JP6491828B2 - Superconducting magnet system - Google Patents

Superconducting magnet system Download PDF

Info

Publication number
JP6491828B2
JP6491828B2 JP2014141003A JP2014141003A JP6491828B2 JP 6491828 B2 JP6491828 B2 JP 6491828B2 JP 2014141003 A JP2014141003 A JP 2014141003A JP 2014141003 A JP2014141003 A JP 2014141003A JP 6491828 B2 JP6491828 B2 JP 6491828B2
Authority
JP
Japan
Prior art keywords
superconducting
refrigerant
coil
metal tube
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014141003A
Other languages
Japanese (ja)
Other versions
JP2016018902A (en
Inventor
学 青木
学 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014141003A priority Critical patent/JP6491828B2/en
Publication of JP2016018902A publication Critical patent/JP2016018902A/en
Application granted granted Critical
Publication of JP6491828B2 publication Critical patent/JP6491828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導電磁石装置に関する。   The present invention relates to a superconducting electromagnet apparatus.

超電導電磁石装置は、超電導コイルと、それに並列に設置された永久電流スイッチから構成され、上記の永久電流スイッチを開にした状態で励磁電源から超電導コイルに電流供給し、その後、永久電流スイッチを閉にした状態で励磁電源からの供給電流を減少させゼロにすることで、超電導コイルおよび永久電流スイッチからなる超電導状態の閉回路に電流がほとんど減衰することなく流れ続ける永久電流運転となる。これにより超電導電磁石装置は、長期に渡って磁場を保持することが可能である。   The superconducting electromagnet device is composed of a superconducting coil and a permanent current switch installed in parallel to the superconducting coil, and supplies the current from the exciting power source to the superconducting coil with the permanent current switch open, and then closes the permanent current switch. In this state, the current supplied from the exciting power supply is reduced to zero, so that a permanent current operation in which the current continues to flow through the superconducting closed circuit composed of the superconducting coil and the permanent current switch with almost no attenuation is obtained. Thereby, the superconducting electromagnet apparatus can hold the magnetic field for a long time.

従来の超電導電磁石装置には、上記の超電導コイルや永久電流スイッチに代表される構成素子を超電導状態に保持するため、液体ヘリウムや液体窒素に代表される冷媒に浸漬させて使用する浸漬冷却方式や、冷凍機と構成素子とを熱伝導性の良い金属で熱的に接続して冷却する伝導冷却方式が多く採用されている。これらの冷却方式のうち浸漬冷却方式においても、MRI装置やNMR装置のように数カ月から1年の長期に渡って運転する装置には、装置への熱侵入で気化した冷媒を再凝縮するための冷凍機が設けられている。   In the conventional superconducting electromagnet apparatus, in order to keep the constituent elements typified by the superconducting coil and the permanent current switch in a superconducting state, an immersion cooling method used by immersing them in a refrigerant typified by liquid helium or liquid nitrogen, In many cases, a conduction cooling method is employed in which a refrigerator and a component are thermally connected to each other with a metal having good thermal conductivity for cooling. Among these cooling systems, the immersion cooling system is also used for recondensing the refrigerant vaporized by heat intrusion into the apparatus, such as the MRI apparatus and the NMR apparatus, operating for a long period of several months to one year. A refrigerator is provided.

上記のように冷凍機が備えられた超電導磁石では、電力供給さえあれば長期に渡って超電導状態を保持可能であるが、停電等で冷凍機が止まった際には、超電導コイルや永久電流スイッチの温度が上昇し常電導転移して磁場を保持できなくなる恐れがある。特に伝導冷却方式では、浸漬冷却方式において利用される液体ヘリウム等の冷媒の熱容量が期待できないため、冷凍機停止後すぐに温度上昇してしまう。   With a superconducting magnet equipped with a refrigerator as described above, the superconducting state can be maintained for a long time as long as power is supplied, but when the refrigerator stops due to a power failure etc., a superconducting coil or permanent current switch There is a risk that the temperature will rise and normal conduction transition will occur and the magnetic field cannot be maintained. In particular, in the conduction cooling method, the heat capacity of a refrigerant such as liquid helium used in the immersion cooling method cannot be expected, so that the temperature rises immediately after the refrigerator is stopped.

そこで、銅やアルミといった金属と比較して、60K以下の極低温領域で比熱が高く、密度が小さい冷媒を固体の状態で装置内に保持し、その熱容量を用いて停電時の温度上昇を抑制する方法が提案されている。 このような用途に用いられる冷媒の代表例として窒素がある。(例えば特許文献1、2、3)。窒素は、1気圧下では77Kで液化し、64K以下で固化する。   Therefore, compared to metals such as copper and aluminum, a refrigerant with a high specific heat and a low density is kept in the solid state in the cryogenic temperature range of 60K or less, and the heat capacity is used to suppress the temperature rise during power outages. A method has been proposed. Nitrogen is a typical example of the refrigerant used for such applications. (For example, Patent Documents 1, 2, and 3). Nitrogen liquefies at 77K under 1 atm and solidifies at 64K or less.

特開2007−321050号公報JP 2007-321050 A 特開2002−208512号公報JP 2002-208512 A 特開2011−082229号公報JP 2011-082229 A

上記のように固体冷媒を用いて停電時の温度上昇を抑制する方法として、複数ある超電導素子ごとに熱接触した冷媒容器を設けておく方法が考えられる。   As a method of suppressing the temperature rise at the time of a power failure using a solid refrigerant as described above, a method of providing a refrigerant container in thermal contact for each of a plurality of superconducting elements is conceivable.

しかし、窒素に代表される固体冷媒の熱伝導率はステンレス鋼並みに低く熱拡散時間が長いため、容器と固体冷媒との伝熱面から離れた位置にある固体冷媒に熱を伝播させ、伝熱面から離れている個体冷媒の熱容量を所定時間内に利用することが難しいといった課題があった。また、冷媒が固化する際に体積が減少し容器と固体冷媒との間に空隙が生じるため、固体冷媒が重力に従って落下し接触する面でしか熱接触を期待できないため、高さが低く底面積が広い冷媒容器を設けて、冷媒容器内の固体窒素の厚さを制限し、かつ、冷媒容器と超電導素子との熱接触面を確保することが有効と考えられる。ただし、この方法を採用するには装置の断熱容器内に新たに底面積の広い冷媒容器を配置する空間を確保する必要があり、装置の大型化を避けられない課題があった。   However, since the thermal conductivity of solid refrigerant typified by nitrogen is as low as that of stainless steel and the thermal diffusion time is long, heat is propagated to the solid refrigerant at a position away from the heat transfer surface between the container and the solid refrigerant. There was a problem that it was difficult to use the heat capacity of the individual refrigerant away from the hot surface within a predetermined time. Also, since the volume is reduced when the refrigerant solidifies and a gap is created between the container and the solid refrigerant, the solid refrigerant can be expected to be in thermal contact only on the surface where it falls and contacts according to gravity. It is considered effective to provide a wide refrigerant container, limit the thickness of solid nitrogen in the refrigerant container, and secure a thermal contact surface between the refrigerant container and the superconducting element. However, in order to adopt this method, it is necessary to secure a space for newly arranging a refrigerant container having a large bottom area in the heat insulating container of the apparatus, and there is a problem that the apparatus cannot be increased in size.

以上の点より、本発明の課題は、装置を大型化せずとも固体冷媒の熱容量を効率的に利用可能な冷媒容器を備えた超電導電磁石装置を提供することにある。
In view of the above, an object of the present invention is to provide a superconducting electromagnet apparatus including a refrigerant container that can efficiently use the heat capacity of a solid refrigerant without increasing the size of the apparatus.

本発明は、固体冷媒を内包する冷媒容器を備えた超電導磁石装置において、冷媒容器は金属管を渦巻き状に巻いた形状をしており、冷媒容器と超電導コイルとが熱的に接触した構造をとる。また、冷媒容器は冷凍機から超電導コイルへの熱伝導経路の途中へ配置された構造となっている。   The present invention relates to a superconducting magnet device having a refrigerant container containing a solid refrigerant, wherein the refrigerant container has a shape in which a metal tube is spirally wound, and the refrigerant container and the superconducting coil are in thermal contact with each other. Take. In addition, the refrigerant container has a structure arranged in the middle of the heat conduction path from the refrigerator to the superconducting coil.

このような超電導電磁石装置を用いることで、冷媒容器内の固体冷媒の厚さを制限し、かつ、固体冷媒と冷媒容器との熱接触面を広く確保することが可能であり、固体窒素の熱容量を所定時間内に利用可能となる。   By using such a superconducting electromagnet device, it is possible to limit the thickness of the solid refrigerant in the refrigerant container, and to ensure a wide thermal contact surface between the solid refrigerant and the refrigerant container, and the heat capacity of solid nitrogen Can be used within a predetermined time.

第1の実施形態に係る装置構成を示した図である。It is the figure which showed the apparatus structure which concerns on 1st Embodiment. 第1の実施形態に係る回路構成を模式的に示した図である。1 is a diagram schematically showing a circuit configuration according to a first embodiment. FIG. 第1の実施形態に係る冷媒容器の断面構造を模式的に示した図である。FIG. 3 is a diagram schematically showing a cross-sectional structure of a refrigerant container according to the first embodiment. 第2の実施形態に係る装置構成を示した図である。It is the figure which showed the apparatus structure which concerns on 2nd Embodiment. 第2の実施形態に係る冷媒容器の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the refrigerant | coolant container which concerns on 2nd Embodiment. 第3の実施形態に係る冷媒容器の断面構造を模式的に示した図である。It is the figure which showed typically the cross-section of the refrigerant | coolant container which concerns on 3rd Embodiment.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
(第1の実施形態)
以下、本発明を適用してなる第1の実施形態について、図1並び図2、図3を参照して説明する。図1は第1の実施形態である超電導電磁石装置1の断面を模式的に示す。
Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
(First embodiment)
A first embodiment to which the present invention is applied will be described below with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 schematically shows a cross section of a superconducting electromagnet apparatus 1 according to the first embodiment.

超電導電磁石装置1は、真空容器2、真空容器2に内包された輻射シールド3、輻射シールド3に内包される空間に配置された複数の超電導コイル4を有する。また、輻射シールド3は複数の冷媒容器5を内包する構造を有し、冷媒6がこれらの冷媒容器3に貯留され、超電導コイル4は冷媒6が貯留された冷媒容器5と接触している。   The superconducting electromagnet apparatus 1 includes a vacuum vessel 2, a radiation shield 3 contained in the vacuum vessel 2, and a plurality of superconducting coils 4 arranged in a space contained in the radiation shield 3. The radiation shield 3 has a structure including a plurality of refrigerant containers 5, the refrigerant 6 is stored in these refrigerant containers 3, and the superconducting coil 4 is in contact with the refrigerant container 5 in which the refrigerant 6 is stored.

超電導磁石装置1は、超電導コイル4に電流を供給するために、パワーリードと呼ばれる外部電源から電流を導く導線を備える。本実施例では、外部電源と接続され、真空容器2および輻射シールド3を貫通する常電導パワーリード7、輻射シールド3で内包された空間内に配置され、超電導コイル4や永久電流スイッチ9などの超電導素子と常伝導パワーリード7とを接続する超電導パワーリード8が用いられる。永久電流スイッチ9は、超電導コイル4に永久電流を生じさせるための機構である。   The superconducting magnet device 1 includes a conducting wire that leads current from an external power source called a power lead in order to supply current to the superconducting coil 4. In this embodiment, it is connected to an external power supply, and is disposed in a space enclosed by a normal conducting power lead 7 penetrating the vacuum vessel 2 and the radiation shield 3 and the radiation shield 3, such as the superconducting coil 4 and the permanent current switch 9. A superconducting power lead 8 that connects the superconducting element and the normal conducting power lead 7 is used. The permanent current switch 9 is a mechanism for generating a permanent current in the superconducting coil 4.

図1に示す冷凍機12は、超電導コイル4の超電導状態を維持することで超電導磁石装置1を安定的に稼働させる役割を持つ。具体的には、冷凍機12の第2ステージ12bが各冷媒容器5と熱伝導パス11を介して接続されており、冷凍機12の第1ステージ12aが輻射シールド3と接触している。各冷媒容器5は、永久電流スイッチ9、各超電導コイル4および超電導パワーリード8の低温端8bと接触しているため、これらの部材は冷媒容器5を介して第2ステージ12bにより冷却される。   The refrigerator 12 shown in FIG. 1 has the role of operating the superconducting magnet device 1 stably by maintaining the superconducting state of the superconducting coil 4. Specifically, the second stage 12 b of the refrigerator 12 is connected to each refrigerant container 5 via the heat conduction path 11, and the first stage 12 a of the refrigerator 12 is in contact with the radiation shield 3. Since each refrigerant container 5 is in contact with the permanent current switch 9, each superconducting coil 4, and the low temperature end 8 b of the superconducting power lead 8, these members are cooled by the second stage 12 b via the refrigerant container 5.

常伝導パワーリード7は輻射シールド3と接触しているため、輻射シールド3を介して第1ステージ12aの冷却を受ける。また、超電導パワーリード8の高温端8aは、輻射シールド3と接触する常伝導パワーリード7と接続されることによって、冷凍機12の第1ステージ12aの冷却を受ける。   Since the normal power lead 7 is in contact with the radiation shield 3, the first stage 12 a is cooled through the radiation shield 3. Further, the high-temperature end 8 a of the superconducting power lead 8 is cooled by the first stage 12 a of the refrigerator 12 by being connected to the normal power lead 7 in contact with the radiation shield 3.

本実施形態の超電導コイル4の中心軸21は鉛直方向を向いており、真空容器2および輻射シールド3を貫いた開口部24が存在する。すなわち、超電導コイル4は、鉛直方向に所定の間隔をもって対向して配置されており、超電導磁石装置1は対向して配置された超電導コイル4の間に開口部24を有している。複数ある冷媒容器5は、連結配管32にてそれぞれ直列に連結されており、冷媒導入配管30から冷媒6が供給され、冷媒排出配管31から冷媒6を排出可能な構造となっている。なお、本実施形態では冷媒導入配管30および冷媒排出配管31をステンレス鋼に代表される熱伝導率が低い部材で構成して熱侵入量を制限している。   The central axis 21 of the superconducting coil 4 of the present embodiment is oriented in the vertical direction, and there is an opening 24 that penetrates the vacuum vessel 2 and the radiation shield 3. That is, the superconducting coils 4 are arranged to face each other at a predetermined interval in the vertical direction, and the superconducting magnet device 1 has an opening 24 between the superconducting coils 4 arranged to face each other. The plurality of refrigerant containers 5 are connected in series by connecting pipes 32, respectively, so that the refrigerant 6 is supplied from the refrigerant introduction pipe 30 and can be discharged from the refrigerant discharge pipe 31. In the present embodiment, the refrigerant introduction pipe 30 and the refrigerant discharge pipe 31 are configured with members having low thermal conductivity represented by stainless steel to limit the amount of heat penetration.

なお、図1は超電導コイル4が鉛直方向に対向して配置されている例を示したが、これに限ることなく、超電導コイル4の中心軸21が水平方向を向いていてもよい。この場合は、超電導コイル4が水平方向に所定の間隔をもって対向して配置されており、超電導磁石装置1は対向して配置された超電導コイル4の間に開口部24を有している。
図2に超電導電磁石装置1の回路構成を模式的に示す。複数ある保護抵抗10が複数ある超電導コイル4とそれぞれ並列に接続されている。励磁電源13、電流遮断器14は真空容器2の外部に設置される。
本実施例の超電導磁石装置1は、次のような機序により永久電流運転モードに移行する。なお、永久電流運転モードに移行する前に、超電導コイル4並びに永久電流スイッチ9は臨界温度以下に保たれることで超電導状態となっている。
Although FIG. 1 shows an example in which the superconducting coil 4 is arranged to face the vertical direction, the present invention is not limited to this, and the central axis 21 of the superconducting coil 4 may face the horizontal direction. In this case, the superconducting coils 4 are arranged facing each other at a predetermined interval in the horizontal direction, and the superconducting magnet device 1 has an opening 24 between the superconducting coils 4 arranged facing each other.
FIG. 2 schematically shows a circuit configuration of the superconducting electromagnet apparatus 1. A plurality of protective resistors 10 are connected in parallel to a plurality of superconducting coils 4. The excitation power supply 13 and the current breaker 14 are installed outside the vacuum vessel 2.
The superconducting magnet device 1 of the present embodiment shifts to the permanent current operation mode by the following mechanism. Note that before the transition to the permanent current operation mode, the superconducting coil 4 and the permanent current switch 9 are kept in the superconducting state by being kept below the critical temperature.

まず、永久電流スイッチ9が「開」の状態で励磁電源13から超電導コイル4に電流が供給される。その後、永久電流スイッチ9が「閉」にされた状態で励磁電源13の供給電流をゼロとし、かつ電流遮断器14が「開」とされると、超電導コイル4および永久電流スイッチ9からなる超電導状態の閉回路では、励磁電源13から供給された電流がほとんど減衰することなく流れ続ける。この状態を永久電流運転モードと呼ぶ。   First, a current is supplied from the exciting power supply 13 to the superconducting coil 4 with the permanent current switch 9 in the “open” state. Thereafter, when the supply current of the exciting power source 13 is made zero while the permanent current switch 9 is “closed” and the current breaker 14 is “open”, the superconductivity comprising the superconducting coil 4 and the permanent current switch 9 is established. In the closed circuit in the state, the current supplied from the excitation power supply 13 continues to flow with almost no attenuation. This state is called a permanent current operation mode.

永久電流運転モードに移行することにより、超電導電磁石装置1は、長期に渡って磁場を保持することが可能である。なお、永久電流スイッチ9は、図示しないヒータ等で加熱されることによって常電導転移して「開」状態となり、ヒータ等による加熱を停止すると冷媒容器3との接触面から吸熱が生じて超電導状態に遷移し「閉」状態となる。   By shifting to the permanent current operation mode, the superconducting electromagnet apparatus 1 can maintain a magnetic field for a long period of time. In addition, the permanent current switch 9 is brought into an “open” state by being normally conducted by being heated by a heater or the like (not shown). To “closed” state.

このように永久電流スイッチ9の開閉制御はヒータ等によって実行されるが、本実施例の超電導磁石装置1は、連結配管32をステンレス鋼に代表される熱伝導率が低い部材で構成し熱流束を制限している。したがって、ヒータ等により永久電流スイッチ9の開閉制御をヒータ等の熱によって実行したとしても、連結配管32および冷媒容器5を介して超電導コイル4が加熱されて常電導転移することはなく、超電導コイル4を臨界温度以下に効率的に留めておくことができる。   As described above, the opening / closing control of the permanent current switch 9 is executed by a heater or the like. However, in the superconducting magnet device 1 of this embodiment, the connecting pipe 32 is formed of a member having low thermal conductivity, typified by stainless steel, and heat flux. Is limiting. Therefore, even when the opening / closing control of the permanent current switch 9 is performed by the heater or the like by the heater or the like, the superconducting coil 4 is not heated and transited to the normal conducting state via the connecting pipe 32 and the refrigerant container 5, and the superconducting coil 4 can be effectively kept below the critical temperature.

次に本実施形態の超電導磁石装置1が備える冷媒容器3について説明する。   Next, the refrigerant | coolant container 3 with which the superconducting magnet apparatus 1 of this embodiment is provided is demonstrated.

図3に示すように冷媒容器5は、金属管16を中心軸21に対して内周側から外周側に向かって、中心軸21方向の位置を変えることなく、換言すれば中心軸方向は同位置を保ったまま渦巻き状に巻くことによって形成される形状、いわゆるシングルパンケーキコイル形状をとなるように製作されている。   As shown in FIG. 3, the refrigerant container 5 does not change the position of the metal tube 16 in the direction of the central axis 21 from the inner peripheral side to the outer peripheral side with respect to the central axis 21, in other words, the central axis direction is the same. It is manufactured so as to have a so-called single pancake coil shape formed by winding in a spiral shape while maintaining the position.

なお、ここでいう渦巻とは、基本的に二次元平面上において、渦を巻くように旋回しながら中心点から離れる、または遠方点から該中心点向かって中心点へ近づくような曲線を指し、三次元的な垂直成分、本実施例であれば超電導コイル4の中心軸方向にも旋回中に変位し続けるような螺旋状の曲線とは異なるものとする。   In addition, the spiral here means a curve that moves away from the center point while swirling like a spiral on a two-dimensional plane, or that approaches the center point from a far point toward the center point, The three-dimensional vertical component, in this embodiment, is different from a spiral curve that continues to be displaced during turning in the direction of the central axis of the superconducting coil 4.

また、冷媒容器5は冷凍機12から超電導コイル4への熱伝導経路、すなわち第2ステージ12bおよびこれに接続された熱伝導パス11から構成される熱伝導経路と超電導コイル4とを連絡する位置に配置される。   The refrigerant container 5 is a position where the superconducting coil 4 communicates with the heat conducting path from the refrigerator 12 to the superconducting coil 4, that is, the second stage 12b and the heat conducting path 11 connected to the second stage 12b. Placed in.

具体的な配置関係の一例を図3に示す。冷媒容器5は上下方向から伝熱板17にて固定される。また、冷媒容器5は熱伝導パス11および伝熱板17aを介して冷凍機5と熱的に接触するとともに、伝熱板17bを介して超電導コイル4と熱的に接触する構造をとる。   An example of a specific arrangement relationship is shown in FIG. The refrigerant container 5 is fixed by a heat transfer plate 17 from above and below. The refrigerant container 5 is in thermal contact with the refrigerator 5 through the heat conduction path 11 and the heat transfer plate 17a, and is in thermal contact with the superconducting coil 4 through the heat transfer plate 17b.

金属管16がいわゆるシングルパンケーキコイル形状の構造を取ることで、複数の冷媒容器5に封入された固体冷媒6は厚さ(体積)を制限され、重力に従い落下し金属管16の内壁との熱接触面を広く確保可能なことから、所定時間内に固体冷媒6に熱が伝播し温度上昇抑制のための熱容量を利用可能となる。   Since the metal tube 16 has a so-called single pancake coil-shaped structure, the solid refrigerant 6 enclosed in the plurality of refrigerant containers 5 is limited in thickness (volume), falls according to gravity, and is separated from the inner wall of the metal tube 16. Since a wide thermal contact surface can be secured, heat propagates to the solid refrigerant 6 within a predetermined time, and a heat capacity for suppressing temperature rise can be used.

また、本実施例の超電導磁石装置1が備える冷媒容器5は、金属管16を渦巻状に巻くことで形成されるシングルパンケーキコイル形状を有するため、金属管16の側壁が巻き数の2倍存在する。これら金属管16の側壁は、金属管16の上面を介して伝熱板17aと接触し、金属管16の底面および伝熱板17bを介して超電導コイル4と接触していることから、伝熱板17aと伝熱板17bとの間の熱伝導を連絡する経路としての役割をもつ。   Moreover, since the refrigerant container 5 provided in the superconducting magnet device 1 of the present embodiment has a single pancake coil shape formed by winding the metal tube 16 in a spiral shape, the side wall of the metal tube 16 is twice the number of turns. Exists. The side walls of these metal tubes 16 are in contact with the heat transfer plate 17a through the upper surface of the metal tube 16, and are in contact with the superconducting coil 4 through the bottom surface of the metal tube 16 and the heat transfer plate 17b. It serves as a path for communicating heat conduction between the plate 17a and the heat transfer plate 17b.

ここで仮に冷媒容器5が、図3に示すような径方向において複数の分離された空間を有するものではなく、単一の空間しか有さない冷媒容器であれば、上下面を連絡する側壁は一つしか存在しないため、そのような冷媒容器と比較すると、図3に示すような冷媒容器5は多くの熱伝導経路を有すことにより、高い冷却性能を実現できる。   Here, if the refrigerant container 5 does not have a plurality of separated spaces in the radial direction as shown in FIG. 3, but is a refrigerant container having only a single space, the side walls connecting the upper and lower surfaces are Since there is only one, compared to such a refrigerant container, the refrigerant container 5 as shown in FIG. 3 can realize high cooling performance by having many heat conduction paths.

すなわち、本実施例の超電導磁石装置1が有する冷媒容器5は、シングルパンケーキコイル形状を取ることによって、個体冷媒6を蓄積するタンクとしての役割と、効率的な熱伝導経路としての役割を併せ持つことが可能となっている。   That is, the refrigerant container 5 included in the superconducting magnet device 1 of this embodiment has a role as a tank for storing the solid refrigerant 6 and a role as an efficient heat conduction path by taking a single pancake coil shape. It is possible.

また、冷媒容器5は超電導コイル4を周方向に渡って冷却するための冷却パス構造を兼ねており、新たに冷媒容器を設ける空間を装置内に確保する必要が無くなる。したがって本実施形態の超電導電磁石装置1は、固体冷媒6の熱容量を有効に利用可能な冷媒容器5を持ちつつ、冷媒容器5を設けたことによる自身の大型化を避けることが可能となっている。   Further, the refrigerant container 5 also serves as a cooling path structure for cooling the superconducting coil 4 in the circumferential direction, and it is not necessary to secure a space for newly installing the refrigerant container in the apparatus. Therefore, the superconducting electromagnet apparatus 1 according to the present embodiment has the refrigerant container 5 that can effectively use the heat capacity of the solid refrigerant 6, and can avoid an increase in size due to the provision of the refrigerant container 5. .

なお、冷媒容器5を構成する金属管16は、銅などの熱伝導率が高い金属構造体の内部に空隙を設けた上で伸鋼加工することで得られるホローコンダクタを用いる。ホローコンダクタを利用することによって、金属管16から接合部を減少させることができ、真空リークや、冷媒漏れが生じる可能性を低減し、その結果、超電導磁石装置1の信頼性向上に寄与することが可能となる。

(第2の実施形態)
図4、5に第2の実施形態に係る超電導電磁石装置1の断面と冷媒容器5の断面を示す。第2の実施形態は、図1に示す第1の実施形態と比較して、複数ある冷媒容器5が連結配管32にて並列に連結された構造となっている。
The metal tube 16 constituting the refrigerant container 5 uses a hollow conductor obtained by forming a gap in a metal structure having high thermal conductivity such as copper and then performing steel drawing. By using the hollow conductor, the number of joints can be reduced from the metal tube 16, and the possibility of vacuum leakage and refrigerant leakage is reduced. As a result, the reliability of the superconducting magnet device 1 can be improved. Is possible.

(Second Embodiment)
4 and 5 show a cross section of the superconducting electromagnet apparatus 1 and the cross section of the refrigerant container 5 according to the second embodiment. Compared with the first embodiment shown in FIG. 1, the second embodiment has a structure in which a plurality of refrigerant containers 5 are connected in parallel by a connecting pipe 32.

また、冷媒容器5は、金属管16を外周側から内周側に向かって渦巻き状に巻いた後、内周側で装置の中心軸方向に金属管16をその高さ方向の幅について一つ分ずらし、内周側から外周側に向かって渦巻き状に巻いた、いわゆるダブルパンケーキコイルとなっている。   In the refrigerant container 5, the metal tube 16 is spirally wound from the outer peripheral side toward the inner peripheral side, and then the metal tube 16 is arranged in the center axis direction of the apparatus on the inner peripheral side with respect to the height direction width. This is a so-called double pancake coil that is shifted in a spiral manner from the inner periphery to the outer periphery.

超電導コイル4と冷媒容器5とはコイルボビン40にて保持され、熱伝導パス11は冷媒容器5と直接に熱接触し、超電導コイル4は冷媒容器5と直接に熱接触する構造となっている。   The superconducting coil 4 and the refrigerant container 5 are held by a coil bobbin 40, the heat conduction path 11 is in direct thermal contact with the refrigerant container 5, and the superconducting coil 4 is in direct thermal contact with the refrigerant container 5.

このような構造は、第1の実施形態と同様の効果を得るだけでなく、冷媒容器5への冷媒導入口35並びに冷媒排出口36を外周面側に配置させて、コイルボビン40が有るような場合でも干渉せずに冷媒を冷媒容器5に導入することを可能とする。   Such a structure not only obtains the same effect as the first embodiment, but also has the coil bobbin 40 with the refrigerant inlet 35 and the refrigerant outlet 36 to the refrigerant container 5 arranged on the outer peripheral surface side. Even in this case, the refrigerant can be introduced into the refrigerant container 5 without interference.

なぜなら、シングルパンケーキコイル形状であれば、金属管16の全般にわたって個体冷媒6を蓄積するために、冷媒導入口35を金属管16の一端に形成し、冷媒排出口36を他端に形成すると、いずれか一方は渦巻状に形成されたシングルパンケーキコイルの中心軸近傍に位置することとなる。そうすると、本実施例のようにコイルボビン40によって冷媒容器5を保持するためには、冷媒導入口35もしくは冷媒排出口36のいずれか片方を通すためにコイルボビン40に加工を施す必要がある。   This is because if the single pancake coil shape is used, in order to accumulate the solid refrigerant 6 over the entire metal tube 16, the refrigerant inlet 35 is formed at one end of the metal tube 16, and the refrigerant discharge port 36 is formed at the other end. , Either one is located in the vicinity of the central axis of the single pancake coil formed in a spiral shape. Then, in order to hold the refrigerant container 5 by the coil bobbin 40 as in this embodiment, it is necessary to process the coil bobbin 40 in order to pass either the refrigerant introduction port 35 or the refrigerant discharge port 36.

その点において、ダブルパンケーキコイル形状の冷媒容器5であれば、金属管16の両端は冷媒容器5の外周面に位置することとなるため、複雑な加工等を施すことなく、コイルボビン40を利用することが可能となる。   In that regard, if the refrigerant container 5 has a double pancake coil shape, both ends of the metal tube 16 are positioned on the outer peripheral surface of the refrigerant container 5, so that the coil bobbin 40 can be used without complicated processing. It becomes possible to do.

また、金属管16をコイルボビン40で固定することで伝熱板17を省略することが可能となる。なお、本構造ではダブルパンケーキコイル形状の冷媒容器5の下段部分は固体冷媒6にて満たされる。   Further, the heat transfer plate 17 can be omitted by fixing the metal tube 16 with the coil bobbin 40. In this structure, the lower part of the double pancake coil-shaped refrigerant container 5 is filled with the solid refrigerant 6.

そうすると、一部の冷媒容器5のみ温度上昇し冷媒が気化し、他の個体冷媒6は温度上昇せず固体状態を保っていると、冷媒容器5中を気化した冷媒が通過することができなくなることが考えられる。そこで、本実施例のように複数ある冷媒容器5を並列接続し、他の冷媒容器5を経由せずとも気化した冷媒が排出される構造としておくと、気化した冷媒が自由に冷媒容器5の上段に移動することができるため、冷媒容器5の一カ所に圧力が集中し破損等を引き起こす可能を低減することができる。

(第3の実施形態)
図6に第3の実施形態に係る冷媒容器5の断面を示す。第3の実施形態は、図1に示す第1の実施形態と比較して、冷媒容器5を互いに巻方向が異なる金属管16aと16bの2段重ねとし、連結管32aにて連結した構造となっている。また、超電導コイル4と冷媒容器5をコイルボビン40にて保持し、伝熱板17を省略して熱伝導パス11は冷媒容器5と直接に熱接触し、超電導コイル4は冷媒容器5と直接に熱接触する構造となっている。
Then, if only a part of the refrigerant containers 5 rise in temperature and the refrigerant is vaporized, and the other individual refrigerants 6 do not rise in temperature and are kept in a solid state, the vaporized refrigerant cannot pass through the refrigerant container 5. It is possible. Therefore, when a plurality of refrigerant containers 5 are connected in parallel as in the present embodiment, and the vaporized refrigerant is discharged without passing through the other refrigerant containers 5, the vaporized refrigerant is freely contained in the refrigerant container 5. Since it can move to the upper stage, it is possible to reduce the possibility that the pressure is concentrated in one place of the refrigerant container 5 to cause damage or the like.

(Third embodiment)
FIG. 6 shows a cross section of the refrigerant container 5 according to the third embodiment. Compared with the first embodiment shown in FIG. 1, the third embodiment has a structure in which the refrigerant container 5 is made up of two layers of metal pipes 16 a and 16 b with different winding directions and connected by a connecting pipe 32 a. It has become. The superconducting coil 4 and the refrigerant container 5 are held by the coil bobbin 40, the heat transfer plate 17 is omitted, the heat conduction path 11 is in direct thermal contact with the refrigerant container 5, and the superconducting coil 4 is directly in contact with the refrigerant container 5. The structure is in thermal contact.

このような構造をとることで、第1および第2の実施形態と同様の効果を得ることできるだけでなく、超電導コイル4の励消磁時の磁場変化によって冷媒容器5に発生する誘導電圧の極性が金属管16aと16bとで逆となるため誘導電流を抑制することが可能となり、誘導電流によって発生するジュール発熱を抑制することが可能となる。   By adopting such a structure, not only the same effects as in the first and second embodiments can be obtained, but also the polarity of the induced voltage generated in the refrigerant container 5 due to the magnetic field change at the time of excitation and demagnetization of the superconducting coil 4 can be achieved. Since the metal tubes 16a and 16b are reversed, the induced current can be suppressed, and the Joule heat generated by the induced current can be suppressed.

以上、本発明のいくつかの実施形態について説明したが、本発明は、上記実施形態に記載した構成に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、適宜その構成を変更することができる。   As mentioned above, although several embodiment of this invention was described, this invention is not limited to the structure described in the said embodiment, unless it deviates from the summary of this invention described in the claim. The configuration can be changed as appropriate.

上記した実施形態例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
The above-described exemplary embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. . Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each exemplary embodiment.

1 超電導電磁石装置
2 真空容器
3 輻射シールド
4、4a、4b 超電導コイル
5、5a,5b,5c,5d 冷媒容器
6 冷媒
7 常電導パワーリード
8 超電導パワーリード
8a 超電導パワーリード高温端
8b 超電導パワーリード低温端
9 永久電流スイッチ
10、10a、10b 保護抵抗
11 熱伝導パス
12 冷凍機
13 直流電源
14 電流遮断器
16 金属管
17、17a、17b 冷却銅板
21 超電導電磁石装置の中心軸
24 開口部
30 冷媒導入配管
31 冷媒排出配管
32 連結配管
35 冷媒導入口
36 冷媒排出口
40 コイルボビン
1 Superconducting magnet device 2 Vacuum vessel 3 Radiation shield 4, 4a, 4b Superconducting coil 5, 5a, 5b, 5c, 5d Refrigerant vessel 6 Refrigerant 7 Normal conducting power lead 8 Superconducting power lead
8a Superconducting power lead hot end
8b Superconducting power lead cold end
9 Permanent current switch
10, 10a, 10b Protection resistance
11 Heat conduction path
12 Refrigerator
13 DC power supply
14 Current breaker
16 Metal pipe
17, 17a, 17b Cooling copper plate
21 Central axis of superconducting electromagnet
24 opening
30 Refrigerant introduction piping
31 Refrigerant discharge piping
32 Connection piping
35 Refrigerant inlet
36 Refrigerant outlet
40 coil bobbin

Claims (8)

超電導コイルと、
前記超電導コイルと接続された永久電流スイッチと、
前記超電導コイルと前記永久電流スイッチとのそれぞれに熱的に接触した複数の冷媒容器と、
前記複数の冷媒容器を冷却する冷凍機と、
を備え、
前記のうち少なくとも一つの冷媒容器は、
前記超電導コイルの中心軸周りに渦巻状に巻かれた金属管から形成され、
該中心軸方向において前記超電導コイルの表面との熱的な接触面を有し、かつ前記冷凍機から前記超電導コイルへの熱伝導経路を連絡する位置に配置され、
前記金属管の内部に固体化した冷媒が収容される
超電導磁石装置。
A superconducting coil;
A permanent current switch connected to the superconducting coil;
A plurality of refrigerant containers in thermal contact with each of the superconducting coil and the permanent current switch;
A refrigerator that cools the plurality of refrigerant containers;
With
At least one of the refrigerant containers is
Formed from a metal tube wound in a spiral around the central axis of the superconducting coil;
Having a thermal contact surface with the surface of the superconducting coil in the central axis direction, and disposed at a position communicating a heat conduction path from the refrigerator to the superconducting coil;
A superconducting magnet device in which a solidified refrigerant is accommodated in the metal tube.
請求項1に記載の超電導磁石装置において、
前記冷媒容器は、
前記渦巻状に巻かれた金属管が該渦巻の前記中心軸方向に二層積層される構造であって、
前記二層を構成する金属管は互いに逆方向に巻かれており、かつ、少なくとも一カ所で連結すること
を特徴とする超電導磁石装置。
The superconducting magnet device according to claim 1,
The refrigerant container is
The metal tube wound in a spiral shape has a structure in which two layers are laminated in the direction of the central axis of the spiral,
The superconducting magnet device is characterized in that the metal pipes constituting the two layers are wound in opposite directions and connected at least at one place.
請求項1に記載の超電導電磁石装置において、
前記冷媒容器は、
前記渦巻状に巻かれた金属管が該渦巻の前記中心軸方向に二層積層される構造であって、
前記二層を構成する金属管は、前記渦巻の最内周において前記中心軸方向に転位するように形成された単一の金属管である
ことを特徴とする超電導電磁石装置。
The superconducting electromagnet apparatus according to claim 1,
The refrigerant container is
The metal tube wound in a spiral shape has a structure in which two layers are laminated in the direction of the central axis of the spiral,
The superconducting electromagnet apparatus characterized in that the metal tube constituting the two layers is a single metal tube formed so as to displace in the central axis direction on the innermost circumference of the spiral.
請求項1または2に記載の超電導電磁石装置において、
前記冷媒容器は、複数備えられ、互いに直列に連結されたことを特徴とする超電導電磁石装置。
The superconducting electromagnet device according to claim 1 or 2,
A superconducting electromagnet apparatus comprising a plurality of the refrigerant containers connected in series to each other.
請求項1から請求項3のいずれか1項に記載の超電導電磁石装置において、
前記冷媒容器は、複数備えられ、互いに並列に連結されたことを特徴とする超電導電磁石装置。
In the superconducting electromagnet apparatus according to any one of claims 1 to 3,
A superconducting electromagnet apparatus comprising a plurality of the refrigerant containers connected in parallel to each other.
請求項1から請求項5のいずれか1項に記載の超電導電磁石装置において、
前記金属管は、ホローコンダクタであることを特徴とする超電導磁石装置。
The superconducting electromagnet apparatus according to any one of claims 1 to 5,
The superconducting magnet device, wherein the metal tube is a hollow conductor.
請求項1から請求項6のいずれか1項に記載の超電導電磁石装置において、
前記超電導コイルの中心軸方向は鉛直方向であって、
前記超電導コイルを内包する真空容器および輻射シールドが備えられ、
前記超電導コイルは、鉛直方向に所定の間隔をもって対向して配置されたことを特徴とする超電導電磁石装置。
The superconducting electromagnet apparatus according to any one of claims 1 to 6,
The central axis direction of the superconducting coil is a vertical direction,
A vacuum vessel containing the superconducting coil and a radiation shield are provided;
The superconducting electromagnet apparatus, wherein the superconducting coils are arranged to face each other at a predetermined interval in the vertical direction.
請求項1から請求項6のいずれか1項に記載の超電導電磁石装置において、
前記超電導コイルの中心軸方向は水平方向であって、
前記超電導コイルを内包する真空容器および輻射シールドが備えられ、
前記超電導コイルは、水平方向に所定の間隔をもって対向して配置されたことを特徴する超電導磁石装置。
The superconducting electromagnet apparatus according to any one of claims 1 to 6,
The central axis direction of the superconducting coil is a horizontal direction,
A vacuum vessel containing the superconducting coil and a radiation shield are provided;
The superconducting magnet device, wherein the superconducting coils are arranged to face each other at a predetermined interval in the horizontal direction.
JP2014141003A 2014-07-09 2014-07-09 Superconducting magnet system Active JP6491828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141003A JP6491828B2 (en) 2014-07-09 2014-07-09 Superconducting magnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141003A JP6491828B2 (en) 2014-07-09 2014-07-09 Superconducting magnet system

Publications (2)

Publication Number Publication Date
JP2016018902A JP2016018902A (en) 2016-02-01
JP6491828B2 true JP6491828B2 (en) 2019-03-27

Family

ID=55233918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141003A Active JP6491828B2 (en) 2014-07-09 2014-07-09 Superconducting magnet system

Country Status (1)

Country Link
JP (1) JP6491828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106504848B (en) * 2016-12-13 2019-03-01 贵州航天新力铸锻有限责任公司 The direct-cooled flow passage structure of ITER magnet support efficient heat transfer
JP7145791B2 (en) * 2019-03-07 2022-10-03 株式会社東芝 Superconducting magnet device
CN117038250A (en) * 2023-09-26 2023-11-10 上海翌曦科技发展有限公司 Annular superconducting reactor based on parallel connection

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674906A (en) * 1979-11-24 1981-06-20 Hitachi Ltd Very low temperature cooling apparatus
JPS6016872Y2 (en) * 1980-12-27 1985-05-24 三菱電機株式会社 refrigerant gas cooler
JPS6289305A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Superconducting magnet
JPH0723920Y2 (en) * 1986-05-14 1995-05-31 三菱電機株式会社 Superconducting SOR device
JP2790549B2 (en) * 1991-06-10 1998-08-27 三菱電機株式会社 Superconducting magnet device for crystal pulling device
JPH05234743A (en) * 1992-02-26 1993-09-10 Mitsubishi Heavy Ind Ltd Manufacture of superconducting coil
JPH0571670U (en) * 1992-02-28 1993-09-28 大阪瓦斯株式会社 Cylindrical heat exchanger
JP3347870B2 (en) * 1994-04-15 2002-11-20 三菱電機株式会社 Superconducting magnet and regenerative refrigerator for the magnet
JP3629725B2 (en) * 1994-08-31 2005-03-16 三菱電機株式会社 Superconducting magnet
JPH11233334A (en) * 1998-02-18 1999-08-27 Hitachi Ltd Conduction cooling type superconducting electromagnet
JPH11288809A (en) * 1998-03-31 1999-10-19 Toshiba Corp Superconducting magnet
JP2002208512A (en) * 2001-01-09 2002-07-26 Sumitomo Electric Ind Ltd High-temperature superconducting coil cooling method and cooling structure
DE102005028414B4 (en) * 2005-06-20 2011-12-08 Siemens Aktiengesellschaft Device for generating a pulsed magnetic field
JP2009224200A (en) * 2008-03-17 2009-10-01 Toshiba Corp Insulating joint for refrigerant piping, and forced cooling superconducting coil
JP2011082229A (en) * 2009-10-05 2011-04-21 Hitachi Ltd Conduction-cooled superconducting magnet
WO2013133319A1 (en) * 2012-03-06 2013-09-12 株式会社フジクラ Superconductive coil and superconductive device
JP5469782B1 (en) * 2013-03-18 2014-04-16 三菱電機株式会社 Superconducting magnet cooling method and superconducting magnet

Also Published As

Publication number Publication date
JP2016018902A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
US9508477B2 (en) Superconducting magnet system
JP5332217B2 (en) Superconducting device
US8162037B2 (en) Device for generating a pulsed magnetic field
JP2010283186A (en) Refrigerator-cooled superconducting magnet
JP6491828B2 (en) Superconducting magnet system
WO2018003420A1 (en) Superconducting magnet device and magnetic resonance tomographic imaging device
JP2010016026A (en) Superconductive device
JP6695324B2 (en) Cooling device for superconducting magnet structure of MRI system
US20160180996A1 (en) Superconducting magnet system
JP2015079846A (en) Superconducting magnetic device
JP2010171152A (en) Heat conduction plate and superconductive device
WO2016106036A1 (en) System and method for cooling a magnetic resonance imaging device
JP6647918B2 (en) Superconducting electromagnet apparatus and magnetic resonance imaging apparatus
JP6901622B2 (en) A superconducting magnet whose cold head heat path is cooled by a heat exchanger
JP6440922B1 (en) Superconducting magnet
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JP7208914B2 (en) Thermal bath heat exchanger for superconducting magnets
US20200076260A1 (en) Machine coil for an electric machine
JP6760511B2 (en) Superconducting electromagnet device
JP2015128098A (en) Superconductivity magnet apparatus and superconduction-applied apparatus
JP6270119B2 (en) Heat conduction plate
JP2019220495A (en) Superconducting electromagnet device
JP4908338B2 (en) Heat generation prevention device for metal heat exchanger of superconducting transformer
JP5424107B2 (en) Superconducting magnet with self-excited vibration heat pipe

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6491828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250