JP6516888B2 - 少なくとも2つのロータアセンブリ及びシュラウドを備えた推力発生ユニット - Google Patents

少なくとも2つのロータアセンブリ及びシュラウドを備えた推力発生ユニット Download PDF

Info

Publication number
JP6516888B2
JP6516888B2 JP2018009621A JP2018009621A JP6516888B2 JP 6516888 B2 JP6516888 B2 JP 6516888B2 JP 2018009621 A JP2018009621 A JP 2018009621A JP 2018009621 A JP2018009621 A JP 2018009621A JP 6516888 B2 JP6516888 B2 JP 6516888B2
Authority
JP
Japan
Prior art keywords
rotor
air duct
thrust generating
generating unit
shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009621A
Other languages
English (en)
Other versions
JP2018140772A (ja
Inventor
キーゼヴェッター,ウーウェ
モアーズ,セバスチャン
ベベゼル,マリウス
プファラー,ルパート
Original Assignee
エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー
エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー, エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー filed Critical エアバス ヘリコプターズ ドイチェランド ゲーエムベーハー
Publication of JP2018140772A publication Critical patent/JP2018140772A/ja
Application granted granted Critical
Publication of JP6516888B2 publication Critical patent/JP6516888B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/20Rotorcraft characterised by having shrouded rotors, e.g. flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2241/00NACA type air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/20Constructional aspects of UAVs for noise reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded

Description

本発明は、所定の方向に推力を発生するための推力発生ユニット(thrust producing unit)に関し、この推力発生ユニットは少なくとも2つのロータアセンブリ(rotor assembly)とシュラウド(shrouding)とを含む。本発明は更に、所定の方向に推力を発生するための少なくとも1つの推力発生ユニットを備えたマルチロータ航空機(multirotor aircraft)に関し、この推力発生ユニットは少なくとも2つのロータアセンブリとシュラウドとを含む。
様々な従来のマルチロータ航空機は、例えば、EP2551190A1、EP2551193A1、EP2551198A1、EP2234883A1、WO2015/028627A1、USD678169S、US6568630B2、US8393564B2、US7857253B2、US7946528B2、US8733690B2、US2007/0034738A1、US2013/0118856A1、DE102013108207A1、GB905911、及びCN201306711Uという文献から知られている。その他のマルチロータ航空機も、例えば、ボーイングCH−47タンデムロータヘリコプタ、ベルXV−3ティルトロータ航空機、ダクテッドロータ付きベルXV−22クワッドティルト、並びにいわゆるドローン、詳細には、例えば、US2015/0127209A1、DE102005022706A1、及びKR101451646B1という文献に記載されているような、いわゆるクワッドドローンなどの最新技術から知られている。更に、例えば、Skyflyer Technology GmbHによるスカイフライヤSF MK II及び映画アバターに登場したマルチコプタなど、マルチロータ航空機の研究及びフィクションも存在する。
これらの従来のマルチロータ航空機のそれぞれは、マルチロータ航空機の動作中に所定の方向に推力を発生するために設けられた2つ以上の推力発生ユニットを装備している。一般に、それぞれの推力発生ユニットは、1つ以上のロータ又はプロペラを含み、通常、特定の飛行条件のために設計される。一例として、飛行機のプロペラとして設計された推力発生ユニットは巡航条件においてその最適値で動作し、複合ヘリコプタのプロペラとして設計された推力発生ユニットはむしろホバリング又は前進飛行条件のために最適化され、例えば、いわゆるFenestron(登録商標)テイルロータを実現する推力発生ユニットは特にホバリング条件のために設計されている。
これらの例のいずれでも、それぞれの推力発生ユニットは、軸方向気流条件において、即ち、少なくともロータ軸、重ねて言えば、所与の1つ以上のロータ又はプロペラの回転軸にほぼ沿って向けられた気流方向、従って、軸方向気流方向と呼ばれる気流方向において動作するために最適化される。しかしながら、それぞれの推力発生ユニットが横向き気流条件において、即ち、所与の1つ以上のロータ又はプロペラのロータ軸に対して横向きに向けられた気流方向、従って、非軸方向気流方向と呼ばれる気流方向において動作する場合、推力発生ユニットのそれぞれの効率は、通常、大幅に減少する。
一例として、2つ以上の推力発生ユニットを備えたマルチロータ航空機の動作の場合、推力発生ユニットは、例えば、垂直離陸フェーズ中に、軸方向気流条件にさらされることになる。その後、推力発生ユニットによって発生されたそれぞれの推力ベクトルは、例えば、それに応じて推力発生ユニットを回転させることにより、所定の方向に傾斜させることができ、その結果、マルチロータ航空機は速度を獲得し、推力発生ユニットが横向き気流条件にさらされる前進飛行に転換するような以前のホバリング条件を離れる。しかしながら、横向き気流条件では、軸方向気流条件において有益であるそれぞれのダクト又はシュラウドが、比較的大量の抗力を発生することによって不利益をもたらしている。換言すれば、ホバリング時にダクト又はシュラウドによって提供される根本的な利点が前進飛行では不利点になり、これは前進飛行においてマルチロータ航空機のそれぞれの前進速度を増すにつれて増加する。
更に、軸方向気流条件において、ダクテッドロータ又はプロペラ、即ち、ダクト又はシュラウドが設けられたロータ又はプロペラは、匹敵する全体寸法、即ち、直径及び平均翼弦を有する同等の隔離型又は非ダクテッドロータ又はプロペラ、即ち、ダクト又はシュラウドのないロータ又はプロペラより約25%〜50%効率的であることに留意されたい。換言すれば、ダクト又はシュラウドの存在は、一定の必要出力で所与の推力発生ユニットのそれぞれの発生推力を増加する。従って、従来の推力発生ユニットには、関連のダクト又はシュラウド内に完全に封入されている1つ以上のロータ又はプロペラが頻繁に設けられる。この古典的な構成は、ダクト又はシュラウドからも推力を発生するためにそれぞれのロータ又はプロペラ誘導速度を使用する。
一般に、ダクト又はシュラウドは、ロータ又はプロペラのそれぞれの空気力学及び性能を改善するために、ロータ又はプロペラの周りに配置された、封入環状表面によって規定される。従来のダクト又はシュラウドは、通常、回転不能であり、即ち、傾斜させることができず、所与のロータ又はプロペラが完全にその中に封入されるように選択された高さを有する。
しかしながら、ダクト又はシュラウドは、関連のロータ又はプロペラを封入するために特定の高さ又は長さを備えていなければならず、従って、比較的大きいサイズになるので、ダクト又はシュラウドは、そのサイズのためにマルチロータ航空機の総重量を増加し、根本的な推力ベクトル方向の調節のためにダクト又はシュラウドを傾斜させることができないので、例えば、前進飛行中に、即ち、横向き気流条件において抗力を更に増加する。また、比較的大きいサイズは、風及び/又は突風が作用する可能性のある比較的大きい突出表面をもたらす。これは、それぞれのマルチロータ航空機について過出力の必要性を増すことになる。更に、2つ以上のロータ又はプロペラが、例えば、互いの上に同軸状に位置決めされる場合、これらのロータ又はプロペラを封入するために設けられた所与のダクト又はシュラウドは、更に大きい高さを必要とし、更に重くなるであろう。その上、通常、ロータ又はプロペラとダクト又はシュラウド表面との間の最小ギャップが要求されるので、従来のダクト又はシュラウドは、通常、能動的に回転せず、比較的堅く設計しなければならない。加えて、それぞれの推力発生ユニットの従来のダクト又はシュラウドは、異なる構成のロータ又はプロペラ、即ち、異なる傾斜、位置決め、及び/又はサイズ、重ねて言えば、直径を有するロータ又はプロペラを封入するのに適していない。
要約すれば、ダクト又はシュラウドを備えた従来の推力発生ユニットでは、軸方向気流条件における動作時に発生される推力ベクトルは、推力発生ユニットのそれぞれのロータ又はプロペラのロータ軸と位置合わせされ、動作時にロータ又はプロペラによって誘導された速度場の方向に逆らって向けられる。ロータ又はプロペラは、関連のロータ又はプロペラ平面又は円板を通る特定のマスフローを加速する。結果として生じるフロー加速は、空気がロータ又はプロペラ平面又は円板を横切る時に発生し、ダクト又はシュラウドのそれぞれのコレクタ領域の周りに圧力不足のエリアを形成し、その結果、追加の推力を発生する。この追加の推力の発生は、ダクト又はシュラウドを使用したことによる重要な利点であるが、ダクト又はシュラウドによって発生された追加の抗力のために、前進飛行時に、即ち、横向き気流条件において強力に不利益をもたらしている。この追加の抗力は、ダクト又はシュラウドの高さと幅の積によって規定されるそれぞれの前面面積に正比例している。従って、一例として、単一ダクト又はシュラウドに完全に組み込まれた2つのロータ又はプロペラを備えた二重反転ロータ又はプロペラ構成を有する推力発生ユニットの場合、追加の抗力は、単一ダクト又はシュラウドに完全に組み込まれた1つのロータ又はプロペラのみが設けられている推力発生ユニットと比較して、ほぼ二倍になる。
US5150857Aという文献には、1対の同軸多翼形二重反転ロータを取り囲むトロイダル胴体を有する無人航空機(UAV)が記載されている。トロイダル胴体は、ダクト又はシュラウドを規定するものであり、高いホバリング効率を提供し、高い揚力を提供する圧力分布を発生するように構成されたエアロフォイルプロフィルを有する。エアロフォイルプロフィルは、対称形であり、前進並進飛行においてダクテッド回転式UAVによって経験される望ましくない機首上げ縦揺れモーメントを打ち消すように適合している。しかしながら、トロイダル胴体によって規定される対称形ダクト又はシュラウドは、前進飛行において、即ち、横向き気流条件において上記の不利点を呈する。
従って、本発明の一目的は、横向き気流条件において改善された空気力学及び性能を呈し、特にマルチロータ航空機で使用するための新しい推力発生ユニットを提供することである。
この目的は、所定の方向に推力を発生するための推力発生ユニットによって解決され、この推力発生ユニットは請求項1の特徴を含む。より具体的には、本発明により、所定の方向に推力を発生するための推力発生ユニットは、少なくとも2つのロータアセンブリと、少なくとも2つのロータアセンブリのうちの多くても1つを収容するシュラウドとを含む。シュラウドは、エアインレット領域(air inlet region)及びエアアウトレット領域(air outlet region)によって軸方向に区切られた円筒形のエアダクトを規定し、エアインレット領域は円筒形のエアダクトの円周方向に波形形状(undulated geometry)を呈する。
「シュラウド(shrouding)」という用語は、同時に「ダクト」及び「シュラウド(shroud)」という用語を包含するものとして理解しなければならないことに留意されたい。換言すれば、本発明に関連して、「シュラウド」という用語は交換可能にダクト又はシュラウドを指す。
有利なことに、本発明の推力発生ユニットは、横向き気流条件において、例えば、本発明の推力発生ユニットを使用する所与のマルチロータ航空機の前進飛行において、著しく低減された抗力をもたらすシュラウド付き複数ロータアセンブリ構成として実現される。この著しく低減された抗力は、シュラウドの全高を著しく低減できるように少なくとも2つのロータアセンブリのうちの多くても1つをシュラウド内に収容することだけなく、シュラウド自体の本発明の設計、特に円筒形のエアダクトの円周方向のエアインレット領域の波形形状にも起因する。
より具体的には、本発明のシュラウド及びすべての関連要素は、好ましくは、軸方向に非対称的であり、即ち、シュラウドのアジマスψにおいて非対称的である。換言すれば、シュラウドは、すべての関連要素に関する可変要因を基礎として設計され、即ち、以下の通りである。
・高さ対アジマスΨ
・エアインレット領域半径対アジマスΨ
・エアアウトレット領域半径対アジマスΨ及び/又は
・追加の揚力面の配置対アジマスΨ
特に、シュラウドの可変高は、シュラウドの高さが増加するにつれて根本的な効率が増加する垂直離陸及びホバリングと、シュラウドの高さが減少するにつれて根本的な抗力が減少する前進飛行との兼ね合いにおいて重大な利点を可能にするものであり、これはシュラウドのそれぞれの抗力領域を低減するものである。
更に、本発明の推力発生ユニットは、軸方向気流条件において、即ち、それぞれのマルチロータ航空機のホバリング飛行において、匹敵する性能を有しながら、2つのロータ又はプロペラアセンブリを完全に封入する単一シュラウドを有する従来のシュラウド付き推力発生ユニットより著しく低い重量を呈する。実際は、2つ以上の優先的二重反転ロータ又はプロペラアセンブリを完全に封入する単一シュラウドを有する従来のシュラウド付き推力発生ユニットは、例えば、本発明の推力発生ユニットなど、その他のものをシュラウドなしで、即ち、空気にさらされたままにしながら、2つ以上のロータ又はプロペラアセンブリのうちの1つのみを封入するかなり短いシュラウドを有する推力発生ユニットに比べ、同じ推力対出力の特性を提供することに留意されたい。これは、上述の追加の推力が、ダクト、重ねて言えば、シュラウド自体によるのではなく、シュラウドのみによって規定されるエアインレット領域によって発生されるという事実によるものである。その上、長短シュラウドを備えた少なくとも2つのロータ又はプロペラアセンブリによって誘導されたそれぞれの速度場は、エアインレット領域上に発生された圧力不足フィールドが長短シュラウド構成についても同じであるようになっている。これは、それぞれが最小化した高さを有する単一の関連シュラウドに封入される、複数のロータ又はプロペラアセンブリを特徴とする構成に同様に適用される。
好ましくは、本発明の推力発生ユニットのシュラウドは、本発明の推力発生ユニットを特徴とするマルチロータ航空機のホバリング及び前進飛行事例中に追加の上昇装置として使用され、従って、シュラウドに収容される少なくとも2つのロータアセンブリのうちの多くても1つのそれぞれの消費電力の低減を有益に可能にする。更に、シュラウドはその有効性を増加するので、有利なことに、その中に収容される少なくとも2つのロータアセンブリのうちの多くても1つの少なくとも根本的な直径の低減を可能にする。加えて、シュラウドは、その中に収容される少なくとも2つのロータアセンブリのうちの多くても1つについてシールド効果を有益に提供し、従って、有利なことに地上におけるそれぞれのロータ騒音範囲の低減を可能にする。
一態様により、本発明の推力発生ユニットには、その中に収容される少なくとも2つのロータアセンブリのうちの多くても1つを異物から保護するために、例えば、グリッドによって封入されることにより、異物保護を設けることができる。このような異物保護は、例えば、その手が回転部分に挟まれるのを防止することにより、個人による誤用及び事故を有益に防止し、それにより、本発明の推力発生ユニットの動作安全レベルの増加をもたらす。
有利なことに、2つ以上のロータ平面を単一の推力発生ユニットに結合することができるので、異なるロータ平面を規定する少なくとも2つのロータアセンブリを本発明の推力発生ユニットに設けることにより、これらのロータアセンブリは、互いの上に位置決めして、二重反転式に回転することができ、安全レベルの増加を提供し、関連のマルチロータ航空機の全体寸法の低減を可能にする推力発生ユニットをもたらし、その結果、比較的小さい航空機が得られる。好ましくは、本発明の推力発生ユニットの少なくとも2つのロータアセンブリは、そのそれぞれが関連のロータ平面又は表面を規定するものであり、同軸状に又は別々の個別ロータ軸により、互いの上に位置決めされ、互いに対して傾斜させることができる。更に、本発明の推力発生ユニットは、その二重反転ロータアセンブリの結果として個別にトルクを提供するために適合しており、これは、例えば、偏揺れに関して、本発明の推力発生ユニットを特徴とする所与のマルチロータ航空機を操縦するために使用することができる。
好ましい一実施形態により、円筒形のエアダクトは、円筒形のエアダクトの軸方向にエアアウトレット領域とエアインレット領域との間に規定され、円筒形のエアダクトの円周方向に変動する高さを呈し、円筒形のエアダクトの円周方向に変動する高さはエアインレット領域の波形形状を規定する。
更なる好ましい一実施形態により、円筒形のエアダクトは、円周方向に、前縁(leading edge)及び正反対の後縁(trailing edge)と、ボードサイドラテラルショルダ(board side lateral shoulder)及び正反対のスターボードサイドラテラルショルダ(star board side lateral shoulder)と、を含み、ボードサイドラテラルショルダ及びスターボードサイドラテラルショルダはそれぞれ円筒形のエアダクトの円周方向に前縁と後縁との間に配置され、前縁における高さはボードサイドラテラルショルダ及び/又はスターボードサイドラテラルショルダにおける高さより小さい。
更なる好ましい一実施形態により、後縁における高さはボードサイドラテラルショルダ及び/又はスターボードサイドラテラルショルダにおける高さより小さい。
更なる好ましい一実施形態により、後縁における高さは前縁における高さより小さい。
更なる好ましい一実施形態により、ボードサイドラテラルショルダ及び/又はスターボードサイドラテラルショルダにおける高さは0.05*D〜0.5*Dの範囲内で選択され、Dは円筒形のエアダクトの直径を規定する。
更なる好ましい一実施形態により、円筒形のエアダクトのエアインレット領域は、円筒形のエアダクトの円周方向に変動するエアインレット領域半径を呈し、エアインレット領域半径は前縁、後縁、ボードサイドラテラルショルダ、及びスターボードサイドラテラルショルダのうちの少なくとも2つの間で異なるものである。
更なる好ましい一実施形態により、円筒形のエアダクトのエアアウトレット領域は、円筒形のエアダクトの円周方向に変動するエアアウトレット領域半径を呈し、エアアウトレット領域半径は前縁、後縁、ボードサイドラテラルショルダ、及びスターボードサイドラテラルショルダのうちの少なくとも2つの間で異なるものである。
更なる好ましい一実施形態により、円筒形のエアダクトの後縁は、少なくとも本質的に開放され、補剛エレメント(stiffening element)が設けられる。
更なる好ましい一実施形態により、円筒形のエアダクトの後縁はフラップを装備している。
更なる好ましい一実施形態により、円筒形のエアダクトの前縁には、追加の揚力面が設けられる。
更なる好ましい一実施形態により、少なくとも2つのロータアセンブリのうちの第1のロータアセンブリは、円筒形のエアダクトの外側に、円筒形のエアダクトのエアインレット領域に隣接して配置され、シュラウドは少なくとも2つのロータアセンブリのうちの第2のロータアセンブリを収容する。
更なる好ましい一実施形態により、第1のロータアセンブリは第1のロータ軸を規定し、第2のロータアセンブリは第2のロータ軸を規定し、第1及び第2のロータ軸は同軸状に配置される。
更なる好ましい一実施形態により、第1及び第2のロータ軸は、−60°〜+60°の範囲内に含まれる関連の傾斜角だけ傾斜している。
本発明は更に、上記のように構成された少なくとも1つの推力発生ユニットを含むマルチロータ航空機に関する。
有利なことに、本発明の推力発生ユニットのシュラウドは、本発明の推力発生ユニットを特徴とする本発明のマルチロータ航空機のそれぞれの全体寸法の低減を可能にする。更に、シュラウド付き推力発生ユニットに接近する個人は負傷しないように保護され、例えば、バードストライク又はワイヤストライクなどの動作時の推力発生ユニットの異物損害は安全かつ確実に防止することができ、空中衝突の場合の関連のマルチロータ航空機の全体的な動作安全を改善することができる。
その上、それぞれの空気力学、音響、及び性能は、動作時のそれぞれのロータブレード荷重を低減すること、全体的な消費電力を低減すること、それぞれの放出雑音を低減すること、並びに本発明のマルチロータ航空機のホバリング及び前進飛行における機能を改善することにより、改善することができる。更に、推力発生ユニットの根本的な必要直径を低減することができる。更に、本発明のマルチロータ航空機の揚力はシュラウド自体によって改善され、本発明のマルチロータ航空機が必要とする全体的な出力を潜在的に低減する。
本発明の航空機は複数のロータアセンブリを備えたマルチロータ構造に関連して上述されているが、複数のプロペラアセンブリを備えたマルチプロペラ構造として又はマルチプロペラ及びマルチロータ構造として同様に実現できることに留意されたい。より具体的には、ロータは一般に完全に連結されているが、プロペラは一般に全く連結されていない。しかしながら、どちらも推力を発生するために、従って、本発明による推力発生ユニットを実現するために使用することができる。その結果として、本明細書でロータ又はロータ構造に言及する場合、プロペラ及びプロペラ構造への言及として同様に理解しなければならず、従って、本発明のマルチロータ航空機はマルチプロペラ航空機及び/又はマルチプロペラ及びマルチロータ航空機として同様に実現することができる。
換言すれば、本発明は、主として、個別に互いの上に位置決めされるように選択できるロータ/プロペラ平面を規定するロータ/プロペラと、そのロータ/プロペラのうちの多くても1つの回転部分を封入するためのシュラウドと、それぞれのロータ/プロペラを駆動する少なくとも1つの電気エンジンと、を備えた複数推力構成に関し、それぞれのエンジンは提供される安全レベルを増加するために隔離することができ、好ましくはバッテリと電気エンジンとの間に論理接続が存在し、この論理接続は故障の場合に安全レベルを増加する冗長設計を優先的に含み、好ましくは故障の場合に適切な安全レベルを備えたバッテリ冗長レイアウトが提供される。
有利なことに、本発明のマルチロータ航空機は、乗客の輸送のために設計され、特に、市街地での運航に適しており、そのための免許状が交付されるように適合している。これは、好ましくは飛行しやすいものであり、複数の冗長性を有し、当局の安全要求を満たし、設計の点で費用効果が高く、比較的低いノイズのみを発生する。好ましくは、本発明のマルチロータ航空機は、軽量設計及び固定入射角を備えた比較的小さいロータ直径を有し、それにもかかわらず緊急着陸の遂行のために適合しているが、これらのロータ特性は動作時に比較的低い慣性及び調整不能なトルクをもたらす。
一態様により、本発明のマルチロータ航空機はホバリング可能であり、分散推進系を含む。これは、更に好ましくは、マルチロータ航空機全体について飛行時間あたり約1*10−7までの故障件数になる安全障害モードに関して、例えば、FAR及びEASA規制などの当局の規制を満たすために数ある要件の中で必要である自転能力を備えて設計される。航空部門では、これらの安全レベルは典型的に、いわゆる設計保証レベル(DAL)のA〜Dによって規定される。
好ましくは、本発明のマルチロータ航空機は、乗客を輸送するために必要な当局の規制の安全レベルを遂行する。これは優先的に、以下のものの組み合わせ及び相関関係によって達成される。
・推力発生ユニットあたり少なくとも2つの個別ロータアセンブリ
・冗長隔離バッテリレイアウト
・冗長電源及びハーネスレイアウト
・根本的な出力管理の物理的分離及び隔離
・冗長隔離電気エンジン、及び
・ロータアセンブリのピッチ制御及び/又はRPM制御
本発明の好ましい諸実施形態について添付図面に関連して以下の説明で概説する。これらの添付図面では、同一の又は同一機能のコンポーネント及び要素は同一の参照番号及び文字で表示され、その結果として、以下の説明では1回しか説明しない。
複数の模範的な推力発生ユニットを備えたマルチロータ航空機の斜視図を示している。 図1のマルチロータ航空機の平面図を示している。 前進飛行中の図1及び図2のマルチロータ航空機の側面図を示している。 図3のマルチロータ航空機の正面図を示している。 本発明によるシュラウドを備えた図1〜図4のマルチロータ航空機の推力発生ユニットの斜視図を示している。 図5の推力発生ユニットの正面図を示している。 図1〜図4のマルチロータ航空機の垂直離陸及び前進飛行中の図5及び図6の推力発生ユニットの部分的に透過的な側面図を示している。 図5〜図7のシュラウドの部分的に透過的な側面図を示している。 図8のシュラウドの斜視図を示している。 図8及び図9のシュラウドの平面図を示している。 図8〜図10のシュラウドの模範的な断面を示している。 図1〜図4のマルチロータ航空機の垂直離陸及び前進飛行中の図5及び図6の推力発生ユニットの部分的に透過的な側面図を示している。 図1〜図4のマルチロータ航空機を制御するための模範的な制御方法を示す線図を示している。 第1の変形例による図8〜図10のシュラウドの平面図を示している。 第2の変形例による図8〜図10のシュラウドを備えた図5及び図6の推力発生ユニットの部分的に透過的な側面図を示している。 図1〜図4のマルチロータ航空機の垂直離陸中の図15のシュラウドの平面図を示している。 図1〜図4のマルチロータ航空機の前進飛行中の図15のシュラウドの平面図を示している。
図1は、本発明による航空機の機体2を備えたマルチロータ航空機1を示している。航空機の機体2は、以下マルチロータ航空機1の胴体とも呼ばれる支持構造を規定する。
胴体2は、縦方向1aの広がりと、横方向1bの広がりと、を有し、好ましくは、マルチロータ航空機1が全体として乗客の輸送のために適合するように、少なくとも乗客の輸送のために適合している内容積2aを規定する。内容積2aは好ましくは、例えば、マルチロータ航空機1の運航に必要なエネルギ蓄積システムなどの動作及び電気機器を収容するために更に適合している。
乗客の輸送に適し、動作及び電気機器の収容にも適した、内容積2aの模範的な構成は、当業者にとって容易に入手可能であり、一般に、乗客輸送に関する適用可能な当局の規制及び認可要件に準拠するように実現されることに留意されたい。従って、内容積2aのこれらの構成は本発明の一部ではないので、簡潔かつ簡明にするために、これらについては詳細に説明しない。
一態様により、マルチロータ航空機1は複数の推力発生ユニット3を含む。好ましくは、複数の推力発生ユニット3は、少なくとも2つの、優先的に4つの推力発生ユニット3a、3b、3c、3dを含む。推力発生ユニット3a、3b、3c、3dは、マルチロータ航空機1が空中でホバリング可能であるとともに前方又は後方方向に飛行可能であるように、動作時に推力(図3の9)を発生するために具体化される。
好ましくは、推力発生ユニット3a、3b、3c、3dは構造的に胴体2に接続される。一例として、これは複数の構造支持部4によって達成される。より具体的には、推力発生ユニット3aは好ましくは構造支持部4aを介して、推力発生ユニット3bは構造支持部4bを介して、推力発生ユニット3cは構造支持部4cを介して、推力発生ユニット3dは構造支持部4dを介して、胴体2に接続され、構造支持部4a、4b、4c、4dは複数の構造支持部4を規定する。
好ましくは、推力発生ユニット3a、3b、3c、3dのうちの少なくとも1つは、根本的な空気力学を改善し、運航上の安全を増すために、関連のシュラウドを含む。一例として、複数のシュラウドユニット6は4つの別々のシュラウド6a、6b、6c、6dによって示されている。例示的に、シュラウド6aは推力発生ユニット3aに、シュラウド6bは推力発生ユニット3bに、シュラウド6cは推力発生ユニット3cに、シュラウド6dは推力発生ユニット3dに、関連付けられている。
シュラウド6a、6b、6c、6dは単純な薄板金で作ることができる。しかしながら、一態様により、シュラウド6a、6b、6c、6dは、例えば図5に関連して後述するような複雑な形状を有する。
更に、シュラウド6a、6b、6c、6dは、推力発生ユニット3a、3b、3c、3dと胴体2との接続を補強するために、構造支持部4a、4b、4c、4dとともに胴体2に接続することができる。代替的に、シュラウド6a、6b、6c、6dのみを胴体2に接続することもできる。
一態様により、推力発生ユニット3a、3b、3c、3dのうちの少なくとも1つ、好ましくは、そのそれぞれ1つは、少なくとも2つのロータアセンブリを装備している。一例として、推力発生ユニット3aは2つのロータアセンブリ7a、8aを装備し、推力発生ユニット3bは2つのロータアセンブリ7b、8bを装備し、推力発生ユニット3cは2つのロータアセンブリ7c、8cを装備し、推力発生ユニット3dは2つのロータアセンブリ7d、8dを装備している。ロータアセンブリ7a、7b、7c、7dは例示的に複数の上部ロータアセンブリ7を規定し、ロータアセンブリ8a、8b、8c、8dは例示的に複数の下部ロータアセンブリ8を規定する。
複数の上部及び下部ロータアセンブリ7、8は好ましくは複数のギアボックスフェアリング(gearbox fairing)5により複数の構造支持部4に接続される。例示的に、上部及び下部ロータアセンブリ7a、8aはギアボックスフェアリング5aにより構造支持部4aに接続され、上部及び下部ロータアセンブリ7b、8bはギアボックスフェアリング5bにより構造支持部4bに接続され、上部及び下部ロータアセンブリ7c、8cはギアボックスフェアリング5cにより構造支持部4cに接続され、上部及び下部ロータアセンブリ7d、8dはギアボックスフェアリング5dにより構造支持部4dに接続される。
好ましくは、上部ロータアセンブリ7a、7b、7c、7dのそれぞれ1つは関連の上部ロータ平面(図7の21)を規定し、下部ロータアセンブリ8a、8b、8c、8dのそれぞれ1つは関連の下部ロータ平面(図7の22)を規定する。好ましくは、上部及び下部ロータアセンブリ7a、7b、7c、7d、8a、8b、8c、8dは、それぞれシュラウド6a、6b、6c、6dに収容される上部及び下部ロータアセンブリの対7a、8a;7b、8b;7c、8c;7d、8dを規定し、従って、関連の上部及び下部ロータ平面(図7の21、22)はマルチロータ航空機1のシュラウド6a、6b、6c、6dの内側に位置する。
一態様により、マルチロータ航空機1は航空機動作構造(aircraft operating structure)及び冗長セキュリティアーキテクチャ(redundant security architecture)を含む。航空機動作構造は好ましくは無故障動作モード(failure−free operating mode)でのマルチロータ航空機1の動作のために適合しており、冗長セキュリティアーキテクチャは好ましくは少なくとも航空機動作構造の故障の場合のマルチロータ航空機1の動作のために適合している。特に、冗長セキュリティアーキテクチャは、乗客輸送に関する適用可能な当局の規制及び認可要件に優先的に準拠するように設けられる。
好ましくは、航空機動作構造は上部及び下部ロータアセンブリ7a、7b、7c、7d、8a、8b、8c、8dのうちの少なくとも第1の部分を含み、冗長セキュリティアーキテクチャは上部及び下部ロータアセンブリ7a、7b、7c、7d、8a、8b、8c、8dのうちの少なくとも第2の部分を含む。優先的に、それぞれの推力発生ユニット3a、3b、3c、3dの上部及び下部ロータアセンブリ7a、8a、7b、8b、7c、8c、7d、8dのうちの第1のものは航空機動作構造に関連付けられ、第2のものは冗長セキュリティアーキテクチャに関連付けられる。一例として、上部ロータアセンブリ7a、7b、7c、7dは航空機動作構造に関連付けられ、下部ロータアセンブリ8a、8b、8c、8dは冗長セキュリティアーキテクチャに関連付けられる。従って、少なくとも上部ロータアセンブリ7a、7b、7c、7dの故障の場合、下部ロータアセンブリ8a、8b、8c、8dは、例えば、その墜落を回避するために、マルチロータ航空機1を操作する。
しかしながら、上部ロータアセンブリ7a、7b、7c、7dが航空機動作構造に関連付けられ、下部ロータアセンブリ8a、8b、8c、8dが冗長セキュリティアーキテクチャに関連付けられる上記の構成は、単に一例として記載されているものであり、本発明をそれに限定するためのものではないことに留意されたい。その代わりに、代替の関連付けも同様に可能であり、企図されている。例えば、ロータアセンブリ8a、8c、7b、7dが冗長セキュリティアーキテクチャに関連付けられる間に、ロータアセンブリ7a、7c、8b、8dを航空機動作構造に関連付けることができる。代替的に、上部及び下部ロータアセンブリ7a、7b、7c、7d、8a、8b、8c、8dのすべてを航空機動作構造及び/又は冗長セキュリティアーキテクチャに関連付けることなどができる。このような代替の関連付けは当業者にとって容易に入手可能であるので、これらの関連付けは同様に企図され、本発明の一部であると見なされる。
図2は、胴体2に接続された推力発生ユニット3a、3b、3c、3dを備えた図1のマルチロータ航空機1を示している。推力発生ユニット3a、3b、3c、3dはそれぞれ、上部及び下部ロータアセンブリ7a、8a;7b、8b;7c、8c;7d、8dを含み、これらは好ましくは合同ロータ軸(図3及び図4の12)により並列構成に配置される。優先的に、上部及び下部ロータアセンブリ7a、8a;7b、8b;7c、8c;7d、8dが合同ロータ軸(図3及び図4の12)により積み重なる、即ち、互いの上に配置されるように、上部ロータアセンブリ7a、7b、7c、7dは下部ロータアセンブリ8a、8b、8c、8dより上に配置される。しかしながら、例えば、軸方向にずらせたロータ軸など、代替の構成も同様に企図されている。
図2から更に分かるように、推力発生ユニット3a、3b、3c、3dはいずれも模範的に、胴体2に対して横に、即ち、その縦方向1aに見て胴体2の左側又は右側に配置される。例示的に、図2に示されているように、左側は胴体2の下側に対応し、右側は上側に対応する。更に、胴体2は模範的に、横に配置された推力発生ユニット3a、3b、3c、3dが少なくともほぼ台形形状を規定するように具体化される。
しかしながら、この模範的な配置は、単に一例として記載されているものであり、本発明をそれに限定するためのものではないことに留意されたい。その代わりに、その他の配置も可能であり、同様に企図されている。例えば、推力発生ユニット3a、3b、3c、3dのうちの2つはそれぞれ、胴体2の前方部分及び後方部分などに配置することなどができる。
図3は、模範的な無故障動作モードにおける図1及び図2のマルチロータ航空機1を示している。この模範的な無故障動作モードでは、複数の推力発生ユニット3は、複数の上部及び/又は下部ロータアセンブリ7、8により推力発生気流方向9の気流を発生し、これはマルチロータ航空機1を地面10から上昇させるのに適している。
複数の上部ロータアセンブリ7のそれぞれ1つは第1のロータ軸を規定し、複数の下部ロータアセンブリ8のそれぞれ1つは第2のロータ軸を規定する。好ましくは、第1及び第2のロータ軸はそれぞれ合同であり、即ち、同軸状に配置され、従って、複数の上部及び下部ロータアセンブリ7、8は複数の同軸状に配置されたロータ軸12を規定する。例示的に、上部及び下部ロータアセンブリ7c、8cは、一般にロータ軸12cと呼ばれる第1及び第2の合同ロータ軸を規定し、上部及び下部ロータアセンブリ7d、8dは、一般にロータ軸12dと呼ばれる第1及び第2の合同ロータ軸を規定する。
しかしながら、その他の構成も同様に企図されている。例えば、ロータ軸は互いに平行に配置することなどができる。
好ましくは、複数の推力発生ユニット3は、マルチロータ航空機1の操縦性を増し、前進飛行中のマルチロータ航空機1の縦方向1aの全体的な傾斜を低減するために、複数の縦方向傾斜角11だけマルチロータ航空機1の縦方向1aに傾斜している。複数の縦方向傾斜角11は例示的に、マルチロータ航空機1の垂直基準線10aと複数の同軸状に配置されたロータ軸12との間に規定される。好ましくは、複数の縦方向傾斜角11の可能な実現数は、設けられた推力発生ユニットの根本的な数に依存する。
より具体的には、一態様により、複数の推力発生ユニット3のうちの少なくとも1つは、マルチロータ航空機1の垂直基準線10aと複数の推力発生ユニット3のうちのこの少なくとも1つの第1及び第2の合同ロータ軸との間に規定された第1の縦方向傾斜角だけマルチロータ航空機1の縦方向1aに傾斜している。第1の縦方向傾斜角は好ましくは−45°〜+80°の範囲内に含まれ、優先的に7°になる。
例示的に、複数の推力発生ユニット3のうちの推力発生ユニット3cは、垂直基準線10aとロータ軸12cとの間に規定された第1の縦方向傾斜角11aだけ傾斜しており、第1の縦方向傾斜角11aは好ましくは−45°〜+80°の範囲内に含まれ、優先的に7°になる。しかしながら、図1及び図2の複数の推力発生ユニット3のうちの推力発生ユニット3aも好ましくは第1の縦方向傾斜角11aだけ傾斜していることに留意されたい。
一態様により、複数の推力発生ユニット3のうちの少なくとも1つは、垂直基準線10aと複数の推力発生ユニット3のうちのこの少なくとも1つの第1及び第2の合同ロータ軸との間に規定された第2の縦方向傾斜角だけマルチロータ航空機1の縦方向1aに傾斜している。第2の縦方向傾斜角も好ましくは−45°〜+80°の範囲内に含まれ、優先的に7°になる。
例示的に、複数の推力発生ユニット3のうちの推力発生ユニット3dは、垂直基準線10aとロータ軸12dとの間に規定された第2の縦方向傾斜角11bだけ傾斜しており、第2の縦方向傾斜角11bは好ましくは−45°〜+80°の範囲内に含まれ、優先的に7°になる。しかしながら、図1及び図2の複数の推力発生ユニット3のうちの推力発生ユニット3bも好ましくは第2の縦方向傾斜角11bだけ傾斜していることに留意されたい。
図4は、例示的に幅2bを含む、図3の胴体2を備えたマルチロータ航空機1を示している。この幅は、胴体2のそれぞれ最も外側の左側側面と右側側面との間でマルチロータ航空機1の縦方向1aに直交して測定された最大距離として規定される。
マルチロータ航空機1はこの場合も模範的に無故障動作モードで示され、複数の推力発生ユニット3は複数の上部及び下部ロータアセンブリ7、8により推力発生気流方向9の気流を発生する。図3に関連して上述したように、上部及び下部ロータアセンブリ7c、8cはロータ軸12cを規定し、上部及び下部ロータアセンブリ7d、8dはロータ軸12dを規定する。
更に、上部及び下部ロータアセンブリ7a、8aは模範的に、一般にロータ軸12aと呼ばれる第1及び第2の合同ロータ軸を規定し、上部及び下部ロータアセンブリ7b、8bは、一般にロータ軸12bと呼ばれる第1及び第2の合同ロータ軸を規定する。ロータ軸12a、12b、12c、12dは好ましくは、マルチロータ航空機1の全体的な複雑さ、システム重量、並びに幾何学的サイズを低減するように実現されることに留意されたい。
好ましくは、複数の推力発生ユニット3は、低減された突風感度を提供し、マルチロータ航空機1の操縦性を増すために、複数の横方向傾斜角13だけマルチロータ航空機1の横方向1bに傾斜している。複数の横方向傾斜角13は例示的に、マルチロータ航空機1の垂直基準線10aと複数の同軸状に配置されたロータ軸12との間に規定される。好ましくは、複数の横方向傾斜角13の可能な実現数は、設けられた推力発生ユニットの根本的な数に依存する。
より具体的には、一態様により、複数の推力発生ユニット3のうちの少なくとも1つは、マルチロータ航空機1の垂直基準線10aと複数の推力発生ユニット3のうちのこの少なくとも1つの第1及び第2の合同ロータ軸との間に規定された第1の横方向傾斜角だけマルチロータ航空機1の横方向1bに傾斜している。第1の横方向傾斜角は好ましくは−45°〜+80°の範囲内に含まれ、優先的に5°になる。
例示的に、複数の推力発生ユニット3のうちの推力発生ユニット3aは、垂直基準線10aとロータ軸12aとの間に規定された第1の横方向傾斜角13aだけ傾斜しており、第1の横方向傾斜角13aは好ましくは−45°〜+80°の範囲内に含まれ、優先的に5°になる。しかしながら、図1及び図2の複数の推力発生ユニット3のうちの推力発生ユニット3cも好ましくは第1の横方向傾斜角13aだけ傾斜していることに留意されたい。
一態様により、複数の推力発生ユニット3のうちの少なくとも1つは、マルチロータ航空機1の垂直基準線10aと複数の推力発生ユニット3のうちのこの少なくとも1つの第1及び第2の合同ロータ軸との間に規定された第2の横方向傾斜角だけマルチロータ航空機1の横方向1bに傾斜している。第2の横方向傾斜角は好ましくは−45°〜+80°の範囲内に含まれ、優先的に5°になる。
例示的に、複数の推力発生ユニット3のうちの推力発生ユニット3bは、垂直基準線10aとロータ軸12bとの間に規定された第2の横方向傾斜角13bだけ傾斜しており、第2の横方向傾斜角13bは好ましくは−45°〜+80°の範囲内に含まれ、優先的に5°になる。しかしながら、図1及び図2の複数の推力発生ユニット3のうちの推力発生ユニット3dも好ましくは第2の横方向傾斜角13bだけ傾斜していることに留意されたい。
図5は、その模範的な構成を更に例示するために、その上部ロータアセンブリ7d、その下部ロータアセンブリ8d、そのギアボックスフェアリング5d、及びそのシュラウド6dを備えた、これ以前の図の推力発生ユニット3dを示している。しかしながら、これ以前の図の推力発生ユニット3a、3b、3cは好ましくは同様の構成を含み、従って、簡潔かつ簡明にするために、すべての推力発生ユニット3a、3b、3c、3dを代表して推力発生ユニット3dのみについて説明することに留意されたい。
好ましくは、シュラウド6dは、単純なプレス加工され曲げられた薄板金で作ることができる支持構造16により構成される。支持構造16には優先的に、例えば、これ以前の図のマルチロータ航空機1のバッテリシステムのための貯蔵容量として使用できる内容積が設けられる。例示的に、シュラウド6d、より具体的には支持構造16は、多くても1つの、模範的に、下部ロータアセンブリ8dを収容する。例示的に、下部ロータアセンブリ8dは、動作時に推力を発生するために少なくとも2つの、模範的に、3つのロータブレード19a、19b、19cを含む。同様に、上部ロータアセンブリ7dも好ましくは、動作時に推力を発生するために少なくとも2つの、模範的に、3つのロータブレード18a、18b、18cを含む。
更に、好ましくは、動作時にロータブレード18a、18b、18c、即ち、上部ロータアセンブリ7dを駆動するために少なくとも1つの第1のエンジン14aが設けられ、動作時にロータブレード19a、19b、19c、即ち、下部ロータアセンブリ8dを駆動するために少なくとも1つの第2のエンジン14bが設けられる。少なくとも1つの第1のエンジン14aは好ましくは図1に関連して上述した航空機動作構造に関連付けられ、少なくとも1つの第2のエンジン14bは好ましくは図1に関連して上述した冗長セキュリティアーキテクチャに関連付けられる。例示的に、少なくとも1つの第1及び第2のエンジン14a、14bはギアボックスフェアリング5dの内側に配置され、従って、それによって包含される。
少なくとも1つの第1及び第2のエンジン14a、14bとそれぞれロータブレード18a、18b、18c、19a、19b、19cとの間に任意選択で1つ以上のギアボックスを導入できることに留意されたい。1つ以上のギアボックスのこのような任意選択の導入により、少なくとも1つの第1及び第2のエンジン14a、14bの回転速度が増加するので、それらの動作効率を増すことができる。
タービン、ディーゼルエンジン、オットーモータ、電気エンジンなど、動作時にトルクを発生でき、動作時にロータブレード18a、18b、18c、19a、19b、19c、即ち、上部及び下部ロータアセンブリ7d、8dをそれぞれ回転させるためにこれらのロータブレード18a、18b、18c、19a、19b、19cにそれぞれ接続できる、任意の適切なエンジンにより、少なくとも1つの第1及び第2のエンジン14a、14bを実現できることに更に留意されたい。しかしながら、このようなエンジンは当業者にとって周知のものであり、本発明の一部ではないので、簡潔かつ簡明にするために、これらについてはより詳細に説明しない。
好ましくは、上部ロータアセンブリ7dは動作時に第1のロータ軸12eの周りで第1の回転方向15aに回転するように適合している。同様に、下部ロータアセンブリ8dは動作時に、例示的に第2のロータ軸を規定するロータ軸12dの周りで第2の回転方向15bに回転するように適合している。例示的に、第1及び第2の回転方向15a、15bは好ましくは互いに対向している。
一態様により、第1及び第2のロータ軸12e、12dは、例示的に第2のロータ軸12dに対応するシュラウド6dのそれぞれの縦方向に対して関連の傾斜角21a、22aだけ傾斜することができる。関連の傾斜角21a、22aは好ましくは−60°〜+60°の範囲内に含まれる。より具体的には、関連の傾斜角21aは好ましくは−10°〜+45°の範囲内に含まれ、関連の傾斜角22aは好ましくは−5°〜+5°の範囲内に含まれる。例示的に、第1のロータ軸12e、従って、上部ロータアセンブリ7dは第2のロータ軸12d、従って、下部ロータアセンブリ8dに対して模範的に約30°の関連の傾斜角21aだけ傾斜している。
少なくとも上部ロータアセンブリ7d、より具体的には、そのロータブレード18a、18b、18cには任意選択のピッチ変動17を設けることができる。同様に、下部ロータアセンブリ8d、即ち、そのロータブレード19a、19b、19cにもこのような任意選択のピッチ変動を設けることができる。この場合、図3及び図4の推力発生気流方向9の発生気流の制御は、ピッチ変動によるか、RPM変動によるか、又はピッチ変動とRPM変動の組み合わせにより、動作時に達成することができる。
対照的に、上部及び下部ロータアセンブリ7d、8dにこのような任意選択のピッチ変動が設けられない場合、例えば、ロータブレード18a、18b、18c、19a、19b、19cが固定ピッチブレードとして実現される場合、ピッチ変動による動作時の図3及び図4の推力発生気流方向9の発生気流の制御は実行することができない。この場合、動作時に上部及び下部ロータアセンブリ7d、8dにより発生される図3及び図4の推力発生気流方向9の気流の制御にRPM変動のみを使用することができる。
好ましくは、上部及び下部ロータアセンブリ7d、8dのそれぞれ1つは個別にサイズ設定され、単純にするために以下Wとして指定される図4の胴体幅2bの0.05〜6倍の範囲に及ぶ直径を含む。換言すれば、上部及び下部ロータアセンブリ7d、8dのそれぞれ1つの直径は好ましくは0.05*W〜6*Wの範囲に及び、優先的に1.5*Wになる。
一態様により、シュラウド6dは、例示的に支持構造16によって放射状に区切られる円筒形のエアダクト20を規定する。円筒形のエアダクト20は好ましくはエアインレット領域20e及びエアアウトレット領域20fによって軸方向に区切られる。好ましくは、第1のロータアセンブリ7dは、円筒形のエアダクト20の外側に、好ましくは円筒形のエアダクト20のエアインレット領域20eに隣接して配置される。
エアダクト20は一例としてのみ「円筒形の」エアダクトとして指定され、従って、本発明を限定するためのものではないことに留意されたい。換言すれば、エアダクトを「円筒形」に成形することはエアインレット領域20eからエアアウトレット領域20fまでエアダクト20全体に沿って等しい半径であることを意味するが、代替の構成も同様に企図されている。例えば、エアダクト20は、例えばエアインレット領域20eよりエアアウトレット領域20fの方がその半径が大きくなるなど、切頭体の形を呈することができる。従って、「円筒形のエアダクト」という表現はエアダクト20のこのような代替構成も包含するものであることを理解されたい。
エアインレット領域20eは好ましくは円筒形のエアダクト20の円周方向に波形形状を呈する。より具体的には、この波形形状は、エアインレット領域20eに沿って円筒形のエアダクト20の円周方向に移動する時に、波形の動き、重ねて言えば、波形移動が実行されることを意味する。
例示的に、シュラウド6d、即ち、円筒形のエアダクト20は前縁20a及び後縁20bを呈する。明瞭にするためにのみ、前縁20aは、図1〜図4のマルチロータ航空機の前進飛行中に後縁20bに対して上流位置に配置される、シュラウド6d、即ち、円筒形のエアダクト20のエッジであることに留意されたい。更に、シュラウド6d、即ち、円筒形のエアダクト20は優先的に、エアインレット領域20eに位置するボードサイドラテラルショルダ20c及びスターボードサイドラテラルショルダ20dを呈する。
より具体的には、前縁20aは、シュラウド6d、即ち、円筒形のエアダクト20の円周方向に後縁20bに対して正反対であり、ボードサイドラテラルショルダ20cはスターボードサイドラテラルショルダ20dに対して正反対である。更に、ボードサイドラテラルショルダ20c及びスターボードサイドラテラルショルダ20dはそれぞれ、シュラウド6d、即ち、円筒形のエアダクト20の円周方向に前縁20aと後縁20bとの間に配置される。
図6は、エアインレット領域20eの波形形状を更に例示するために、その上部ロータアセンブリ7d、その下部ロータアセンブリ8d、及び円筒形のエアダクト20を規定し、好ましくはエアインレット領域20e及びエアアウトレット領域20fによって軸方向に区切られるそのシュラウド6dを備えた、図5の推力発生ユニット3dを示している。また、図6は、下部ロータアセンブリ8dに対して関連の傾斜角21aだけ上部ロータアセンブリ7dが傾斜していることも更に示している。
図7は、優先的にそれぞれのロータ軸12e、12dの周りで回転する上部及び下部ロータアセンブリ7d、8dを備えた、図5及び図6の推力発生ユニット3dの概略図を示している。好ましくは、上部及び下部ロータアセンブリ7d、8dは、必要な安全レベル及び満足のいく飛行機械挙動に到達するために、分離されたロータ平面21、22を規定する。例示的に、ロータ平面21、22は互いの上に配置される。優先的に、ロータ平面21、22間の所定の距離は0.01*DR〜2*DRの範囲内に含まれ、好ましくは0.17*DRになり、DRは第2のロータアセンブリ8dの直径を規定する。
上記のように、シュラウド6dは、エアインレット領域20e及びエアアウトレット領域20fによって軸方向に区切られる円筒形のエアダクト20を規定する。下部ロータアセンブリ8dはシュラウド6dの内側に配置され、上部ロータアセンブリ7dはシュラウド6dの外側、即ち、円筒形のエアダクト20の外側に、好ましくは、エアインレット領域20eに隣接して配置される。
推力発生ユニット3dの動作時に、エアインレット領域20eは好ましくはエアコレクタ(air collector)として機能し、従って、単純かつ明瞭にするために以下「コレクタ20e」とも呼ばれる。エアアウトレット領域20fは、必ずしもそうではないが、ディフューザ(diffusor)として具体化して機能することができ、従って、単純かつ明瞭にするために以下「ディフューザ20f」とも呼ばれる。
図7の部分(A)は、軸方向気流条件における、即ち、図1〜図4のマルチロータ航空機1の垂直離陸及びホバリング中の推力発生ユニット3dの模範的な動作を示している。しかしながら、図5及び図6とは対照的に、ロータ軸12e、12dは模範的に互いに同軸状に配置される。
例示的に、軸方向気流条件では、軸方向気流23aはコレクタ20eを介して円筒形のエアダクト20に入り、上部及び下部ロータアセンブリ7d、8dにより加速され、ディフューザ20fを介して円筒形のエアダクト20を出る。気流23aは同軸状に配置されたロータ軸12e、12dに対して少なくともほぼ平行に向けられているので、これは「軸方向」気流と呼ばれることに留意されたい。
軸方向気流23aは単独で推力を発生し、シュラウド6d、即ち、円筒形のエアダクト20に対して作用することにより追加の推力を更に発生する。これは推力ベクトル23によって示される全推力をもたらすことになり、それにより、図1〜図4のマルチロータ航空機1を上昇させることができるようになる。同じ推力レベルでは、上部及び下部ロータアセンブリ7d、8dを駆動するために図5及び図6の少なくとも1つの第1及び第2のエンジン14a、14bが必要とするそれぞれの出力量は、シュラウド6dなしで上部及び下部ロータアセンブリ7d、8dを駆動するために必要になると思われる出力より著しく低くなることに留意されたい。
図7の部分(B)は、横向き気流条件における、即ち、図1〜図4のマルチロータ航空機1の前進飛行中の推力発生ユニット3dの模範的な動作を示している。ロータ軸12e、12dは例示的に依然として部分(A)により互いに同軸状に配置されるが、この場合、横向き気流23bはコレクタ20eを介して円筒形のエアダクト20に入り、上部及び下部ロータアセンブリ7d、8dにより加速され、ディフューザ20fを介して円筒形のエアダクト20を出る。気流23bは同軸状に配置されたロータ軸12e、12dに対して少なくともほぼ横向きの方向に向けられているので、これは「横向き」気流と呼ばれることに留意されたい。
部分(B)による推力発生ユニット3dを備えた図1〜図2のマルチロータ航空機1の前進飛行を可能にするために、好ましくは、円筒形のエアダクト20内の横向き気流23bの制御にRPM変動が使用される。より具体的には、上部ロータアセンブリ7dは好ましくは、ロータ軸12dの周りの下部ロータアセンブリ8dより高い回転速度でロータ軸12eの周りで回転する。従って、図1〜図4のマルチロータ航空機1の前進飛行を可能にするために、依然として部分(A)に示されている推力ベクトル23によって示される全推力の根本的な方向は、部分(C)に示されているように向きを変えられることになる。
図7の部分(C)は、横向き気流条件における、即ち、本発明による図1〜図4のマルチロータ航空機1の前進飛行中の推力発生ユニット3dの他の模範的な動作を示しており、部分(B)による横向き気流23bはコレクタ20eを介して円筒形のエアダクト20に入り、上部及び下部ロータアセンブリ7d、8dにより加速され、ディフューザ20fを介して円筒形のエアダクト20を出る。しかしながら、部分(B)とは対照的に、この場合、ロータ軸12eは、図5及び図6に関連して上述したように、傾斜角21aだけ傾斜している。従って、図1〜図4のマルチロータ航空機1の強化された前進飛行条件を可能にするために、推力ベクトル23は模範的に示されているように向きを変えられる。
図8は、好ましくはコレクタ20e及びディフューザ20fによって軸方向に区切られ、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dを含む、円筒形のエアダクト20を規定するシュラウド6dを備えた、図5及び図6の推力発生ユニット3dの他の概略図を示している。しかしながら、単純かつ明瞭にするために、上部及び下部ロータアセンブリ7d、8dの例示は省略されている。
一態様により、円筒形のエアダクト20は、円筒形のエアダクト20の円周方向に変動する、円筒形のエアダクト20の軸方向にディフューザ20fとコレクタ20eとの間に規定された高さを呈する。この高さは、円筒形のエアダクト20の円周方向に変動し、従って、図5に関連して上述したようにコレクタ20eの波形形状を規定する。
より具体的には、前縁20aにおける高さ24aは好ましくはボードサイドラテラルショルダ20c及び/又はスターボードサイドラテラルショルダ20dにおける高さ24cより小さい。更に、後縁20bにおける高さ24bは好ましくはボードサイドラテラルショルダ20c及び/又はスターボードサイドラテラルショルダ20dにおける高さ24cより小さい。その上、後縁20bにおける高さ24bは好ましくは前縁20aにおける高さ24aより小さい。一態様により、ボードサイドラテラルショルダ20c及び/又はスターボードサイドラテラルショルダ20dにおける高さ24cは0.05*D〜0.5*Dの範囲内で選択され、Dは円筒形のエアダクト20の直径、好ましくはその内径(図10の20g)を規定する。
一態様により、円筒形のエアダクト20のコレクタ20eは、円筒形のエアダクト20の円周方向に変動する半径を呈する。換言すれば、コレクタ20eには、好ましくは、平らな上部エッジ、即ち、ディフューザ20fから遠くを向いているエッジが設けられていないが、丸い上部エッジが設けられている。優先的に、コレクタ20eの半径は、単純かつ明瞭にするために以下「コレクタ半径」とも呼ばれ、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dのうちの少なくとも2つの間で異なっている。
好ましくは、前縁20aにおけるコレクタ半径25aは0.01*D〜0.25*Dの範囲内で選択され、後縁20bにおけるコレクタ半径25bは0〜0.25*Dの範囲内で選択され、ボードサイドラテラルショルダ20c及び/又はスターボードサイドラテラルショルダ20dにおけるコレクタ半径25cは0.01*D〜0.25*Dの範囲内で選択される。すでに上述したように、Dは円筒形のエアダクト20の直径、好ましくはその内径(図10の20g)を規定する。
同様に、円筒形のエアダクト20のディフューザ20fは、円筒形のエアダクト20の円周方向に変動する半径を呈することができる。換言すれば、ディフューザ20fには、必ずしも平らな下部エッジ、即ち、コレクタ20eから遠くを向いているエッジが例示されているように設けられるわけではなく、丸い下部エッジが設けられている。優先的に、ディフューザ20fの半径は、単純かつ明瞭にするために以下「ディフューザ半径」とも呼ばれ、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dのうちの少なくとも2つの間で異なっている。
好ましくは、前縁20aにおけるディフューザ半径26aは0〜0.1*Dの範囲内で選択され、後縁20bにおけるディフューザ半径26bは0〜0.1*Dの範囲内で選択され、ボードサイドラテラルショルダ20c及び/又はスターボードサイドラテラルショルダ20dにおけるディフューザ半径26cは0〜0.1*Dの範囲内で選択される。この場合も、すでに上述したように、Dは円筒形のエアダクト20の直径、好ましくはその内径(図10の20g)を規定する。
図9は、好ましくはコレクタ20e及びディフューザ20fによって軸方向に区切られ、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dを含む、円筒形のエアダクト20を規定する図5〜図8のシュラウド6dを示している。一態様により、前縁20aには追加の揚力面27が設けられている。
図10は、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dを含む、円筒形のエアダクト20を規定する図5〜図8のシュラウド6dを示している。例示的に、円筒形のエアダクト20の直径、より具体的にはその内径Dは参照符号20gで示されている。更に、円筒形のエアダクト20、即ち、シュラウド6dのアジマスΨは参照符号20hで示されている。一例として、アジマスΨは、例示されているようにシュラウド6dの時計回り方向に規定され、後縁20bにおいてΨ=0になるように後縁20bから回り始めるものと想定されている。
図11は、好ましくはコレクタ20e及びディフューザ20fによって軸方向に区切られ、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dを含む、円筒形のエアダクト20を規定するシュラウド6dの4つの模範的な断面を示している。それぞれの断面は、図10の所与のアジマスΨにおけるシュラウド6dの断面図に対応する。
より具体的には、第1の断面図は、図10の切断線A−Aの方向に見て、アジマスΨ=180°におけるシュラウド6dの模範的な断面を示している。この第1の断面図は、図9の追加の揚力面27が設けられたシュラウド6dの前縁20aを示している。一例として、コレクタ20eは図8に関連して上述したように前縁20aに丸い上部エッジが設けられ、ディフューザ20fは例示的に平らな下部エッジが設けられている。
第2の断面図は、図10の切断線A−Aの方向に見て、アジマスΨ=0°におけるシュラウド6dの模範的な断面を示している。この第2の断面図は、シュラウド6dの後縁20bを示している。一例として、図8に関連して上述したように、コレクタ20eは後縁20bに丸い上部エッジが設けられ、ディフューザ20fは丸い下部エッジが設けられている。
第3の断面図は、図10の切断線B−Bの方向に見て、アジマスΨ=90°におけるシュラウド6dの模範的な断面を示している。この第3の断面図は、シュラウド6dのボードサイドラテラルショルダ20cを示している。一例として、コレクタ20eは図8に関連して上述したようにボードサイドラテラルショルダ20cに丸い上部エッジが設けられ、ディフューザ20fは例示的に平らな下部エッジが設けられている。
第4の断面図は、図10の切断線B−Bの方向に見て、アジマスΨ=270°におけるシュラウド6dの模範的な断面を示している。この第4の断面図は、シュラウド6dのスターボードサイドラテラルショルダ20dを示している。一例として、コレクタ20eは図8に関連して上述したようにスターボードサイドラテラルショルダ20dに丸い上部エッジが設けられ、ディフューザ20fは例示的に平らな下部エッジが設けられている。
図12は、シュラウド6dと上部及び下部ロータアセンブリ7d、8dを備えた、図7の部分(C)による図5及び図6の推力発生ユニット3dを示している。上部ロータアセンブリ7dは、動作時にロータ軸12eの周りで回転し、ロータ平面21を規定し、下部ロータアセンブリ8dは、動作時にロータ軸12dの周りで回転し、ロータ平面22を規定する。ロータ軸12eは、上記のように、ロータ軸12dに対して傾斜している。
より具体的には、図12は、RPM変動により推力発生ユニット3dを制御するための模範的な制御方法を示している。換言すれば、例えば、上部ロータアセンブリ7dが下部ロータアセンブリ8dの回転速度Ω1より高い回転速度Ω2で操作される場合、推力ベクトル23は、参照符号28で示されている関連の推力方向角(thrust orientation angle)εだけ模範的な基準面28aに対して傾斜している。図12の左側に示されているように、関連の推力方向角εが90°より小さい、即ち、ε<90°である限り、図1〜図4のマルチロータ航空機1は前進飛行で操作される。しかしながら、図12の右側に示されているように、関連の推力方向角εが90°に等しい、即ち、ε=90°である場合、図1〜図4のマルチロータ航空機1はホバリング又は垂直離陸で操作される。
しかしながら、この機能も上部及び下部ロータアセンブリ7d、8dの特定の実施形態に依存することに留意されたい。より具体的には、必要な回転速度差は、例えば、上部及び下部ロータアセンブリ間のピッチ差又はロータ軸12eとロータ軸12dとの間の傾斜などに応じて変動する可能性がある。しかしながら、詳細な機能は、当業者にとって容易に入手可能であると見なされるので、本発明の主題ではない。従って、簡潔かつ簡明にするために、それについてより詳細な説明は省略されている。
図13は、図1〜図4のマルチロータ航空機1の動作を示す模範的なRPMオフセット制御線図29を示している。線図29は例示的に飛行モード軸29aと回転速度軸29bを含む。
線図29には2つのグラフ30、31が例示的に表されている。グラフ30は図12の上部ロータアセンブリ7dの回転速度Ω2を例示し、グラフ31は図12の下部ロータアセンブリ8dの回転速度Ω1を例示している。
図1〜図4のマルチロータ航空機1の動作が開始されると、矢印32aで示されるように、上部ロータアセンブリ7dは、好ましくは、下部ロータアセンブリ8dの回転速度Ω1より低い回転速度Ω2で操作される。従って、図1〜図4のマルチロータ航空機1は関連のホバリングモードで操作され、即ち、ホバリングする。
その後、上部ロータアセンブリ7dの回転速度Ω2は好ましくは増加され、下部ロータアセンブリ8dの回転速度Ω1は好ましくは低減される。次に、矢印32bで示されるように、上部ロータアセンブリ7dが下部ロータアセンブリ8dの回転速度Ω1より高い回転速度Ω2で操作されると、図1〜図4のマルチロータ航空機1は関連の前進飛行モードで操作される。
図14は、前縁20a、後縁20b、ボードサイドラテラルショルダ20c、及びスターボードサイドラテラルショルダ20dを含む、円筒形のエアダクト20を規定する図5〜図12のシュラウド6dを示している。しかしながら、図5〜図12によるシュラウド6dの実施形態とは対照的に、この場合、円筒形のエアダクト20の後縁20bは少なくとも本質的に開放され、単に補剛エレメント33が設けられているだけである。好ましくは、円筒形のエアダクト20は、例えば、30°〜60°の所定の開口角(opening angle)33aにわたって後縁20bで開放されており、この角度は補剛エレメント33の延長角(extension angle)に対応する。
図15は、シュラウド6dと上部及び下部ロータアセンブリ7d、8dを備えた、図7の部分(C)による図5及び図6の推力発生ユニット3dを示している。シュラウド6dは前縁20aと後縁20bとを含む。上部ロータアセンブリ7dは、動作時にロータ軸12eの周りで回転し、ロータ平面21を規定し、下部ロータアセンブリ8dは、動作時にロータ軸12dの周りで回転し、ロータ平面22を規定する。
ロータ軸12eは、上記のように、ロータ軸12dに対して傾斜している。図15では、この傾斜は水平基準面34に対して明らかになっている。より具体的には、ロータ軸12eは参照符号34aで示されている関連の傾斜角αだけ水平基準面34に対して傾斜しており、ロータ軸12dは例示的に、参照符号34bで示されている関連の傾斜角βにより示されているように水平基準面34に対して垂直である。
更に、一態様により、図5〜図12によるシュラウド6dの実施形態とは対照的に、この場合、後縁20bは、優先的にエアロフォイルとして設計されたフラップ35を装備している。フラップ35は、好ましくは関連の回転軸35dの周りで回転可能であり、模範的なホバリング位置35aでは連続線で示されるとともに模範的な前進飛行位置35bでは点線で示されている。
図16は、後縁20bにフラップ35が設けられた図15の推力発生ユニット3dのシュラウド6dを示している。例示的に、フラップ35は、シュラウド6dの後縁20bで延長角35cにわたって広がり、即ち、延びている。一例として、フラップ35は図15のその模範的なホバリング位置35aに示されている。
図17は、図16によりシュラウド6dの後縁20bで延長角35cにわたって広がり、即ち、延びているフラップ35が後縁20bに設けられた図15の推力発生ユニット3dのシュラウド6dを示している。一例として、この場合、フラップ35は図15のその模範的な前進飛行位置35bに示されている。
最後に、本発明の上記の諸態様の変更も当業者の常識の範囲内であり、従って、同じく本発明の一部であると見なされることに留意されたい。
1 マルチロータ航空機
1a 航空機の縦方向
1b 航空機の横方向
2 航空機の機体
2a 航空機の機体の内容積
2b 航空機の機体の幅
3 推力発生ユニット
3a、3b、3c、3d 推力発生ユニット
4 推力発生ユニットの構造支持部
4a、4b、4c、4d 推力発生ユニットの構造支持部
5 ギアボックスフェアリング
5a、5b、5c、5d ギアボックスフェアリング
6 シュラウドユニット
6a、6b、6c、6d シュラウド
7 上部ロータアセンブリ
7a、7b、7c、7d 上部ロータアセンブリ
8 下部ロータアセンブリ
8a、8b、8c、8d 下部ロータアセンブリ
9 推力発生気流方向
10 地面
10a 垂直基準線
11 縦方向傾斜角
11a、11b 縦方向傾斜角
12 ロータ軸
12a、12b、12c、12d ロータ軸
13 横方向傾斜角
13a、13b 横方向傾斜角
14a 上部ロータアセンブリのエンジン
14b 下部ロータアセンブリのエンジン
15a 上部ロータアセンブリの回転方向
15b 下部ロータアセンブリの回転方向
16 支持構造
17 ピッチ変動
18a、18b、18c 上部ロータアセンブリのロータブレード
19a、19b、19c 下部ロータアセンブリのロータブレード
20 エアダクト
20a 前縁
20b 後縁
20c ボードサイドラテラルショルダ
20d スターボードサイドラテラルショルダ
20e コレクタ
20f ディフューザ
20g エアダクトの内径(D)
20h エアダクトのアジマス(Ψ)
21 上部ロータアセンブリのロータ平面
21a 上面の傾斜角
22 下部ロータアセンブリのロータ平面
22a 下面の傾斜角
23 推力ベクトル
23a ホバリング気流方向
23b 前進飛行気流方向
24a エアダクト前縁の全高(HL)
24b エアダクト後縁の全高(HT)
24c エアダクトラテラルショルダの全高(HS)
25a エアダクト前縁におけるコレクタ半径(CRL)
25b エアダクト後縁におけるコレクタ半径(CRT)
25c エアダクトラテラルショルダにおけるコレクタ半径(CRS)
26a エアダクト前縁におけるディフューザ半径(DRL)
26b エアダクト後縁におけるディフューザ半径(DRT)
26c エアダクトラテラルショルダにおけるディフューザ半径(DRS)
27 追加の揚力面
28 推力方向角(ε)
28a 基準面
29 RPMオフセット制御線図
29a 飛行モード軸
29b 回転速度
30 上部ロータアセンブリの回転速度(Ω2)
31 下部ロータアセンブリの回転速度(Ω1)
32a ホバリングモード
32b 前進飛行モード
33 補剛エレメント
33a 補剛エレメントの延長角
34 ロータアセンブリ傾斜基準面
34a 上部ロータアセンブリ傾斜角(α)
34b 下部ロータアセンブリ傾斜角(β)
35 フラップ
35a フラップホバリング位置
35b フラップ前進飛行位置
35c フラップ延長角
35d フラップ回転軸

Claims (15)

  1. 所定の方向(23)に推力を発生するための推力発生ユニット(3d)であって、
    少なくとも2つのロータアセンブリ(7d、8d)と、
    前記少なくとも2つのロータアセンブリ(7d、8d)のうちの多くても1つを収容するシュラウド(6d)と、を含み、
    前記シュラウド(6d)が、エアインレット領域(20e)及びエアアウトレット領域(20f)によって軸方向に区切られた円筒形のエアダクト(20)を規定し、
    前記エアインレット領域(20e)が、前記円筒形のエアダクト(20)の円周方向に波形形状を呈する、推力発生ユニット(3d)。
  2. 前記円筒形のエアダクト(20)が、前記円筒形のエアダクト(20)の円周方向に変動する、前記円筒形のエアダクト(20)の軸方向に前記エアアウトレット領域(20f)と前記エアインレット領域(20e)との間に規定された高さ(24a、24b、24c)を呈し、
    前記円筒形のエアダクト(20)の前記円周方向に変動する前記高さ(24a、24b、24c)が、前記エアインレット領域(20e)の前記波形形状を規定することを特徴とする、請求項1記載の推力発生ユニット(3d)。
  3. 前記円筒形のエアダクト(20)が、円周方向に、前縁(20a)及び正反対の後縁(20b)と、ボードサイドラテラルショルダ(20c)及び正反対のスターボードサイドラテラルショルダ(20d)と、を含み、
    前記ボードサイドラテラルショルダ(20c)及び前記スターボードサイドラテラルショルダ(20d)が、それぞれ前記円筒形のエアダクト(20)の前記円周方向に前記前縁(20a)と前記後縁(20b)との間に配置され、
    前記前縁(20a)における前記高さ(24a)が、前記ボードサイドラテラルショルダ(20c)及び/又は前記スターボードサイドラテラルショルダ(20d)における前記高さ(24c)より小さいことを特徴とする、請求項2記載の推力発生ユニット(3d)。
  4. 前記後縁(20b)における前記高さ(24b)が、前記ボードサイドラテラルショルダ(20c)及び/又は前記スターボードサイドラテラルショルダ(20d)における前記高さ(24c)より小さいことを特徴とする、請求項3記載の推力発生ユニット(3d)。
  5. 前記後縁(20b)における前記高さ(24b)が、前記前縁(20a)における前記高さ(24a)より小さいことを特徴とする、請求項3記載の推力発生ユニット(3d)。
  6. 前記ボードサイドラテラルショルダ(20c)及び/又は前記スターボードサイドラテラルショルダ(20d)における前記高さ(24c)が、0.05*D〜0.5*Dの範囲内で選択され、
    Dが、前記円筒形のエアダクト(20)の直径(20g)を規定することを特徴とする、請求項3記載の推力発生ユニット(3d)。
  7. 前記円筒形のエアダクト(20)の前記エアインレット領域(20e)が、前記円筒形のエアダクト(20)の前記円周方向に変動するエアインレット領域半径(25a、25b、25c)を呈し、
    前記エアインレット領域半径(25a、25b、25c)が、前記前縁(20a)、前記後縁(20b)、前記ボードサイドラテラルショルダ(20c)、及び前記スターボードサイドラテラルショルダ(20d)のうちの少なくとも2つの間で異なるものであることを特徴とする、請求項3記載の推力発生ユニット(3d)。
  8. 前記円筒形のエアダクト(20)の前記エアアウトレット領域(20f)が、前記円筒形のエアダクト(20)の前記円周方向に変動するエアアウトレット領域半径(26a、26b、26c)を呈し、
    前記エアアウトレット領域半径(26a、26b、26c)が、前記前縁(20a)、前記後縁(20b)、前記ボードサイドラテラルショルダ(20c)、及び前記スターボードサイドラテラルショルダ(20d)のうちの少なくとも2つの間で異なるものであることを特徴とする、請求項3記載の推力発生ユニット(3d)。
  9. 前記円筒形のエアダクト(20)の前記後縁(20b)が、少なくとも本質的に開放され、補剛エレメント(33)が設けられることを特徴とする、請求項3記載の推力発生ユニット(3d)。
  10. 前記円筒形のエアダクト(20)の前記後縁(20b)が、フラップ(35)を装備していることを特徴とする、請求項3記載の推力発生ユニット(3d)。
  11. 前記円筒形のエアダクト(20)の前記前縁(20a)に追加の揚力面(27)が設けられることを特徴とする、請求項3記載の推力発生ユニット(3d)。
  12. 前記少なくとも2つのロータアセンブリ(7d、8d)のうちの第1のロータアセンブリ(7d)が、前記円筒形のエアダクト(20)の外側に、前記円筒形のエアダクト(20)の前記エアインレット領域(20e)に隣接して配置され、
    前記シュラウド(6d)が、前記少なくとも2つのロータアセンブリ(7d、8d)のうちの第2のロータアセンブリ(8d)を収容することを特徴とする、請求項1記載の推力発生ユニット(3d)。
  13. 前記第1のロータアセンブリ(7d)が、第1のロータ軸(12d)を規定し、
    前記第2のロータアセンブリ(8d)が、第2のロータ軸(12d)を規定し、
    前記第1及び第2のロータ軸(12d)が、同軸状に配置されることを特徴とする、請求項12記載の推力発生ユニット(3d)。
  14. 前記第1及び第2のロータ軸(12d)が、−60°〜+60°の範囲内に含まれる関連の傾斜角(21a、22a)だけ傾斜していることを特徴とする、請求項13記載の推力発生ユニット(3d)。
  15. 請求項1〜14の一項により構成された少なくとも1つの推力発生ユニット(3d)を含む、マルチロータ航空機(1)。
JP2018009621A 2017-02-27 2018-01-24 少なくとも2つのロータアセンブリ及びシュラウドを備えた推力発生ユニット Active JP6516888B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17400008.3 2017-02-27
EP17400008.3A EP3366586B1 (en) 2017-02-27 2017-02-27 A thrust producing unit with at least two rotor assemblies and a shrouding

Publications (2)

Publication Number Publication Date
JP2018140772A JP2018140772A (ja) 2018-09-13
JP6516888B2 true JP6516888B2 (ja) 2019-05-22

Family

ID=58410234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009621A Active JP6516888B2 (ja) 2017-02-27 2018-01-24 少なくとも2つのロータアセンブリ及びシュラウドを備えた推力発生ユニット

Country Status (8)

Country Link
US (1) US11220325B2 (ja)
EP (1) EP3366586B1 (ja)
JP (1) JP6516888B2 (ja)
KR (1) KR102049969B1 (ja)
CN (1) CN108502151B (ja)
BR (1) BR102018003220B1 (ja)
MX (1) MX2018002328A (ja)
SG (1) SG10201800731PA (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814966B2 (en) 2015-05-25 2020-10-27 Dotterel Technologies Limited Shroud for an aircraft
WO2019022618A1 (en) 2017-07-24 2019-01-31 Dotterel Technologies Limited ENVELOPE
EP3784570B1 (en) * 2018-04-27 2022-10-26 Textron Systems Corporation Variable pitch rotor assembly for electrically driven vectored thrust aircraft applications
AU2019271730A1 (en) 2018-05-16 2020-12-24 Dotterel Technologies Limited Systems and methods for audio capture
EP3581490B1 (en) * 2018-06-13 2021-01-13 AIRBUS HELICOPTERS DEUTSCHLAND GmbH A multirotor aircraft with a thrust producing unit that comprises an aerodynamically optimized shrouding
US10822080B2 (en) * 2018-06-28 2020-11-03 The Boeing Company Aircraft and methods of performing tethered and untethered flights using aircraft
US11027836B2 (en) * 2018-07-13 2021-06-08 The Boeing Company Rotorcraft with canted coaxial rotors
MX2021000277A (es) * 2018-07-23 2021-09-08 Airgility Inc Sistema de plataforma de juego para aplicaciones multimisión que se encuentran en cualquiera o combinación de dominios o entornos.
JP7068126B2 (ja) * 2018-10-01 2022-05-16 トヨタ自動車株式会社 異常検出装置および制御装置
EP3959125A4 (en) 2019-04-26 2023-03-22 Aergility Corporation HYBRID GIRODYNE TYPE AIRCRAFT
KR102366194B1 (ko) * 2020-03-26 2022-02-24 주식회사 풍산 동축 로터형 비행체
KR102337912B1 (ko) * 2020-08-07 2021-12-10 한서대학교 산학협력단 림포일을 갖는 비행체의 추진유닛 제조방법, 림포일을 갖는 비행체의 추진유닛 및 비행체
CN112520026A (zh) * 2020-12-23 2021-03-19 中国民用航空飞行学院 一种新型变体飞行器
WO2024001143A1 (zh) * 2022-06-30 2024-01-04 亿航智能设备(广州)有限公司 涵道风扇、飞行器及其姿态控制方法、装置和相关设备

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB905911A (en) 1957-11-19 1962-09-12 Maurice Louis Hurel Improvements in aircraft having a lift producing rotor disposed in a supporting surface
US3584810A (en) 1969-05-08 1971-06-15 Gen Dynamics Corp Stacked rotor vtol aircraft
DE2434042C3 (de) 1974-07-16 1979-04-26 Dornier Gmbh, 7990 Friedrichshafen Vertikal fliegendes Fluggerät
US5152478A (en) 1990-05-18 1992-10-06 United Technologies Corporation Unmanned flight vehicle including counter rotating rotors positioned within a toroidal shroud and operable to provide all required vehicle flight controls
US5150857A (en) 1991-08-13 1992-09-29 United Technologies Corporation Shroud geometry for unmanned aerial vehicles
US5277381A (en) * 1992-08-12 1994-01-11 Piasecki Aircraft Corporation Rotary wing aircraft shrouded propeller sidewall thruster
JPH07125696A (ja) * 1993-11-02 1995-05-16 Mitsubishi Heavy Ind Ltd ヘリコプタ
US5575438A (en) * 1994-05-09 1996-11-19 United Technologies Corporation Unmanned VTOL ground surveillance vehicle
US6270038B1 (en) 1999-04-22 2001-08-07 Sikorsky Aircraft Corporation Unmanned aerial vehicle with counter-rotating ducted rotors and shrouded pusher-prop
GB2360752A (en) * 2000-04-01 2001-10-03 Glyn Jones Helicopter without tail rotor
US6568630B2 (en) 2001-08-21 2003-05-27 Urban Aeronautics Ltd. Ducted vehicles particularly useful as VTOL aircraft
USD543928S1 (en) 2003-01-23 2007-06-05 Ufoz, Llc Hovercraft with stacked rotor thruster and winglets
US7032861B2 (en) 2002-01-07 2006-04-25 Sanders Jr John K Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
GB2389826B (en) * 2002-06-22 2006-08-23 John Edward Randell Craft propulsion
ITTO20030588A1 (it) 2003-07-30 2005-01-31 Fiat Ricerche Macchina volante.
US7857253B2 (en) 2003-10-27 2010-12-28 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
GB2409845A (en) * 2004-01-08 2005-07-13 Robert Graham Burrage Tilt-rotor aircraft changeable between vertical lift and forward flight modes
US9434471B2 (en) 2005-04-14 2016-09-06 Paul E Arlton Rotary wing vehicle
US20060226281A1 (en) 2004-11-17 2006-10-12 Walton Joh-Paul C Ducted fan vertical take-off and landing vehicle
EP1831073A2 (en) * 2004-12-22 2007-09-12 Aurora Flight Sciences Corporation System and method for utilizing stored electrical energy for vtol aircraft thrust enhancement and attitude control
US7946528B2 (en) 2005-04-15 2011-05-24 Urban Aeronautics, Ltd. Flight control system especially suited for VTOL vehicles
DE102005022706A1 (de) 2005-05-18 2006-11-23 Dolch, Stefan, Dipl.-Ing. (FH) Hubschrauber mit einer Kamera
US8720814B2 (en) * 2005-10-18 2014-05-13 Frick A. Smith Aircraft with freewheeling engine
CN101157385A (zh) * 2007-11-27 2008-04-09 谭生 直升机
US20100270419A1 (en) 2007-12-14 2010-10-28 Raphael Yoeli Redundancies and flows in vehicles
ES2385183T3 (es) * 2008-02-01 2012-07-19 Ashley Christopher Bryant Avión ala volante
US8387911B2 (en) * 2008-07-25 2013-03-05 Honeywell International Inc. Ducted fan core for use with an unmanned aerial vehicle
US8240597B2 (en) * 2008-08-06 2012-08-14 Honeywell International Inc. UAV ducted fan lip shaping
US20120153087A1 (en) * 2008-08-06 2012-06-21 Honeywell International Inc. Modular Pods for Use with an Unmanned Aerial Vehicle
CN201306711Y (zh) 2008-11-04 2009-09-09 王国良 二甲醚环保节能专用燃烧器
US8464978B2 (en) * 2009-04-16 2013-06-18 The Trustees Of The University Of Pennsylvania Counter-rotational inertial control of rotorcraft
US8733690B2 (en) 2009-08-24 2014-05-27 Joby Aviation, Inc. Lightweight vertical take-off and landing aircraft and flight control paradigm using thrust differentials
KR101169742B1 (ko) 2009-11-20 2012-07-30 순천대학교 산학협력단 동축반전용 덕트 시스템을 이용한 비행체
US20110147533A1 (en) * 2009-12-21 2011-06-23 Honeywell International Inc. Morphing ducted fan for vertical take-off and landing vehicle
KR101217804B1 (ko) 2010-06-01 2013-01-22 (주)선택이앤티 하방 조정프로펠러형 비행체
CN103079955B (zh) 2010-07-19 2016-03-30 吉·埃罗公司 私人飞机
WO2012063220A2 (en) * 2010-11-12 2012-05-18 Sky Sapience Aerial unit and method for elevating payloads
CN102120489A (zh) * 2011-02-28 2011-07-13 南昌航空大学 倾转涵道无人机
CN102285449A (zh) * 2011-06-07 2011-12-21 北京邮电大学 共轴双旋翼涵道式飞行器
PT2551190E (pt) * 2011-07-29 2014-01-23 Agustawestland Spa Avião convertível
PL2551198T3 (pl) 2011-07-29 2014-03-31 Agustawestland Spa Zmiennopłat
EP2551193B1 (en) 2011-07-29 2016-04-13 AGUSTAWESTLAND S.p.A. Convertiplane
USD678169S1 (en) 2011-09-19 2013-03-19 Zee.Aero Inc. Aircraft
US8602942B2 (en) 2011-11-16 2013-12-10 Zee.Aero Inc. Centrifugal de-clutch
JP6037100B2 (ja) * 2012-03-14 2016-11-30 株式会社Ihi 垂直離着陸機
EP2738091B1 (en) 2012-11-30 2015-07-22 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Vertical take-off and landing (VTOL) aerial vehicle and method of operating such a VTOL aerial vehicle
CN103010463A (zh) 2012-12-26 2013-04-03 南京航空航天大学 高速共轴倾转双旋翼飞翼机
JP6108077B2 (ja) * 2013-01-29 2017-04-05 株式会社Ihi 垂直離着陸機
DE102013108207A1 (de) 2013-07-31 2015-02-05 E-Volo Gmbh Fluggerät, insbesondere Multicopter
DE102013109392A1 (de) 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Schnellfliegendes, senkrechtstartfähiges Fluggerät
US20150127209A1 (en) 2013-11-05 2015-05-07 King Fahd University Of Petroleum And Minerals Bird repellent system
US9783291B2 (en) * 2014-04-18 2017-10-10 Propulsive Wing, LLC Hybrid axial/cross-flow fan multi-rotor aerial vehicle
DE102014213215A1 (de) * 2014-07-08 2016-01-14 Lilium GmbH Senkrechtstarter
KR101451646B1 (ko) 2014-07-16 2014-10-16 (주)테크맥스텔레콤 다기능 덕트형 무인비행체
US10427783B2 (en) 2015-02-25 2019-10-01 Prodrone Co., Ltd. Multicopter
CN104787316B (zh) * 2015-04-17 2017-11-03 珠海磐磊智能科技有限公司 多旋翼飞行器
CN104787315B (zh) * 2015-04-17 2017-06-13 珠海磐磊智能科技有限公司 涵道动力装置及飞行器
DE102015006511A1 (de) 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Senkrechtstartfähiges Fluggerät
CN204956910U (zh) * 2015-07-17 2016-01-13 优利科技有限公司 旋翼飞行器
US10518880B2 (en) * 2017-02-16 2019-12-31 Amazon Technologies, Inc. Six degree of freedom aerial vehicle with a ring wing

Also Published As

Publication number Publication date
US20180244367A1 (en) 2018-08-30
US11220325B2 (en) 2022-01-11
EP3366586A1 (en) 2018-08-29
BR102018003220B1 (pt) 2022-05-17
KR102049969B1 (ko) 2019-11-28
MX2018002328A (es) 2018-11-09
JP2018140772A (ja) 2018-09-13
SG10201800731PA (en) 2018-09-27
KR20180099522A (ko) 2018-09-05
BR102018003220A2 (pt) 2018-10-30
CN108502151A (zh) 2018-09-07
EP3366586B1 (en) 2020-08-19
CN108502151B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
JP6516888B2 (ja) 少なくとも2つのロータアセンブリ及びシュラウドを備えた推力発生ユニット
US10737766B2 (en) Thrust producing unit with at least two rotor assemblies and a shrouding
KR102093374B1 (ko) 에어프레임과 적어도 하나의 윙을 갖는 멀티로터 항공기
JP6322647B2 (ja) 垂直離着陸機
EP3354566B1 (en) A thrust producing unit with at least two rotor assemblies and a shrouding
KR20200063073A (ko) 적어도 8개의 추력 생성 유닛들을 구비한 수직 이륙 및 착륙 멀티로터 항공기
US10974815B2 (en) Multirotor aircraft with a thrust producing unit that comprises an aerodynamically optimized shrouding
EP3031720B1 (en) Guide vanes for a pusher propeller for rotary wing aircraft
EP3552960B1 (en) Tail rotor of a helicopter
WO2023021099A1 (en) Attitude control system for a multirotor crossflow fan evtol airborne craft

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190416

R150 Certificate of patent or registration of utility model

Ref document number: 6516888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250