JP6494009B1 - 汚染推定システム - Google Patents

汚染推定システム Download PDF

Info

Publication number
JP6494009B1
JP6494009B1 JP2018546784A JP2018546784A JP6494009B1 JP 6494009 B1 JP6494009 B1 JP 6494009B1 JP 2018546784 A JP2018546784 A JP 2018546784A JP 2018546784 A JP2018546784 A JP 2018546784A JP 6494009 B1 JP6494009 B1 JP 6494009B1
Authority
JP
Japan
Prior art keywords
model
exhaust gas
contamination
tags
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018546784A
Other languages
English (en)
Other versions
JP2019512784A (ja
Inventor
アレクサンデル ゲオルギエヴィッチ シニツィン
アレクサンデル ゲオルギエヴィッチ シニツィン
イングリッド クリスティナ マリア フリンセンベルグ
イングリッド クリスティナ マリア フリンセンベルグ
マルク アウン
マルク アウン
レシェック ホレンデルスキ
レシェック ホレンデルスキ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Signify Holding BV
Original Assignee
Signify Holding BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Signify Holding BV filed Critical Signify Holding BV
Application granted granted Critical
Publication of JP6494009B1 publication Critical patent/JP6494009B1/ja
Publication of JP2019512784A publication Critical patent/JP2019512784A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

自動車の排気ガスに起因する汚染レベルを推定するための汚染推定システム(100)が提供される。システムは、自動車音のオーディオサンプルを含む音響センサからの使用データを取得するよう構成される音響センサインタフェース(110)と、使用データのオーディオサンプルを入力として受け、受けたオーディオサンプルにトレーニングされた排気ガスモデルを適用して、受けたオーディオサンプルに関連する推定された汚染レベルを生成するよう構成されるトレーニングされた排気ガスモデルユニット(120)とを含む。トレーニングされた排気ガスモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより得られていて、複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む。図1a。

Description

本発明は、汚染推定システム(pollution estimation system)、汚染推定方法、コンピュータプログラム、及びコンピュータ可読媒体に関する。
自動車の排出ガスは大気汚染の原因となり、都市でスモッグを生み出す際の主要成分である。米国ではディーゼル排気ガス汚染によって毎年15,000件の入院が行われていると推定されている("An Analysis of Diesel Air Pollution and Public Health in America. (v. 1.3)", Revised June 2005, by the CATF, page 8参照)。したがって、特に都市では、車両の排気に起因する汚染をモニタリングすることが望まれる。モニタリングを通じて、車両の排気による汚染が特に問題となる場合の洞察を得ることができる。その後、この情報は、例えば、都市に新しいインフラストラクチャを計画する場合等の計画目的のために、又は交通規制のために等々用いられ得る。
車両の排気を原因とする汚染は、発がん性物質、二酸化窒素(NO2)及び一酸化窒素(NO)を含む一酸化窒素酸化物(mono-nitrogen oxide: NOx)、炭化水素(HC)、一酸化炭素(CO)、二酸化炭素(CO2)、とりわけディーゼル粒子等の微粒子を含む。
車両排気ガスのモニタリングは、供給源の近くでセンシングを必要とするため、困難である。理想的には、センシングは車両自体の排気管の近くであろう。これは、テスト車のために行うことは可能であるが、大規模なモニタリングには適していない。さらに、異なる汚染物質が潜在的に多数存在すると、複数のタイプの汚染がモニタリングを必要とする場合に、センサが比較的高価になる。
自動車の排気に起因する汚染をモニタリングする改善された方法を有することは有益である。
自動車の排気ガスに起因する汚染レベルを推定するための汚染推定システムが提供される。当該システムは、
自動車音のオーディオサンプルを含む音響センサからの使用データを取得するよう構成される音響センサインタフェースと、
使用データのオーディオサンプルを入力として受け、受けたオーディオサンプルにトレーニングされた排気ガスモデル(trained exhaust gas model)を適用して、受けたオーディオサンプルに関連する推定された汚染レベルを生成するよう構成されるトレーニングされた排気ガスモデルユニット(trained exhaust gas model unit)と、
を含み、
トレーニングされた排気ガスモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより得られていて、複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む。
自動車(motor vehicle)、例えば、乗用車(car)の音のオーディオ断片(audio fragment)を取ることにより、トレーニングされた排気ガスモデルユニットは、当該自動車に起因する汚染を推定することができる。このようにして、汚染推定システムは、汚染レベルを推定するために汚染センサを必要としない。実際、音響センサは、複数の目的のために用いられ得、汚染レベルを推定するように機能することもできる。
排気ガスモデルは、例えば、ニューラルネットワークであってもよい。推定システムは、分類モデル(classifying model)及び回帰モデル(regression model)の両方を含むハイブリッドモデルにより改善されてもよい。例えば、一実施形態では、排気ガスモデルは、分類モデル及び少なくとも1つの回帰モデルを含む。タグのリストが、排気ガスモデルに対して定義され、各回帰モデルは、タグのリストのタグに関連する。分類モデルは、自動車音のオーディオサンプルからタグを予測するよう構成される。
トレーニングされた排気ガスモデルユニットは、
トレーニングされた分類モデル(trained classification model)を使用データのオーディオサンプルに適用して、タグのリストから予測されたタグを取得し、
使用データのオーディオサンプルに予測されたタグに関連するトレーニングされた回帰モデル(trained regression model)適用して、推定された汚染レベルを生成する、
よう構成され、
複数のトレーニングアイテムは、自動車音の複数のオーディオサンプル、関連する汚染レベル及び1つ以上の関連するタグを含み、該タグは、タグのリストから選択される。
排気ガスモデルは、
分類モデルを複数のトレーニングアイテムの自動車音の複数のオーディオサンプル及び関連するタグについてトレーニングすることにより、自動車音のオーディオサンプルからタグを予測するよう構成されるトレーニングされた分類モデルを得る、及び、
少なくとも1つの回帰モデルの各回帰モデルを当該回帰モデルに関連するタグに関連する複数のオーディオサンプルのオーディオサンプルについてトレーニングすることにより、当該タグの自動車音のオーディオサンプルから汚染レベルを推定するよう構成される少なくとも1つの回帰モデルを得る、
ことにより得られていてもよい。
一実施形態では、タグのリストの少なくとも2つのタグは、自動車の燃料タイプを示し、2つのタグは、少なくとも、ガソリン燃料及びディーゼル燃料を使用する自動車を区別する。分類器(classifier)は、ディーゼルで走る乗用車及びガソリンで走る乗用車の音を区別できることが分かった。ディーゼル又はガソリンに特化された回帰モデルが、音を推定値(estimate)に変換する。
一実施形態では、システムは、屋外照明器具、例えば、屋外照明ポールを含み、屋外照明器具は、使用データとして自動車音のオーディオサンプルを取得するよう構成される音響センサを含む。例えば、システムは、ある地域において、例えば、照明ポールに分散された複数の音響センサを含んでもよい。
一実施形態では、汚染推定システムは、交通管理システムに接続され、汚染推定システムは、汚染レベルが閾値を超えた場合に警報メッセージを交通管理システムに送り、交通管理システムに交通の流れを調整させる。
汚染推定システムは、電子システムである。排気モデルユニットは、電子デバイスであり、コンピュータに実装されてもよい。
本明細書で述べられる汚染推定方法は、広範囲の実用的な用途に適用され得る。そのような実用的な用途には、汚染レベルが高い地域をローカライズする、交通を制御する等が含まれる。
本発明による方法は、コンピュータで実施される方法(computer implemented method)としてコンピュータで、又は専用ハードウェアにおいて、又はその両方の組み合わせで実施されてもよい。本発明による方法の実行可能コードは、コンピュータプログラムプロダクトに格納されてもよい。コンピュータプログラムプロダクトの例には、メモリデバイス、光学記憶デバイス、集積回路、サーバ、オンラインソフトウェア等が含まれる。好ましくは、コンピュータプログラムプロダクトは、該プログラムプロダクトがコンピュータで実行される場合に本発明による方法を実施するためのコンピュータ可読媒体に格納された非一時的プログラムコード手段を含む。
好ましい実施形態では、コンピュータプログラムは、該コンピュータプログラムがコンピュータで実行される場合に本発明による方法のすべてのステップを実施するよう構成されるコンピュータプログラムコードを含む。好ましくは、コンピュータプログラムは、コンピュータ可読媒体に具現化される。
本発明のさらなる詳細、態様及び実施形態が、図面を参照して、例としてのみ説明される。図中の要素は、簡潔かつ明瞭にするために示されており、必ずしも縮尺通りに描かれていない。図面では、すでに説明した要素に対応する要素には同じ参照番号を付している。
図1aは、汚染推定システムの一実施形態の一例を概略的に示し、図1b〜図1fは、排気ガスモデルユニットの実施形態の例を概略的に示し、図1gは、汚染トレーニングシステムの一実施形態の一例を概略的に示す。 図2a〜図2dは、センサユニットの実施形態の例を概略的に示す。 図3は、照明システムの一実施形態の一例を概略的に示す。 図4は、汚染推定方法の一実施形態の一例を概略的に示す。 図5aは、一実施形態によるコンピュータプログラムを含む書込み可能部分を有するコンピュータ可読媒体を概略的に示し、図5bは、一実施形態によるプロセッサシステムの表現を概略的に示す。 図6は、速度に関する自動車ノイズ及びCO2排出の一例をグラフで概略的に示す。
本発明は多くの異なる形態で実施可能であるところ、本開示は本発明の原理の例示とみなされるという理解の下に、1つ以上の特定の実施形態が図に示され、ここで詳細に述べられるが、本発明は、図示される及び述べられる特定の実施形態に限定されるものではない。
以下では、理解のために、ある実施形態のエレメントは、動作について述べられる。しかしながら、各エレメントは、それらによって実行されるように述べられる機能を実行するよう構成されることは明らかであろう。
さらに、本発明は、これら実施形態に限定されるものではなく、本発明は、互いに異なる従属請求項に記載又は列挙された新規な特徴又は組み合わせのそれぞれにある。
各車に汚染センサを装備する必要がなく、ある地域、例えば、ある都市における汚染の洞察を得る必要がある。実際には、公害センサが全く必要ない又は限定的にしか必要とされないことも好ましい。以下に述べられる実施形態は、車の音を記録するために、例えば照明ポールに取り付けられる、音響センサを用いる。車の音から汚染が推定される。これは、地域の汚染の迅速な洞察を与える低コストの方法を提供する。特に相対的汚染、例えば、ある地域における汚染が他の地域と比較してどれほど悪いかということが、このようにして迅速に得られ得る。多数の汚染センサを配備するのと比較して、コストも比較的低い。さらに、一実施形態では、全く異なるタイプの汚染、例えば、一酸化窒素酸化物及びディーゼル微粒子が、単一のセンサ、この場合は音響センサから推定されることができる。本文献の文脈において、汚染は、自動車の排気ガスに起因する汚染を指す。
興味深いことに、高排気ガスを生じる自動車は、その瞬間に大きな騒音も発生する。コネクテッドライティングインフラストラクチャ(connected lighting infrastructure)が、ガスを排出する自動車の音を捕捉する音響センサを備える、実施形態が提案される。各照明ポイントの位置は知られているので、大量の排気ガスを生じる車両の位置追尾(location and tracking)が行われ得る。音響センサは、照明ポールとは異なる場所に設置されてもよい。
図6は、速度に関する自動車ノイズ及びCO2排出の一例をグラフ600で概略的に示す。
グラフ600には、水平軸620が示されている。水平軸620は、自動車の車速を示す。上の軸は毎時キロメートルの速度を示し、下の軸は毎時マイルの速度を示す。垂直左軸610は、dBAでのA特性サウンドレベル(A-weighted sound-level)を示す。
サウンドレベルは、車両が側方へ15メートル(50フィート)のマイクを通過し、そのサウンドレベルが上昇し、最大値に達し、その後、車両が道路を遠ざかっていくにつれ下降するように得られる。通過中の最大A特性サウンドレベルは、当該車両の騒音放射レベル(noise-emission level)と呼ばれる。A特性騒音レベルの正確な計算については、米国運輸省(US Department of Transportation)の"Federal Highway Administration's Traffic Noise Model (FHWA TNM(R)), Version 1.0 - Technical Manual"を参照する。実線640は、自動車の速度と騒音放射レベルとの間の関係を示す。騒音レベルは速度と共に増加することに留意されたい。
図6はまた、垂直右軸650を示す。垂直右軸650は、g / km単位のCO2の(排気管排出量(tailpipe emission)とも呼ばれる)直接排出量(direct emission)を示す。破線630は、(ガソリンで走行する)車の速度と直接CO2排出量との関係を示す。図6からわかるように、CO2排出量は、最適速度で最小に達するまで速度とともに減少し、再び増加する。最適な速度になるまで減少し、その後排出量が再び上昇するこの排出パターンは、他の燃料タイプ、例えば、ディーゼル又はLPGについても見られる。しかしながら、最適な速度並びに減少及び増加の正確な性質は変わるであろう。
図6は、騒音レベルとCO2排出量との間にも関係があることを示している。車の音から、CO2排出量の推定がなされ得る。しかしながら、この関係は、異なる自動車について異なる。
図1aは、汚染推定システム100の一実施形態の一例を概略的に示す。汚染推定システム100は、自動車の排気ガスに起因する汚染レベルを推定するよう構成される。例えば、汚染推定システム100は、一酸化窒素酸化物のレベルを推定するよう構成されてもよい。汚染推定システム100は、複数の異なるタイプの汚染物質を別々に推定するよう構成されてもよい。汚染推定システム100はまた、複合汚染レベル、例えば、複数のタイプの汚染物質の加重和を推定するよう構成されてもよい。汚染推定システム100は、任意の適切な単位、例えば、1秒当たりのグラムで汚染を表してもよい。自動車の例には、乗用車、オートバイ、バスなどの道路を走行するよう構成された車両が含まれる。
汚染推定システム100は、音響センサ210から使用データを取得するよう構成された音響センサインタフェース110を含む。使用データは、自動車音のオーディオサンプルを含む。オーディオサンプルは、オーディオフラグメントと呼ばれてもよい。例えば、汚染推定システム100は、コンピュータ、例えばサーバに具現化されてもよい。オーディオインタフェース110は、例えばインターネット接続などのコンピュータネットワーク接続であってもよい。例えば、接続は、3G接続及び/又は有線接続などを介して音響センサ210との間に確立されてもよい。音響センサ210は、マイクロホンであってもよい。音響センサ210及び汚染推定システム100は、異なる場所に位置する2つの別個のシステムであってもよい。しかしながら、異なる配備も可能である。例えば、汚染推定システム100及び1つ以上の音響センサが一緒にシステムを形成してもよい。
汚染推定システム100は、単一のデバイス、例えばコンピュータに統合されてもよい。汚染推定システム100はまた、分散方式で具現化されてもよい。例えば、前処理、例えば、特徴抽出(feature extraction)(以下参照)は、音響センサ210で実行され、汚染推定の残りは、残りの汚染推定システム100を具現化するさらなるデバイスで行われてもよい。例えば、汚染推定デバイスは、音響インタフェース110とトレーニングされたモデルユニット120とを備えてもよい。
例えば、インタフェース110は、音響センサからオーディオサンプルを受ける推定デバイス内にあってもよい。例えば、インタフェース110は、音響センサからオーディオサンプルを受けるセンサユニット内にあってもよい。後者の場合、センサユニットは、排気ガスモデルの処理の一部又は全部を実行してもよい。
音響センサ210は、例えば音声サンプルの持続時間よりも長い間、連続的に音を記録するよう構成されてもよい。より長い記録から、オーディオサンプルが選択されてもよい。代替的に、音響センサ210は、例えば定期的な間隔で、例えば汚染推定システム100の要求に応じて等、時折オーディオサンプルを記録するよう構成されてもよい。オーディオサンプルは、数秒の長さ、例えば、5秒又は10秒等であってもよい。より長いオーディオサンプルは、一時間、一日、又はノンストップ等であってもよい。
汚染推定システム100は、使用データのオーディオサンプルを入力として受け、受けたオーディオサンプルにトレーニングされた排気ガスモデル120を適用して、受けたオーディオサンプルに関連する推定された汚染レベルを生成するよう構成されたトレーニングされた排気ガスモデルユニット120を備える。
例えば、排気ガスモデルは、例えば電子記憶装置、例えばメモリに格納された多数のパラメータと、該パラメータを入力に適用するアルゴリズムとを含んでもよい。アルゴリズムは、例えば、機械学習のタイプ及びシステム設計者によって決定されるように、予め決定されてもよい。パラメータは、機械学習アルゴリズムにより選択されてもよい。
トレーニングされた排気ガスモデル120は、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることによって予め得られている。このようにして、汚染センサが利用可能でなくても、汚染の推定、又は汚染増加の推定が、オーディオデータ、すなわち、音響センサ210から得られたオーディオデータから得られ得る。
オーディオセンサは、他の目的のために使用されてもよいことに留意されたい。例えば、システム100によって使用される音響センサ210及び/又はさらなる音響センサは、銃声の検出に使用されてもよい。音響センサの分散アレイは、僅かに異なる時間で銃砲を検出することができ、これは、発砲の起点の位置を計算するために用いられ得る。一実施形態では、音響センサは、音声がいつ記録されたかを特定するために時計と共に配置される。
汚染推定システム100は、オプションとして、機械学習ユニット130を備えてもよい。機械学習ユニット130は、トレーニングデータベース132にアクセスする。トレーニングデータベース132は、汚染推定システム100内に、例えば、排気ガスモデルユニット120と同じ場所に位置してもよい。例えば、トレーニングデータベース132は、サーバ、クラウドなどに格納されてもよい。
トレーニングデータベース132は、複数のトレーニングアイテムを格納する。複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む。
複数のトレーニングアイテムを構築するために、使用中の複数の自動車の複数の自動車音が、1つ以上の音響センサ、例えば音響センサ210のようなセンサから得られている。複数の自動車音、例えばオーディオサンプルは、使用中の複数の自動車の汚染レベルに関連する。オーディオサンプル及び汚染レベルに加えて、トレーニングアイテムは、1つ以上のタグを含んでもよい。タグは、自動車のタイプ、使用のタイプなどに関する情報を提供する。タグは、追加のトレーニングデータをモデルに提供する。その他の関連情報、例えば時刻、日付、測定場所などもデータベース132に記録されてもよい。その他の関連情報のいくつかは、追加入力として用いられてもよい。例えば、温度、風速、湿度などの環境条件に関する情報を含んでもよい。
トレーニングアイテムのタグは、タグのリストから選択されてもよい。一実施形態では、タグのリストの少なくとも2つのタグは、自動車の燃料タイプを示し、前記2つのタグは、少なくとも、ガソリン燃料及びディーゼル燃料を使用する自動車を区別する。さらなるタグは、電気又はLPG、例えばガスであってもよい。例えば、自動車の燃料タイプを示すタグのリストは、{ディーゼル、ガソリン}、{ディーゼル、ガソリン、電気}、又は{ディーゼル、ガソリン、電気、ガス}などであってもよい。
一実施形態では、タグのリストの少なくとも2つのタグは、自動車の現在の使用を示し、前記2つのタグは、少なくとも、定位置維持運転中の自動車及び非定位置維持運転中の自動車を区別する。さらなる使用は、加速、減速、定速走行などであってもよい。例えば、使用タイプを示すタグのリストは、{定位置維持運転(running-stationary)、非定位置維持運転(running-non stationary)}、又は{定位置維持運転、定速、加速、減速}、等であってもよい。
タグの使用はオプションである。一実施形態では、特定のタイプのタグのみ、例えば、燃料タイプ又は自動車タイプを示すタグのみが用いられてもよい。タグは、可用性に基づいてトレーニングアイテムに追加されてもよい。他方、一実施形態では、各トレーニングアイテムには、適当なタグがすべて割り当てられている。タグのリストは、タグ「未知(unknown)」を有してもよい。
例えば、一実施形態では、データベース132は、オーディオサンプルレファレンス、例えばポインタ、ファイル名等、及び汚染レベル、及び1つ以上のタグのペアを含むテーブルを備えてもよい。例えば、テーブルは以下のようであってもよい。
オーディオサンプル タグ 汚染物質
Audioref_ptr_31534 ガソリン、非静止(non-stationary) 128.8g/km CO2
Audioref_ptr_65434 ディーゼル、非静止 129.2g/km CO2
Audioref_ptr_99873 電気、静止(stationary) 0 g/km CO2
"Audioref_ptr"は、オーディオサンプルを指す。値は、適切な単位であって、適切な測定方法を用いた汚染レベルを指す。タグは、自動車のタイプ又は使用のタイプ等への情報を指してもよい。この場合では、タグは、{ガソリン、ディーゼル、電気}及び{非静止、静止}の2つのリストから割り当てられる。2つのタグのリストが、単一のタグのリストにを組み合わされてもよい。例えば、燃料タイプと使用タイプの両方を示すタグが用いられてもよい。例えば、タグのリストは、{非静止+ガソリン、非静止+ディーゼル、非静止+電気、静止+ガソリン、静止+ディーゼル、静止+電気}であってもよい。上記の値は、特定の車及び特定の汚染物質の例である。一実施形態では、値は、異なる汚染物質又は複数の汚染物質について提供される。
機械学習ユニット130は、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気モデルをトレーニングすることにより、トレーニングされた排気モデルを得るよう構成される。
分類アルゴリズム及び回帰アルゴリズムを含むいくつかの機械学習アルゴリズムが用いられてもよい。適切な分類器には、ニューラルネットワーク、サポートベクターマシン、決定木及びランダムフォレストが含まれる。回帰は、回帰木、多項式回帰であってもよい。従来の機械学習アルゴリズムが、機械学習ユニット130に用いられてもよい。以下に、タグを用いることもできる有利なハイブリッドアーキテクチャが述べられる。このようなタグは、必要なトレーニングアイテム数を大幅に削減し、及び/又は所与の量のトレーニングデータに対してシステムの精度を高めることができる。
排気ガスモデルユニット120がトレーニングされると、機械学習ユニット130はもはや必要とされない。したがって、データベース132及び機械学習ユニット130は、汚染推定システム100においてオプションである。他方、排気ガスモデルをトレーニングするために、データベース132が利用可能な場合、音響センサインタフェース110は必要とされない。機械学習システムの一実施形態は、排気ガスモデル120と、データベース132と、機械トレーニングユニット130とを備える。図1gは、データベース132、機械学習ユニット130及び排気ガスモデル120を含む汚染トレーニングシステム101を概略的に示す。排気ガスモデル120がトレーニングされると、排気ガスモデル120は、例えばトレーニングユニット130及び/又はデータベース132なしに、汚染推定システム100に設置されてもよい。
トレーニングデータは、いくつかの方法で得られる得る。例えば、共通の車のタイプのオーディオサンプルが、例えば、音響センサを使用して測定されることにより得られてもよい。例えば、ローラーバンク(roller bank)に自動車、例えば乗用車が置かれ、オーディオサンプルが取得されてもよい。音声サンプルは数秒、例えば5秒であってもよい。オーディオサンプルは、トレーニングサンプルより長くてもよい。音声サンプルを取得するとともに、排気汚染情報が、例えば、当該情報を測定することにより取得されてもよい。録音及び汚染検知は連続して実行されてもよい。異なる操作のシーケンスを通じて車が走らされる間、異なる汚染値が測定される。このようにして、例えば1時間の長さの、大きなオーディオサンプル、及び対応する汚染の記録が得られる。その後、大きなオーディオサンプルは、例えば5秒、6秒等のオーディオサンプルに切り刻まれ(cut up)てもよい。例えば、所定のオーディオサンプルサイズのムービングウィンドウ(moving window)が用いられてもよい。シーケンスは、標準化され、複数の車両に対して用いられてもよい。汚染センサの位置及びタイプもまた標準化されてもよい。例えば、汚染センサは、車の排気管に配置されてもよい。これは、音響センサが遠くに位置していても、排気管における汚染を推定する汚染推定システムにつながる。
タグが使用される場合、オーディオサンプル及び汚染ペアは、1つ以上のタグに関連付けられてもよい。例えば、トレーニングアイテムは、バス/乗用車などの車のタイプ、使用タイプ、ガス増加、静止などに関連付けられてもよい。例えば、トレーニングデータは、第1列がオーディオサンプル、第2列が汚染レベル、第3列が車の分類であるようなテーブルとして表されてもよい。
トレーニングデータは、汚染センサを排気管から遠くに離すことにより得られてもよい。トレーニングデータは、自動車に使用される道路での音声録音によってさえも得られ得る。人間は、タグ、例えば自動車のタイプを見つけて、記録してもよい。センサは、沿道(roadside)で汚染を測定してもよい。この実施形態では、汚染センサが排気管の近くに直接配置されていないので、精度の低下が許容される必要がある。オーディオサンプルの測定と汚染の測定との間に時間遅延が導入されてもよい。例えば、時間遅延が1分である場合、時間t = 0で測定されたオーディオサンプルは、t = 1分で測定された汚染レベルと関連付けられる。いずれの実施形態においても、絶対的な汚染レベルではなく、汚染レベルの増加を測定することが可能である。この実施形態では、バックグラウンド汚染(background pollution)が存在する可能性があるので、この可能性は特に有用である。さらに、この実施形態では、トレーニングアイテムは、自動車とセンサとの間の汚染レベルの分布に影響を及ぼす追加の要因、例えば湿度を具備してもよい。湿度は、トレーニング中及び使用中の両方に追加の入力として排気モデルに提供されてもよい。
一実施形態では、沿道トレーニングデータが使用され、音声サンプルは5秒よりもはるかに長く、例えば1時間以上である。1時間のオーディオサンプルは、積極的にサイズが縮小されてもよく、及び/又はセンサで特徴抽出が行われてもよい。例えば、オーディオサンプルは、例えばエネルギーが計算される20秒の長さの期間に分割されてもよい。組み合わせて、モデルは、絶対汚染値ではなく、沿道センサの汚染増加を予測してもよい。
モデルはまた、複数の車両の音を有するサンプル上でトレーニングされてもよい。そのような組み合わされたサンプルは、沿道位置で得られてもよい。組み合わされたサンプルは、ローラーバンクから生み出されてもよい。例えば、1台の車の複数のトレーニングアイテムが与えられている場合、音声は、複数の車に対応するサンプルを得るために混合されてもよい。モデルは代わりに各々の車のオーディオサンプルのみでトレーニングされてもよく、使用中に、モデルは、センサを通過する各々の車に適用されてもよい。
一実施形態では、複数のトレーニングアイテムは、沿道位置の音響センサからトレーニング間隔中に連続的に音声を測定することによって得られる。例えば、トレーニング間隔は、1つのオーディオサンプルより長くてもよい。例えば、トレーニング間隔は、単一のオーディオサンプルの持続時間よりも少なくとも500倍長くてもよい。例えば、トレーニング間隔は、5秒のオーディオサンプルを使用して1時間又は1日であってもよい。この実施形態は、沿道位置の汚染センサからトレーニング間隔中の汚染レベルを連続的に測定することをさらに含む。記録された汚染レベル及び記録された音から、自動車音の複数のオーディオサンプルが、汚染レベルからの対応する選択と共に選択されてもよい。後者には、汚染物質が排気ガスからセンサまで移動するのにかかる時間を補償する遅延が含まれてもよい。
トレーニングアイテムは、入力としてオーディオサンプル及び/又はオーディオサンプルから計算された特徴(下記参照)を取り込み、汚染レベル推定値を出力として生成する、モノリシックモデル、例えば1つのニューラルネットワーク又はサポートベクトルマシンと共に使用されてもよい。この種のトレーニングデータは、特に、例えばディープラーニングを採用する、例えば大きなニューラルネットワーク等の、モノリシックモデルとの使用に適している。このようなシステムは、例えばモデルへの追加入力としてタグを用いてもよいが、必ずしも必要ではない。例えば、ディープニューラルネットワークの利点は、特徴及びモデルアーキテクチャへの投資が比較的少なくて済むことである。以下では、実施形態が、タグを有利に使用することができる、異なるタイプのトレーニング可能なモデルと組み合わせて述べられる。図2d(以下にさらに述べる)は、このトレーニングデータを捕捉するために使用され得るセンサユニットを示す。
図1bは、排気ガスモデル120の一実施形態を概略的に開示する。この排気ガスモデルは、分類モデル121と重回帰モデルとを含む。図1bには、回帰モデル124.1、124.2、124.3が示されている。より多くの回帰モデル又はより少ない回帰モデルが存在してもよい。排気ガスモデルについて、タグのリストが定義される。例には、上に紹介した燃料タイプ又は使用タイプのタグが含まれる。簡単にするために、この実施形態の説明では、燃料タイプタグを想定するが、同じ実施形態は、使用タイプのタグ、組み合わせタイプのタグ、又は複数のタグのリストにさえ用いられてもよい。例えば、タグリストは、{ディーゼル、ガソリン、電気}が用いられてもよい。
各タグは、重回帰モデルの回帰モデルに関連付けられる。例えば、ディーゼルは回帰モデル124.1と関連してもよく、ガソリンは124.2と関連してもよく、電気は124.3と関連してもよい。一実施形態では、タグのリストからの複数のタグが同じ回帰モデルに関連付けられる。このオプションは、モデルがより詳細な回帰モデルで後に拡張されることを可能にする。例えば、より多くのトレーニングデータが利用可能になると、これは有用である。
分類モデル121は、自動車音のオーディオサンプルからタグを予測するよう構成される。排気ガスモデルユニット120は、トレーニングされた分類モデルを使用データのオーディオサンプルに適用して、タグのリストから予測されたタグを得るよう構成される。例えば、分類モデル121は、使用データから自動車音のオーディオサンプルが供され、オーディオサンプルに関連するタグ又は1つ以上のタグを予測する。例えば、分類モデル121に前の例の音声サンプル"Audioref_ptr_31534"が与えられた場合、分類モデル121は、ガソリンのタグを生成すると予想される。
分類モデルは、タグのリスト内の各タグの確率測定値(probability measure)を生成してもよい。例えば、分類モデル121は、タグガソリンが78%の確率、ディーゼルが15%の確率及び電気が7%の確率を有することを出力として生成してもよい。図1cは、タグのリスト内のタグの数に等しい数のタグ予測を生成する分類モデル121を示す。図1cは、タグ予測123.1、123.2及び123.3を示す。例えば、これらのタグ予測は、ディーゼル、ガソリン及び電気のタグに対応してもよい。例えば、燃料タイプのリストの場合のように、タグのリストから1つのタグのみがオーディオサンプルに割り当てられる場合、分類モデル121の出力は、例えば合計を1とする、確率分布であってもよい。しかしながら、複数のタグが、例えば使用タイプも含むように用いられ得る場合、分類モデル121の出力は、複数のタグを示してもよい。
例えば、分類モデル121は、ニューラルネットワークであってもよい。ニューラルネットワークは、複数の入力ノードを含む入力層を有してもよい。入力ノードの少なくとも一部は、例えば、フーリエ解析、周波数低減などの前処理の後にオーディオサンプルからオーディオ値を受けてもよい。適切なニューラルネットワークアーキテクチャについて、Boulanger-Lewandowskiらによる"Audio chord recognition with recurrent neural networks"を参照する。引用された論文は、概して汚染の推定又は自動車とは全く関係ないが、音声を処理するニューラルネットワークは、排気ガスモデル120、とりわけ、分類器121に使用されてもよいことに留意されたい。
排気ガスモデルユニット120は、予測されたタグに関連するトレーニングされた回帰モデルを使用データのオーディオサンプルに適用して、推定された汚染レベルを生成するよう構成される。例えば、上記の例では、排気ガスモデルユニット120は、例えば、最も高い確率を有するため、ガソリンを予測されたタグとして取り込み、対応する回帰モデル124.2を適用してもよい。
例えば、排気ガスモデルユニット120は、分類モデル121の出力を受け、それから適切な回帰モデルを決定するよう構成されるセレクタ122を備えてもよい。例えば、セレクタ122は、前記出力から予測されたタグを決定し、予測されたタグに関連する回帰モデルを選択して適用するよう構成されてもよい。
一実施形態では、各回帰モデルが適用され、結果としての予測が、各タグの確率を重み付けとして用いて平均化される。例えば、前記重み付けは、セレクタ122によって実行されてもよい。
このモデルは、分類モデルと回帰モデルの両方を含むハイブリッドモデルである。ハイブリッドモデルをトレーニングするために、自動車音の複数のオーディオサンプル、関連する汚染レベル、及びタグのリストから選択される1つ以上の関連タグを含む複数のトレーニングアイテムが用いられてもよい。
分類モデルは、複数のトレーニングアイテムの自動車音の複数のオーディオサンプル及び関連するタグについてトレーニングユニット130によってトレーニングされることにより、自動車音のオーディオサンプルからタグを予測するよう構成されるトレーニングされた分類モデルを得る。回帰モデルの各々は、当該回帰モデルに関連するタグに関連する複数のオーディオサンプルのオーディオサンプルについてトレーニングユニット130によってトレーニングされることにより、当該タグの自動車音のオーディオサンプルから汚染レベルを推定するよう構成される複数のトレーニングされた回帰モデルを得る。
異なる種類の車両は音と汚染との間に異なるタイプの関係を有することが、発明者の洞察である。課題の分類部分を分離することにより、この部分は、個別に最適化され得る。例えば、分類器は、ニューラルネットワーク又はサポートベクトルマシン等であるように選択されてもよい。回帰モデルは、回帰木、多項式回帰等であってもよい。
一実施形態では、分類モデル121はニューラルネットワークであり、1つ以上の回帰モデルは多項式回帰モデルである。
必要に応じて、重回帰モデルは、単一のモデルで組み合わされてもよい。1つのそのような実施形態が図1dに示されている。回帰フィールドでは、限られた数の可能な値を持つ1つ以上の項を含めることによってモデルを定義することが可能である。これは、タグ値を単一のモデルに挿入するために用いられることができる。このタグ値に依存しない残りのモデル項は、すべてのタグについて同じである。斯くして、回帰モデルは、タグ依存変数を有する単一のモデルに組み合される。
一実施形態では、排気ガスモデルユニットは、特徴抽出器126を含む。特徴抽出器126は、排気ガスモデルユニットの所望の結果と相関すると予想されるオーディオサンプルからの値を計算する。例えば、図1eにおいて、特徴抽出器126は、分類モデル121への入力として与えられる2つの特徴126.1及び126.2を計算する。オーディオサンプル自体は、分類モデル121への入力として与えられてもよい。
例えば、以下のような特徴が、オーディオサンプルから得られてもよい。
- 振幅
- 周波数領域
- 音の変化
- トレンド分析、どのように音が変化するか、例えば、増加するか又は減少するか
- 雑音レベル、例えば、最大雑音レベル、例えば、A特性雑音レベル。
特徴は、エネルギーの総量などの単数(single number)であってもよいが、サンプルの周波数分析などの複数(multiple numbers)であってもよい。
図1fは、特徴抽出器が分類モデル及び回帰モデルについて異なる特徴を抽出する一実施形態を示す。特徴126.1及び126.2は、分類モデルに使用され、特徴126.3及び126.4は、回帰モデルに使用される。示された実施形態では、回帰モデルは、全オーディオサンプルを入力として受けず、特徴のみを入力として受けるが、分類モデルは、全オーディオサンプルを受ける。
汚染レベルと音量は合理的によく合致するが、対応の正確な性質は、自動車のタイプに依存することが判明した。図1fに示される実施形態は、この観察に適応されている。回帰モデル124は、例えば、入力音量又は特定の帯域内のエネルギーなどを受けることによって、比較的単純な対応を用いてもよいが、正確な回帰モデルは、可能であればより大きな分類モデルによって選択される。後者は、汚染のレベルを予測する必要はなく、例えば自動車のタイプ(タグ)しか予測する必要がない。
一実施形態では、排気モデルは、大量の汚染ガスを生成することが知られている車両のみを認識することに限定される。例えば、「無視」タグが導入され得、このようなタグは、単にデフォルト値、例えば平均汚染レベルを出力する空の回帰モデルに結合されることができ、又は対応するオーディオサンプルが、完全に無視され得る。
一実施形態では、単一の回帰モデルが使用される。例えば、タグのリストは、無視タグと、高汚染タイプの車両を識別するタグとの2つのタグを含んでもよい。例えば、タグのリストは、{ディーゼル、無視}であってもよい。無視タグはすべての非ディーゼル車に適用され、ディーゼルタグはディーゼル車の音に関連付けられる。分類モデルがディーゼルタグを予測する場合のみ、回帰モデルが使用される。後者は、ディーゼル車の汚染を推定するためにトレーニングされている。無視タグが予測される場合、モデルは対応する信号を生成してもよく、又はデフォルトの平均汚染値などを生成してもよい。
一実施形態では、汚染推定システム100は複数の場所に分散されており、例えば、特徴抽出器126は音響センサに位置するが、分類及び回帰モデル121及び124はサーバに配置される。一実施形態では、分類モデルも、抽出された特徴のみを受け、全オーディオサンプルを受けない。後者のオプションは、帯域幅を節約するので、分散された実施形態と効率的に組み合わされることができる。
一実施形態では、音響センサは、センサユニットに具現化されてもよい。いくつかのタイプのセンサユニットが図2a~2dに示されており、その各々が汚染推定システム100の異なる実施形態と共に使用されてもよい。例えば、図2aは、使用データとして自動車音のオーディオサンプルを得るよう構成される音響センサ210を備えるセンサユニット201を示す。汚染推定システム100は、例えばインタフェース110を介してセンサユニットと通信してもよい。汚染推定システム100はまた、センサユニットを備えてもよい。
図2bは、推定された関連汚染レベルが汚染閾値を上回っている場合、自動車、例えばそのナンバープレートの画像を捕捉するよう構成されるカメラ220をさらに備えるセンサユニット202を示す。このセンサユニットを使用して、多くの汚染を生成する車両が追跡され得、その結果、前記車両の運転者は、例えば、フレンドリーな警告を受けてもよい。
図2cは、音響センサ210及びプロセッサ230を備えるセンサユニット203を示す。センサユニット203はまた、プロセッサ230での実行のためのソフトウェアを格納するためのメモリを含んでもよい。プロセッサ230は、センサユニットで処理を実行するために使用されてもよい。例えば、プロセッサ230は、オーディオサンプルを音響センサからトレーニングされた排気ガスモデルユニットに送る前に自動車音のオーディオサンプルのサイズを縮小するよう構成されるオーディオ圧縮ユニットとして構成されてもよい。縮小は、あるタイプの圧縮を用いてもよい。圧縮は、無損失であってもよく、例えば、受け側で完全に可逆的であってもよく、損失性であってもよい。例えば、圧縮は、離散化、クラスタリングなどの任意の圧縮を含んでもよい。これらは、送られるデータの量を減らすために用いられてもよい。損失性圧縮が使用される場合、トレーニングに使用されるオーディオデータも、使用データと同じ圧縮及び反転サイクルを経ていることが好ましい。
例えば、プロセッサ230は、特徴抽出器126のような特徴抽出器として構成されてもよい。抽出された特徴のみが送られる場合、帯域幅の大幅な減少が得られる。
センサユニットの各々は、オーディオデータを汚染推定システム100、例えばオーディオインタフェース110に送るよう構成される送信ユニット(図2a〜2dには別個に示されていない)と組み合わされてもよい。送信は、音響センサで受けた音声を、例えば、3G若しくは4G、又はWi-Fiなどを介して、オーディオインタフェースにストリーミングしてもよい。
図3は、屋外照明器具、この場合は屋外照明ポール330〜335を含む一実施形態を概略的に示す。屋外照明器具は、使用データとして、自動車音のオーディオサンプルを取得するよう構成される音響センサを含む。屋外照明器具は、オーディオインタフェース110にオーディオサンプルを送信するよう構成されてもよい。
本明細書では、照明ポールという用語は、ポールの上部の照明器具並びにポール及び/又はポールの上部の照明器具に設けられた付加的な任意の駆動回路と共に、ポールそのものを指す。照明ポール330では、個別要素、すなわち、照明器具340、ポール342、及び例えば照明器具340内のランプを駆動するための駆動回路を含むポールの上部の構成要素341が示されている。
一例では、図1のシステム100は、照明ポール330に設けられる。例えば、センサ210は、照明器具340に設けられ、照明ポール330の下方の道路にフォーカスされる。このように、照明ポール330に近い道路の部分は、このセンサに関連付けられた領域である。システム100の他の要素は、例えば、ランプの駆動回路も含む要素341に設けられる。汚染推定アルゴリズムは、各照明器具に埋め込まれてもよく、及び/又は各照明器具から得られたデータを使用する、中央コンピュータ、例えばクラウドで走らされてもよい。
一例では、照明ポール331〜335の各々に音響センサが設けられ、送信機、例えば無線送信機が設けられる。照明ポール331〜335の各センサは、それぞれの照明ポール331〜335に近接して照明される道路の一部である関連する表面を持つ。例えば、照明ポール335は、照明ポール335の下を通過する車又は他の自動車によって生成された音を検出してもよい。車の音のオーディオサンプルは、音響センサによって得られ、無線インタフェース110に無線送信される。追加の情報には、現在の時間、場合によっては他のセンサ測定値、例えば湿度センサ、風センサの測定値などが含まれてもよい。
一実施形態では、都市の道路に沿った照明ポールの音響センサは、大量の排気ガスを空気中に放出する車両の音を認識し、任意選択的に、そのような車両の位置を特定する。例えば、記録を行った照明ポール又は音響センサの識別が、オーディオサンプルと共に送信されてもよい。
一実施形態では、システムを使用してある地域(例えば、都市)における全体的な汚染レベルを推定することができる。一実施形態では、汚染推定システムは交通管理システム140に接続される。このオプションは図1aに示されている。推定された汚染レベルが閾値を超える場合、汚染推定システムは、トラフィック管理システムに警告メッセージを送り、トラフィック管理システムにトラフィックフローを調整させてもよい。
大気汚染が高い地域及び/又は排気ガスの排出量の多い車両が許可されない道路を知ることにより、システムは、そのような規則違反の場所及び時間について当局に警告することができる。当局はこの情報を使って殆どの大気汚染の源を特定し、それを使って都市政策を形成することも可能である。
汚染の推定値を有することにより、様々な用途が存在する。例えば
- 汚染について報告する。
- 車両を迂回させる。
- 速度を下げる/上げる。現在の平均速度に応じて(速度が低すぎる場合は加速を促し、高すぎる場合は減速を促す)
- 交通をよりスムーズにする。
- 信号機をより長く赤に保つ。
例えば、交通をよりスムーズにするために、調整されたシステム上に信号機を置き、ドライバが(「緑色の波」とも呼ばれる)緑色のライトの進行に遭遇するようにしてもよい。また、速度を削ることは、他の汚染物質の排出を大幅に減らす、とりわけ、ディーゼル車から排出されるNOxや粒状物質(PM)を削減することもできる。
一実施形態では、モデルは、(アイドリング走行としても知られる)定位置維持運転中の自動車に別々に警告する。アイドリング検出は、排出を低減する簡単な方法の代表なので重要である。例えば、車が頻繁にアイドリングしている場所が特定される場合、警告サインが、ドライバがエンジンをアイドリングしている時間を減らすために提示されてもよい。分類モデル121が静止タグ及び非静止タグを予測することにより、アイドリング検出が可能である。アイドリング検出は、予測汚染レベルなしに単独で行われてもよい。そのようなシステムの一例は、定位置維持運転中の自動車を検出するためのアイドリング検出システムである。このシステムは、
- 自動車音のオーディオサンプルを含む音響センサからの使用データを取得するよう構成される音響センサインタフェース110と、
- 使用データのオーディオサンプルを入力として受け、受けたオーディオサンプルにトレーニングされたモデルを適用して、車両が定位置維持運転をしているかどうかの予測を生成するよう構成されるトレーニングされたモデルユニットと、
を含み、
- トレーニングされたモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについてモデルをトレーニングすることにより得られていて、複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプルを含み、
- モデルは、分類モデル121を含み、タグのリストが、モデルに対して定義され、分類モデルは、自動車音のオーディオサンプルからタグを予測するよう構成され、タグのリストは、少なくとも、定位置維持運転のためのタグ及び非定位置維持運転のためのタグを含み、
- トレーニングされたモデルユニットは、
- トレーニングされた分類モデルを使用データのオーディオサンプルに適用して、タグのリストから予測されたタグを取得するよう構成され、
- 複数のトレーニングアイテムは、自動車音の複数のオーディオサンプル、及び1つ以上の関連するタグを含み、タグは、タグのリストから選択され
- モデルは、
- 分類モデルを複数のトレーニングアイテムの自動車音の複数のオーディオサンプル及び関連するタグについてトレーニングすることにより、自動車音のオーディオサンプルからタグを予測するよう構成されるトレーニングされた分類モデルを得ることにより得られている。
典型的には、デバイス100及び201〜204は各々、デバイスに格納された適切なソフトウェアを実行するマイクロプロセッサ(別個に図示せず)を備える。斯かるソフトウェアは、ダウンロードされてもよく、及び/又は例えばRAM等の揮発性メモリ又はフラッシュなどの不揮発性メモリとして対応するメモリ(別々に図示せず)に記憶されてもよい。代替的に、デバイス100及び201〜204は、全体的又は部分的に、例えばフィールドプログラマブルゲートアレイ(FPGA)として、プログラマブルロジックに実装されてもよい。これらのデバイスは、いわゆる特定用途向け集積回路(ASIC)、すなわち、それらの特定の用途向けにカスタマイズされた集積回路(IC)として全体的又は部分的に実装されてもよい。例えば、回路は、例えば、Verilog、VHDLなどのハードウェア記述言語を使用して、CMOSで実装されてもよい。
一実施形態では、汚染推定システム100は、音響センサインタフェース回路と、排気ガスモデル回路とを含む。デバイス100は、センサ回路、オーディオ圧縮回路、機械学習回路などの追加の回路を含んでもよい。これらの回路は、本明細書で述べられる対応するユニットを具現化する。回路は、プロセッサ回路及び記憶回路であり、プロセッサ回路は、記憶回路内で電子的に表される命令を実行してもよい。回路は、FPGA、ASICなどであってもよい。
図4は、自動車の排気ガスを起因とする汚染レベルを推定するための汚染推定方法400の一実施形態を概略的に示す。方法400は、
- 1つ以上の音響センサから、使用中の複数の自動車の複数の自動車音及び使用中の複数の自動車の関連する汚染レベルを取得することにより、自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む複数のトレーニングアイテムを得るステップ(410)と、
- 機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより、トレーニングされた排気ガスモデルを得るステップ(420)と、
- 自動車音のオーディオサンプルを含む音響センサからの使用データを取得するステップ(430)と、
- 受けたオーディオサンプルにトレーニングされた排気ガスモデルを適用して、推定された関連する汚染レベルを生成するステップ(440)と、を含み、
- トレーニングされた排気ガスモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより得られていて、複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む。
当業者には明らかであるように、本方法を実行する多くの異なる方法が可能である。例えば、ステップの順序を変更したり、いくつかのステップを並行して実行したりすることができる。さらに、ステップの間に他の方法ステップを挿入することができる。挿入されたステップは、本明細書で述べられるような方法の改良を表してもよく、又は本方法とは無関係であってもよい。例えば、ステップ430及び440は、少なくとも部分的に並行して実行されてもよい。さらに、あるステップは、次のステップが開始される前に完全に終了していない可能性もあり得る。
本発明による方法は、プロセッサシステムに方法400を実行させる命令を含むソフトウェアを使用して実行されてもよい。ソフトウェアは、システムの特定のサブエンティティによって取られるステップのみを含んでもよい。ソフトウェアは、ハードディスク、フロッピー(登録商標)、メモリなどの適切な記憶媒体に格納されてもよい。ソフトウェアは、有線ネットワーク、無線ネットワークを介して、又はデータネットワーク、例えばインターネットを利用して信号として送られてもよい。ソフトウェアは、サーバ上でリモートで及び/又はダウンロードに供されてもよい。本発明による方法は、方法を実行するためにプログラマブルロジック、例えばフィールドプログラマブルゲートアレイ(FPGA)を構成するよう構成されたビットストリームを使用して実行されてもよい。
本発明は、本発明を実践するために適合されたコンピュータプログラム、とりわけ、有形の担体上又は内にあるコンピュータプログラムにも及ぶことは理解されよう。プログラムは、ソースコード、オブジェクトコード、部分的にコンパイルされた形式などのコード中間ソース及びオブジェクトコードの形態、又はある実施形態による方法の実施に使用するのに適した任意の他の形態であってもよい。コンピュータプログラムプロダクトに関する一実施形態は、述べられた方法のうちの少なくとも1つの処理ステップの各々に対応するコンピュータ実行可能命令を含む。これらの命令は、サブルーチンに細分されてもよく、及び/又は静的又は動的にリンクされ得る1つ以上のファイルに格納されてもよい。コンピュータプログラムプロダクトに関する他の実施形態は、述べられたシステム及び/又はプロダクトの少なくとも1つの手段の各々に対応するコンピュータ実行可能命令を含む。
図5aは、一実施形態による、プロセッサシステムに汚染推定方法を実行させるための命令を含む、コンピュータプログラム1020を含む書き込み可能部分1010を有するコンピュータ可読媒体1000を示す。コンピュータプログラム1020は、物理的なマークとして、又はコンピュータ可読媒体1000の磁化によって、コンピュータ可読媒体1000に具現化されてもよい。しかしながら、任意の他の適切な実施形態もまた考えられる。さらに、ここではコンピュータ可読媒体1000が光ディスクとして示されているが、コンピュータ可読媒体1000は、ハードディスク、ソリッドステートメモリ、フラッシュメモリなどの任意の適切なコンピュータ可読媒体であってもよく、再生専用又は記録可能であってもよいことは理解されよう。コンピュータプログラム1020は、プロセッサシステムに前記汚染推定方法を実行させるための命令を含む。
図5bは、一実施形態によるプロセッサシステム1140の概略図を示す。プロセッサシステムは、1つ以上の集積回路1110を備える。1つ以上の集積回路1110のアーキテクチャは、図5bに概略的に示されている。回路1110は、一実施形態による方法を実行する、及び/又はそのモジュール又はユニットを具現化するためにコンピュータプログラムコンポーネントを実行するための、例えばCPUなどの処理ユニット1120を備える。回路1110は、プログラミングコード、データ等を記憶するためのメモリ1122を含む。メモリ1122の一部分は読み出し専用であってもよい。回路1110は、通信要素1126、例えば、アンテナ、コネクタ又はその両方などを備えてもよい。回路1110は、本方法で定義された処理の一部又は全部を実行するための専用集積回路1124を備えてもよい。プロセッサ1120、メモリ1122、専用IC1124及び通信要素1126は相互接続1130、例えばバスを介して相互に接続されてもよい。プロセッサシステム1110は、それぞれ、アンテナ及び/又はコネクタを使用して、接触及び/又は非接触通信のために構成されてもよい。
上記の実施形態は本発明を限定するものではなく例示するものであり、当業者は多くの代替実施形態を設計することができることに留意されたい。
特許請求の範囲において、括弧内に置かれた参照符号は、特許請求の範囲を限定するものとして解釈されるべきではない。「有する」という動詞及びその活用形の使用は、請求項に記載された要素又はステップ以外の要素又はステップの存在を排除するものではない。要素に先行する冠詞「a」又は「an」は、複数の斯かる要素の存在を排除するものではない。本発明は、いくつかの別個の要素を含むハードウェアによって、及び適切にプログラムされたコンピュータによって実施されることができる。いくつかの手段を列挙するデバイスの請求項において、これらの手段のいくつかは、同一のハードウェアのアイテムによって具体化されることができる。特定の手段が相互に異なる従属請求項に列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用できないことを示すものではない。
特許請求の範囲において、括弧内の参照は、実施形態の図面又は実施形態の式における参照符号を参照し、したがって、請求項の明瞭性を高める。これらの参照は、請求項を限定するものとして解釈されるべきではない。
図1a〜図3の参照数字のリスト
100 汚染推定システム(a pollution estimation system)
101 汚染トレーニングシステム(a pollution training system)
110 音響センサインタフェース(an acoustic sensor interface)
120 排気ガスモデルユニット(an exhaust gas model unit)
121 分類モデル(a classification model)
122 セレクタ(a selector)
123.1〜123.3 タグ予測(a tag prediction)
124 重回帰モデル(multiple regression models)
124.1-124.3 回帰モデル(a regression model)
125 統合重回帰モデル(integrated multiple regression models)
126 特徴抽出器(a feature extractor)
126.1〜126.4 抽出された特徴(extracted features)
130 機械学習ユニット(a machine learning unit)
132 トレーニングデータベース(training database)
140 交通管理システム(a traffic management system)
201〜204 センサユニット(a sensor unit)
210 音響センサ(an acoustic sensor)
220 カメラ(a camera)
230 プロセッサ(a processor)
240 汚染センサ(a pollution sensor)
300 照明システム(a lighting system)
310 道路(a road)
330〜335 照明ポール(a lighting pole)
340 照明器具(light fixture)
341 構成要素(a construction element)
342 ポール(a pole)

Claims (15)

  1. 自動車の排気ガスに起因する汚染レベルを推定するための汚染推定システムであって、当該システムは、
    自動車音のオーディオサンプルを含む音響センサからの使用データを取得するよう構成される音響センサインタフェースと、
    前記使用データの前記オーディオサンプルを入力として受け、受けた前記オーディオサンプルにトレーニングされた排気ガスモデルを適用して、受けた前記オーディオサンプルに関連する推定された汚染レベルを生成するよう構成されるトレーニングされた排気ガスモデルユニットと、
    を含み、
    前記トレーニングされた排気ガスモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより得られていて、前記複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む、汚染推定システム。
  2. 前記排気ガスモデルは、分類モデル及び少なくとも1つの回帰モデルを含み、タグのリストが、前記排気ガスモデルに対して定義され、各前記回帰モデルは、前記タグのリストのタグに関連し、前記分類モデルは、自動車音のオーディオサンプルからタグを予測するよう構成され、
    前記トレーニングされた排気ガスモデルユニットは、
    トレーニングされた分類モデルを前記使用データの前記オーディオサンプルに適用して、前記タグのリストから予測されたタグを取得する、及び
    前記使用データの前記オーディオサンプルに前記予測されたタグに関連する前記少なくとも1つの回帰モデルのトレーニングされた回帰モデルを適用して、推定された汚染レベルを生成する、
    よう構成され、
    前記複数のトレーニングアイテムは、自動車音の複数のオーディオサンプル、関連する汚染レベル及び1つ以上の関連するタグを含み、該タグは、前記タグのリストから選択され、
    前記排気ガスモデルは、
    前記分類モデルを前記複数のトレーニングアイテムの自動車音の複数のオーディオサンプル及び関連するタグについてトレーニングすることにより、自動車音のオーディオサンプルからタグを予測するよう構成されるトレーニングされた分類モデルを得る、及び
    前記少なくとも1つの回帰モデルの各回帰モデルを当該回帰モデルに関連する前記タグに関連する前記複数のオーディオサンプルのオーディオサンプルについてトレーニングすることにより、当該タグの自動車音のオーディオサンプルから汚染レベルを推定するよう構成される少なくとも1つの回帰モデルを得る、
    ことにより得られている、請求項1に記載の汚染推定システム。
  3. 前記排気ガスモデルは、重回帰モデルを含み、前記タグリストの少なくとも2つのタグは、前記重回帰モデルの異なる回帰モデルに関連する、請求項2に記載の汚染推定システム。
  4. 前記タグのリストの少なくとも2つのタグは、自動車の燃料タイプを示し、前記2つのタグは、少なくとも、ガソリン燃料及びディーゼル燃料を使用する自動車を区別する、及び/又は
    前記タグのリストの少なくとも2つのタグは、自動車の現在の使用を示し、前記2つのタグは、少なくとも、定位置維持運転中の自動車及び非定位置維持運転中の自動車を区別する、請求項2又は3に記載の汚染推定システム。
  5. 前記排気ガスモデルユニットは、少なくとも2つの異なる汚染物質の複数の推定された汚染レベルを生成するよう構成される、請求項1乃至4の何れか一項に記載の汚染推定システム。
  6. 当該汚染推定システムは、センサユニットを含み、
    前記センサユニットは、
    使用データとして自動車音のオーディオサンプルを取得するよう構成される音響センサと、
    推定された関連する汚染レベルが汚染閾値を上回る場合、自動車の画像を捕捉するよう構成されるカメラと、
    を含む、請求項1乃至5の何れか一項に記載の汚染推定システム。
  7. 当該汚染推定システムは、屋外照明器具、例えば、屋外照明ポールを含み、前記屋外照明器具は、使用データとして自動車音のオーディオサンプルを取得するよう構成される音響センサを含む、請求項1乃至6の何れか一項に記載の汚染推定システム。
  8. 当該汚染推定システムは、音響センサから前記トレーニングされた排気ガスモデルユニットに前記オーディオサンプルを送信する前に、自動車音のオーディオサンプルのサイズを縮小するよう構成されるオーディオ圧縮ユニットを含む、請求項1乃至7の何れか一項に記載の汚染推定システム。
  9. 前記複数のトレーニングアイテムは、
    - 沿道位置の音響センサからトレーニング間隔中音声を連続的に測定する、
    - 前記沿道位置の汚染センサから前記トレーニング間隔中汚染レベルを連続的に測定する、及び
    - 連続的に測定された前記音声の部分及び連続的に測定された前記汚染レベルの対応する部分として自動車音の複数のオーディオサンプル及び関連する汚染レベルを取得する、
    ことにより得られる、請求項1乃至8の何れか一項に記載の汚染推定システム。
  10. 1つ以上の音響センサから、使用中の複数の自動車の複数の自動車音及び使用中の前記複数の自動車の関連する汚染レベルを取得することにより、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む複数のトレーニングアイテムを得る、及び
    機械学習アルゴリズムを用いて前記複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより、トレーニングされた排気ガスモデルを得る、
    よう構成される機械学習ユニットを含む、請求項1乃至9の何れか一項に記載の汚染推定システム。
  11. 前記排気ガスモデルユニットは、受けた前記オーディオサンプルから1つ以上の特徴を計算し、前記トレーニングされた排気ガスモデルを計算された前記特徴に適用するよう構成される、請求項1乃至10の何れか一項に記載の汚染推定システム。
  12. 自動車の排気ガスに起因する汚染レベルを推定するための汚染推定方法であって、当該方法は、
    自動車音のオーディオサンプルを含む音響センサからの使用データを取得するステップと、
    受けた前記オーディオサンプルにトレーニングされた排気ガスモデルを適用して、推定された関連する汚染レベルを生成するステップと、
    を含み、
    前記トレーニングされた排気ガスモデルは、機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより得られていて、前記複数のトレーニングアイテムは、1つ以上の音響センサから得られた自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む、汚染推定方法。
  13. 1つ以上の音響センサから、使用中の複数の自動車の複数の自動車音及び使用中の前記複数の自動車の関連する汚染レベルを取得することにより、自動車音の複数のオーディオサンプル及び関連する汚染レベルを含む複数のトレーニングアイテムを得るステップと、
    機械学習アルゴリズムを用いて複数のトレーニングアイテムについて排気ガスモデルをトレーニングすることにより、トレーニングされた排気ガスモデルを得るステップと、
    を含む、請求項12に記載の汚染推定方法。
  14. 請求項12又は13に記載の方法をプロセッサに実行させるよう構成される自動車の排気ガスから汚染レベルを推定するためのコンピュータプログラム。
  15. コンピュータ可読媒体上に具現化された請求項14に記載のコンピュータプログラム。
JP2018546784A 2016-03-10 2017-02-28 汚染推定システム Active JP6494009B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16159645.7 2016-03-10
EP16159645 2016-03-10
PCT/EP2017/054620 WO2017153207A1 (en) 2016-03-10 2017-02-28 Pollution estimation system

Publications (2)

Publication Number Publication Date
JP6494009B1 true JP6494009B1 (ja) 2019-04-03
JP2019512784A JP2019512784A (ja) 2019-05-16

Family

ID=55527832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018546784A Active JP6494009B1 (ja) 2016-03-10 2017-02-28 汚染推定システム

Country Status (6)

Country Link
US (1) US11042805B2 (ja)
EP (1) EP3217400B1 (ja)
JP (1) JP6494009B1 (ja)
CN (1) CN108885881B (ja)
RU (1) RU2018135573A (ja)
WO (1) WO2017153207A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11615221B1 (en) 2014-05-08 2023-03-28 The United States Of America, As Represented By The Secretary Of The Navy Method for modeling the spread of contaminants in marine environments
WO2019060716A1 (en) * 2017-09-25 2019-03-28 Freenome Holdings, Inc. SAMPLE EXTRACTION METHODS AND SYSTEMS
US10755560B2 (en) * 2018-06-19 2020-08-25 International Business Machines Corporation Real-time pollution control at a traffic junction
WO2020085986A1 (en) * 2018-10-25 2020-04-30 Ab Etken Teknologi A sensitised, safe to manufacture and environmentally friendly explosive composition
US11354351B2 (en) * 2019-01-31 2022-06-07 Chooch Intelligence Technologies Co. Contextually generated perceptions
CN111008735B (zh) * 2019-11-27 2023-06-02 巴斯夫新材料有限公司 预测排放管理系统及方法
JP7428549B2 (ja) 2020-03-10 2024-02-06 大裕株式会社 振動情報処理装置及び振動情報処理システム
EP3889942A1 (en) * 2020-04-02 2021-10-06 Securaxis SA Apparatus for controlling an independent electrical device and method to control an independent electrical device
US11393336B2 (en) 2020-08-10 2022-07-19 International Business Machines Corporation Smog analysis via digital computing platforms
CN113295826B (zh) * 2021-05-24 2023-06-27 暨南大学 一种基于车联网的机动车尾气排放测试管理系统及智能诊断方法
CN114239271A (zh) * 2021-12-16 2022-03-25 中科三清科技有限公司 一种大气污染预警方法、装置和设备
CN114819411B (zh) * 2022-06-23 2022-09-13 航天宏图信息技术股份有限公司 一种基于走航监测车的大气污染物排放溯源方法和装置

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402519A (en) * 1990-11-26 1995-03-28 Hitachi, Ltd. Neural network system adapted for non-linear processing
JP2609760B2 (ja) * 1990-11-30 1997-05-14 株式会社日立製作所 ニューラルネットワーク、ニューラルネットワークの想起または学習方法、およびニューラルネットワークを用いたファジイ推論装置
JPH04265163A (ja) * 1991-02-19 1992-09-21 Matsushita Electric Ind Co Ltd 車載用空気清浄器
US5539638A (en) * 1993-08-05 1996-07-23 Pavilion Technologies, Inc. Virtual emissions monitor for automobile
JP3999347B2 (ja) * 1998-04-21 2007-10-31 松下電器産業株式会社 交通量計測装置及びその方法
CN2443153Y (zh) * 2000-10-26 2001-08-15 黄前锋 车辆废气处理装置
KR100377680B1 (ko) * 2000-12-20 2003-03-29 로얄정보기술 주식회사 터널 내의 차종별 오염물 배출량 추정알고리즘 및 이에기초한 터널 내의 오염도 추정 알고리즘을 이용한 터널내의 환기량 산정 시스템 및 그 방법
US7302313B2 (en) * 2001-02-07 2007-11-27 Aircuity, Inc. Air quality monitoring systems and methods
FR2882399B1 (fr) * 2005-02-18 2010-09-03 Peugeot Citroen Automobiles Sa Systeme de controle du fonctionnement d'un moteur diesel de vehicule automobile equipe de moyens de recirculation de gaz d'echappement
US8111174B2 (en) * 2007-10-03 2012-02-07 University Of Southern California Acoustic signature recognition of running vehicles using spectro-temporal dynamic neural network
US10321528B2 (en) * 2007-10-26 2019-06-11 Philips Lighting Holding B.V. Targeted content delivery using outdoor lighting networks (OLNs)
NO329798B1 (no) * 2009-02-16 2010-12-20 Inst Energiteknik System og fremgangsmate for empirisk ensemblebasert virtuell sensing av svevestovpartikler
SG186838A1 (en) * 2010-06-28 2013-02-28 Green Vision Systems Ltd Real-time monitoring, parametric profiling, and regulating contaminated outdoor air particulate matter throughout a region, via hyper-spectral imaging and analysis
EP2699888A4 (en) * 2010-08-15 2015-08-26 Airbase Systems Ltd DEVICE, SYSTEM AND METHOD FOR PERSONAL HEALTH MONITORING BASED ON SEVERAL POINTS OF ENVIRONMENTAL DATA
WO2012090235A1 (en) * 2010-12-31 2012-07-05 Geotechnos S.R.L. Integrated method and system for detecting and elaborating environmental and terrestrial data
US8723690B2 (en) * 2011-01-26 2014-05-13 International Business Machines Corporation Systems and methods for road acoustics and road video-feed based traffic estimation and prediction
WO2012159633A1 (en) 2011-05-23 2012-11-29 S-Light A/S Sensor unit for intelligent street lamp and application
US8688309B2 (en) * 2011-12-12 2014-04-01 International Business Machines Corporation Active and stateful hyperspectral vehicle evaluation
US8907803B2 (en) * 2012-01-09 2014-12-09 Intwine Energy Networked air quality monitoring
US10380511B2 (en) * 2012-03-08 2019-08-13 Husqvarna Ab Outdoor power equipment fleet management system with operator performance monitoring
HUP1200197A2 (hu) * 2012-04-03 2013-10-28 Budapesti Mueszaki Es Gazdasagtudomanyi Egyetem Eljárás és elrendezés környezeti zaj valós idejû, forrásszelektív monitorozására és térképezésére
US9177215B2 (en) * 2012-04-10 2015-11-03 International Business Machines Corporation Sparse representation for dynamic sensor networks
US8755039B2 (en) 2012-05-03 2014-06-17 Abl Ip Holding Llc Lighting devices with sensors for detecting one or more external conditions and networked system using such devices
MX350537B (es) 2012-06-12 2017-09-08 Sensity Systems Inc Infraestructura de iluminación y modelo de ingresos.
US9161419B2 (en) * 2012-07-02 2015-10-13 International Business Machines Corporation Intelligent and coordinated lighting of a lighting device
ES2391860B2 (es) * 2012-07-31 2013-04-26 Universidad De Granada Procedimiento y sistema para estimar caudales de tráfico rodado a partir de los niveles de ruido ambiental
CN104781862B (zh) * 2012-10-12 2017-08-11 塔塔咨询服务有限公司 实时交通检测
US9210759B2 (en) * 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
EP2976928B1 (en) * 2013-03-18 2020-02-26 Signify Holding B.V. Methods and apparatus for information management and control of outdoor lighting networks
US10499477B2 (en) * 2013-03-18 2019-12-03 Signify Holding B.V. Methods and apparatus for information management and control of outdoor lighting networks
WO2014171897A1 (en) * 2013-04-19 2014-10-23 Microlight Sensors Pte. Ltd. Apparatus, system and method for remote detection of vehicle exhaust
CN105493109B (zh) * 2013-06-05 2018-01-30 微软技术许可有限责任公司 使用多个数据源的空气质量推断
US10692370B2 (en) * 2014-03-03 2020-06-23 Inrix, Inc. Traffic obstruction detection
WO2015159101A1 (en) * 2014-04-17 2015-10-22 Airbase Systems Ltd A method and system for analysing environmental data
CN103983544B (zh) * 2014-05-28 2015-12-30 南京大学 多通道气溶胶散射吸收测量仪
JP6017495B2 (ja) * 2014-06-03 2016-11-02 三菱電機株式会社 車両走行制御システムおよび情報サーバ
US9489581B2 (en) * 2014-08-11 2016-11-08 Nokia Technologies Oy Vehicle counting and emission estimation
US20160070276A1 (en) * 2014-09-08 2016-03-10 Leeo, Inc. Ecosystem with dynamically aggregated combinations of components
EP3194930B1 (en) * 2014-09-19 2023-07-19 3datx Corporation Particulate matter/number synchronization measurement device
CN104318315A (zh) * 2014-09-29 2015-01-28 南通大学 一种城市道路交通污染物排放监控预警系统及方法
CA2872783A1 (en) * 2014-12-01 2016-06-01 David Andrew Risk Gas emission detection device, system and method
CN104394636A (zh) * 2014-12-05 2015-03-04 瑞斯康微电子(深圳)有限公司 一种智慧照明路灯集控系统
GB201505577D0 (en) * 2015-03-31 2015-05-13 Westire Technology Ltd Closed camera photocell and street lamp device
US20160343180A1 (en) * 2015-05-19 2016-11-24 GM Global Technology Operations LLC Automobiles, diagnostic systems, and methods for generating diagnostic data for automobiles
US10338047B2 (en) * 2015-06-16 2019-07-02 International Business Machines Corporation Air-pollution anomaly location mechanism
US10671915B2 (en) * 2015-07-31 2020-06-02 Brighterion, Inc. Method for calling for preemptive maintenance and for equipment failure prevention
CN205606498U (zh) * 2016-01-18 2016-09-28 深圳市讯高宏砺科技有限责任公司 一种基于物联网的路灯控制系统

Also Published As

Publication number Publication date
WO2017153207A1 (en) 2017-09-14
JP2019512784A (ja) 2019-05-16
US11042805B2 (en) 2021-06-22
CN108885881B (zh) 2023-07-25
US20170300818A1 (en) 2017-10-19
EP3217400A1 (en) 2017-09-13
RU2018135573A (ru) 2020-04-10
EP3217400B1 (en) 2018-11-07
CN108885881A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP6494009B1 (ja) 汚染推定システム
JP7295036B2 (ja) トリップの種類を識別するためのテレマティクスデータの使用
US11113903B2 (en) Vehicle monitoring
EP2710572B1 (en) Vehicle data analysis method and vehicle data analysis system
Abas et al. Development of Malaysian urban drive cycle using vehicle and engine parameters
US20150300828A1 (en) Cooperative learning method for road infrastructure detection and characterization
CN110243384A (zh) 实际行驶排放试验路线的确定方法、装置、设备和介质
EP3646303A1 (en) Lighting system with traffic rerouting functionality
Xue et al. A context-aware framework for risky driving behavior evaluation based on trajectory data
US10930145B2 (en) Traffic system for predicting and providing traffic signal switching timing
JP2022552970A (ja) 自動車グレージング上の外部事象を評価する方法
Ramos-Romero et al. Identification and mapping of asphalt surface deterioration by tyre-pavement interaction noise measurement
Shang et al. Analyzing the effects of road type and rainy weather on fuel consumption and emissions: A mesoscopic model based on big traffic data
Abas et al. Efforts to establish Malaysian urban drive-cycle for fuel economy analysis
AU2022422056A1 (en) Method and device for providing at least one emission value for a means of transport
CN111247815B (zh) 麦克风校准系统
Sriniwas et al. A real world drive cycle for India
WO2017223108A1 (en) Machine monitoring
Abas et al. Simulation of fuel economy for Malaysian urban driving
Bharadwaj et al. Raster Data Based Automated Noise Data Integration for Noise Mapping Limiting Data Dependency
JP7175874B2 (ja) 将来性評価装置及び将来性評価方法
Biona et al. Drive cycle development for tricycles
WO2020202451A1 (ja) リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置
McCartney The Benefits of Participatory Vehicular Sensing
Sen Acoustic Sensor Based Road Congestion Detection in Developing Regions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6494009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250