WO2020202451A1 - リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 - Google Patents
リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 Download PDFInfo
- Publication number
- WO2020202451A1 WO2020202451A1 PCT/JP2019/014558 JP2019014558W WO2020202451A1 WO 2020202451 A1 WO2020202451 A1 WO 2020202451A1 JP 2019014558 W JP2019014558 W JP 2019014558W WO 2020202451 A1 WO2020202451 A1 WO 2020202451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- lean vehicle
- analysis
- lean
- driving
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 544
- 238000007405 data analysis Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims abstract description 87
- 230000010365 information processing Effects 0.000 title claims description 86
- 238000003672 processing method Methods 0.000 title claims description 24
- 238000011156 evaluation Methods 0.000 claims description 31
- 230000006399 behavior Effects 0.000 description 101
- 238000012545 processing Methods 0.000 description 33
- 238000013500 data storage Methods 0.000 description 18
- 238000004891 communication Methods 0.000 description 13
- 230000001133 acceleration Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000006355 external stress Effects 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
- B60W40/09—Driving style or behaviour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- the present invention relates to a lean vehicle travel data analysis method for analyzing lean vehicle travel data of a lean vehicle, a lean vehicle travel data analyzer, an information processing method using the analysis data, and an information processing apparatus using the analysis data.
- a device for determining the driving skill of a rider is known.
- a device for determining a rider's driving skill for example, a configuration disclosed in Patent Document 1 is known.
- Patent Document 1 discloses an evaluation device capable of evaluating the driving skill of a vehicle. This Patent Document 1 analyzes a rider's riding skill using the running data of a lean vehicle.
- Lean vehicles are used in various scenes because of their high mobility and convenience. Therefore, an analysis peculiar to a lean vehicle is required in consideration of various usage scenarios.
- the amount of data processed by the information processing device becomes enormous, and the hardware of the device The load becomes high. Therefore, the hardware resources required by the information processing apparatus increase, which imposes restrictions on the design of the hardware resources. Therefore, the degree of freedom in designing the hardware resources of the information processing device is reduced.
- An object of the present invention is to provide a lean vehicle driving data analysis method capable of outputting analysis data peculiar to a lean vehicle based on the driving data of a lean vehicle while increasing the degree of freedom in designing hardware resources.
- the lean vehicle travel data analysis method analyzes lean vehicle travel data of a lean vehicle that tilts to the right when turning right and tilts to the left when turning left. This is a data analysis method.
- This lean vehicle driving data analysis method has more driving data on public roads where the driver's intention is similar than driving data on public roads where the driver's intention is not similar.
- Generated based on reference generation lean vehicle travel data that includes, and includes classification-related data for classifying at least one of the driver and lean vehicle, and includes lean vehicle travel data for a plurality of lean vehicles with different classifications.
- analysis lean vehicle driving data including analysis classification-related data for classifying at least one of the analysis target person and the analysis target lean vehicle is acquired, and based on the acquired lean vehicle driving reference data, By analyzing the acquired lean vehicle running data for analysis, at least one of the analysis target person and the analysis target lean vehicle classified using the analysis classification-related data is acquired, and the analysis data is obtained. Is used to generate output data for output, and the output data is output.
- Lean vehicles have a higher degree of freedom in driving at the will of the driver than vehicles that do not lean. Therefore, the driver makes many decisions from many options when driving a lean vehicle.
- the driver of a lean vehicle is vulnerable to external stress. Further, the running of a lean vehicle is more affected by the driver's operation than the running of a non-lean vehicle.
- lean vehicles are lighter than non-lean vehicles. For this reason, lean vehicles are more manoeuvrable and convenient than non-lean vehicles. Furthermore, lean vehicles are used for various purposes and tend to be used more frequently. Therefore, the lean vehicle is used in various scenes.
- the driving data of the lean vehicle differs depending on the degree of freedom of driving by the driver's intention.
- the driving data of the lean vehicle differs depending on the degree of freedom of driving by the driver's intention.
- the skill of driving and operating the lean vehicle considering various usage scenes is now available. It is possible to output analysis data peculiar to lean vehicles, which was difficult to output. For example, in the analysis using the lean vehicle driving data in a state where the degree of freedom is high, the skill of the driver to operate the lean vehicle can be analyzed more accurately and in more detail. Further, for example, in an analysis using lean vehicle driving data in a state where the degree of freedom is limited to some extent, the driver can predict the driving environment such as the movement of surrounding vehicles more accurately and in more detail. Can be analyzed.
- the lean vehicle driving data that considers the degree of freedom of driving by the driver's intention is analyzed, the data to be processed is limited as compared with the case of analyzing all the driving data without considering the state. can do. As a result, the load on the hardware resources of the system can be reduced, and the degree of freedom in designing the hardware resources can be increased.
- the types of data processed by the device that analyzes the lean vehicle running data can be reduced, and the hardware load of the device can be reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be increased.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the analysis data is an analysis result of the synchronization of the lean vehicle driving data for analysis with respect to the lean vehicle driving reference data including the data having a degree of freedom similar to the data related to the degree of freedom for analysis among the lean vehicle driving reference data. Obtained using.
- the traveling data of the analysis target lean vehicle and the traveling of the other lean vehicle By evaluating the synchronization with the data, it is possible to obtain the analysis data peculiar to the lean vehicle in at least one of the analysis target person and the analysis target lean vehicle.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the analysis data includes data related to the evaluation result of the driving prediction skill when the analysis target person travels on a public road with the analysis target lean vehicle.
- analysis data including data related to the evaluation result of the driving prediction skill of the analysis target person can be obtained.
- driving prediction skill is more important than when driving a non-lean vehicle.
- the analysis data peculiar to the lean vehicle can be obtained.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the reference generation lean vehicle driving data is the reference generation lean vehicle driving operation input data related to the driving operation input to the lean vehicle by the driver, and the reference generation related to the traveling position of the lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data and the reference generation lean vehicle behavior data related to the behavior of the lean vehicle.
- the analysis lean vehicle driving data is related to the analysis lean vehicle driving operation input data related to the driving operation input to the analysis target lean vehicle by the analysis target person, and the traveling position of the analysis target lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data for analysis and the lean vehicle behavior data for analysis related to the behavior of the lean vehicle to be analyzed.
- the lean vehicle driving data used when analyzing the lean vehicle driving data for analysis includes data that more reflects the driving skill of the driver's lean vehicle.
- the analysis lean vehicle position data regarding the traveling position of the analysis target lean vehicle is, for example, the position with another lean vehicle when the analysis target lean vehicle driven by the analysis target person is traveling with a predetermined degree of freedom. Used to identify relationships.
- the analysis lean vehicle behavior data related to the behavior of the analysis target lean vehicle is, for example, driven by the analysis target person when the analysis target lean vehicle driven by the analysis target person is traveling with a predetermined degree of freedom. It is used to detect the driving skill of the analysis target person from the analysis lean vehicle behavior of the analysis target lean vehicle.
- the lean vehicle driving data for analysis for analysis with higher accuracy based on the lean vehicle driving standard data. Further, by using the analysis lean vehicle traveling data in which the data type is specified, the type of data processed by the apparatus for analyzing the lean vehicle traveling data can be reduced, and the hardware load of the apparatus can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the reference-generating lean vehicle traveling data further includes reference-generating lean vehicle traveling environment data related to the traveling environment in which the lean vehicle travels.
- the analysis lean vehicle traveling data further includes analysis lean vehicle traveling environment data related to the traveling environment in which the analysis target lean vehicle travels.
- Lean vehicle driving environment data includes, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the lean vehicle driving environment data can be used for analyzing the lean vehicle driving data together with the lean vehicle behavior data and the lean vehicle position data.
- the lean vehicle traveling data in which the data type is specified, the type of data processed by the apparatus for analyzing the lean vehicle traveling data can be reduced, and the hardware load of the apparatus can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the reference generation lean vehicle traveling data includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle, but a plurality of them are left.
- the analysis lean vehicle traveling data includes data in a state where a plurality of analysis target lean vehicle travel data are left, although the analysis target person's judgment options are limited by the vehicles around the analysis target lean vehicle.
- Lean vehicle driving data in a state where the driver's judgment options are limited but multiple are left is peculiar to a lean vehicle as compared with lean vehicle driving data in a state where the driver's judgment options are not left. Contains the data of. Therefore, it is possible to obtain analysis data peculiar to the lean vehicle by using the lean vehicle driving data in a state where the driver's judgment options are limited but a plurality of them are left. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the apparatus for analyzing the lean vehicle traveling data can be reduced, and the hardware load of the apparatus can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the reference generation lean vehicle running data includes data in a state where at least one of a passenger and an object is mounted.
- the analysis lean vehicle traveling data includes data in a state where at least one of a passenger and an object is mounted.
- a lean vehicle equipped with at least one of a passenger and an object exhibits behavior peculiar to a lean vehicle compared to a state in which neither a passenger nor an object is mounted. Therefore, it is possible to more accurately analyze the lean vehicle driving data of the analysis target person who is the driver by using the lean vehicle driving data including the data in the state where at least one of the passenger and the object is mounted. Further, by using the lean vehicle traveling data in which the data type is specified, the type of data processed by the apparatus for analyzing the lean vehicle traveling data can be reduced, and the hardware load of the apparatus can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the lean vehicle traveling data analysis method stores the acquired analysis data.
- the output data is generated using the plurality of stored analysis data.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the output data is generated as information processing analysis data used for further information processing.
- the analysis data obtained by the lean vehicle driving data analysis method using the analysis lean vehicle traveling data of the analysis target lean vehicle driven by the analysis target person can be used in a further information processing device.
- the lean vehicle travel data analyzer analyzes lean vehicle travel data of a lean vehicle traveling on a public road tilting to the right when turning right and tilting to the left when turning left. It is a vehicle driving data analyzer.
- This lean vehicle driving data analyzer has more driving data on public roads where the driver's intention is similar than driving data on public roads where the driver's intention is not similar.
- Generated based on reference generation lean vehicle travel data that includes, and includes classification-related data for classifying at least one of the driver and lean vehicle, and includes lean vehicle travel data for a plurality of lean vehicles with different classifications.
- Lean vehicle driving for analysis to acquire lean vehicle driving data for analysis, which includes data related to the degree of freedom for analysis and includes data related to classification for analysis for classifying at least one of the analysis target person and the lean vehicle to be analyzed.
- the analysis target person and the analysis target person classified using the analysis classification-related data by analyzing the acquired lean vehicle driving data for analysis based on the data acquisition unit and the acquired lean vehicle driving reference data.
- An analysis data acquisition unit that acquires analysis data of at least one of the lean vehicles to be analyzed, an output data generation unit that generates output data for output using the analysis data, and a data output unit that outputs the output data. To be equipped with.
- the lean vehicle driving data analyzer of the present invention preferably includes the following configurations.
- the analysis data is an analysis result of the synchronization of the lean vehicle driving data for analysis with respect to the lean vehicle driving reference data including the data having a degree of freedom similar to the data related to the degree of freedom for analysis among the lean vehicle driving reference data. Obtained using.
- the lean vehicle driving data analyzer of the present invention preferably includes the following configurations.
- the analysis data includes data related to the evaluation result of the driving prediction skill when the analysis target person travels on a public road with the analysis target lean vehicle.
- the lean vehicle driving data analyzer of the present invention preferably includes the following configurations.
- the reference generation lean vehicle driving data is the reference generation lean vehicle driving operation input data related to the driving operation input to the lean vehicle by the driver, and the reference generation related to the traveling position of the lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data and the reference generation lean vehicle behavior data related to the behavior of the lean vehicle.
- the analysis lean vehicle driving data is related to the analysis lean vehicle driving operation input data related to the driving operation input to the analysis target lean vehicle by the analysis target person, and the traveling position of the analysis target lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data for analysis and the lean vehicle behavior data for analysis related to the behavior of the lean vehicle to be analyzed.
- the lean vehicle driving data analyzer of the present invention preferably includes the following configurations.
- the reference-generating lean vehicle traveling data further includes reference-generating lean vehicle traveling environment data related to the traveling environment in which the lean vehicle travels.
- the analysis lean vehicle traveling data further includes analysis lean vehicle traveling environment data related to the traveling environment in which the analysis target lean vehicle travels.
- the lean vehicle driving data analyzer of the present invention preferably includes the following configurations.
- the output data is generated as information processing analysis data used for further information processing.
- the information processing method using the analysis data according to the embodiment of the present invention is an information processing method using the output data generated as the information processing analysis data by the above-mentioned lean vehicle traveling data analysis method.
- the output data is acquired, the first data different from the output data is acquired, and the output data and the first data are used to obtain the output data and the second data different from the first data.
- Data is generated and the second data is output.
- the information processing method using the analysis data may be any information processing method as long as it is an information processing method using the analysis data obtained by analyzing the lean vehicle driving data.
- the first and second data relate to markets, goods, services, environments or customers used in business such as lean vehicle sharing, lean vehicle rental, lean vehicle leasing, lean vehicle insurance, etc. It may be data.
- the output data output using the analysis data of at least one of the analysis target person and the analysis target lean vehicle obtained and classified by analyzing the analysis lean vehicle running data, and the output output data described above.
- the acquired output data and the second data different from the first data are generated and output. Therefore, it is possible to generate and output the second data with higher accuracy.
- the information processing device using the analysis data is the information processing device using the output data generated as the information processing analysis data by the lean vehicle traveling data analysis device described above.
- This information processing apparatus uses the output data acquisition unit for acquiring the output data, the first data acquisition unit for acquiring the first data different from the output data, the output data, and the first data. It includes a second data generation unit that generates output data and second data different from the first data, and a second data output unit that outputs the second data.
- This specification describes an embodiment of a lean vehicle traveling data analysis method, a lean vehicle traveling data analyzer, an information processing method using analysis data, and an information processing apparatus using analysis data according to the present invention.
- the lean vehicle is a vehicle that turns in an inclined posture.
- a lean vehicle is a vehicle that inclines to the left when turning to the left and to the right when turning to the right in the left-right direction of the vehicle.
- the lean vehicle may be a single-seater vehicle or a vehicle that can accommodate a plurality of people.
- the lean vehicle includes not only a two-wheeled vehicle but also all vehicles that turn in an inclined posture, such as a three-wheeled vehicle or a four-wheeled vehicle.
- the degree of freedom of driving means the degree of freedom of the driver to choose driving when the driver is driving a lean vehicle.
- the selection of the driving judgment includes, for example, the selection of the traveling route of the lean vehicle, the selection of acceleration / deceleration, the selection of the operation of the equipment in the lean vehicle, and the like.
- the degree of freedom-related data is data related to the degree of freedom of driving, which means the degree of freedom for the driver to select driving when the driver is driving a lean vehicle.
- the data related to the degree of freedom includes data related to the degree of freedom of selection in the traveling route of the lean vehicle, data related to the degree of freedom of selection in acceleration / deceleration, data related to the degree of freedom of selection of equipment operation in the lean vehicle, and the like. including.
- the classification-related data is data for classifying at least one of a driver and a lean vehicle.
- the classification-related data includes data for classifying the individual driver, data for classifying the gender of the driver, data for classifying the age group of the driver, data for classifying the manufacturer of the vehicle, data for classifying the vehicle type, and vehicle performance. Includes data that classifies (for example, drive source type and output, suspension performance, etc.).
- Public road In the present specification, the public road is not a simulation and circuit track, but a public road through which general vehicles can pass.
- the public roads also include private roads that general vehicles can pass through.
- the driving skill means the driving skill of a driver who drives a lean vehicle.
- the driving skill includes not only the skill of driving a lean vehicle but also a predictive skill related to prediction when driving a lean vehicle.
- the lean vehicle traveling data is data related to the traveling of the lean vehicle.
- the lean vehicle driving data relates to lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and running position of the lean vehicle. It includes at least one data such as lean vehicle position data and lean vehicle driving environment data related to the driving environment in which the lean vehicle travels.
- the lean vehicle traveling data may include processed data obtained by processing lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and the like.
- the lean vehicle traveling data may include processing data processed by using lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and other data.
- the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle.
- the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture.
- the lean vehicle driving operation input data may include data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, it more reflects the driving skill of the driver and the like.
- the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the operation input of the driver when the lean vehicle is driven by the driver.
- the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that changes when the driver who is the analysis target drives the vehicle. That is, when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle, the lean vehicle behavior data changes the posture including steering of the lean vehicle and changing the position of the center of gravity. It is data showing the behavior of a lean vehicle that occurs in such a case.
- the lean vehicle behavior data is generated in the lean vehicle not only by data on the acceleration, speed, and angle of the lean vehicle as described above, but also by a switch operation or the like performed on the lean vehicle by the driver who is the analysis target.
- the operation may be included. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch.
- the lean vehicle behavior data strongly reflects the result of the driver's driving input. Therefore, the lean vehicle behavior data also tends to strongly reflect the driver's lean vehicle driving skill.
- the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle position data is data related to the position of the lean vehicle.
- the lean vehicle position data can be detected based on GPS and communication base station information of a communication mobile terminal.
- the lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like.
- the lean vehicle position data strongly reflects the result of the driver's driving input. Therefore, the lean vehicle position data also includes data peculiar to the lean vehicle.
- the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like.
- the lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle driving environment data includes, for example, map data.
- the map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the lean vehicle traveling environment data can be used for analysis of lean vehicle traveling data together with the lean vehicle behavior data and the lean vehicle position data.
- the information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved.
- the information on the road condition includes information on a road that is easily flooded when there is a squall.
- the lean vehicle driving environment data is considered to be an example of factors affecting the running of the lean vehicle.
- the lean vehicle driving environment data influences the driver's judgment, operation, and running of the lean vehicle. Therefore, by using the lean vehicle traveling environment data, the data obtained by analyzing the traveling data of the lean vehicle is more likely to include the data peculiar to the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle driving environment data, the data obtained by analyzing the driving data of the lean vehicle includes more data peculiar to the lean vehicle. Easy to get.
- the lean vehicle driving environment data can be obtained from various means.
- the means for acquiring the lean vehicle driving environment data is not limited to a certain means.
- the means for acquiring the lean vehicle traveling environment data is an external environment recognition device mounted on the lean vehicle. More specifically, the means for acquiring the lean vehicle driving environment data includes a camera, a radar, and the like. Further, for example, the means for acquiring the lean vehicle traveling environment data is a communication device. More specifically, the means for acquiring the lean vehicle traveling environment data is a vehicle-to-vehicle communication device and a road-to-vehicle communication device.
- the lean vehicle driving environment data can also be obtained, for example, via the Internet.
- the synchronism of the lean vehicle driving data means the lean vehicle driven by the analysis target person with respect to the group behavior including the lean vehicle driving data in a plurality of lean vehicles including the lean vehicle driven by the analysis target person. It means the degree of deviation of the lean vehicle driving data. The lower the degree of this divergence, the higher the synchronization of the analysis subjects.
- the group behavior may include, for example, data of an average value or behavior frequency obtained from lean vehicle running data in the plurality of lean vehicles. That is, the degree of deviation is the degree of deviation of the behavior frequency obtained from the lean vehicle running data of the lean vehicle driven by the analysis target person with respect to the group behavior frequency obtained from the lean vehicle running data of the plurality of lean vehicles. You may.
- a driver includes more driving data on a public road having a similar degree of freedom of driving according to the driver's intention than driving data traveling on a public road having a similar degree of freedom of driving by the driver's intention. It does not have to include any driving data for driving on public roads where the degree of freedom of intentional driving is not similar.
- a driver includes more driving data on a public road having a similar degree of freedom of driving according to the driver's intention than driving data traveling on a public road having a similar degree of freedom of driving by the driver's intention. It may include a part of driving data traveling on a public road where the degree of freedom of driving by intention is not similar.
- lean vehicle driving capable of outputting analysis data peculiar to a lean vehicle based on driving data of a lean vehicle while reducing the load on the hardware resources and increasing the degree of freedom in designing the hardware resources.
- a data analysis method can be provided.
- FIG. 1 is a diagram showing a schematic configuration of a lean vehicle traveling data analyzer according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an example of the operation of the lean vehicle traveling data analyzer.
- FIG. 3 is a diagram showing a schematic configuration of a lean vehicle traveling data analyzer according to the second embodiment.
- FIG. 4 is a diagram showing a schematic configuration of a lean vehicle traveling data analysis system according to the third embodiment.
- FIG. 5 is a flowchart showing an example of the operation of the information processing device.
- a lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left.
- Lean vehicles are smaller in size than non-lean vehicles. That is, the lean vehicle is smaller in the front-rear direction and / or the left-right direction of the vehicle body than the non-lean vehicle.
- the lean vehicle has a smaller amount of steering rotation operation than the non-lean vehicle.
- the amount of rotational operation of the steering of a lean vehicle is less than 360 degrees.
- the operation of a lean vehicle is a rider-active vehicle that the driver can actively operate, unlike a non-lean vehicle. Therefore, the operation of a lean vehicle is different from the operation of a non-lean vehicle.
- the running data of a lean vehicle whose operation is different from that of a non-lean vehicle is significantly different from the running data of a non-lean vehicle.
- the present inventors examined the driving situation of the lean vehicle in more detail, they noticed that the lean vehicle had a much higher degree of freedom of driving by the driver's intention than the non-lean vehicle.
- the driver is more likely to be exposed to external stress when operating a lean vehicle than when operating a non-lean vehicle.
- the external stress exerted on the driver operating the lean vehicle is very diverse.
- lean vehicles are lighter than non-lean vehicles. For this reason, lean vehicles are more manoeuvrable and convenient than non-lean vehicles. Lean vehicles are used for a variety of purposes and tend to be used more frequently. Therefore, the lean vehicle is used in various scenes.
- the inventors of the present application noticed that the driving data of the lean vehicle differs depending on the degree of freedom of driving by the driver's intention.
- the driving data of a lean vehicle traveling on a public road I noticed that the driving data of the lean vehicle differs depending on the degree of freedom of driving by the driver's intention. It is considered that this is due to the variety of usage scenes in which lean vehicles are used.
- the present inventors analyzed the driving skill of the driver by using the driving data of the lean vehicle traveling on the public road in consideration of the degree of freedom of driving by the driver's intention, and made the following points. noticed.
- Lean vehicle that considers the degree of freedom of driving by the driver's will By using driving data, it has been difficult to output lean vehicles such as the skill to drive and operate lean vehicles in consideration of various usage scenarios. It was found that specific analysis data can be output. For example, in the analysis using the lean vehicle driving data in a state where the degree of freedom is high, the skill of the driver to operate the lean vehicle can be analyzed more accurately and in more detail. Further, for example, in an analysis using lean vehicle driving data in a state where the degree of freedom is limited to some extent, the driver can predict the driving environment such as the movement of surrounding vehicles more accurately and in more detail. Can be analyzed.
- the lean vehicle driving data that considers the degree of freedom of driving by the driver's intention is analyzed, the data to be processed is limited as compared with the case of analyzing all the driving data without considering the state. can do. It was found that this reduces the load on the hardware resources of the system and increases the degree of freedom in designing the hardware resources.
- the present inventors have created a lean vehicle driving data analysis method capable of outputting analysis data peculiar to a lean vehicle based on the driving data of a lean vehicle while increasing the degree of freedom in designing hardware resources.
- the present inventors prefer to the driver who operates the lean vehicle for business use in analyzing the driving data of the lean vehicle traveling on the public road in consideration of the degree of freedom of driving by the driver's intention.
- a system for determining vehicle insurance premiums for lean vehicles can be considered.
- This system includes a mobile terminal equipped with a sensor that automatically collects driving data of a lean vehicle, a server that receives the lean vehicle driving data collected by the mobile terminal, and a database that stores the collected lean vehicle driving data. Further, a remote processing computer equipped with an evaluation engine that determines the insurance premium of the lean vehicle based on the collected lean vehicle running operation data can be considered.
- the evaluation engine can determine insurance risk and insurance premium based on the driver's driving score obtained from the collected lean vehicle driving data.
- the inventors of the present application can simplify the analysis of the driver's risk by using the driver's driving skill in the risk evaluation of the driver who drives the lean vehicle, so that the system by data processing can be used.
- the load on hardware resources can be reduced and the degree of freedom in designing hardware resources can be increased.
- the present inventors analyze the driving skill of the driver in consideration of the degree of freedom of driving by the driver's intention, and to evaluate the risk in business using a lean vehicle. We found that it is possible to output data with high applicability. Furthermore, the present inventors can further simplify the data to be analyzed by considering the degree of freedom of driving by the driver of the lean vehicle, so that the load on the hardware resources of the system due to the data processing is increased. We have found that it can be further reduced and the degree of freedom in designing hardware resources can be increased.
- the analysis of driving skill includes not only the skill of driving a lean vehicle but also the skill related to prediction when driving a lean vehicle (predicted skill).
- This driving skill is analytical data obtained by analyzing lean vehicle driving data of a lean vehicle obtained when the analysis target person drives a lean vehicle on a public road as a driver based on lean vehicle driving reference data described later. include.
- FIG. 1 shows a schematic configuration of a lean vehicle traveling data analyzer 1 according to an embodiment of the present invention.
- the lean vehicle driving data analysis device 1 is a device that analyzes lean vehicle driving data when an analysis target person drives a lean vehicle X on a public road.
- the lean vehicle travel data analyzer 1 of the present embodiment obtains travel data (analysis target lean vehicle travel data) of the lean vehicle X (analysis target lean vehicle) obtained when the analysis target person drives the lean vehicle X on a public road. Analyze and output the analysis result.
- the lean vehicle running data in this embodiment is data related to the running of the lean vehicle.
- the lean vehicle driving data is used when obtaining analysis data including data related to the driving skill of the driver among the data related to the driving of the lean vehicle obtained when the driver operates the lean vehicle. Means the data used.
- the lean vehicle driving data includes lean vehicle driving operation input data related to driving operation input to the lean vehicle by the driver, lean vehicle behavior data related to the behavior of the lean vehicle, and the traveling position of the lean vehicle. Includes relevant lean vehicle position data, lean vehicle driving environment data related to the driving environment in which the lean vehicle travels, and the like.
- the lean vehicle traveling data may include data other than the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle traveling environment data.
- the lean vehicle driving data may include only one or a plurality of data among the lean vehicle driving operation input data, the lean vehicle behavior data, the lean vehicle position data, and the lean vehicle driving environment data. ..
- the lean vehicle driving data is the lean vehicle driving data for analysis
- the lean vehicle driving operation input data is the lean vehicle driving operation input data for analysis.
- the lean vehicle behavior data is lean vehicle behavior data for analysis
- the lean vehicle position data is lean vehicle position data for analysis
- the lean vehicle running environment data is lean vehicle running environment data for analysis.
- the lean vehicle driving data may include processed data obtained by processing lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle driving environment data, and the like.
- the vehicle traveling data may include processing data processed by using lean vehicle driving operation input data, lean vehicle behavior data, lean vehicle position data, lean vehicle traveling environment data, and other data and other data. ..
- the lean vehicle driving operation input data is data related to the driver's operation input performed when the driver drives and operates the lean vehicle.
- the lean vehicle driving operation input data may include data related to accelerator operation, braking operation, steering, or change of the center of gravity position due to a change in the driver's posture.
- the lean vehicle driving operation input data may include operations of various switches such as a horn switch, a blinker switch, and a lighting switch. Since the lean vehicle driving operation input data is data related to the driving operation input by the driver, it more reflects the driving skill of the driver and the like. In lean vehicles, there are many types of driving operations by the driver and they are complicatedly related, so that the driving skill of the driver tends to be strongly reflected.
- the lean vehicle driving operation input data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle driving operation input data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle behavior data is data related to the behavior of the lean vehicle generated by the driver's operation input when the lean vehicle is driven and operated by the driver.
- the lean vehicle behavior data includes, for example, the acceleration, speed, and angle of the lean vehicle that change when the driver operates the vehicle. That is, the lean vehicle behavior data is generated when the driver accelerates or decelerates the lean vehicle by operating the accelerator or the brake, or changes the posture including steering of the lean vehicle or changing the position of the center of gravity. This is data showing the behavior of a lean vehicle.
- the lean vehicle behavior data may include not only data on the acceleration, speed, and angle of the lean vehicle, but also movements that occur in the lean vehicle due to a switch operation or the like performed by the driver on the lean vehicle. That is, the lean vehicle behavior data includes data related to the operation generated in the lean vehicle by operating various switches such as a horn switch, a blinker switch, and a lighting switch.
- the lean vehicle behavior data strongly reflects the driving skill of the driver. Therefore, the driver's driving skill and the like tend to be strongly reflected in the lean vehicle behavior data.
- the lean vehicle behavior data may include processing data obtained by processing data acquired from a sensor or the like.
- the lean vehicle behavior data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle position data is data related to the running position of the lean vehicle.
- the lean vehicle position data can be detected based on GPS, information on a communication base station of a communication mobile terminal, or the like.
- the lean vehicle position data can be calculated by various positioning techniques, SLAM, and the like.
- the lean vehicle position data strongly reflects the driving skill of the driver. Therefore, the driver's driving skill and the like tend to be strongly reflected in the lean vehicle position data.
- the lean vehicle position data may include processed data obtained by processing data acquired from a sensor or the like.
- the lean vehicle position data may include processing data processed using data acquired from a sensor or the like and other data.
- the lean vehicle driving environment data includes, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the lean vehicle driving environment data can be used for analysis of lean vehicle driving data together with the lean vehicle driving operation input data, the lean vehicle behavior data, and the lean vehicle position data.
- the information on the road conditions includes information on roads (regions) in a congested environment such as frequent traffic jams and many vehicles parked on the street. By combining this information with the time zone, the accuracy of the information is further improved.
- the information on the road condition includes information on a road that is easily flooded when there is a squall.
- the lean vehicle driving environment data is considered to be an example of external stress received by the driver.
- the lean vehicle driving environment data affects the driving operation of the driver. Therefore, by using the lean vehicle driving environment data, the driving skill of the driver and the like are more likely to appear in the driving data of the lean vehicle. Further, since the purpose and frequency of use of the lean vehicle are affected by using the lean vehicle running environment data, the running data of the lean vehicle is more likely to include data peculiar to the lean vehicle.
- the lean vehicle driving data analysis device 1 includes a lean vehicle driving reference data acquisition unit 10, a lean vehicle driving data acquisition unit 20 for analysis, an analysis data acquisition unit 30, an output data generation unit 40, and a data output unit 50.
- a data storage unit 60 is provided.
- the lean vehicle traveling data analyzer 1 is, for example, a mobile terminal owned by the person to be analyzed.
- the lean vehicle travel data analysis device 1 may be an arithmetic processing unit that acquires data via communication and performs arithmetic processing.
- the analysis lean vehicle driving data acquisition unit 20 acquires the analysis lean vehicle driving data including the driving data when the driver who is the analysis target drives the lean vehicle X on a public road.
- the analysis lean vehicle travel data acquisition unit 20 includes data included in the lean vehicle travel data of the lean vehicle X, that is, the analysis target lean vehicle operation. Acquire operation input data, lean vehicle behavior data for analysis, lean vehicle position data for analysis, lean vehicle driving environment data for analysis, and the like.
- the analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving operation input data by, for example, acquiring the driving operation of the analysis target person with respect to the lean vehicle X as an operation signal. Specifically, the analysis lean vehicle driving data acquisition unit 20 changes the position of the center of gravity due to data related to the driver's operation input in the lean vehicle X, that is, accelerator operation, brake operation, steering, or change in the driver's posture. Data related to the above, data related to the operation of various switches such as a horn switch, a blinker switch, and a lighting switch may be acquired. These data are transmitted from the lean vehicle X.
- the analysis lean vehicle driving data acquisition unit 20 obtains data including the acceleration, speed, and angle of the lean vehicle X, which changes when the driver who is the analysis target drives and operates the lean vehicle X, for example. It may be acquired as behavior data.
- the analysis lean vehicle travel data acquisition unit 20 acquires the analysis lean vehicle behavior data by, for example, a gyro sensor.
- the lean vehicle behavior data for analysis is a posture change including steering of the lean vehicle X or a change in the position of the center of gravity when the driver who is the analysis target operates the accelerator or the brake to accelerate or decelerate the lean vehicle X. This is data showing the behavior of the lean vehicle X that occurs when the above is performed.
- the analysis lean vehicle driving data acquisition unit 20 acquires the operation generated in the lean vehicle X by the switch operation or the like performed on the lean vehicle X by the driver who is the analysis target, as the lean vehicle behavior data.
- the analysis lean vehicle travel data acquisition unit 20 acquires data related to the operation generated in the lean vehicle X by operating various switches such as the horn switch, the blinker switch, and the lighting switch as the analysis lean vehicle behavior data. You may. These data are transmitted from the lean vehicle X to the lean vehicle travel data analyzer 1.
- the analysis lean vehicle travel data acquisition unit 20 may acquire the analysis lean vehicle position data related to the travel position of the lean vehicle X, for example, based on the information of GPS and the communication base station of the communication mobile terminal.
- the lean vehicle position data for analysis can be calculated by various positioning techniques, SLAM, and the like.
- the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data from, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the map data may be associated with environmental data such as weather, temperature or humidity.
- the map data may include information in which road information and information on the road traffic environment (information incidental to the road such as a signal) are associated with rule information related to road travel.
- the analysis lean vehicle driving data acquisition unit 20 may acquire the analysis lean vehicle driving environment data by, for example, an external environment recognition device mounted on the lean vehicle X. More specifically, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data from a camera, radar, or the like. Further, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by, for example, a communication device. More specifically, the analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data by the vehicle-to-vehicle communication device and the road-to-vehicle communication device. The analysis lean vehicle traveling data acquisition unit 20 may acquire the analysis lean vehicle traveling environment data via the Internet, for example. As described above, the lean vehicle traveling environment data for analysis can be obtained from various means. The means for acquiring the analysis lean vehicle driving environment data is not limited to a certain means.
- the analysis lean vehicle driving data acquisition unit 20 also acquires information (for example, classification-related data) related to the analysis target person and the lean vehicle X, for example.
- the lean vehicle travel data acquisition unit 20 for analysis may acquire the data from the data storage unit 60 in which the input data is stored, or acquire the data directly input to the lean vehicle travel data analyzer 1. You may.
- the analysis lean vehicle travel data acquisition unit 20 may acquire information from the lean vehicle X.
- the analysis lean vehicle travel data acquisition unit 20 may receive and acquire detection signals from a gyro sensor, GPS, a detection unit that detects operation signals of various switches, etc. provided in the lean vehicle X.
- the analysis lean vehicle running data is for classifying the analysis target person from the analysis running freedom related data related to the degree of freedom of running by the analysis target person's intention when traveling on a public road with the lean vehicle X. Includes analysis category-related data.
- the degree of freedom of driving means the degree of freedom of the analysis target person to select a judgment when the analysis target person is driving a lean vehicle.
- the selection of the driving judgment includes, for example, the selection of the traveling route of the lean vehicle X, the selection of acceleration / deceleration, the selection of the operation of the equipment in the lean vehicle, and the like.
- the degree of freedom-related data is data related to the degree of freedom of driving, which means the degree of freedom for the driver to select driving when the driver is driving a lean vehicle. Therefore, the degree-of-freedom-related data includes data related to the degree of freedom of selection in the traveling route of the lean vehicle, data related to the degree of freedom of selection in acceleration / deceleration, and data related to the degree of freedom of selection of device operation in the lean vehicle. And so on.
- the degree-of-freedom-related data is generated using, for example, lean vehicle position data, lean vehicle driving environment data, and the like.
- the degree-of-freedom-related data may be generated using at least one of the lean vehicle driving operation input data and the lean vehicle behavior data.
- Classification-related data is data for classifying at least one of a driver and a lean vehicle.
- the classification-related data includes data for classifying the individual driver, data for classifying the gender of the driver, data for classifying the age group of the driver, data for classifying the manufacturer of the vehicle, data for classifying the vehicle type, and vehicle performance. Includes data that classifies (for example, drive source type and output, suspension performance, etc.).
- the degree-of-freedom-related data is data related to the degree of freedom for analysis
- the classification-related data is data related to the classification for analysis.
- the data related to the degree of freedom for analysis is taken into consideration when analyzing the running data of the lean vehicle for analysis and generating the analysis data, so that the skill of driving and operating the lean vehicle X in consideration of various usage scenarios, etc. It is possible to output analysis data peculiar to lean vehicles, which was difficult to output until now.
- the skill of the analysis target person to operate the lean vehicle X can be analyzed more accurately and in more detail.
- the analysis target person has more accurate and more detailed prediction skill for predicting the driving environment such as the movement of surrounding vehicles. Can be analyzed.
- the data related to the degree of freedom for analysis is limited to data having similar degrees of freedom of driving from among the lean vehicle driving reference data described later when analyzing the analysis lean vehicle driving data and generating the analysis data. It may be used when doing so.
- the data related to the degree of freedom for analysis in this way, it is possible to limit the data to be processed when analyzing the lean vehicle driving data for analysis and generating the analysis data, and it is possible to reduce the load on the hardware resources. it can.
- the analysis classification-related data When analyzing the analysis lean vehicle driving data and generating the analysis data, the analysis classification-related data includes the attributes (gender, age, etc.) of the analysis target person and the manufacturer from the lean vehicle driving reference data described later. And when limiting to the data corresponding to the classification such as vehicle type. By using this analysis classification-related data, it is possible to limit the data to be processed when analyzing the analysis lean vehicle driving data and generating the analysis data, and it is possible to reduce the load on the hardware resources.
- the lean vehicle driving standard data acquisition unit 10 acquires the lean vehicle driving standard data used when analyzing the lean vehicle driving data for analysis. This lean vehicle travel reference data is generated based on the reference generation lean vehicle travel data.
- the reference generation lean vehicle driving data refers to public roads in which the driver's intentional driving freedom is similar to the driving data of a lean vehicle traveling on a public road in which the driver's intentional driving freedom is not similar. Contains a lot of driving data.
- the reference generation lean vehicle driving data includes classification-related data for classifying at least one of the driver and the lean vehicle.
- the reference generation lean vehicle travel data includes lean vehicle travel data of a plurality of lean vehicles having different categories.
- the reference-generating lean vehicle driving data includes reference-generating lean vehicle driving operation input data related to driving operation input to the lean vehicle by different drivers, and lean vehicles driven by different drivers and traveling on a plurality of public roads.
- Reference-generating lean vehicle position data related to driving position reference-generating lean vehicle behavior data related to the behavior of lean vehicles driven by different drivers and traveling on multiple public roads, and the driving environment in which the lean vehicle travels.
- the reference generation lean vehicle driving data is other than the reference generation lean vehicle driving operation input data, the reference generation lean vehicle behavior data, the reference generation lean vehicle position data, and the reference generation lean vehicle driving environment data. Data may be included.
- the reference generation lean vehicle driving data includes the reference generation lean vehicle driving operation input data, the reference generation lean vehicle behavior data, the reference generation lean vehicle position data, and the reference generation lean vehicle driving environment data. Of these, only one or more data may be included.
- the above-mentioned lean vehicle driving data is the reference generation lean vehicle driving data
- the above-mentioned lean vehicle driving operation input data is the reference.
- the lean vehicle driving operation input data for generation, the lean vehicle behavior data described above is the lean vehicle behavior data for reference generation
- the lean vehicle position data described above is the lean vehicle position data for reference generation, and is described above.
- the lean vehicle driving environment data is lean vehicle driving environment data for reference generation.
- the reference generation lean vehicle running data includes degree-of-freedom-related data and classification-related data.
- the degree-of-freedom-related data is taken into consideration when analyzing lean vehicle driving data for analysis and generating analysis data.
- analysis data peculiar to the lean vehicle which has been difficult to output until now, such as the skill of driving and operating the lean vehicle X in consideration of various usage scenarios.
- the skill of the analysis target person to operate the lean vehicle X can be analyzed more accurately and in more detail.
- the analysis target person has more accurate and more detailed prediction skill for predicting the driving environment such as the movement of surrounding vehicles. Can be analyzed.
- the degree-of-freedom-related data is limited to data having similar degrees of freedom in driving from the lean vehicle driving reference data described later. It may be used for.
- the degree-of-freedom-related data it is possible to limit the data to be processed when analyzing the analysis lean vehicle running data and generating the analysis data, and it is possible to reduce the load on the hardware resources.
- the classification-related data is used to generate analysis data corresponding to classifications such as driver attributes (gender, age, etc.), manufacturer, and vehicle type when analyzing lean vehicle driving data for analysis.
- classifications such as driver attributes (gender, age, etc.), manufacturer, and vehicle type when analyzing lean vehicle driving data for analysis.
- the lean vehicle travel reference data is used when analyzing the analysis lean vehicle travel data.
- the lean vehicle driving reference data is used, for example, as a reference for classifying the lean vehicle driving skill of the driver who is the analysis target.
- the lean vehicle travel reference data is generated based on, for example, the reference generation lean vehicle travel data, and is stored in the data storage unit 60.
- the analysis data acquisition unit 30 analyzes the analysis lean vehicle travel data obtained by the analysis lean vehicle travel data acquisition unit 20 based on the lean vehicle travel reference data obtained by the lean vehicle travel standard data acquisition unit 10. Acquire the analysis data obtained by this.
- This analysis data is analysis data of at least one of the analysis target person and the lean vehicle X classified using the analysis classification-related data.
- the analysis data includes, for example, data related to the driving skill of the lean vehicle of the classified analysis target person.
- the driving skill means a driving skill of a driver who drives a lean vehicle.
- the driving skill includes not only the skill of driving a lean vehicle but also a predictive skill related to prediction when driving a lean vehicle.
- the analysis data includes, for example, data related to the traveling of the classified lean vehicle X. This data is, for example, data related to the driving skill of the analysis target person who is the driver.
- the output data generation unit 40 generates output data for output from the analysis data. For example, the output data generation unit 40 generates output data using a plurality of analysis data stored in the data storage unit 60. As a result, it is possible to generate highly accurate output data.
- the output data generation unit 40 may generate the analysis data as it is as output data.
- the data output unit 50 outputs the output data generated by the output data generation unit 40 from the lean vehicle traveling data analyzer 1.
- the lean vehicle driving data analyzer 1 analyzes the lean vehicle driving data of the lean vehicle X driven and operated by the analysis target person based on the lean vehicle driving reference data, and classifies the analysis target person and the lean. At least one of the analysis data of the vehicle X can be output as output data.
- FIG. 2 is a flow showing a lean vehicle driving data analysis method.
- the lean vehicle driving standard data acquisition unit 10 acquires the lean vehicle driving standard data generated based on the standard generation lean vehicle driving data (step SA1).
- the lean vehicle travel reference data is generated based on the reference generation lean vehicle travel data and is stored in advance in the data storage unit 60.
- the reference generation lean vehicle driving data refers to public roads in which the driver's intentional driving freedom is similar to the driving data of a lean vehicle traveling on a public road in which the driver's intentional driving freedom is not similar. Contains a lot of driving data.
- the reference generation lean vehicle driving data includes classification-related data for classifying at least one of the driver and the lean vehicle.
- the reference generation lean vehicle travel data includes lean vehicle travel data of a plurality of lean vehicles having different categories.
- the analysis lean vehicle driving data acquisition unit 20 acquires the analysis lean vehicle driving data which is the driving data of the lean vehicle X traveling on the public road by the driving of the analysis target person (step SA2).
- the analysis lean vehicle running data includes the analysis running freedom-related data related to the degree of freedom of running by the analysis target person's intention when traveling on a public road with the lean vehicle X, and the analysis target person and the analysis target person X. Includes analytical category-related data for classifying at least one.
- the analysis lean vehicle driving data is for analysis related to the analysis lean vehicle driving operation input data related to the driving operation input to the lean vehicle by the analysis target person and the driving position of the lean vehicle X traveling on the public road. It includes lean vehicle position data, analytical lean vehicle behavior data related to the behavior of the lean vehicle X traveling on a public road, and analytical lean vehicle driving environment data related to the traveling environment of the lean vehicle X traveling on a public road.
- the analysis lean vehicle travel data acquisition unit 20 includes, for example, an information acquisition unit that acquires information about the analysis target person and the lean vehicle X, and a detection sensor including a gyro sensor, GPS, and the like.
- the analysis lean vehicle travel data acquisition unit 20 acquires, for example, the analysis lean vehicle position data and the analysis lean vehicle behavior data from the output of the detection sensor.
- the analysis lean vehicle travel data acquisition unit 20 acquires, for example, analysis classification-related data from the data acquired by the information acquisition unit.
- the analytical travel degree-of-freedom-related data is acquired using, for example, the analytical lean vehicle position data obtained from the output of the detection sensor.
- the analysis data acquisition unit 30 acquires the analysis data of at least one of the classified analysis target person and the lean vehicle X by analyzing the analysis lean vehicle travel data based on the lean vehicle travel reference data. (Step SA3).
- the analysis data includes, for example, data related to the driving skill of a lean vehicle of an analysis target person traveling on a public road.
- the output data generation unit 40 generates output data for output from the analysis data (step SA4). After that, the data output unit 50 outputs the output data (step SA5). End this flow (end).
- the analysis data of at least one of the classified analysis target person and the lean vehicle X can be obtained. Can be obtained.
- the skill of driving and operating the lean vehicle considering various usage scenes is now available. It is possible to output analysis data peculiar to lean vehicles, which was difficult to output. For example, in the analysis using the lean vehicle driving data in a state where the degree of freedom is high, the skill of the driver to operate the lean vehicle can be analyzed more accurately and in more detail. Further, for example, in an analysis using lean vehicle driving data in a state where the degree of freedom is limited to some extent, the driver can predict the driving environment such as the movement of surrounding vehicles more accurately and in more detail. Can be analyzed.
- the lean vehicle driving data that considers the degree of freedom of driving by the driver's intention is analyzed, the data to be processed is limited as compared with the case of analyzing all the driving data without considering the state. can do. As a result, the load on the hardware resource of the lean vehicle traveling data analyzer 1 can be reduced, and the degree of freedom in designing the hardware resource can be increased.
- the types of data processed by the lean vehicle traveling data analyzer 1 can be reduced, and the hardware load of the device can be reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be increased.
- This embodiment is an example of a lean vehicle driving data analysis method for analyzing lean vehicle driving data.
- the lean vehicle driving data analysis method of the present embodiment includes the following steps.
- the lean vehicle running reference data generated based on the lean vehicle running data for reference generation is acquired.
- This reference generation lean vehicle driving data is the driving data of driving on a public road having a similar degree of freedom of driving by the driver's intention than the driving data of driving on a public road having a similar degree of freedom of driving by the driver's intention.
- the reference generation lean vehicle driving data means lean vehicle driving data by a plurality of drivers. Further, the lean vehicle is a vehicle that tilts to the right when turning right and tilts to the left when turning left.
- the reference generation lean vehicle running data may be acquired by various sensors provided in the lean vehicle.
- the reference generation lean vehicle travel data may be acquired by various sensors provided so as to be easily removable from the lean vehicle.
- the reference generation lean vehicle travel data may be acquired by various sensors temporarily provided in the lean vehicle for data collection.
- the lean vehicle driving data for analysis related to the driving data of the lean vehicle X obtained when the analysis target person drives and operates the lean vehicle X which is the analysis target lean vehicle is acquired.
- the analysis lean vehicle running data means the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person.
- the analysis target lean vehicle means a lean vehicle X driven and operated by the analysis target person, which is a target for acquiring analysis lean vehicle travel data.
- the analysis target person may be included in the plurality of drivers.
- the person to be analyzed may not be included in the plurality of drivers.
- the lean vehicle to be analyzed may be included in the lean vehicle that acquires the reference generation lean vehicle travel data.
- the lean vehicle to be analyzed may not be included in the lean vehicle that acquires the reference generation lean vehicle travel data.
- the analysis target lean vehicle data may be included in the reference generation lean vehicle travel data.
- the lean vehicle travel data for analysis may not be included in the lean vehicle travel data for reference generation.
- the analysis lean vehicle running data may be acquired by various sensors provided in the analysis target lean vehicle.
- the analysis lean vehicle travel data may be acquired by various sensors provided so as to be easily detachable from the analysis target lean vehicle.
- the analysis lean vehicle traveling data may be acquired by various sensors temporarily provided in the analysis target lean vehicle for data collection.
- the various sensors for collecting the lean vehicle running data for analysis may have lower detection accuracy than the various sensors for collecting the lean vehicle running data for reference generation.
- the various sensors for collecting the lean vehicle running data for analysis may be the same as the various sensors for collecting the lean vehicle running data for reference generation.
- the type of data included in the analysis lean vehicle travel data may be less than the type of data included in the reference generation lean vehicle travel data.
- the type of data included in the analysis lean vehicle travel data may be the same as the type of data included in the reference generation lean vehicle travel data.
- the lean vehicle travel data analyzer 1 analyzes the acquired lean vehicle travel data for analysis based on the acquired lean vehicle travel reference data, and thereby classifies the analysis target using the analysis classification-related data.
- the analysis data of at least one of the person and the lean vehicle to be analyzed is acquired.
- the lean vehicle driving data analyzer 1 uses the analysis data to generate output data for output.
- the lean vehicle driving data analyzer 1 outputs the output data.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the reference generation lean vehicle driving data includes lean vehicle driving operation input data related to the driving operation input to the lean vehicle by the driver, and a reference generation lean vehicle position related to the traveling position of the lean vehicle traveling on a public road. It includes at least one of the data and the lean vehicle behavior data for reference generation related to the behavior of the lean vehicle.
- the analysis lean vehicle driving data is related to the analysis lean vehicle driving operation input data related to the driving operation input to the analysis target lean vehicle by the analysis target person, and the traveling position of the analysis target lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data for analysis and the lean vehicle behavior data for analysis related to the behavior of the lean vehicle to be analyzed.
- Lean vehicle driving operation input data is data related to driving operation input by the driver.
- Lean vehicle driving operation input data is data related to driving operation input by the driver.
- the lean vehicle behavior data strongly reflects the result of the input of the driver's driving operation, which strongly reflects the driving skill of the driver. Therefore, the lean vehicle behavior data also tends to strongly reflect the driving skill of the driver.
- the lean vehicle position data strongly reflects the result of the input of the driver's driving operation, which strongly reflects the driving skill of the driver. Therefore, the lean vehicle position data also tends to strongly reflect the driving skill of the driver.
- the lean vehicle driving data used when generating the analysis data includes data that more reflects the driving skill of the analysis target person who is the driver.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the reference-generating lean vehicle traveling data further includes reference-generating lean vehicle traveling environment data related to the traveling environment in which the lean vehicle travels.
- the analysis lean vehicle traveling data further includes analysis lean vehicle traveling environment data related to the traveling environment in which the analysis target lean vehicle travels.
- Lean vehicle driving environment data includes, for example, map data.
- This map data may be associated with, for example, information on road conditions, information on road traffic environments such as traffic lights and equipment, and regulatory information on road travel.
- the lean vehicle driving environment data can be used for analyzing the lean vehicle driving data together with the lean vehicle behavior data and the lean vehicle position data.
- the lean vehicle traveling data in which the data type is specified, the type of data processed by the apparatus for analyzing the lean vehicle traveling data can be reduced, and the hardware load of the apparatus can be further reduced. Further, since the hardware resources required by the device can be reduced, the degree of freedom in designing the hardware resources of the device can be further increased.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the reference generation lean vehicle traveling data includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle, but a plurality of them are left.
- the analysis lean vehicle traveling data includes data in a state where a plurality of analysis target lean vehicle travel data are left, although the analysis target person's judgment options are limited by the vehicles around the analysis target lean vehicle.
- the driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining states may be determined from the lean vehicle position data and the lean vehicle driving environment data. More specifically, the state may be estimated based on the date, time, and place where the lean vehicle is traveling.
- Lean vehicle driving data when traveling in an urban area includes data in a state where a plurality of driver's judgment options are restricted by vehicles around the lean vehicle, but a plurality of them are left.
- data on the actual surrounding conditions of the lean vehicle may be acquired to estimate the state. A combination of methods for estimating a plurality of states may be used.
- the driver's judgment options are limited by the vehicles around the lean vehicle, but a plurality of remaining options are defined as the driver of the lean vehicle driving in a group of a plurality of vehicles including the lean vehicle. It means the running state of the lean vehicle when a plurality of options are left although the options are limited when the operation is determined.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the reference generation lean vehicle running data includes data in a state where at least one of a passenger and an object is mounted.
- the analysis lean vehicle traveling data includes data in a state where at least one of a passenger and an object is mounted.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the acquired analysis data is stored.
- the output data is generated by using the plurality of stored analysis data.
- the memory includes not only the memory for storage but also the temporary memory of the result.
- the analysis data stored in the storage and the analysis data stored in the temporary memory may be used. These may be used to update the analysis data stored in the storage. These may be used to generate new analytical data. Statistical processing may be performed using these. These may be used to update the analysis data stored in the storage.
- the old analysis data and the new analysis data can be used to more accurately analyze the lean vehicle running data of the lean vehicle X driven and operated by the analysis target person.
- This embodiment is an example of a lean vehicle driving data analyzer that analyzes lean vehicle driving data.
- the lean vehicle driving data analyzer of the present embodiment includes the following configurations.
- the lean vehicle travel data analyzer of the present embodiment is a lean vehicle travel data analyzer that analyzes lean vehicle travel data of a lean vehicle that tilts to the right when turning right and tilts to the left when turning left. is there.
- the lean vehicle travel data analyzer of the present embodiment travels on a public road in which the driver's intentional freedom of travel is similar to the travel data of the driver's intentional travel data.
- the lean vehicle driving standard data acquisition unit 10 that acquires the generated lean vehicle driving standard data, and the freedom of travel by the analysis target person when the analysis target person performs a driving operation and travels on a public road with the lean vehicle X.
- Analytical lean to acquire analytical lean vehicle driving data including analytical freedom-related data related to degree, and including analytical classification-related data for classifying at least one of the analysis target person and lean vehicle X.
- the analysis target classified using the analysis classification-related data by analyzing the acquired lean vehicle running data for analysis based on the vehicle running data acquisition unit 20 and the acquired lean vehicle running reference data.
- An analysis data acquisition unit 30 that acquires analysis data of at least one of a person and a lean vehicle X, an output data generation unit 40 that generates output data for output using the analysis data, and a data output that outputs the output data.
- a unit 50 is provided.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the analysis data is an analysis result of the synchronization of the lean vehicle driving data for analysis with respect to the lean vehicle driving reference data including the data having a degree of freedom similar to the data related to the degree of freedom for analysis among the lean vehicle driving reference data. Obtained using.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the analysis data includes data related to the evaluation result of the driving prediction skill when the analysis target person travels on a public road with the lean vehicle X.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the reference generation lean vehicle driving data is the reference generation lean vehicle driving operation input data related to the driving operation input to the lean vehicle by the driver, and the reference generation related to the traveling position of the lean vehicle traveling on a public road. It includes at least one of the lean vehicle position data and the reference generation lean vehicle behavior data related to the behavior of the lean vehicle.
- the lean vehicle driving data for analysis is the lean vehicle driving operation input data for analysis related to the driving operation input to the lean vehicle X by the analysis target person, and the lean vehicle for analysis related to the traveling position of the lean vehicle X traveling on a public road. It includes at least one of vehicle position data and analytical lean vehicle behavior data related to the behavior of lean vehicle X.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the reference-generating lean vehicle traveling data further includes reference-generating lean vehicle traveling environment data related to the traveling environment in which the lean vehicle travels.
- the analytical lean vehicle traveling data further includes analytical lean vehicle traveling environment data related to the traveling environment in which the lean vehicle X travels.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the reference generation lean vehicle traveling data includes data in a state where a plurality of judgment options of the driver are limited by vehicles around the lean vehicle, but a plurality of them are left.
- the analysis lean vehicle traveling data includes data in a state where a plurality of analysis target lean vehicle travel data are left, although the analysis target person's judgment options are limited by the vehicles around the analysis target lean vehicle.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the reference generation lean vehicle running data includes data in a state where at least one of a passenger and an object is mounted.
- the analysis lean vehicle traveling data includes data in a state where at least one of a passenger and an object is mounted.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the lean vehicle traveling data analysis device 1 has a data storage unit 60 that stores the acquired analysis data.
- the output data generation unit 40 generates the output data by using a plurality of analysis data stored in the data storage unit 60.
- the lean vehicle driving data analyzer 1 preferably includes the following configurations.
- the output data is generated as information processing analysis data used for further information processing.
- FIG. 3 shows an example of the lean vehicle traveling data analyzer 100.
- the lean vehicle driving data analyzer 100 analyzes the synchronization between the lean vehicle X driven by the analysis target person and the other lean vehicle Y traveling around the analysis target person, thereby predicting the driving skill of the analysis target person. Is evaluated, and the evaluation result is output as analysis data.
- the lean vehicle travel data analyzer 100 includes a group behavior calculation unit 110, a lean vehicle travel data acquisition unit 120 for analysis, a synchronization analysis unit 130, a prediction skill evaluation unit 140, and an evaluation output unit 150. And.
- the analysis lean vehicle driving data acquisition unit 120 acquires the analysis lean vehicle driving data which is the driving data of the lean vehicle X driven by the analysis target person.
- the analysis lean vehicle travel data includes the analysis lean vehicle position data and the analysis lean vehicle behavior data of the lean vehicle X.
- the group behavior calculation unit 110 acquires lean vehicle data for reference generation in a group (hereinafter referred to as a group) including the lean vehicle X and another lean vehicle Y.
- the reference generation lean vehicle data includes lean vehicle position data and lean vehicle behavior data of a plurality of lean vehicles. Whether or not the vehicle belongs to the group is determined by acquiring the lean vehicle position data of the lean vehicle X and the other lean vehicle Y, and the other lean vehicle Y is located within a predetermined range from the lean vehicle X. It is judged by whether or not it is.
- Lean vehicles belonging to the same group are traveling on public roads with similar degrees of freedom of travel.
- the group behavior calculation unit 110 uses the acquired reference generation lean vehicle travel data to obtain travel data related to the group behavior.
- the travel data related to this group behavior is the average value of the lean vehicle travel data of a plurality of lean vehicles constituting the group.
- the travel data related to the group behavior corresponds to the lean vehicle travel reference data.
- the synchronization analysis unit 130 uses the analysis lean vehicle travel data acquired by the analysis lean vehicle travel data acquisition unit 120 and the travel data related to the group behavior obtained by the group behavior calculation unit 110 to achieve synchronization. Perform an analysis.
- the synchronism is the analysis lean vehicle running data of the lean vehicle X driven by the analysis target with respect to the group behavior including the lean vehicle running data in a plurality of lean vehicles including the lean vehicle X driven by the analysis target. It means the degree of divergence. The lower the degree of this divergence, the higher the synchronization of the analysis subjects.
- the group behavior may include, for example, data on the average value or behavior frequency of the behavior of the plurality of lean vehicles obtained from the lean vehicle traveling data in the plurality of lean vehicles.
- the degree of deviation is obtained from the analysis lean vehicle running data of the lean vehicle X driven by the analysis target person with respect to the group behavior frequency obtained by using the average value of the lean vehicle running data in the plurality of lean vehicles. It may be the degree of deviation of the behavioral frequencies to be obtained.
- the result of the synchronization analysis output from the synchronization analysis unit 130 corresponds to the analysis data in the first embodiment.
- the prediction skill evaluation unit 140 evaluates the driving prediction skill related to the prediction when the analysis target person drives the lean vehicle X on a public road by using the result of the synchronization analysis of the synchronization analysis unit 130. That is, the prediction skill evaluation unit 140 classifies the driving prediction skill of the analysis target person into levels based on the result of the synchronization analysis.
- the evaluation result of the driving prediction skill obtained by the prediction skill evaluation unit 140 may be, for example, the result of leveling the analysis result of the synchronization according to the threshold value, or the numerical value obtained from the analysis result of the synchronization. Alternatively, it may be an evaluation value corresponding to it.
- the evaluation output unit 150 outputs the evaluation result of the driving skill prediction obtained by the prediction skill evaluation unit 140 as output data.
- the output data may be output as it is from the lean vehicle traveling data analyzer 100. Further, the output data may be stored in a storage unit (not shown) of the lean vehicle traveling data analyzer 100 and then used when the evaluation output unit 150 performs arithmetic processing on the output data.
- analysis data may be obtained from sources other than the above-mentioned synchronism analysis results.
- analysis data may include an evaluation result of predictive skill obtained from other than the analysis result of synchronization described above.
- the group behavior calculation unit 110 corresponds to the lean vehicle travel reference data acquisition unit 10 of the lean vehicle travel data analyzer 1 of the embodiment, and is a lean vehicle travel data acquisition unit for analysis.
- 120 corresponds to the lean vehicle travel data acquisition unit 20 for analysis of the lean vehicle travel data analyzer 1 of the first embodiment
- the synchronization analysis unit 130 corresponds to the analysis data acquisition unit 30 of the lean vehicle travel data analyzer 1 of the first embodiment.
- the predictive skill evaluation unit 140 corresponds to the output data generation unit 40 of the lean vehicle travel data analyzer 1 of the first embodiment
- the evaluation output unit 150 corresponds to the data output of the lean vehicle travel data analyzer 1 of the first embodiment. Corresponds to part 50.
- the analysis data is an analysis of the synchronization of the lean vehicle driving data for analysis with respect to the lean vehicle driving reference data including the data having a degree of freedom similar to the data related to the degree of freedom for analysis among the lean vehicle driving reference data. Obtained using the results.
- the traveling data of the analysis target lean vehicle and the traveling of the other lean vehicle By evaluating the synchronization with the data, it is possible to obtain the analysis data peculiar to the lean vehicle in at least one of the analysis target person and the analysis target lean vehicle.
- This embodiment is an example of a lean vehicle driving data analysis method for analyzing lean vehicle driving data.
- the lean vehicle driving data analysis method of the present embodiment includes the following steps.
- the analysis data is the same as the lean vehicle running reference data including the data having a degree of freedom similar to the analysis freedom-related data among the lean vehicle running reference data. It is obtained by using the analysis result of the synchronism of the lean vehicle driving data for analysis.
- Similar driving degrees of freedom means not only when the driving degrees of freedom are exactly the same, but also when the analysis data obtained by analyzing the lean vehicle driving data is within a predetermined range. Is also included.
- the lean vehicle driving data analysis method preferably includes the following configurations.
- the analysis data includes data related to the evaluation result of the driving prediction skill when the analysis target person travels on a public road with the analysis target lean vehicle.
- the driver's driving prediction skill is more important than when driving a non-lean vehicle.
- the analysis data peculiar to the lean vehicle can be obtained.
- FIG. 4 shows an example of the lean vehicle driving data analysis system 200 including the lean vehicle traveling data analysis device 1 of the first embodiment.
- the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted, and only the configurations different from the first embodiment will be described.
- the lean vehicle travel data analysis system 200 includes a lean vehicle travel data analysis device 1 and a lean vehicle travel reference data generation device 201 that generates lean vehicle travel reference data.
- the lean vehicle travel reference data generation device 201 is, for example, an information processing arithmetic unit capable of communicating with the lean vehicle travel data analyzer 1 and having a processor.
- the lean vehicle travel data analysis device 1 is an information processing arithmetic unit having a processor
- the lean vehicle travel reference data generation device 201 may be the same information processing arithmetic unit as the lean vehicle travel data analysis device 1.
- the lean vehicle running standard data generation device 201 acquires the lean vehicle running data and the classification-related data, and generates the lean vehicle running reference data based on the reference generation lean vehicle running data including these data.
- the lean vehicle travel reference data generation device 201 has a data storage unit 211 and a lean vehicle travel reference data generation unit 212. Although not particularly shown, the lean vehicle travel reference data generation device 201 has an acquisition unit for acquiring lean vehicle travel data and classification-related data. Further, although not particularly shown, the lean vehicle travel reference data generation device 201 has an output unit that outputs the generated lean vehicle travel reference data.
- the data storage unit 211 stores lean vehicle running data for reference generation and lean vehicle running reference data. Specifically, the data storage unit 211 stores lean vehicle travel data for reference generation, including lean vehicle travel data and classification-related data obtained when a plurality of drivers drive and operate the lean vehicle Y, respectively. .. Further, the data storage unit 211 stores the lean vehicle travel reference data generated by the lean vehicle travel reference data generation unit 212, which will be described later.
- the lean vehicle running data includes, for example, lean vehicle driving operation input data of lean vehicle Y, lean vehicle behavior data of lean vehicle Y, lean vehicle position data of lean vehicle Y, lean vehicle running environment data of lean vehicle Y, and the like. ..
- the lean vehicle travel reference data generation unit 212 generates lean vehicle travel reference data based on the reference generation lean vehicle travel data stored in the data storage unit 211.
- the lean vehicle travel reference data generated by the lean vehicle travel reference data generation unit 212 is stored in the data storage unit 211.
- the lean vehicle travel reference data stored in the data storage unit 211 is analyzed by the lean vehicle travel data analyzer 1 for lean vehicle travel data (lean vehicle travel data for analysis) of the lean vehicle X (lean vehicle for analysis). Used when. Since the method of analyzing the lean vehicle running data in the lean vehicle running data analyzer 1 is the same as that of the first embodiment, detailed description thereof will be omitted.
- the lean vehicle travel data analyzer 1 analyzes the lean vehicle travel data of the lean vehicle X based on the lean vehicle travel reference data, and thereby analyzes at least one of the classified analysis target person and the lean vehicle X. Is acquired, and the output data generated from the analysis data is output. Since the configuration of the lean vehicle travel data analyzer 1 is the same as that of the first embodiment, detailed description of the lean vehicle travel data analyzer 1 will be omitted.
- the lean vehicle travel data may be analyzed as in the lean vehicle travel data analyzer 100 of the second embodiment.
- the output data output from the lean vehicle traveling data analyzer 1 may be input to, for example, the information processing device 202.
- the output data is generated in the lean vehicle traveling data analyzer 1 as information processing data used for information processing in the information processing device 202.
- the information processing apparatus 202 provides data related to insurance, markets, products, services, environment or customers used in business such as sharing of lean vehicles, rental of lean vehicles, leasing of lean vehicles, and vehicle insurance of lean vehicles. It may be an apparatus that performs the processing of.
- the lean vehicle travel data analysis device 1 is an information processing calculation device
- the information processing device 202 may be the same device as the lean vehicle travel data analysis device 1.
- the information processing device 202 may be the same information processing calculation device as the lean vehicle travel reference data generation device 201.
- the information processing device 202 has, for example, an output data acquisition unit 221, a first data acquisition unit 222, a second data generation unit 223, a second data output unit 224, and a data storage unit 225.
- the output data acquisition unit 221 acquires the output data output from the lean vehicle travel data analyzer 1.
- the first data acquisition unit 222 acquires the first data different from the output data.
- This first data is data to be processed by the information processing apparatus 202.
- the second data is data related to insurance, markets, products, services, environment or customers used in business such as sharing of lean vehicles, rental of lean vehicles, leasing of lean vehicles, vehicle insurance of lean vehicles, etc. Is.
- the first data is stored in the data storage unit 225.
- the second data generation unit 223 uses the output data and the first data to generate second data different from the output data and the first data. Similar to the first data, this second data also includes insurance, markets, products, services, etc. used in business such as sharing of lean vehicles, rental of lean vehicles, leasing of lean vehicles, and vehicle insurance of lean vehicles. Data related to the environment or customers.
- the second data output unit 224 outputs the second data generated by the second data generation unit 223.
- FIG. 5 is a flowchart showing the operation of information processing by the information processing device 202.
- the output data acquisition unit 221 of the information processing device 202 acquires the output data output from the lean vehicle travel data analysis device 1 (step SB1).
- the first data acquisition unit 222 of the information processing device 202 acquires the first data stored in the data storage unit 225 (step SB2). This first data is different from the output data.
- the second data generation unit 223 of the information processing apparatus 202 generates the second data by using the acquired output data and the acquired first data (step SB3). This second data is different from the output data and the first data.
- the second data output unit 224 of the information processing device 202 outputs the generated second data (step SB4).
- the output data output from the lean vehicle driving data analyzer 1 in this way can be used as an information processing device in fields such as lean vehicle sharing, lean vehicle rental, lean vehicle leasing, and lean vehicle vehicle insurance. It can be used when processing credit risk or credit score. That is, the analysis data obtained by analyzing the lean vehicle driving data is used for arithmetic processing of the information processing device in fields such as lean vehicle sharing, lean vehicle rental, lean vehicle leasing, and lean vehicle insurance. can do.
- the information processing device acquires the output output data and the acquired output. Using the data, credit risk or credit score can be output by arithmetic processing.
- information processing methods include a process of acquiring output data output from the lean vehicle driving data analyzer 1 and a process of acquiring output data. It may include a step of outputting credit risk data related to credit risk or credit score data related to credit score using the acquired output data.
- the information processing device acquires output data output from the lean vehicle driving data analyzer 1.
- a unit and a credit risk output unit that outputs credit risk data related to credit risk or a credit score output unit that outputs credit score data related to credit score may be included by using the acquired output data.
- the analysis target person when the output credit risk is low or the credit score is high, for example, the analysis target person can easily rent a lean vehicle, or the analysis target person rents a lean vehicle.
- the fee may be given preferential treatment, or the person to be analyzed may receive preferential treatment of insurance premiums.
- the lean vehicle driving data analysis method in each of the above-described embodiments is an example of the lean vehicle driving data analysis method for analyzing the lean vehicle driving data of the analysis target person.
- the lean vehicle driving data analysis method of the present invention preferably includes the following configurations.
- the output data is generated as information processing data used for further information processing.
- the further information processing is related to business insurance, markets, goods, services, environment or customers such as lean vehicle sharing, lean vehicle rental, lean vehicle leasing, lean vehicle vehicle insurance, etc. It may be the processing of the data to be processed.
- the output data output by the lean vehicle driving data analysis method of the present invention is used in the information processing method using the following analysis data.
- the output data is acquired.
- first data different from the output data is acquired.
- the output data and the acquired first data are used to generate second data different from the output data and the acquired first data.
- the generated second data is output.
- the information processing method may be any information processing method as long as it uses the analysis data obtained by analyzing the lean vehicle traveling data.
- the first data and the second data are insurance, markets, goods, services, environments or environments used in business such as lean vehicle sharing, lean vehicle rental, lean vehicle leasing, lean vehicle vehicle insurance, etc. It may be data related to the customer.
- the analysis data available in the information processing device 202 can be acquired by the lean vehicle driving data analysis device 1 and the lean vehicle driving data analysis method. Further, as described in the first embodiment, by analyzing the lean vehicle travel data and obtaining the analysis data, the types of data processed by the system can be reduced, and the load on the hardware of the lean vehicle travel data analyzer 1 can be reduced. Can be reduced.
- the present invention can be used for a lean vehicle driving data analysis method and a lean vehicle driving data analyzer for analyzing lean vehicle driving data of an analysis target person, and an information processing method using the analysis data obtained by these methods and the device. It can also be used for information processing devices.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Transportation (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
ハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を提供する。リーン車両走行データ分析方法は、運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み且つ区分関連データを含み且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得し、分析対象者の意思による走行の自由度に関連する分析用走行自由度関連データを含み且つ分析用区分関連データを含む分析用リーン車両走行データを取得し、前記リーン車両走行基準データに基づいて前記分析用リーン車両走行データを分析することにより、区分された前記分析対象者及び分析対象リーン車両の少なくとも一方の分析データを取得し、前記分析データを用いて生成した出力データを出力する。
Description
本発明は、リーン車両のリーン車両走行データを分析するリーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置に関する。
ライダーの運転技量を判定する装置が知られている。ライダーの運転技量を判定する装置として、例えば、特許文献1に開示されている構成が知られている。
特許文献1には、車両の運転技量を評価できる評価装置が開示されている。この特許文献1は、リーン車両の走行データを使用してライダーのライディング技量を分析する。
リーン車両は、機動性及び利便性が高いため、様々なシーンで利用される。よって、様々な利用シーンが考慮されたリーン車両特有の分析が求められている。
リーン車両の様々な利用シーンを考慮して分析するために、走行環境などの色々な状況に関するデータを入手しようとすると、情報処理装置で処理するデータ量が膨大になり、前記装置のハードウェアの負荷が高くなる。このため、情報処理装置で必要とするハードウェアリソースが増えるため、ハードウェアリソースの設計に制約が生じる。したがって、情報処理装置のハードウェアリソースの設計自由度が低下する。
本発明は、ハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を提供することを目的とする。
本発明の一実施形態に係るリーン車両走行データ分析方法は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜して走行するリーン車両のリーン車両走行データを分析するリーン車両走行データ分析方法である。このリーン車両走行データ分析方法は、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得し、分析対象者が運転操作して分析対象リーン車両で公道を走行する際の前記分析対象者の意思による走行の自由度に関連する分析用自由度関連データを含み、且つ前記分析対象者及び前記分析対象リーン車両の少なくとも一方を区分するための分析用区分関連データを含む、分析用リーン車両走行データを取得し、前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、前記分析用区分関連データを用いて区分された前記分析対象者及び前記分析対象リーン車両の少なくとも一方の分析データを取得し、前記分析データを用いて出力用の出力データを生成し、前記出力データを出力する。
リーン車両は、リーンしない車両に比べて、運転者の意思による走行の自由度が高い。そのため、運転者は、リーン車両を運転する際に、多くの選択肢の中から、多くの判断を行う。また、リーン車両の運転者は、外部からのストレスに晒されやすい。さらに、リーン車両の走行は、リーンしない車両の走行に比べて、運転者の操作による影響が大きい。
また、リーン車両は、リーンしない車両より軽量である。このため、リーン車両は、リーンしない車両より機動性及び利便性が高い。さらに、リーン車両の利用目的は多様であり、利用頻度が高くなる傾向がある。このため、リーン車両は、様々なシーンで利用される。
上述のようにリーン車両が利用される利用シーンが多様であるため、リーン車両は、運転者の意思による走行の自由度の程度でリーン車両の走行データが異なる。特に、リーン車両が公道を走行する場合には、運転者の意思による走行の自由度の程度でリーン車両の走行データが異なる。
よって、上述の構成のように、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを用いることにより、様々な利用シーンが考慮されたリーン車両を運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力することができる。例えば、自由度が高い状態でのリーン車両走行データを用いた分析では、運転者がリーン車両を操作する技量について、より精度良く且つより詳細に分析することができる。また、例えば、自由度がある程度制限された状態でのリーン車両走行データを用いた分析では、運転者が周囲の車両の動きなどの走行環境を予測する予測技量について、より精度良く且つより詳細に分析することができる。
しかも、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを分析するため、その状態を考慮せずに全ての走行データで分析する場合と比較して、処理するデータを限定することができる。これにより、システムのハードウェアリソースに対する負荷を低減して、ハードウェアリソースの設計自由度を高められる。
これにより、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷を低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度を高めることできる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースに対する負荷を低減して前記装置のハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を提供できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる。
これにより、例えば、分析対象者である運転者が他のリーン車両と密集した状態で分析対象リーン車両を運転している際に、該分析対象リーン車両の走行データと前記他のリーン車両の走行データとの同調性を評価することで、前記分析対象者及び前記分析対象リーン車両の少なくとも一方においてリーン車両特有の分析データを得ることができる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースに対する負荷を低減して前記装置のハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記分析データは、前記分析対象者が前記分析対象リーン車両で公道を走行する際の運転予測技量の評価結果に関連するデータを含む。
これにより、分析対象者の運転予測技量の評価結果に関連するデータを含む分析データが得られる。リーン車両を運転操作する場合、リーンしない車両を運転操作する場合に比べて、運転予測技量が重要である。前記分析データに運転予測技量の評価結果に関連するデータを含むことにより、リーン車両特有の分析データが得られる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースに対する負荷を低減して前記装置のハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含む。前記分析用リーン車両走行データは、前記分析対象者による前記分析対象リーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行する前記分析対象リーン車両の走行位置に関連する分析用リーン車両位置データ、及び、前記分析対象リーン車両の挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む。
これにより、分析用リーン車両走行データを分析する際に用いられるリーン車両走行データは、運転者のリーン車両の運転技量をより反映するデータを含む。
すなわち、分析対象リーン車両の走行位置に関する分析用リーン車両位置データは、例えば、分析対象者が運転する分析対象リーン車両が所定の自由度で走行している場合に、他のリーン車両との位置関係を特定するために利用される。また、分析対象リーン車両の挙動に関連する分析用リーン車両挙動データは、例えば、分析対象者が運転する分析対象リーン車両が所定の自由度で走行している場合に、分析対象者が運転する分析対象リーン車両の分析用リーン車両挙動から、分析対象者の運転技量を検出するために利用される。
この構成により、リーン車両走行基準データに基づいて、分析用リーン車両走行データをより精度良く分析することができる。また、データの種類を特定した分析用リーン車両走行データを用いることで、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースの設計自由度をより高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含む。前記分析用リーン車両走行データは、更に前記分析対象者リーン車両が走行する走行環境に関連する分析用リーン車両走行環境データを含む。
リーン車両走行環境データは、例えば、マップデータを含む。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。リーン車両走行環境データは、前記リーン車両挙動データ及び前記リーン車両位置データとともに、リーン車両走行データの分析に用いることができる。
この構成により、リーン車両走行基準データを用いて、分析対象者によって運転操作される分析対象リーン車両が公道を走行した際に得られる分析用リーン車両走行データをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
したがって、ハードウェアリソースの設計自由度をより高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用リーン車両走行データは、前記分析対象リーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
運転者の判断の選択肢が制限を受けるが複数残されている状態でのリーン車両走行データは、運転者の判断の選択肢が残されていない状態でのリーン車両走行データに比べて、リーン車両特有のデータを含んでいる。よって、運転者の判断の選択肢が制限を受けるが複数残されている状態でのリーン車両走行データを用いて、リーン車両特有の分析データを得ることができる。また、データの種類を特定したリーン車両走行データを用いることで、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースの設計自由度をより高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
同乗者及び物の少なくとも一方を搭載した状態のリーン車両は、同乗者及び物のいずれも搭載していない状態よりリーン車両特有の挙動が現れる。そのため、同乗者及び物の少なくとも一方を搭載した状態のデータを含むリーン車両走行データを用いて、運転者である分析対象者のリーン車両走行データをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースの設計自由度をより高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記リーン車両走行データ分析方法は、前記取得した分析データを記憶する。前記記憶された複数の分析データを用いて、前記出力データを生成する。
複数の分析データを用いることで、分析対象者の分析用リーン車両走行データをより精度良く分析することができる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記出力データは、更なる情報処理に用いられる情報処理用分析データとして生成される。
これにより、分析対象者が運転する分析対象リーン車両の分析用リーン車両走行データを用いてリーン車両走行データ分析方法により得られた分析データを、更なる情報処理装置で用いることができる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースの設計自由度を高めつつ、更なる情報処理に用いることができる分析データを取得できる。
本発明の一実施形態に係るリーン車両走行データ分析装置は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜して公道を走行するリーン車両のリーン車両走行データを分析するリーン車両走行データ分析装置である。このリーン車両走行データ分析装置は、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得するリーン車両走行基準データ取得部と、分析対象者が運転操作して分析対象リーン車両で公道を走行する際の前記分析対象者の意思による走行の自由度に関連する分析用自由度関連データを含み、且つ前記分析対象者及び前記分析対象リーン車両の少なくとも一方を区分するための分析用区分関連データを含む、分析用リーン車両走行データを取得する分析用リーン車両走行データ取得部と、前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、前記分析用区分関連データを用いて区分された前記分析対象者及び前記分析対象リーン車両の少なくとも一方の分析データを取得する分析データ取得部と、前記分析データを用いて出力用の出力データを生成する出力データ生成部と、前記出力データを出力するデータ出力部と、を備える。
他の観点によれば、本発明のリーン車両走行データ分析装置は、以下の構成を含むことが好ましい。前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる。
他の観点によれば、本発明のリーン車両走行データ分析装置は、以下の構成を含むことが好ましい。前記分析データは、前記分析対象者が分析対象リーン車両で公道を走行する際の運転予測技量の評価結果に関連するデータを含む。
他の観点によれば、本発明のリーン車両走行データ分析装置は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含む。前記分析用リーン車両走行データは、前記分析対象者による前記分析対象リーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行する前記分析対象リーン車両の走行位置に関連する分析用リーン車両位置データ、及び、前記分析対象リーン車両の挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む。
他の観点によれば、本発明のリーン車両走行データ分析装置は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含む。前記分析用リーン車両走行データは、更に前記分析対象リーン車両が走行する走行環境に関連する分析用リーン車両走行環境データを含む。
他の観点によれば、本発明のリーン車両走行データ分析装置は、以下の構成を含むことが好ましい。前記出力データは、更なる情報処理に用いられる情報処理用分析データとして生成される。
本発明の一実施形態に係る分析データを用いる情報処理方法は、上述のリーン車両走行データ分析方法で前記情報処理用分析データとして生成された前記出力データを用いる情報処理方法である。この情報処理方法は、前記出力データを取得し、前記出力データとは異なる第1データを取得し、前記出力データ及び前記第1データを用いて、前記出力データ及び前記第1データと異なる第2データを生成し、前記第2データを出力する。
分析データを用いる情報処理方法は、リーン車両走行データを分析して得られる分析データを用いる情報処理方法であればどのような情報処理方法であってもよい。例えば、第1データおよび第2データは、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる市場、商品、サービス、環境または顧客に関連するデータであってもよい。
これにより、分析用リーン車両走行データを分析して得られ且つ区分された分析対象者及び分析対象リーン車両の少なくとも一方の分析データを用いて出力された出力データ、及び、前記出力された出力データとは異なる第1データを用いて、前記取得した出力データ及び第1データと異なる第2データを生成し、出力する。このため、より精度の高い第2データを生成し、出力できる。
したがって、分析データを用いる情報処理方法を実行する装置のハードウェアリソースの設計自由度を高めつつ、分析データを用いてより精度の高い第2データを生成し、出力できる。
本発明の一実施形態に係る分析データを用いる情報処理装置は、上述のリーン車両走行データ分析装置で前記情報処理用分析データとして生成された前記出力データを用いる情報処理装置である。この情報処理装置は、前記出力データを取得する出力データ取得部と、前記出力データとは異なる第1データを取得する第1データ取得部と、前記出力データ及び前記第1データを用いて、前記出力データ及び前記第1データと異なる第2データを生成する第2データ生成部と、前記第2データを出力する第2データ出力部と、を備える。
本明細書で使用される専門用語は、特定の実施例のみを定義する目的で利用されるのであって、前記専門用語によって発明を制限する意図はない。
本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。
本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの一つまたは複数を含むことができる。
本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な接続または結合を含むことができる。
他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。
一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。
本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の一つ以上、または、場合によっては全てと共に使用することもできる。
したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。
本明細書では、本発明に係るリーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置の実施形態について説明する。
以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。
よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
[リーン車両]
本明細書において、リーン車両とは、傾斜姿勢で旋回する車両である。具体的には、リーン車両は、車両の左右方向において、左方向に旋回する際に左方向に傾斜し且つ右方向に旋回する際に右方向に傾斜する車両である。リーン車両は、一人乗りの車両であってもよいし、複数人が乗車可能な車両であってもよい。なお、リーン車両は、2輪車だけでなく、3輪車または4輪車など、傾斜姿勢で旋回する全ての車両を含む。
本明細書において、リーン車両とは、傾斜姿勢で旋回する車両である。具体的には、リーン車両は、車両の左右方向において、左方向に旋回する際に左方向に傾斜し且つ右方向に旋回する際に右方向に傾斜する車両である。リーン車両は、一人乗りの車両であってもよいし、複数人が乗車可能な車両であってもよい。なお、リーン車両は、2輪車だけでなく、3輪車または4輪車など、傾斜姿勢で旋回する全ての車両を含む。
[走行の自由度]
本明細書において、走行の自由度とは、運転者がリーン車両を運転している時に、運転者が運転を選択する自由の度合いを意味する。運転の判断の選択には、例えば、リーン車両の走行経路の選択、加減速の選択、リーン車両における機器の操作の選択などが含まれる。
本明細書において、走行の自由度とは、運転者がリーン車両を運転している時に、運転者が運転を選択する自由の度合いを意味する。運転の判断の選択には、例えば、リーン車両の走行経路の選択、加減速の選択、リーン車両における機器の操作の選択などが含まれる。
[自由度関連データ]
本明細書において、自由度関連データとは、運転者がリーン車両を運転している時に、運転者が運転を選択する自由の度合いを意味する走行の自由度に関連するデータである。、前記自由度関連データは、リーン車両の走行経路における選択の自由度に関連するデータ、加減速における選択の自由度に関連するデータ、リーン車両における機器操作の選択の自由度に関連するデータなどを含む。
本明細書において、自由度関連データとは、運転者がリーン車両を運転している時に、運転者が運転を選択する自由の度合いを意味する走行の自由度に関連するデータである。、前記自由度関連データは、リーン車両の走行経路における選択の自由度に関連するデータ、加減速における選択の自由度に関連するデータ、リーン車両における機器操作の選択の自由度に関連するデータなどを含む。
[区分関連データ]
本明細書において、区分関連データとは、運転者及びリーン車両の少なくとも一方を区分するためのデータである。前記区分関連データは、運転者の個人を区分するデータ、運転者の性別を区分するデータ、運転者の年齢層を区分するデータ、車両のメーカーを区分するデータ、車種を区分するデータ、車両性能(例えば駆動源の種別及び出力、サスペンションの性能など)を区分するデータなどを含む。
本明細書において、区分関連データとは、運転者及びリーン車両の少なくとも一方を区分するためのデータである。前記区分関連データは、運転者の個人を区分するデータ、運転者の性別を区分するデータ、運転者の年齢層を区分するデータ、車両のメーカーを区分するデータ、車種を区分するデータ、車両性能(例えば駆動源の種別及び出力、サスペンションの性能など)を区分するデータなどを含む。
[公道]
本明細書において、公道とは、シミュレーション及びサーキットの走行路ではなく、一般車両が通行可能な公共用の道路である。前記公道には、一般車両が通行可能な私道も含まれる。
本明細書において、公道とは、シミュレーション及びサーキットの走行路ではなく、一般車両が通行可能な公共用の道路である。前記公道には、一般車両が通行可能な私道も含まれる。
[運転技量]
本明細書において、運転技量とは、リーン車両を運転する運転者の運転に関する技量を意味する。前記運転技量には、リーン車両を運転する技量だけでなく、リーン車両を運転する際の予測に関する予測技量も含む。
本明細書において、運転技量とは、リーン車両を運転する運転者の運転に関する技量を意味する。前記運転技量には、リーン車両を運転する技量だけでなく、リーン車両を運転する際の予測に関する予測技量も含む。
[リーン車両走行データ]
本明細書において、リーン車両走行データとは、リーン車両の走行に関連するデータである。具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどの少なくとも一つのデータを含む。また、前記リーン車両走行データは、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどを加工した加工データを含んでいてもよい。前記リーン車両走行データは、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。
本明細書において、リーン車両走行データとは、リーン車両の走行に関連するデータである。具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどの少なくとも一つのデータを含む。また、前記リーン車両走行データは、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどを加工した加工データを含んでいてもよい。前記リーン車両走行データは、リーン車両挙動データ、リーン車両位置データ、及び、リーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。
[リーン車両運転操作入力データ]
本明細書において、リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでいてもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータを含んでいてもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の運転技量等をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者の運転技量等が強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
本明細書において、リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでいてもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータを含んでいてもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の運転技量等をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者の運転技量等が強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
[リーン車両挙動データ]
本明細書において、リーン車両挙動データとは、リーン車両が運転者によって運転される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、分析対象者である運転者が運転した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵や重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。
本明細書において、リーン車両挙動データとは、リーン車両が運転者によって運転される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、分析対象者である運転者が運転した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵や重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。
また、前記リーン車両挙動データは、上述のように、リーン車両の加速度、速度、角度に関するデータだけでなく、分析対象者である運転者がリーン車両に対して行うスイッチ操作等によってリーン車両で生じる動作を含んでもよい。すなわち、前記リーン車両挙動データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両に生じる動作に関連するデータを含む。前記リーン車両挙動データは、運転者の運転の入力の結果が強く反映される。そのため、前記リーン車両挙動データにも、運転者のリーン車両運転技量が強く反映される傾向がある。また、前記リーン車両挙動データは、センサなどから取得したデータを加工した加工データを含んでいてもよい。前記リーン車両挙動データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
[リーン車両位置データ]
本明細書において、リーン車両位置データは、リーン車両の位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者の運転の入力の結果が強く反映される。そのため、前記リーン車両位置データにも、リーン車両特有のデータが含まれる。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
本明細書において、リーン車両位置データは、リーン車両の位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者の運転の入力の結果が強く反映される。そのため、前記リーン車両位置データにも、リーン車両特有のデータが含まれる。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
[リーン車両走行環境データ]
本明細書において、リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両挙動データ及び前記リーン車両位置データとともに、リーン車両走行データの分析に用いることができる。
本明細書において、リーン車両走行環境データは、例えば、マップデータを含む。マップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両挙動データ及び前記リーン車両位置データとともに、リーン車両走行データの分析に用いることができる。
前記道路状況に関する情報は、渋滞が頻発する、路上駐車車両が多い等、混雑する環境下にある道路(地域)に関する情報を含む。この情報は、時間帯と組み合わせることによって、より情報の精度が上がる。また、前記道路状況に関する情報は、スコールがあると冠水し易い道路に関する情報を含む。
前記リーン車両走行環境データは、リーン車両の走行に影響する因子の一例であると考えられる。前記リーン車両走行環境データは、運転者の判断、操作及びリーン車両の走行に影響を与える。そのため、前記リーン車両走行環境データを用いることで、リーン車両の走行データを分析して得られるデータには、リーン車両特有のデータがより含まれやすい。また、前記リーン車両走行環境データを用いることで、リーン車両の利用目的及び利用頻度が影響を受けるため、リーン車両の走行データを分析して得られるデータには、リーン車両特有のデータがより含まれやすい。
前記リーン車両走行環境データは、種々の手段から取得することができる。前記リーン車両走行環境データを取得する手段は、ある手段に限定されることはない。例えば、前記リーン車両走行環境データを取得する手段は、リーン車両に搭載した外部環境認識装置である。より具体的には、前記リーン車両走行環境データを取得する手段は、カメラ、レーダーなどがある。また、例えば、前記リーン車両走行環境データを取得する手段は、通信装置である。より具体的には、前記リーン車両走行環境データを取得する手段は、車車間通信装置、路車間通信装置である。前記リーン車両走行環境データは、例えば、インターネットを介して入手することもできる。
[リーン車両走行データの同調性]
本明細書において、リーン車両走行データの同調性とは、分析対象者が運転するリーン車両を含む複数のリーン車両におけるリーン車両走行データを含む群挙動に対し、前記分析対象者が運転するリーン車両のリーン車両走行データの乖離度合いを意味する。この乖離度合いが低いほど、分析対象者の同調性が高い。前記群挙動は、例えば、前記複数のリーン車両におけるリーン車両走行データから求められる平均値または挙動周波数のデータを含んでもよい。すなわち、前記乖離度合いは、前記複数のリーン車両におけるリーン車両走行データから求められる群挙動周波数に対し、前記分析対象者が運転するリーン車両のリーン車両走行データから求められる挙動周波数の乖離度合いであってもよい。
本明細書において、リーン車両走行データの同調性とは、分析対象者が運転するリーン車両を含む複数のリーン車両におけるリーン車両走行データを含む群挙動に対し、前記分析対象者が運転するリーン車両のリーン車両走行データの乖離度合いを意味する。この乖離度合いが低いほど、分析対象者の同調性が高い。前記群挙動は、例えば、前記複数のリーン車両におけるリーン車両走行データから求められる平均値または挙動周波数のデータを含んでもよい。すなわち、前記乖離度合いは、前記複数のリーン車両におけるリーン車両走行データから求められる群挙動周波数に対し、前記分析対象者が運転するリーン車両のリーン車両走行データから求められる挙動周波数の乖離度合いであってもよい。
[AよりBを多く含む]
本明細書において、「AよりBを多く含む」とは、Aを全く含んでいなくてもよい。「AよりBを多く含む」とは、Aを一部含んでいてもよい。
本明細書において、「AよりBを多く含む」とは、Aを全く含んでいなくてもよい。「AよりBを多く含む」とは、Aを一部含んでいてもよい。
例えば、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含むとは、運転者の意思による走行の自由度が類似しない公道を走行する走行データを全く含んでいなくてもよい。例えば、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含むとは、運転者の意思による走行の自由度が類似しない公道を走行する走行データを一部含んでいてもよい。
本発明の一実施形態によれば、ハードウェアリソースに対する負荷を低減してハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を提供することができる。
本発明者らは、リーン車両の走行データを分析する中で、リーン車両の走行データとリーンしない車両の走行データとが大きく異なることに気がついた。リーン車両とは、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する車両である。
リーン車両は、リーンしない車両よりも車体の大きさが小さい。すなわち、リーン車両は、リーンしない車両よりも車体の前後方向及び/又は左右方向の大きさが小さい。また、リーン車両は、リーンしない車両に比べて、ステアリングの回転操作量が少ない。リーン車両のステアリングの回転操作量は、360度より小さい。さらに、リーン車両の操作は、リーンしない車両とは異なり、運転者がアクティブに操作できるライダーアクティブな車両である。よって、リーン車両の操作は、リーンしない車両の操作と異なる。このようにリーンしない車両とは操作が異なるリーン車両の走行データは、リーンしない車両の走行データとは大きく異なる。
本発明者らは、リーン車両の走行状況についてさらに詳細に検討したところ、リーンしない車両に比べて、リーン車両は運転者の意思による走行の自由度が非常に高いことに気がついた。
このため、運転者がリーン車両を操作している際には、運転者がリーンしない車両を操作している場合よりも、運転者の判断回数及び判断の選択肢が多い傾向にある。
また、運転者は、リーン車両を操作している際には、リーンしない車両を操作している場合に比べて、外部からのストレスにより晒されやすい。さらに、リーン車両を操作している運転者に加わる外部からのストレスは、非常に多様である。
また、リーン車両は、リーンしない車両より軽量である。このため、リーン車両は、リーンしない車両より機動性及び利便性が高い。リーン車両の利用目的は多様であり、利用頻度が高くなる傾向がある。このため、リーン車両は、様々なシーンで利用される。
本願発明者らは、リーン車両の様々な利用シーンを詳細に検討する中で、リーン車両は、運転者の意思による走行の自由度の程度によってリーン車両の走行データが異なることに気がついた。公道を走行するリーン車両の走行データの場合、特に、運転者の意思による走行の自由度の程度によってリーン車両の走行データが異なることに気がついた。これは、リーン車両が利用される利用シーンが多様であることに起因すると考えられる。
さらに、本発明者らは、公道を走行するリーン車両の走行データを用いて運転者の意思による走行の自由度の程度を考慮して運転者の運転技量を分析する中で、以下の点に気がついた。
運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを用いることにより、様々な利用シーンが考慮されたリーン車両を運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力できることが分かった。例えば、自由度が高い状態でのリーン車両走行データを用いた分析では、運転者がリーン車両を操作する技量について、より精度良く且つより詳細に分析することができる。また、例えば、自由度がある程度制限された状態でのリーン車両走行データを用いた分析では、運転者が周囲の車両の動きなどの走行環境を予測する予測技量について、より精度良く且つより詳細に分析することができる。
しかも、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを分析するため、その状態を考慮せずに全ての走行データで分析する場合と比較して、処理するデータを限定することができる。これにより、システムのハードウェアリソースに対する負荷を低減して、ハードウェアリソースの設計自由度を高められることが分かった。
以上より、本発明者らは、ハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を創出した。
さらに、本発明者らは、運転者の意思による走行の自由度の程度を考慮して公道を走行するリーン車両の走行データを分析する中で、業務用途でリーン車両を操作する運転者により好ましい分析データを提供できることを見出した。これは、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを用いることにより、様々な利用シーンが考慮されたリーン車両を運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力できることに起因する。
例えば、リーン車両の車両保険料を決定するシステムが考えられる。このシステムは、自動的にリーン車両の走行データを収集するセンサを備えた携帯端末と、前記携帯端末が収集したリーン車両走行データを受信するサーバ、前記収集したリーン車両走行データを蓄積するデータベース、及び、前記収集したリーン車両走行動作データに基づいてリーン車両の保険料を決定する評価エンジンを備えた遠隔処理コンピュータなどが考えられる。
前記評価エンジンは、前記収集したリーン車両走行データから求められる運転者の運転スコアに基づいて、保険リスク及び保険料を決定できる。
本願発明者らは、このように、リーン車両を運転する運転者のリスク評価に該運転者の運転技量を用いることにより、前記運転者のリスクの分析を簡易化できるため、データ処理によるシステムのハードウェアリソースに対する負荷を低減して、ハードウェアリソースの設計自由度を高められることを見出した。
特に、本発明者らは、リスク評価の観点から、運転者の意思による走行の自由度の程度を考慮して運転者の運転技量を分析することで、リーン車両を用いたビジネスにおけるリスク評価への適用性が高いデータを出力できることを見出した。さらに、本発明者らは、リーン車両の運転者の意思による走行の自由度の程度を考慮することにより、分析対象のデータをより簡易化できるため、データ処理によるシステムのハードウェアリソースに対する負荷をより低減して、ハードウェアリソースの設計自由度をより高められることを見出した。
なお、運転技量の分析とは、リーン車両を運転する技量だけでなく、リーン車両を運転する際の予測に関する技量(予測技量)も含む。この運転技量は、分析対象者が運転者としてリーン車両を公道で運転した際に得られるリーン車両のリーン車両走行データを、後述するリーン車両走行基準データに基づいて分析することにより得られる分析データに含まれる。
以下で、各実施形態について、図面を参照しながら説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
<実施形態1>
(リーン車両走行データ分析装置)
図1に、本発明の実施形態に係るリーン車両走行データ分析装置1の概略構成を示す。リーン車両走行データ分析装置1は、分析対象者が公道でリーン車両Xを運転する際のリーン車両走行データを分析する装置である。本実施形態のリーン車両走行データ分析装置1は、分析対象者が公道でリーン車両Xを運転した際に得られるリーン車両X(分析対象リーン車両)の走行データ(分析対象リーン車両走行データ)を分析して、その分析結果を出力する。
(リーン車両走行データ分析装置)
図1に、本発明の実施形態に係るリーン車両走行データ分析装置1の概略構成を示す。リーン車両走行データ分析装置1は、分析対象者が公道でリーン車両Xを運転する際のリーン車両走行データを分析する装置である。本実施形態のリーン車両走行データ分析装置1は、分析対象者が公道でリーン車両Xを運転した際に得られるリーン車両X(分析対象リーン車両)の走行データ(分析対象リーン車両走行データ)を分析して、その分析結果を出力する。
本実施形態におけるリーン車両走行データは、リーン車両の走行に関連するデータである。前記リーン車両走行データは、運転者がリーン車両を運転操作した際に得られるリーン車両の走行に関連するデータのうち、前記運転者の運転技量などに関連するデータを含む分析データを求める際に用いられるデータを意味する。
具体的には、前記リーン車両走行データは、運転者によるリーン車両への運転操作入力に関連するリーン車両運転操作入力データ、リーン車両の挙動に関連するリーン車両挙動データ、リーン車両の走行位置に関連するリーン車両位置データ、及び、リーン車両が走行する走行環境に関連するリーン車両走行環境データなどを含む。なお、前記リーン車両走行データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ、前記リーン車両位置データ及びリーン車両走行環境データ以外のデータを含んでいてもよい。また、前記リーン車両走行データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ、前記リーン車両位置データ及びリーン車両走行環境データのうち、一つまたは複数のデータのみを含んでいてもよい。
例えば、リーン車両が分析対象のリーン車両であるリーン車両Xの場合、前記リーン車両走行データは分析用リーン車両走行データであり、前記リーン車両運転操作入力データは分析用リーン車両運転操作入力データであり、前記リーン車両挙動データは分析用リーン車両挙動データであり、前記リーン車両位置データは分析用リーン車両位置データであり、前記リーン車両走行環境データは、分析用リーン車両走行環境データである。
なお、前記リーン車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ及びリーン車両走行環境データなどが加工された加工データを含んでいてもよい。また、前記車両走行データは、リーン車両運転操作入力データ、リーン車両挙動データ、リーン車両位置データ及びリーン車両走行環境データなどと他のデータとを用いて加工された加工データを含んでいてもよい。
前記リーン車両運転操作入力データは、運転者がリーン車両を運転操作する際に行う運転者の操作入力に関連するデータである。具体的には、前記リーン車両運転操作入力データは、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータを含んでもよい。また、具体的には、前記リーン車両運転操作入力データは、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等を含んでもよい。前記リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータであるため、運転者の運転技量等をより反映している。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、運転者の運転技量等が強く反映される傾向がある。また、前記リーン車両運転操作入力データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両運転操作入力データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
前記リーン車両挙動データは、リーン車両が運転者によって運転操作される際に、運転者の操作入力によって生じるリーン車両の挙動に関連するデータである。具体的には、前記リーン車両挙動データは、例えば、運転者が運転操作した際に変化するリーン車両の加速度、速度、角度を含む。すなわち、前記リーン車両挙動データは、運転者がアクセル操作またはブレーキ操作を行ってリーン車両の加減速を行った場合、リーン車両の操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両の挙動を現すデータである。
前記リーン車両挙動データは、上述のように、リーン車両の加速度、速度、角度に関するデータだけでなく、運転者がリーン車両に対して行うスイッチ操作等によってリーン車両で生じる動作を含んでもよい。すなわち、前記リーン車両挙動データは、ホーンスイッチ及びウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両に生じる動作に関連するデータを含む。前記リーン車両挙動データは、運転者の運転技量等が強く反映される。そのため、前記リーン車両挙動データにも、運転者の運転技量等が強く反映される傾向がある。また、前記リーン車両挙動データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両挙動データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
前記リーン車両位置データは、リーン車両の走行位置に関連するデータである。例えば、前記リーン車両位置データは、GPS、通信携帯端末の通信基地局の情報等に基づいて検出することができる。なお、前記リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。前記リーン車両位置データは、運転者の運転技量等が強く反映される。そのため、前記リーン車両位置データにも、運転者の運転技量等が強く反映される傾向がある。また、前記リーン車両位置データは、センサなどから取得したデータが加工された加工データを含んでいてもよい。前記リーン車両位置データは、センサなどから取得したデータと他のデータとを用いて加工された加工データを含んでいてもよい。
前記リーン車両走行環境データは、例えば、マップデータを含む。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、前記マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記リーン車両走行環境データは、前記リーン車両運転操作入力データ、前記リーン車両挙動データ及び前記リーン車両位置データとともに、リーン車両走行データの分析に用いることができる。
前記道路状況に関する情報は、渋滞が頻発する、路上駐車車両が多い等、混雑する環境下にある道路(地域)に関する情報を含む。この情報は、時間帯と組み合わせることによって、より情報の精度が上がる。また、前記道路状況に関する情報は、スコールがあると冠水し易い道路に関する情報を含む。
前記リーン車両走行環境データは、運転者が受ける外部からのストレスの一例であると考えられる。前記リーン車両走行環境データは、運転者の運転操作に影響を与える。そのため、前記リーン車両走行環境データを用いることで、リーン車両の走行データには運転者の運転技量等がより強く現れやすくなる。また、前記リーン車両走行環境データを用いることで、リーン車両の利用目的及び利用頻度が影響を受けるため、リーン車両の走行データにはリーン車両特有のデータがより含まれやすい。
リーン車両走行データ分析装置1は、リーン車両走行基準データ取得部10と、分析用リーン車両走行データ取得部20と、分析データ取得部30と、出力データ生成部40と、データ出力部50と、データ記憶部60とを備える。本実施形態では、リーン車両走行データ分析装置1は、例えば、分析対象者が所有する携帯端末である。なお、リーン車両走行データ分析装置1は、通信を介してデータを取得して、演算処理を行う演算処理装置であってもよい。
分析用リーン車両走行データ取得部20は、分析対象者である運転者が公道でリーン車両Xを運転した際の走行データを含む分析用リーン車両走行データを取得する。
具体的には、分析用リーン車両走行データ取得部20は、分析対象者がリーン車両Xを運転した際に、リーン車両Xのリーン車両走行データに含まれるデータ、すなわち、分析対象のリーン車両運転操作入力データ、分析用リーン車両挙動データ、分析用リーン車両位置データ及び分析用リーン車両走行環境データなどを取得する。
分析用リーン車両走行データ取得部20は、例えば、リーン車両Xに対する分析対象者の運転操作を操作信号として取得することによって、前記分析用リーン車両運転操作入力データを取得してもよい。具体的には、分析用リーン車両走行データ取得部20は、リーン車両Xにおける運転者の操作入力に関連するデータ、すなわち、アクセル操作、ブレーキ操作、操舵または運転者の姿勢変化による重心位置の変更などに関連するデータ、ホーンスイッチ、ウィンカースイッチ、照明スイッチなどの各種スイッチの操作等に関連するデータなどを取得してもよい。これらのデータは、リーン車両Xから送信される。
分析用リーン車両走行データ取得部20は、例えば、分析対象者である運転者がリーン車両Xを運転操作した際に変化するリーン車両Xの加速度、速度、角度を含むデータを、分析用リーン車両挙動データとして取得してもよい。分析用リーン車両走行データ取得部20は、例えばジャイロセンサなどによって、前記分析用リーン車両挙動データを取得する。前記分析用リーン車両挙動データは、分析対象者である運転者がアクセル操作またはブレーキ操作を行ってリーン車両Xの加減速を行った場合、リーン車両Xの操舵または重心位置の変更を含む姿勢変化を行った場合などに生じるリーン車両Xの挙動を現すデータである。
また、分析用リーン車両走行データ取得部20は、分析対象者である運転者がリーン車両Xに対して行うスイッチ操作等によってリーン車両Xで生じる動作を、前記リーン車両挙動データとして取得してもよい。すなわち、分析用リーン車両走行データ取得部20は、ホーンスイッチ及びウィンカースイッチ、照明スイッチなどの各種スイッチの操作等によってリーン車両Xに生じる動作に関連するデータを前記分析用リーン車両挙動データとして取得してもよい。これらのデータは、リーン車両Xから、リーン車両走行データ分析装置1に送信される。
分析用リーン車両走行データ取得部20は、例えば、GPS、通信携帯端末の通信基地局の情報に基づいて、リーン車両Xの走行位置に関連する分析用リーン車両位置データを取得してもよい。なお、前記分析用リーン車両位置データは、種々の測位技術、SLAMなどで算出することができる。
分析用リーン車両走行データ取得部20は、例えばマップデータから、前記分析用リーン車両走行環境データを取得してもよい。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。また、前記マップデータは、天気、気温または湿度などの環境データなどと関連付けられていてもよい。前記マップデータは、道路情報及び道路交通環境に関する情報(信号等の道路に対する付随情報)と道路の走行に関わる規則情報が関連づけられた情報を含んでいてもよい。
分析用リーン車両走行データ取得部20は、例えばリーン車両Xに搭載した外部環境認識装置によって、前記分析用リーン車両走行環境データを取得してもよい。より具体的には、分析用リーン車両走行データ取得部20は、カメラまたはレーダーなどから、前記分析用リーン車両走行環境データを取得してもよい。また、分析用リーン車両走行データ取得部20は、例えば、通信装置によって、前記分析用リーン車両走行環境データを取得してもよい。より具体的には、分析用リーン車両走行データ取得部20は、車車間通信装置、路車間通信装置によって、前記分析用リーン車両走行環境データを取得してもよい。分析用リーン車両走行データ取得部20は、例えば、インターネットを介して前記分析用リーン車両走行環境データを取得してもよい。このように、前記分析用リーン車両走行環境データは、種々の手段から取得することができる。前記分析用リーン車両走行環境データを取得する手段は、ある手段に限定されることはない。
本実施形態では、分析用リーン車両走行データ取得部20は、例えば、分析対象者及びリーン車両Xに関する情報(例えば区分関連データなど)も取得する。分析用リーン車両走行データ取得部20は、入力されたデータが蓄積されているデータ記憶部60から該データを取得してもよいし、リーン車両走行データ分析装置1に直接入力されたデータを取得してもよい。分析用リーン車両走行データ取得部20は、リーン車両Xから情報を取得してもよい。
なお、分析用リーン車両走行データ取得部20は、リーン車両Xに設けられたジャイロセンサ、GPS、各種スイッチの操作信号を検出する検出部などから、検出信号を受信して取得してもよい。
前記分析用リーン車両走行データは、リーン車両Xで公道を走行する際の分析対象者の意思による走行の自由度に関連する分析用走行自由度関連データと、前記分析対象者を区分するための分析用区分関連データとを含む。
前記走行の自由度は、分析対象者がリーン車両を運転している時に、分析対象者が判断を選択する自由の度合いを意味する。運転の判断の選択には、例えば、リーン車両Xの走行経路の選択、加減速の選択、リーン車両における機器の操作の選択などが含まれる。
自由度関連データは、運転者がリーン車両を運転している時に、運転者が運転を選択する自由の度合いを意味する走行の自由度に関連するデータである。よって、前記自由度関連データは、リーン車両の走行経路における選択の自由度に関連するデータ、加減速における選択の自由度に関連するデータ、リーン車両における機器操作の選択の自由度に関連するデータなどを含む。
前記自由度関連データは、例えば、リーン車両位置データ及びリーン車両走行環境データなどを用いて生成される。前記自由度関連データは、リーン車両運転操作入力データ及びリーン車両挙動データの少なくとも一方も用いて生成されてもよい。
区分関連データは、運転者及びリーン車両の少なくとも一方を区分するためのデータである。前記区分関連データは、運転者の個人を区分するデータ、運転者の性別を区分するデータ、運転者の年齢層を区分するデータ、車両のメーカーを区分するデータ、車種を区分するデータ、車両性能(例えば駆動源の種別及び出力、サスペンションの性能など)を区分するデータなどを含む。
例えば、リーン車両が分析対象リーン車両であるリーン車両Xの場合、前記自由度関連データは分析用自由度関連データであり、前記区分関連データは分析用区分関連データである。
前記分析用自由度関連データは、分析用リーン車両走行データを分析して分析データを生成する際に考慮されることにより、様々な利用シーンが考慮されたリーン車両Xを運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力することができる。例えば、自由度が高い状態でのリーン車両走行データを用いた分析では、分析対象者がリーン車両Xを操作する技量について、より精度良く且つより詳細に分析することができる。また、例えば、自由度がある程度制限された状態でのリーン車両走行データを用いた分析では、分析対象者が周囲の車両の動きなどの走行環境を予測する予測技量について、より精度良く且つより詳細に分析することができる。
前記分析用自由度関連データは、分析用リーン車両走行データを分析して分析データを生成する際に、後述するリーン車両走行基準データの中から、走行の自由度が類似しているデータに限定する際に用いられてもよい。このように分析用自由度関連データを用いることにより、分析用リーン車両走行データを分析して分析データを生成する際に処理するデータを限定することができ、ハードウェアリソースに対する負荷を減らすことができる。
前記分析用区分関連データは、分析用リーン車両走行データを分析して分析データを生成する際に、後述するリーン車両走行基準データの中から、分析対象者の属性(性別、年齢など)、メーカー及び車種などの区分と対応するデータに限定する際に用いられる。この分析用区分関連データを用いることにより、分析用リーン車両走行データを分析して分析データを生成する際に処理するデータを限定することができ、ハードウェアリソースに対する負荷を減らすことができる。
リーン車両走行基準データ取得部10は、分析用リーン車両走行データを分析する際に用いるリーン車両走行基準データを取得する。このリーン車両走行基準データは、基準生成用リーン車両走行データに基づいて生成される。
前記基準生成用リーン車両走行データは、運転者の意思による走行の自由度が類似していない公道を走行するリーン車両の走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含む。また、前記基準生成用リーン車両走行データは、運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含む。さらに、前記基準生成用リーン車両走行データは、区分が異なる複数のリーン車両のリーン車両走行データを含む。
前記基準生成用リーン車両走行データは、異なる運転者によるリーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、異なる運転者が運転して複数の公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、異なる運転者が運転して複数の公道を走行するリーン車両の挙動に関連する基準生成用リーン車両挙動データ、及び、リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データなどを含む。なお、前記基準生成用リーン車両走行データは、前記基準生成用リーン車両運転操作入力データ、前記基準生成用リーン車両挙動データ、前記基準生成用リーン車両位置データ及び基準生成用リーン車両走行環境データ以外のデータを含んでいてもよい。また、前記基準生成用リーン車両走行データは、前記基準生成用リーン車両運転操作入力データ、前記基準生成用リーン車両挙動データ、前記基準生成用リーン車両位置データ及び基準生成用リーン車両走行環境データのうち、一つまたは複数のデータのみを含んでいてもよい。
リーン車両が異なる運転者が運転して複数の公道を走行するリーン車両の場合、既述のリーン車両走行データは基準生成用リーン車両走行データであり、既述のリーン車両運転操作入力データは基準生成用リーン車両運転操作入力データであり、既述のリーン車両挙動データは基準生成用リーン車両挙動データであり、既述のリーン車両位置データは基準生成用リーン車両位置データであり、既述のリーン車両走行環境データは、基準生成用リーン車両走行環境データである。
前記基準生成用リーン車両走行データは、自由度関連データと、区分関連データとを含む。
前記自由度関連データは、分析用リーン車両走行データを分析して分析データを生成する際に考慮される。これにより、様々な利用シーンが考慮されたリーン車両Xを運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力することができる。例えば、自由度が高い状態でのリーン車両走行データを用いた分析では、分析対象者がリーン車両Xを操作する技量について、より精度良く且つより詳細に分析することができる。また、例えば、自由度がある程度制限された状態でのリーン車両走行データを用いた分析では、分析対象者が周囲の車両の動きなどの走行環境を予測する予測技量について、より精度良く且つより詳細に分析することができる。
前記自由度関連データは、分析用リーン車両走行データを分析して分析データを生成する際に、後述するリーン車両走行基準データの中から、走行の自由度が類似しているデータに限定する際に用いられてもよい。このように自由度関連データを用いることにより、分析用リーン車両走行データを分析して分析データを生成する際に処理するデータを限定することができ、ハードウェアリソースに対する負荷を減らすことができる。
前記区分関連データは、分析用リーン車両走行データを分析する際に、運転者の属性(性別、年齢など)、メーカー及び車種などの区分に対応して分析データを生成するために用いられる。この区分関連データを用いることにより、分析データを生成する際に処理するデータを限定することができ、ハードウェアリソースに対する負荷を減らすことができる。
前記リーン車両走行基準データは、前記分析用リーン車両走行データを分析する際に用いられる。前記リーン車両走行基準データは、例えば、分析対象者である運転者のリーン車両運転技量を区分するための基準として用いられる。前記リーン車両走行基準データは、例えば、前記基準生成用リーン車両走行データに基づいて生成されて、データ記憶部60に格納されている。
分析データ取得部30は、リーン車両走行基準データ取得部10によって得られたリーン車両走行基準データに基づいて、分析用リーン車両走行データ取得部20によって得られた分析用リーン車両走行データを分析することによって得られる分析データを取得する。この分析データは、前記分析用区分関連データを用いて区分された分析対象者及びリーン車両Xの少なくとも一方の分析データである。
前記分析データは、例えば、区分された分析対象者のリーン車両の運転技量に関連するデータを含む。前記運転技量は、リーン車両を運転する運転者の運転に関する技量を意味する。前記運転技量には、リーン車両を運転する技量だけでなく、リーン車両を運転する際の予測に関する予測技量も含む。また、前記分析データは、例えば、区分されたリーン車両Xの走行に関連するデータを含む。このデータは、例えば、運転者である分析対象者の運転技量に関係するデータである。
出力データ生成部40は、前記分析データから、出力するための出力データを生成する。例えば、出力データ生成部40は、データ記憶部60に記憶された複数の分析データを用いて、出力データを生成する。これにより、精度の良い出力データを生成することができる。なお、出力データ生成部40は、分析データをそのまま出力データとして生成してもよい。
データ出力部50は、出力データ生成部40によって生成された出力データを、リーン車両走行データ分析装置1から出力する。
以上の構成により、リーン車両走行データ分析装置1によって、リーン車両走行基準データに基づいて、分析対象者が運転操作するリーン車両Xのリーン車両走行データを分析し、区分された分析対象者及びリーン車両Xの少なくとも一方の分析データを、出力データとして出力することができる。
(リーン車両走行データ分析方法)
次に、図2を用いて、上述の構成を有するリーン車両走行データ分析装置1によって行われるリーン車両走行データ分析方法を説明する。図2は、リーン車両走行データ分析方法を示すフローである。
次に、図2を用いて、上述の構成を有するリーン車両走行データ分析装置1によって行われるリーン車両走行データ分析方法を説明する。図2は、リーン車両走行データ分析方法を示すフローである。
まず、リーン車両走行基準データ取得部10が、基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得する(ステップSA1)。リーン車両走行基準データは、基準生成用リーン車両走行データに基づいて生成され、データ記憶部60に予め記憶されている。
前記基準生成用リーン車両走行データは、運転者の意思による走行の自由度が類似していない公道を走行するリーン車両の走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含む。また、前記基準生成用リーン車両走行データは、運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含む。さらに、前記基準生成用リーン車両走行データは、区分が異なる複数のリーン車両のリーン車両走行データを含む。
次に、分析用リーン車両走行データ取得部20が、分析対象者の運転によって公道を走行するリーン車両Xの走行データである分析用リーン車両走行データを取得する(ステップSA2)。
前記分析用リーン車両走行データは、リーン車両Xで公道を走行する際の分析対象者の意思による走行の自由度に関連する分析用走行自由度関連データと、前記分析対象者及びリーン車両Xの少なくとも一方を区分するための分析用区分関連データとを含む。
また、前記分析用リーン車両走行データは、分析対象者によるリーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データと、公道を走行するリーン車両Xの走行位置に関連する分析用リーン車両位置データと、公道を走行するリーン車両Xの挙動に関連する分析用リーン車両挙動データと、公道を走行するリーン車両Xの走行環境に関連する分析用リーン車両走行環境データとを含む。
分析用リーン車両走行データ取得部20は、例えば、分析対象者及びリーン車両Xに関する情報を取得する情報取得部と、ジャイロセンサ、GPSなどを含む検出センサとを含む。分析用リーン車両走行データ取得部20は、例えば、前記検出センサの出力から、前記分析用リーン車両位置データ及び前記分析用リーン車両挙動データを取得する。分析用リーン車両走行データ取得部20は、例えば、前記情報取得部で取得したデータから、分析用区分関連データを取得する。前記分析用走行自由度関連データは、例えば、前記検出センサの出力から得られる前記分析用リーン車両位置データ等を用いて取得される。
その後、分析データ取得部30が、前記リーン車両走行基準データに基づいて前記分析用リーン車両走行データを分析することにより、区分された分析対象者及びリーン車両Xの少なくとも一方の分析データを取得する(ステップSA3)。
前記分析データは、例えば、公道を走行する分析対象者のリーン車両の運転技量に関連するデータなどを含む。
出力データ生成部40が、前記分析データから、出力するための出力データを生成する(ステップSA4)。その後、データ出力部50が、前記出力データを出力する(ステップSA5)。このフローを終了する(エンド)。
以上の構成により、分析対象者である運転者の運転により公道を走行するリーン車両Xのリーン車両走行データを分析することにより、区分された分析対象者及びリーン車両Xの少なくとも一方の分析データを取得することができる。
よって、上述の構成のように、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを用いることにより、様々な利用シーンが考慮されたリーン車両を運転操作する技量など、今まで出力が困難であったリーン車両特有の分析データを出力することができる。例えば、自由度が高い状態でのリーン車両走行データを用いた分析では、運転者がリーン車両を操作する技量について、より精度良く且つより詳細に分析することができる。また、例えば、自由度がある程度制限された状態でのリーン車両走行データを用いた分析では、運転者が周囲の車両の動きなどの走行環境を予測する予測技量について、より精度良く且つより詳細に分析することができる。
しかも、運転者の意思による走行の自由度の程度を考慮したリーン車両走行データを分析するため、その状態を考慮せずに全ての走行データで分析する場合と比較して、処理するデータを限定することができる。これにより、リーン車両走行データ分析装置1のハードウェアリソースに対する負荷を低減して、ハードウェアリソースの設計自由度を高められる。
これにより、リーン車両走行データ分析装置1で処理するデータの種類を低減でき、前記装置のハードウェアの負荷を低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度を高めることできる。
したがって、ハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを取得できる。
本実施形態は、リーン車両走行データを分析するリーン車両走行データ分析方法の一例である。本実施形態のリーン車両走行データ分析方法は、以下の工程を含んでいる。
本実施形態のリーン車両走行データ分析方法では、基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得する。この基準生成用リーン車両走行データは、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む。
なお、前記基準生成用リーン車両走行データは、複数の運転者によるリーン車両走行データを意味する。また、前記リーン車両は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜する車両である。
例えば、前記基準生成用リーン車両走行データは、前記リーン車両に設けられた各種センサで取得してもよい。また、前記基準生成用リーン車両走行データは、前記リーン車両に容易に着脱可能に設けられた各種センサで取得してもよい。前記基準生成用リーン車両走行データは、前記リーン車両にデータ収集のために一時的に設けられた各種センサで取得してもよい。
リーン車両走行データ分析方法では、分析対象者が分析対象リーン車両であるリーン車両Xを運転操作する時に得られるリーン車両Xの走行データに関連する分析用リーン車両走行データを取得する。
なお、前記分析用リーン車両走行データは、前記分析対象者が運転操作するリーン車両Xのリーン車両走行データを意味する。前記分析対象リーン車両は、分析用リーン車両走行データを取得する対象である、前記分析対象者が運転操作するリーン車両Xを意味する。
前記分析対象者は、前記複数の運転者に含まれていてもよい。前記分析対象者は、前記複数の運転者に含まれていなくてもよい。前記分析対象リーン車両は、前記基準生成用リーン車両走行データを取得するリーン車両に含まれていてもよい。前記分析対象リーン車両は、前記基準生成用リーン車両走行データを取得するリーン車両に含まれていなくてもよい。前記分析対象リーン車両データは、前記基準生成用リーン車両走行データに含まれていてもよい。前記分析用リーン車両走行データは、前記基準生成用リーン車両走行データに含まれていなくてもよい。
例えば、前記分析用リーン車両走行データは、前記分析対象リーン車両に設けられた各種センサで取得してもよい。また、前記分析用リーン車両走行データは、前記分析対象リーン車両に容易に着脱可能に設けられた各種センサで取得してもよい。前記分析用リーン車両走行データは、前記分析対象リーン車両にデータ収集のために一時的に設けられた各種センサで取得してもよい。
なお、前記分析用リーン車両走行データを収集するための各種センサは、前記基準生成用リーン車両走行データを収集するための各種センサより検出精度が低くてよい。
なお、前記分析用リーン車両走行データを収集するための各種センサは、前記基準生成用リーン車両走行データを収集するための各種センサと同じでもよい。
なお、前記分析用リーン車両走行データに含まれるデータの種類は、前記基準生成用リーン車両走行データに含まれるデータの種類よりも少なくてよい。前記分析用リーン車両走行データに含まれるデータの種類は、前記基準生成用リーン車両走行データに含まれるデータの種類と同じでもよい。
リーン車両走行データ分析装置1は、前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、分析用区分関連データを用いて区分された前記分析対象者及び前記分析対象リーン車両の少なくとも一方の分析データを取得する。
リーン車両走行データ分析装置1は、前記分析データを用いて、出力用の出力データを生成する。
リーン車両走行データ分析装置1は、前記出力データを出力する。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連するリーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含む。前記分析用リーン車両走行データは、前記分析対象者による前記分析対象リーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行する前記分析対象リーン車両の走行位置に関連する分析用リーン車両位置データ、及び、前記分析対象リーン車両の挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む。
リーン車両運転操作入力データは、運転者による運転操作入力に関連するデータである。リーン車両では、運転者の運転操作の種類が多く、複雑に関連しているため、リーン車両運転操作入力データに、運転者の運転技量等が強く反映される傾向がある。
リーン車両挙動データは、運転者の運転技量等が強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、リーン車両挙動データにも、運転者の運転技量等が強く反映される傾向がある。
リーン車両位置データは、運転者の運転技量等が強く反映されている運転者の運転操作の入力の結果が強く反映される。そのため、リーン車両位置データにも、運転者の運転技量等が強く反映される傾向がある。
これにより、分析データを生成する際に用いられるリーン車両走行データは、運転者である分析対象者の運転技量等をより反映するデータを含む。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含む。前記分析用リーン車両走行データは、更に前記分析対象リーン車両が走行する走行環境に関連する分析用リーン車両走行環境データを含む。
リーン車両走行環境データは、例えば、マップデータを含む。このマップデータは、例えば、道路状況に関する情報、信号、設備などの道路交通環境に関する情報、道路の走行に関する規制情報などと関連付けられていてもよい。リーン車両走行環境データは、前記リーン車両挙動データ及び前記リーン車両位置データとともに、リーン車両走行データの分析に用いることができる。
この構成により、リーン車両走行基準データを用いて、分析対象者によって運転操作される分析対象リーン車両が公道を走行した際に得られる分析用リーン車両走行データをより精度良く分析することができる。また、データの種類を特定したリーン車両走行データを用いることで、リーン車両走行データを分析する装置で処理するデータの種類を低減でき、前記装置のハードウェアの負荷をより低減できる。また、前記装置で必要とするハードウェアリソースを低減できるため、前記装置のハードウェアリソースの設計の自由度をより高めることできる。
したがって、ハードウェアリソースの設計自由度をより高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用リーン車両走行データは、前記分析対象リーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
例えば、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態は、リーン車両位置データ及びリーン車両走行環境データから判別してもよい。より具体的には、リーン車両が走行している日付、時間、場所で状態を推定してもよい。市街地を走行している時のリーン車両走行データであれば、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。また、リーン車両の実際の周囲の状況に関するデータを取得して、状態を推定してもよい。複数の状態を推定する方法を組み合わせてもよい。
なお、リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態とは、リーン車両を含む複数の車両の集団の中で、前記リーン車両の運転者が運転操作の判断を行う際に、選択肢が限られているものの複数の選択肢が残されているときの前記リーン車両の走行状態を意味する。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
例えば、同乗者及び物の少なくとも一方を搭載した状態か否かは、各種センサから判別してもよい。また、運転者による申告に基づいて判別してもよい。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記リーン車両走行データ分析方法では、前記取得した分析データを記憶する。前記リーン車両走行データ分析方法では、前記記憶された複数の分析データを用いて、前記出力データを生成する。
なお、記憶とは、ストレージのための記憶だけでなく、結果の一時的な記憶も含む。例えば、ストレージに記憶された分析データと一時メモリに記憶された分析データとを用いてもよい。これらを用いて、ストレージに記憶されている分析データを更新してもよい。これらを用いて、新たな分析データを生成してもよい。これらを用いて、統計処理を行なってもよい。これらを用いて、ストレージに記憶されている分析データを更新してもよい。
上述のように複数の分析データを用いることで、例えば、統計的に処理することができ、分析用リーン車両走行データをより精度良く分析することができる。より具体的には、古い分析データ及び新しい分析データを用いて、分析対象者が運転操作するリーン車両Xのリーン車両走行データをより精度良く分析することができる。
本実施形態は、リーン車両走行データを分析するリーン車両走行データ分析装置の一例である。本実施形態のリーン車両走行データ分析装置は、以下の構成を含んでいる。
本実施形態のリーン車両走行データ分析装置は、右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜して走行するリーン車両のリーン車両走行データを分析するリーン車両走行データ分析装置である。
本実施形態のリーン車両走行データ分析装置は、運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得するリーン車両走行基準データ取得部10と、分析対象者が運転操作行してリーン車両Xで公道を走行する際の前記分析対象者の意思による走行の自由度に関連する分析用自由度関連データを含み、且つ前記分析対象者及びリーン車両Xの少なくとも一方を区分するための分析用区分関連データを含む、分析用リーン車両走行データを取得する分析用リーン車両走行データ取得部20と、前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、前記分析用区分関連データを用いて区分された前記分析対象者及びリーン車両Xの少なくとも一方の分析データを取得する分析データ取得部30と、前記分析データを用いて出力用の出力データを生成する出力データ生成部40と、前記出力データを出力するデータ出力部50と、を備える。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記分析データは、前記分析対象者がリーン車両Xで公道を走行する際の運転予測技量の評価結果に関連するデータを含む。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含む。前記分析用リーン車両走行データは、前記分析対象者によるリーン車両Xへの運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行するリーン車両Xの走行位置に関連する分析用リーン車両位置データ、及び、リーン車両Xの挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含む。前記分析用リーン車両走行データは、更にリーン車両Xが走行する走行環境に関連する分析用リーン車両走行環境データを含む。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、前記リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。前記分析用リーン車両走行データは、前記分析対象リーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記基準生成用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。前記分析用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。リーン車両走行データ分析装置1は、前記取得した分析データを記憶するデータ記憶部60を有する。出力データ生成部40は、データ記憶部60に記憶された複数の分析データを用いて、前記出力データを生成する。
他の観点によれば、リーン車両走行データ分析装置1は、以下の構成を含むことが好ましい。前記出力データは、更なる情報処理に用いられる情報処理用分析データとして生成される。
<実施形態2>
図3に、リーン車両走行データ分析装置100の一例を示す。このリーン車両走行データ分析装置100は、分析対象者が運転するリーン車両Xと、その周囲を走行する他のリーン車両Yとの同調性を分析することにより、前記分析対象者の運転の予測技量を評価し、その評価結果を分析データとして出力する。
図3に、リーン車両走行データ分析装置100の一例を示す。このリーン車両走行データ分析装置100は、分析対象者が運転するリーン車両Xと、その周囲を走行する他のリーン車両Yとの同調性を分析することにより、前記分析対象者の運転の予測技量を評価し、その評価結果を分析データとして出力する。
具体的には、リーン車両走行データ分析装置100は、群挙動算出部110と、分析用リーン車両走行データ取得部120と、同調性分析部130と、予測技量評価部140と、評価出力部150とを備える。
分析用リーン車両走行データ取得部120は、分析対象者が運転するリーン車両Xの走行データである分析用リーン車両走行データを取得する。この分析用リーン車両走行データは、リーン車両Xの分析用リーン車両位置データ及び分析用リーン車両挙動データを含む。
群挙動算出部110は、リーン車両X及び他のリーン車両Yを含む集団(以下、群という)において、基準生成用リーン車両データを取得する。この基準生成用リーン車両データは、複数のリーン車両のリーン車両位置データ及びリーン車両挙動データを含む。なお、群に所属するリーン車両であるかどうかは、リーン車両X及び他のリーン車両Yの各リーン車両位置データを取得し、他のリーン車両Yがリーン車両Xから所定の範囲内に位置しているかどうかによって判定される。同じ群に所属するリーン車両は、走行の自由度が類似している状態で公道を走行している。
群挙動算出部110は、取得した基準生成用リーン車両走行データを用いて、群挙動に関連する走行データを求める。本実施形態では、この群挙動に関連する走行データは、群を構成する複数のリーン車両のリーン車両走行データの平均値である。前記群挙動に関連する走行データが、リーン車両走行基準データに対応する。
同調性分析部130は、分析用リーン車両走行データ取得部120で取得した分析用リーン車両走行データと、群挙動算出部110で得られた群挙動に関連する走行データとを用いて、同調性分析を行う。
前記同調性は、分析対象者が運転するリーン車両Xを含む複数のリーン車両におけるリーン車両走行データを含む群挙動に対し、前記分析対象者が運転するリーン車両Xの分析用リーン車両走行データの乖離度合いを意味する。この乖離度合いが低いほど、分析対象者の同調性が高い。前記群挙動は、例えば、前記複数のリーン車両におけるリーン車両走行データから求められる前記複数のリーン車両の挙動の平均値または挙動周波数のデータを含んでもよい。すなわち、前記乖離度合いは、前記複数のリーン車両におけるリーン車両走行データの平均値を用いて求められる群挙動周波数に対し、前記分析対象者が運転するリーン車両Xの分析用リーン車両走行データから求められる挙動周波数の乖離度合いであってもよい。
本実施形態では、同調性分析部130から出力される同調性分析の結果が、実施形態1における分析データに対応する。
予測技量評価部140は、同調性分析部130の同調性分析の結果を用いて、分析対象者が公道でリーン車両Xを運転する際の予測に関する運転予測技量の評価を行う。すなわち、予測技量評価部140は、同調性分析の結果に基づいて、分析対象者の運転予測技量をレベル分けする。予測技量評価部140によって得られる運転予測技量の評価結果は、例えば、前記同調性の分析結果を、閾値によってレベル分けされた結果であってもよいし、前記同調性の分析結果で得られる数値またはそれに対応する評価値であってもよい。
評価出力部150は、予測技量評価部140で得られた運転技量予測の評価結果を、出力データとして出力する。なお、この出力データは、リーン車両走行データ分析装置100からそのまま出力されてもよい。また、前記出力データは、リーン車両走行データ分析装置100の図示しない記憶部に格納された後、評価出力部150で出力データを演算処理する際に用いられてもよい。
なお、前記分析データは、上述の同調性の分析結果以外から、求めてもよい。また、前記分析データは、上述の同調性の分析結果以外から求められる予測技量の評価結果を含んでいてもよい。
本実施形態のリーン車両走行データ分析装置100において、群挙動算出部110が実施形態のリーン車両走行データ分析装置1のリーン車両走行基準データ取得部10に対応し、分析用リーン車両走行データ取得部120が実施形態1のリーン車両走行データ分析装置1の分析用リーン車両走行データ取得部20に対応し、同調性分析部130が実施形態1のリーン車両走行データ分析装置1の分析データ取得部30に対応し、予測技量評価部140が実施形態1のリーン車両走行データ分析装置1の出力データ生成部40に対応し、評価出力部150が実施形態1のリーン車両走行データ分析装置1のデータ出力部50に対応する。
本実施形態では、分析データは、リーン車両走行基準データのうち、分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、分析用リーン車両走行データの同調性の分析結果を用いて得られる。
これにより、例えば、分析対象者である運転者が他のリーン車両と密集した状態で分析対象リーン車両を運転している際に、該分析対象リーン車両の走行データと前記他のリーン車両の走行データとの同調性を評価することで、前記分析対象者及び前記分析対象リーン車両の少なくとも一方においてリーン車両特有の分析データを得ることができる。
したがって、リーン車両走行データを分析する装置のハードウェアリソースに対する負荷を低減して前記装置のハードウェアリソースの設計自由度を高めつつ、リーン車両の走行データに基づくリーン車両特有の分析データを出力可能なリーン車両走行データ分析方法を実現できる。
本実施形態は、リーン車両走行データを分析するリーン車両走行データ分析方法の一例である。本実施形態のリーン車両走行データ分析方法は、以下の工程を含んでいる。
本実施形態のリーン車両走行データ分析方法では、前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる。
走行の自由度が類似とは、走行の自由度が完全に一致している場合だけでなく、リーン車両走行データを分析して得られる分析データが所定の範囲内になるような走行の自由度も含まれる。
他の観点によれば、前記リーン車両走行データ分析方法は、以下の構成を含むことが好ましい。前記分析データは、前記分析対象者が前記分析対象リーン車両で公道を走行する際の運転予測技量の評価結果に関連するデータを含む。
リーン車両を運転操作する場合、リーンしない車両を運転操作する場合に比べて、運転者の運転予測技量が重要である。分析データに運転予測技量の評価結果に関連するデータを含むことにより、リーン車両特有の分析データが得られる。
<実施形態3>
図4に、実施形態1のリーン車両走行データ分析装置1を含むリーン車両走行データ分析システム200の一例を示す。以下で、実施形態1の構成と同様については同一の符号を付して説明を省略し、実施形態1と異なる構成についてのみ説明する。
図4に、実施形態1のリーン車両走行データ分析装置1を含むリーン車両走行データ分析システム200の一例を示す。以下で、実施形態1の構成と同様については同一の符号を付して説明を省略し、実施形態1と異なる構成についてのみ説明する。
リーン車両走行データ分析システム200は、リーン車両走行データ分析装置1と、リーン車両走行基準データを生成するリーン車両走行基準データ生成装置201とを備える。
リーン車両走行基準データ生成装置201は、例えば、リーン車両走行データ分析装置1と通信可能で且つプロセッサを有する情報処理演算装置である。なお、リーン車両走行データ分析装置1がプロセッサを有する情報処理演算装置である場合、リーン車両走行基準データ生成装置201は、リーン車両走行データ分析装置1と同じ情報処理演算装置であってもよい。
リーン車両走行基準データ生成装置201は、リーン車両走行データ及び区分関連データを取得し、これらのデータを含む基準生成用リーン車両走行データに基づいてリーン車両走行基準データを生成する。
詳しくは、リーン車両走行基準データ生成装置201は、データ記憶部211と、リーン車両走行基準データ生成部212とを有する。なお、特に図示しないが、リーン車両走行基準データ生成装置201は、リーン車両走行データ及び区分関連データを取得する取得部を有する。また、特に図示しないが、リーン車両走行基準データ生成装置201は、生成したリーン車両走行基準データを出力する出力部を有する。
データ記憶部211は、基準生成用リーン車両走行データ及びリーン車両走行基準データを格納する。具体的には、データ記憶部211には、複数の運転者がリーン車両Yを運転操作するときにそれぞれ得られるリーン車両走行データ及び区分関連データを含む基準生成用リーン車両走行データが格納される。また、データ記憶部211には、後述するリーン車両走行基準データ生成部212で生成されたリーン車両走行基準データが格納される。
前記リーン車両走行データは、例えば、リーン車両Yのリーン車両運転操作入力データ、リーン車両Yのリーン車両挙動データ、リーン車両Yのリーン車両位置データ及びリーン車両Yのリーン車両走行環境データなどを含む。
リーン車両走行基準データ生成部212は、データ記憶部211に格納されている基準生成用リーン車両走行データに基づいて、リーン車両走行基準データを生成する。リーン車両走行基準データ生成部212で生成されたリーン車両走行基準データは、データ記憶部211に格納される。
データ記憶部211に格納されているリーン車両走行基準データは、リーン車両走行データ分析装置1で、リーン車両X(分析用リーン車両)のリーン車両走行データ(分析用リーン車両走行データ)を分析する際に用いられる。リーン車両走行データ分析装置1においてリーン車両走行データを分析する方法は、実施形態1と同様であるため、詳しい説明を省略する。
すなわち、リーン車両走行データ分析装置1は、前記リーン車両走行基準データに基づいてリーン車両Xのリーン車両走行データを分析することにより、区分された分析対象者及びリーン車両Xの少なくとも一方の分析データを取得し、該分析データから生成した出力データを出力する。リーン車両走行データ分析装置1の構成は、実施形態1と同様であるため、リーン車両走行データ分析装置1の詳しい説明を省略する。なお、実施形態2のリーン車両走行データ分析装置100のようにリーン車両走行データを分析してもよい。
リーン車両走行データ分析装置1から出力された出力データは、例えば、情報処理装置202に入力されてもよい。この場合、前記出力データは、リーン車両走行データ分析装置1において、情報処理装置202で情報処理に用いられる情報処理用データとして生成される。
情報処理装置202は、例えば、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる保険、市場、商品、サービス、環境または顧客に関連するデータの処理を行う装置であってもよい。リーン車両走行データ分析装置1が情報処理演算装置である場合、情報処理装置202は、リーン車両走行データ分析装置1と同じ装置であってもよい。情報処理装置202は、リーン車両走行基準データ生成装置201と同じ情報処理演算装置であってもよい。
情報処理装置202は、例えば、出力データ取得部221と、第1データ取得部222と、第2データ生成部223と、第2データ出力部224と、データ記憶部225とを有する。
出力データ取得部221は、リーン車両走行データ分析装置1から出力される前記出力データを取得する。
第1データ取得部222は、前記出力データとは異なる第1データを取得する。この第1データは、情報処理装置202において情報処理対象のデータである。前記第2データは、例えば、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる保険、市場、商品、サービス、環境または顧客に関連するデータである。前記第1データは、データ記憶部225に格納されている。
第2データ生成部223は、前記出力データ及び前記第1データを用いて、前記出力データ及び前記第1データとは異なる第2データを生成する。この第2データも、前記第1データと同様、例えば、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる保険、市場、商品、サービス、環境または顧客に関連するデータである。
第2データ出力部224は、第2データ生成部223で生成された第2データを出力する。
(分析データを用いる情報処理方法)
次に、上述の構成を有する情報処理装置202によって、出力データを用いて情報処理を行う情報処理方法について、図5に示すフローチャートを用いて説明する。図5は、情報処理装置202による情報処理の動作を示すフローチャートである。
次に、上述の構成を有する情報処理装置202によって、出力データを用いて情報処理を行う情報処理方法について、図5に示すフローチャートを用いて説明する。図5は、情報処理装置202による情報処理の動作を示すフローチャートである。
図5に示すように、まず、情報処理装置202の出力データ取得部221が、リーン車両走行データ分析装置1から出力された出力データを取得する(ステップSB1)。
次に、情報処理装置202の第1データ取得部222が、データ記憶部225に格納されている第1データを取得する(ステップSB2)。この第1データは、前記出力データとは異なるデータである。
その後、情報処理装置202の第2データ生成部223が、前記取得した出力データ及び前記取得した第1データを用いて、第2データを生成する(ステップSB3)。この第2データは、前記出力データ及び前記第1データとは異なるデータである。
続いて、情報処理装置202の第2データ出力部224が、前記生成された第2データを出力する(ステップSB4)。
このようにリーン車両走行データ分析装置1から出力された出力データは、例えば、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などの分野において、情報処理装置で信用リスクまたは信用スコアを演算処理する際に、利用することができる。すなわち、リーン車両走行データを分析して得られた分析データを、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などの分野における情報処理装置の演算処理に利用することができる。
具体的には、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などの分野において、情報処理装置は、出力された出力データを取得し、その取得された出力データを用いて、演算処理により信用リスクまたは信用スコアを出力することができる。
リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などの分野において、情報処理方法は、リーン車両走行データ分析装置1から出力された出力データを取得する工程と、その取得された出力データを用いて信用リスクに関する信用リスクデータまたは信用スコアに関する信用スコアデータを出力する工程とを含んでいてもよい。
リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などの分野において、情報処理装置は、リーン車両走行データ分析装置1から出力された出力データを取得する出力データ取得部と、その取得された出力データを用いて、信用リスクに関する信用リスクデータを出力する信用リスク出力部または信用スコアに関する信用スコアデータを出力する信用スコア出力部とを含んでいてもよい。
上述の情報処理方法及び情報処理装置において、出力された信用リスクが低い場合または信用スコアが高い場合には、例えば、分析対象者がリーン車両を借りやすくしたり、分析対象者がリーン車両を借りる場合には料金を優遇したり、または分析対象者が保険料の優遇等を受けたりできるようにしてもよい。
上述の各実施形態におけるリーン車両走行データ分析方法は、分析対象者のリーン車両走行データを分析するリーン車両走行データ分析方法の一例である。
なお、本発明のリーン車両走行データ分析方法は、以下の構成を含むことが好ましい。出力データは、更なる情報処理に用いられる情報処理用データとして生成される。
例えば、前記更なる情報処理としては、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる保険、市場、商品、サービス、環境または顧客に関連するデータの処理であってもよい。
他の観点によれば、本発明のリーン車両走行データ分析方法で出力された出力データは、以下の分析データを用いる情報処理方法に用いることが好ましい。この情報処理方法では、前記出力された出力データを取得する。前記情報処理方法では、前記出力データとは異なる第1データを取得する。前記情報処理方法では、前記出力データ及び前記取得した第1データを用いて、前記出力データ及び前記取得した第1データと異なる第2データを生成する。前記情報処理方法では、前記生成した第2データを出力する。
前記情報処理方法は、リーン車両走行データを分析することにより得られる分析データを用いる情報処理方法であればどのような情報処理方法であってもよい。例えば、前記第1データ及び前記第2データは、リーン車両のシェアリング、リーン車両のレンタル、リーン車両のリース、リーン車両の車両保険などのビジネスで用いられる保険、市場、商品、サービス、環境または顧客に関連するデータであってもよい。
本実施形態の構成により、リーン車両走行データ分析装置1及びリーン車両走行データ分析方法によって、情報処理装置202で利用可能な分析データを取得できる。また、実施形態1で説明したように、リーン車両走行データを分析して前記分析データを得ることにより、システムで処理するデータの種類を低減でき、リーン車両走行データ分析装置1のハードウェアの負荷を低減できる。
したがって、ハードウェアリソースの設計自由度を高めつつ、情報処理装置で利用可能な分析データを取得することができる。
本発明は、分析対象者のリーン車両走行データを分析するリーン車両走行データ分析方法及びリーン車両走行データ分析装置に利用可能であるとともに、これらの方法及び装置で得られる分析データを用いる情報処理方法及び情報処理装置にも利用可能である。
1、100 リーン車両走行データ分析装置
10 リーン車両走行基準データ取得部
20、120 分析用リーン車両走行データ取得部
30 分析データ取得部
40 出力データ生成部
50 データ出力部
60、211 データ記憶部
110 群挙動算出部
130 同調性分析部
140 予測技量評価部
150 評価出力部
200 リーン車両走行データ分析システム
201 リーン車両走行基準データ生成装置
202 情報処理装置
212 リーン車両走行基準データ生成部
221 出力データ取得部
222 第1データ取得部
223 第2データ生成部
224 第2データ出力部
X リーン車両(分析対象リーン車両)
Y リーン車両
10 リーン車両走行基準データ取得部
20、120 分析用リーン車両走行データ取得部
30 分析データ取得部
40 出力データ生成部
50 データ出力部
60、211 データ記憶部
110 群挙動算出部
130 同調性分析部
140 予測技量評価部
150 評価出力部
200 リーン車両走行データ分析システム
201 リーン車両走行基準データ生成装置
202 情報処理装置
212 リーン車両走行基準データ生成部
221 出力データ取得部
222 第1データ取得部
223 第2データ生成部
224 第2データ出力部
X リーン車両(分析対象リーン車両)
Y リーン車両
Claims (17)
- 右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜して走行するリーン車両のリーン車両走行データを分析するリーン車両走行データ分析方法であって、
運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得し、
分析対象者が運転操作して分析対象リーン車両で公道を走行する際の前記分析対象者の意思による走行の自由度に関連する分析用走行自由度関連データを含み、且つ前記分析対象者及び前記分析対象リーン車両の少なくとも一方を区分するための分析用区分関連データを含む、分析用リーン車両走行データを取得し、
前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、前記分析用区分関連データを用いて区分された前記分析対象者及び前記分析対象リーン車両の少なくとも一方の分析データを取得し、
前記分析データを用いて出力用の出力データを生成し、
前記出力データを出力する、
リーン車両走行データ分析方法。 - 請求項1に記載のリーン車両走行データ分析方法において、
前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含む基準生成用リーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる、リーン車両走行データ分析方法。 - 請求項1または2に記載のリーン車両走行データ分析方法において、
前記分析データは、前記分析対象者が前記分析対象リーン車両で公道を走行する際の運転予測技量の評価結果に関連するデータを含む、
リーン車両走行データ分析方法。 - 請求項1から3のいずれか一つに記載のリーン車両走行データ分析方法において、
前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含み、
前記分析用リーン車両走行データは、前記分析対象者による前記分析対象リーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行する前記分析対象リーン車両の走行位置に関連する分析用リーン車両位置データ、及び、前記分析対象リーン車両の挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む、
リーン車両走行データ分析方法。 - 請求項1から4のいずれか一つに記載のリーン車両走行データ分析方法において、
前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含み、
前記分析用リーン車両走行データは、更に前記分析対象リーン車両が走行する走行環境に関連する分析用リーン車両走行環境データを含む、
リーン車両走行データ分析方法。 - 請求項1から5のいずれか一つに記載のリーン車両走行データ分析方法において、
前記基準生成用リーン車両走行データは、前記リーン車両の周囲の車両によって運転者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含み、
前記分析用リーン車両走行データは、前記分析対象リーン車両の周囲の車両によって分析対象者の判断の選択肢が制限を受けるが複数残されている状態でのデータを含む、リーン車両走行データ分析方法。 - 請求項1から6のいずれか一つに記載のリーン車両走行データ分析方法において、
前記基準生成用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含み、
前記分析用リーン車両走行データは、同乗者及び物の少なくとも一方を搭載した状態のデータを含む、リーン車両走行データ分析方法。 - 請求項1から7のいずれか一つに記載のリーン車両走行データ分析方法において、
前記取得した分析データを記憶し、
前記記憶された複数の分析データを用いて、前記出力データを生成する、
リーン車両走行データ分析方法。 - 請求項1から8のいずれか一つに記載のリーン車両走行データ分析方法において、
前記出力データは、更なる情報処理に用いられる情報処理用分析データとして生成される、リーン車両走行データ分析方法。 - 右旋回時に右方向に傾斜し且つ左旋回時に左方向に傾斜して走行するリーン車両のリーン車両走行データを分析するリーン車両走行データ分析装置であって、
運転者の意思による走行の自由度が類似しない公道を走行する走行データより運転者の意思による走行の自由度が類似している公道を走行する走行データを多く含み、且つ運転者及びリーン車両の少なくとも一方を区分するための区分関連データを含み、且つ区分が異なる複数のリーン車両のリーン車両走行データを含む基準生成用リーン車両走行データに基づいて生成されたリーン車両走行基準データを取得するリーン車両走行基準データ取得部と、
分析対象者が運転操作行して分析対象リーン車両で公道を走行する際の前記分析対象者の意思による走行の自由度に関連する分析用自由度関連データを含み、且つ前記分析対象者及び前記分析対象リーン車両の少なくとも一方を区分するための分析用区分関連データを含む、分析用リーン車両走行データを取得する分析用リーン車両走行データ取得部と、
前記取得したリーン車両走行基準データに基づいて、前記取得した分析用リーン車両走行データを分析することにより、前記分析用区分関連データを用いて区分された前記分析対象者及び前記分析対象リーン車両の少なくとも一方の分析データを取得する分析データ取得部と、
前記分析データを用いて出力用の出力データを生成する出力データ生成部と、
前記出力データを出力するデータ出力部と、
を備える、リーン車両走行データ分析装置。 - 請求項10に記載のリーン車両走行データ分析装置において、
前記分析データは、前記リーン車両走行基準データのうち、前記分析用自由度関連データと自由度が類似するデータを含むリーン車両走行基準データに対する、前記分析用リーン車両走行データの同調性の分析結果を用いて得られる、
リーン車両走行データ分析装置。 - 請求項10または11に記載のリーン車両走行データ分析装置において、
前記分析データは、前記分析対象者が前記分析対象リーン車両で公道を走行する際の運転予測技量の評価結果に関連するデータを含む、
リーン車両走行データ分析装置。 - 請求項10から12のいずれか一つに記載のリーン車両走行データ分析装置において、
前記基準生成用リーン車両走行データは、前記運転者による前記リーン車両への運転操作入力に関連する基準生成用リーン車両運転操作入力データ、公道を走行するリーン車両の走行位置に関連する基準生成用リーン車両位置データ、及び、前記リーン車両の挙動に関連する基準生成用リーン車両挙動データのうち少なくとも一つを含み、
前記分析用リーン車両走行データは、前記分析対象者による前記分析対象リーン車両への運転操作入力に関連する分析用リーン車両運転操作入力データ、公道を走行する前記分析対象リーン車両の走行位置に関連する分析用リーン車両位置データ、及び、前記分析対象リーン車両の挙動に関連する分析用リーン車両挙動データのうち少なくとも一つを含む、
リーン車両走行データ分析装置。 - 請求項10から13のいずれか一つに記載のリーン車両走行データ分析装置において、
前記基準生成用リーン車両走行データは、更に前記リーン車両が走行する走行環境に関連する基準生成用リーン車両走行環境データを含み、
前記分析用リーン車両走行データは、更に前記分析対象リーン車両が走行する走行環境に関連する分析用リーン車両走行環境データを含む、
リーン車両走行データ分析装置。 - 請求項10から14のいずれか一つに記載のリーン車両走行データ分析装置において、
前記出力データは、更なる情報処理に用いられる情報処理用分析データとして生成される、
リーン車両走行データ分析装置。 - 請求項9に記載のリーン車両走行データ分析方法で前記情報処理用分析データとして生成された前記出力データを用いる情報処理方法であって、
前記出力データを取得し、
前記出力データとは異なる第1データを取得し、
前記出力データ及び前記第1データを用いて、前記出力データ及び前記第1データと異なる第2データを生成し、
前記第2データを出力する、
分析データを用いる情報処理方法。 - 請求項15に記載のリーン車両走行データ分析装置で前記情報処理用分析データとして生成された前記出力データを用いる情報処理装置であって、
前記出力データを取得する出力データ取得部と、
前記出力データとは異なる第1データを取得する第1データ取得部と、
前記出力データ及び前記第1データを用いて、前記出力データ及び前記第1データと異なる第2データを生成する第2データ生成部と、
前記第2データを出力する第2データ出力部と、
を備える、分析データを用いる情報処理装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014558 WO2020202451A1 (ja) | 2019-04-01 | 2019-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
TW109111403A TWI742596B (zh) | 2019-04-01 | 2020-04-01 | 傾斜車輛行車資料分析方法、傾斜車輛行車資料分析裝置、使用分析資料之資訊處理方法及使用分析資料之資訊處理裝置 |
PCT/JP2020/015091 WO2020204100A1 (ja) | 2019-04-01 | 2020-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
JP2021512189A JP7280944B2 (ja) | 2019-04-01 | 2020-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/014558 WO2020202451A1 (ja) | 2019-04-01 | 2019-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020202451A1 true WO2020202451A1 (ja) | 2020-10-08 |
Family
ID=72666769
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/014558 WO2020202451A1 (ja) | 2019-04-01 | 2019-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
PCT/JP2020/015091 WO2020204100A1 (ja) | 2019-04-01 | 2020-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015091 WO2020204100A1 (ja) | 2019-04-01 | 2020-04-01 | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7280944B2 (ja) |
TW (1) | TWI742596B (ja) |
WO (2) | WO2020202451A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015151071A (ja) * | 2014-02-18 | 2015-08-24 | 日産自動車株式会社 | 運転診断装置および保険料算定方法 |
JP2016511860A (ja) * | 2013-01-06 | 2016-04-21 | アイオンロード テクノロジーズ リミテッドIonroad Technologies Ltd. | 運転サポート |
JP2018010407A (ja) * | 2016-07-12 | 2018-01-18 | 株式会社デンソー | 運転支援システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2821977A4 (en) * | 2012-02-27 | 2015-06-10 | Yamaha Motor Co Ltd | HOST CALCULATOR, SYSTEM FOR DETERMINING ITS OPERABILITY, METHOD FOR DETERMINING ITS OPERABILITY AND PROGRAM FOR DETERMINING ITS OPERABILITY |
ES2899279T3 (es) * | 2016-06-30 | 2022-03-10 | Yamaha Motor Co Ltd | Aparato de comunicación de vehículo a vehículo |
JP6654538B2 (ja) * | 2016-09-27 | 2020-02-26 | 本田技研工業株式会社 | 交通障害リスク表示装置 |
JP6778612B2 (ja) * | 2016-12-28 | 2020-11-04 | 本田技研工業株式会社 | 情報処理システム、および情報処理方法 |
-
2019
- 2019-04-01 WO PCT/JP2019/014558 patent/WO2020202451A1/ja active Application Filing
-
2020
- 2020-04-01 TW TW109111403A patent/TWI742596B/zh active
- 2020-04-01 JP JP2021512189A patent/JP7280944B2/ja active Active
- 2020-04-01 WO PCT/JP2020/015091 patent/WO2020204100A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016511860A (ja) * | 2013-01-06 | 2016-04-21 | アイオンロード テクノロジーズ リミテッドIonroad Technologies Ltd. | 運転サポート |
JP2015151071A (ja) * | 2014-02-18 | 2015-08-24 | 日産自動車株式会社 | 運転診断装置および保険料算定方法 |
JP2018010407A (ja) * | 2016-07-12 | 2018-01-18 | 株式会社デンソー | 運転支援システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020204100A1 (ja) | 2020-10-08 |
JP7280944B2 (ja) | 2023-05-24 |
TWI742596B (zh) | 2021-10-11 |
WO2020204100A1 (ja) | 2020-10-08 |
TW202037514A (zh) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109919347B (zh) | 路况生成方法、相关装置和设备 | |
Tian et al. | Estimation of the vehicle-pedestrian encounter/conflict risk on the road based on TASI 110-car naturalistic driving data collection | |
US11398150B2 (en) | Navigation analysis for a multi-lane roadway | |
JP2023074043A (ja) | 情報処理方法、情報処理装置及びプログラム | |
JP2019032174A (ja) | 情報処理システムおよび情報処理方法 | |
JP7079069B2 (ja) | 情報提示制御装置、自動運転車、及び自動運転車運転支援システム | |
JP2023027271A (ja) | 車両モード検出システム | |
CN101648550B (zh) | 允许或抑制向用户呈现信息的请求的方法 | |
US11804128B2 (en) | Target classification | |
Chaovalit et al. | A method for driving event detection using SAX with resource usage exploration on smartphone platform | |
Sohrabi et al. | Quantifying the health and health equity impacts of autonomous vehicles: a conceptual framework and literature review | |
CN115099721A (zh) | 一种基于大数据分析的客车交通拥挤度评估系统及方法 | |
WO2022025244A1 (ja) | 車両事故予測システム、車両事故予測方法、車両事故予測プログラム、及び、学習済みモデル生成システム | |
WO2020204099A1 (ja) | 顧客の価値観分析方法、顧客の価値観分析装置、価値観データを用いる情報処理方法及び価値観データを用いる情報処理装置 | |
Golze et al. | Traffic regulator detection using GPS trajectories | |
WO2020202451A1 (ja) | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 | |
WO2020202452A1 (ja) | リーン車両走行データ分析方法、リーン車両走行データ分析装置、分析データを用いる情報処理方法及び分析データを用いる情報処理装置 | |
CN114287006A (zh) | Ai模块的分类 | |
Cojocaru et al. | Driver Behaviour Analysis based on Deep Learning Algorithms. | |
JP7294259B2 (ja) | 危険予測装置及び危険予測システム | |
Bäumler et al. | Report on validation of the stochastic traffic simulation (Part B) | |
Lee et al. | A Study on the Driving Performance Analysis for Autonomous Vehicles Through the Real-Road Field Operational Test Platform | |
Looijenga | Bicycle Accident Prevention using Sensors and Automotive Systems | |
Tian et al. | Single-variable scenario analysis of vehicle-pedestrian potential crash based on video analysis results of large-scale naturalistic driving data | |
TWI807180B (zh) | 人格分析方法、人格分析裝置、使用人格資料之資訊處理方法及使用人格資料之資訊處理裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19923620 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19923620 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |