圧延処理を行い、厚さ:140μm〜170μm、電極密度:1.46g/cm、縦横サイズ:110mm×160mmの負極活物質層を有する負極を得た。
〈非水電解質二次電池の作製〉
セパレータとして、ポリエチレン製微多孔質膜(厚さ:25μm)を準備した。また、電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との1:1(体積比)混合溶媒に、LiPFを1Mの濃度で溶解させた溶液を調製した。セパレータを、各実施例および比較例で作製した正極と、負極とで挟持し、発電要素を作製した。当該発電要素を外装体としてのアルミニウムラミネートシート製のバッグ中に載置し、電解液を注液した。真空条件下において、両電極に接続された電流取り出しタブが導出するようにアルミラミネートシート製バッグの開口部を封止し、試験用セル(非水電解質二次電池)を完成させた。
〈評価〉
[剥離強度]
各実施例および比較例で作製した正極(圧延処理後)について、イマダ製、剥離試験機 フォースゲージZP引っ張り試験機を用いて90度剥離試験を行い剥離強度(N/m)を測定した。
[電解液吸液性]
各実施例および比較例で作製した正極(圧延処理後)の正極活物質層表面に、電解液1mLを滴下した。滴下直後は、電解液は液滴となって正極活物質層表面上にとどまるが、徐々に活物質層内に浸透していく。滴下した時点から、正極活物質層表面上の液滴が目視により確認できなくなる時点までの時間を測定し、電解液吸液性を評価した。
[正極活物質層外観]
各実施例および比較例で作製した正極(圧延処理後)について、正極活物質層表面の外観異常(表面のブツ、凹凸、白やけ)の発生率(%)を、ザックエンジニアリング製、電極外観検査装置を用いて測定した。発生率は基準となる電極外観を基準とし、その電極外観に対して外観異常率を面積比で積算した値とした。
[容量維持率]
正極に対する電流密度を2mA/cmとして、各実施例および比較例で作製した電池をカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この充放電サイクルを500回繰返した。初期放電容量に対する500サイクル目の放電容量の割合を容量維持率(%)とし、サイクル耐久性として評価した。
表1の結果より、NMC複合酸化物の充填率が49.5〜60%の範囲内にある実施例1〜3では、剥離強度および電解液吸液性において良好な結果が得られることが示された。
また、D10が3μm以上である実施例1および2では、正極活物質層表面の外観異常が少ないことが示された。
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。

Claims (6)

  1. 正極集電体の表面に正極活物質層が形成されてなる非水電解質二次電池用正極であって、
    前記正極活物質層の密度は、3.〜3.6g/cmであり、
    前記正極活物質層の厚さは、120〜150μmであり、
    前記正極活物質層は、正極活物質として、一般式:LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種である)で表される組成を有するリチウム−ニッケル−マンガン−コバルト複合酸化物を含み、
    前記リチウム−ニッケル−マンガン−コバルト複合酸化物は、(タップ密度/真密度)×100[%]で表される充填率が49.5〜60%である、非水電解質二次電池用正極。
  2. 前記リチウム−ニッケル−マンガン−コバルト複合酸化物は、粒径分布の小粒径側から10%に位置する粒子の粒径として定義されるD10が3μm以上である、請求項1に記載の非水電解質二次電池用正極。
  3. 前記一般式中、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26である、請求項1または2に記載の非水電解質二次電池用正極。
  4. 請求項1〜3のいずれか1項に記載の非水電解質二次電池用正極と、
    電解質層と、
    負極集電体の表面に負極活物質層が形成されてなる負極と、
    が積層されてなる発電要素を有する、非水電解質二次電池。
  5. 定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である、請求項4に記載の非水電解質二次電池。
  6. 矩形状の前記正極活物質層の縦横比として定義される前記非水電解質二次電池用正極のアスペクト比は、1〜3である、請求項4または5に記載の非水電解質二次電池。
JP2015064797A 2015-03-26 2015-03-26 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池 Active JP6519264B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015064797A JP6519264B2 (ja) 2015-03-26 2015-03-26 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015064797A JP6519264B2 (ja) 2015-03-26 2015-03-26 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2016184528A JP2016184528A (ja) 2016-10-20
JP6519264B2 true JP6519264B2 (ja) 2019-05-29

Family

ID=57242083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015064797A Active JP6519264B2 (ja) 2015-03-26 2015-03-26 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP6519264B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117157B2 (ja) * 2018-06-01 2022-08-12 日産自動車株式会社 電池装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001126769A (ja) * 1999-10-27 2001-05-11 Shin Kobe Electric Mach Co Ltd 円筒形リチウムイオン電池
JP4129955B2 (ja) * 2003-03-17 2008-08-06 日立マクセル株式会社 電池および電池の製造方法
JP2006318928A (ja) * 2003-03-25 2006-11-24 Hitachi Metals Ltd リチウム二次電池用正極活物質及び非水系リチウム二次電池
KR101287092B1 (ko) * 2009-04-10 2013-07-17 히다치 막셀 가부시키가이샤 전극용 활물질, 그 제조방법, 비수 2차 전지용 전극 및 비수 2차 전지
WO2011083648A1 (ja) * 2010-01-06 2011-07-14 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池
JP2013178926A (ja) * 2012-02-28 2013-09-09 Asahi Glass Co Ltd 非水系二次電池用正極合剤
CN104508856A (zh) * 2012-06-15 2015-04-08 波士顿电力公司 具有混合镍酸盐阴极的二次锂离子电池组
CN109052494A (zh) * 2013-02-28 2018-12-21 日产自动车株式会社 正极活性物质、正极材料、正极及非水电解质二次电池
KR101635336B1 (ko) * 2013-03-15 2016-06-30 닛산 지도우샤 가부시키가이샤 정극 활물질, 정극 재료, 정극 및 비수전해질 이차 전지
WO2014175191A1 (ja) * 2013-04-25 2014-10-30 旭硝子株式会社 複合化合物、リチウム含有複合酸化物、及びそれらの製造方法

Also Published As

Publication number Publication date
JP2016184528A (ja) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6575972B2 (ja) 非水電解質二次電池
JP6112204B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP5967287B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6036999B2 (ja) 非水電解質二次電池
JP6229709B2 (ja) 正極活物質、正極材料、正極および非水電解質二次電池
JP6070824B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6156491B2 (ja) 非水電解質二次電池
JP6176317B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6070822B2 (ja) 非水電解質二次電池
KR101753023B1 (ko) 비수전해질 이차 전지
KR20160128355A (ko) 비수전해질 이차 전지
JP6241543B2 (ja) 電気デバイス
JP6070823B2 (ja) 非水電解質二次電池
JP2017102995A (ja) 電気デバイス用正極、およびこれを用いた電気デバイス
JP6862752B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
CN105934845B (zh) 电器件
JP6958272B2 (ja) 非水電解質二次電池
JP6737091B2 (ja) 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
JP6755311B2 (ja) 非水電解質二次電池
JP6528543B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP6676289B2 (ja) 非水電解質二次電池用正極
JP6519264B2 (ja) 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池
JP2017073281A (ja) 非水電解質二次電池用正極材料、並びにこれを用いた非水電解質二次電池用正極および非水電解質二次電池
JP6838359B2 (ja) 非水電解質二次電池
JP2015095330A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R151 Written notification of patent or utility model registration

Ref document number: 6519264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250