JPS6016872Y2 - refrigerant gas cooler - Google Patents

refrigerant gas cooler

Info

Publication number
JPS6016872Y2
JPS6016872Y2 JP18848980U JP18848980U JPS6016872Y2 JP S6016872 Y2 JPS6016872 Y2 JP S6016872Y2 JP 18848980 U JP18848980 U JP 18848980U JP 18848980 U JP18848980 U JP 18848980U JP S6016872 Y2 JPS6016872 Y2 JP S6016872Y2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant gas
gas cooler
heat
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18848980U
Other languages
Japanese (ja)
Other versions
JPS57114270U (en
Inventor
溢男 小寺
貞男 小河
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP18848980U priority Critical patent/JPS6016872Y2/en
Publication of JPS57114270U publication Critical patent/JPS57114270U/ja
Application granted granted Critical
Publication of JPS6016872Y2 publication Critical patent/JPS6016872Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 この考案は、ヘリウム冷凍装置などの極低温装置の構成
要素である冷媒ガス冷却器の改良構造に関するものであ
る。
[Detailed Description of the Invention] This invention relates to an improved structure of a refrigerant gas cooler that is a component of a cryogenic device such as a helium refrigerator.

第1図は超電導マグネット装置を示す模式図で、1は超
電導コイル、2は超電導コイル1を収納し、液体ヘリウ
ムを貯える液体ヘリウム槽、3は液体ヘリウム槽の熱シ
ールド板で、2つの部材からなり、31は上部シールド
板、32は下部シールド板である。
Figure 1 is a schematic diagram showing a superconducting magnet device. 1 is a superconducting coil, 2 is a liquid helium tank that houses the superconducting coil 1 and stores liquid helium, and 3 is a heat shield plate for the liquid helium tank. 31 is an upper shield plate, and 32 is a lower shield plate.

4は上部シールド冷却管、5は下部シールド冷却管、6
はその一部を示すヘリウム冷凍機で、61は圧縮機、6
2は熱交換器、63は高圧ヘリウムガスライン、64は
低圧ヘリウムガスラインである。
4 is the upper shield cooling pipe, 5 is the lower shield cooling pipe, 6
61 is a helium refrigerator, part of which is a compressor, and 6 is a helium refrigerator.
2 is a heat exchanger, 63 is a high pressure helium gas line, and 64 is a low pressure helium gas line.

7は予冷用冷凍機、例えばギフオード・マクマホンサイ
クル冷凍機、8は予冷用冷凍機7の低温端に当接して設
けられた冷媒ガス冷却器、9は以上の構成要素の低温部
分を収納する断熱真空容器である。
7 is a pre-cooling refrigerator, such as a Gifford-McMahon cycle refrigerator; 8 is a refrigerant gas cooler provided in contact with the low-temperature end of the pre-cooling refrigerator 7; and 9 is a heat insulator that houses the low-temperature parts of the above components. It is a vacuum container.

第2図は従来の冷媒ガス冷却器の構造を示す部分断面図
で、10は予冷用冷凍機低温端の寒冷を採り出す円筒形
状の伝熱部材、11は第1管路であり、llaは伝熱部
材10の外形に当接するように設けられた内管、llb
は内管11aの外周上に螺旋状に植立させた第1螺旋状
フイン、11Cは第1螺旋状フインllbの外周に当接
するように設けられた第1外管、11d及びlieは、
内管11aと第1外管11cとの間の両端部を封止する
第1気密フランジ、12は第2管路で、12aは第1外
管11cの外周上に第1螺旋状フインllbと同様に植
立された第2の螺旋状フィン、12bは第2螺旋状フイ
ン12aの外周に当接するように設けられた第2外管、
12c及び12dは第1気密フランジlid、lleと
同様に第1外管11cと第2外管12bの間の両端部の
第2気密フランジである。
FIG. 2 is a partial cross-sectional view showing the structure of a conventional refrigerant gas cooler, in which 10 is a cylindrical heat transfer member that extracts cold from the low temperature end of the precooling refrigerator, 11 is a first pipe line, and lla is a An inner tube provided so as to come into contact with the outer shape of the heat transfer member 10, llb
11C is a first helical fin installed in a spiral manner on the outer periphery of the inner tube 11a, 11C is a first outer tube provided so as to come into contact with the outer periphery of the first helical fin Ilb, and 11d and lie are:
A first airtight flange seals both ends between the inner tube 11a and the first outer tube 11c, 12 is a second conduit, and 12a is a first spiral fin Ilb on the outer periphery of the first outer tube 11c. A second spiral fin 12b is similarly planted, and a second outer tube is provided so as to come into contact with the outer periphery of the second spiral fin 12a.
12c and 12d are second airtight flanges at both ends between the first outer tube 11c and the second outer tube 12b, similar to the first airtight flanges lid and lle.

13は第1及び第2管路11,12と同じ構成の第3管
路であり、13aは第3螺旋状フイン、13bは第3外
管、13C及び13dは第3気密フランジである。
13 is a third pipe line having the same configuration as the first and second pipe lines 11 and 12, 13a is a third spiral fin, 13b is a third outer pipe, and 13C and 13d are third airtight flanges.

気密フランジ11dy 11 e−12c、12d*
13c、13dは夫々冷媒ガスの入・出口を備えて
いる。
Airtight flange 11dy 11 e-12c, 12d*
13c and 13d each have an inlet and an outlet for refrigerant gas.

次にこの動作について説明する。Next, this operation will be explained.

通常液体ヘリウム槽2は真空容器9内に断熱的に収納さ
れ、この液体ヘリウム槽2の外周には熱シールド板3・
が設けられ、適当な温度に冷却保持され、真空容器9壁
からの放射熱の流入を減らす。
Normally, the liquid helium tank 2 is adiabatically housed in a vacuum container 9, and the outer periphery of the liquid helium tank 2 is provided with a heat shield plate 3.
is provided and kept cooled at an appropriate temperature to reduce the inflow of radiant heat from the walls of the vacuum vessel 9.

第1図はこの熱シールド板3にヘリウム冷凍機6の高圧
ヘリウムガス63を循環させて冷却する場合の一例を示
している。
FIG. 1 shows an example of a case where high pressure helium gas 63 from a helium refrigerator 6 is circulated through the heat shield plate 3 for cooling.

熱シールド板゛3の冷凍負荷に対して高圧ヘリウムガス
63の流量が少ない場合、1路の一ルド冷却管で冷却す
ると、被冷却部出口ガス温度が相当高くなり、シールド
の平均温度が引き上げられ、断熱の効果を減する1この
ような場合、冷却手段として複数個の管路を備えた冷媒
ガス冷却器8を介して冷凍負荷を分割して冷却する方法
が有用である。
When the flow rate of the high-pressure helium gas 63 is small relative to the refrigeration load of the heat shield plate 3, cooling with a single channel of the single-ended cooling pipe will cause the outlet gas temperature of the cooled part to become considerably high, raising the average temperature of the shield. In such a case, it is useful to divide the refrigeration load and cool it through a refrigerant gas cooler 8 equipped with a plurality of pipes as a cooling means.

即ちヘリウム冷凍機部6の圧縮機61から吐出される高
圧へリヴムガス63を熱交換器62の適当な温度レベル
から配管で取り出し、予冷冷凍機7の低温端(寒冷源)
に当接して設けられた複数個の管路を設けた冷媒ガ曳冷
却器8の先ず第1管路11を経て約70Kに冷却された
高圧ヘリウムガス63を上部熱シールド冷却管4に導き
、上部熱シールド31:を冷却する。
That is, the high-pressure Rivum gas 63 discharged from the compressor 61 of the helium refrigerator section 6 is taken out from an appropriate temperature level of the heat exchanger 62 through piping, and then transferred to the low temperature end (cold source) of the pre-cooling refrigerator 7.
First, high-pressure helium gas 63 cooled to about 70K is guided to the upper heat shield cooling pipe 4 through the first pipe 11 of the refrigerant pull cooler 8, which is provided with a plurality of pipes in contact with the Upper heat shield 31: is cooled.

シールドの熱を奪い昇温されて帰還する高圧熱ヘリウム
ガスを前述の冷媒ガス冷却器8の第2管路12を経て所
定の温度に再度冷却し、下部熱シールド冷却管5に導き
、同様に下部熱シールド32を冷却する。
The high-pressure thermal helium gas that returns after taking away the heat from the shield is cooled again to a predetermined temperature through the second pipe line 12 of the refrigerant gas cooler 8, guided to the lower heat shield cooling pipe 5, and then similarly heated. Cool the lower heat shield 32.

さらに、第2シールドから帰還する高圧ヘリウムガス6
3を冷媒ガス冷却器8の第3管路13を経て熱交換器6
2に戻す。
Furthermore, high pressure helium gas 6 returning from the second shield
3 to the heat exchanger 6 via the third pipe line 13 of the refrigerant gas cooler 8.
Return to 2.

冷媒ガス冷却器8を介して各熱シールド31及び32に
供給される高圧ヘリウムガス63の温度が等しく、且つ
熱シールド板3の冷凍負荷が2分されている場合は、シ
ールドの入・出口ガスの温度差は1管路で冷却する場合
の半分となり、より合理的な冷却が行なえる。
If the temperature of the high-pressure helium gas 63 supplied to each heat shield 31 and 32 via the refrigerant gas cooler 8 is equal, and the refrigeration load of the heat shield plate 3 is divided into two, the inlet and outlet gas of the shield The temperature difference is half that of cooling with one pipe, allowing more rational cooling.

この冷媒ガス冷却器として第2図に示すように、内管1
1aの外側に第1外管11d1第2外管12c1及び第
3外管13cを同じように配置し、各管の間を第1螺旋
状フイン11c1第2螺旋状フイン12b1及び第3螺
旋状フイン13bを夫々当接して装着し、複数個の管路
を構成したものを用いていた。
As shown in FIG. 2, this refrigerant gas cooler has an inner pipe 1
1a, the first outer tube 11d1, the second outer tube 12c1, and the third outer tube 13c are arranged in the same way, and the first spiral fin 11c1, the second spiral fin 12b1, and the third spiral fin are arranged between each tube. 13b were mounted in contact with each other to form a plurality of conduits.

第1管路を流れる高圧ヘリウムガス63は予冷冷凍機7
の低温端と伝熱部材10、第1管路内管11a壁及び第
1螺旋状フイン11bを介して熱交換が行なわれ、所定
の温度に冷却される。
The high-pressure helium gas 63 flowing through the first pipe is supplied to the pre-cooling refrigerator 7
Heat exchange is performed between the low-temperature end and the heat transfer member 10, the wall of the first inner pipe 11a, and the first spiral fin 11b, and the pipe is cooled to a predetermined temperature.

第2管路12を流れる高圧ヘリウムガス63は、第1螺
旋状フインllbからさらに第1外管11c及び第2螺
旋状フイン12aを介して熱交換が行なわれ、第3管路
13を流れる高圧ヘリウムガス63は、さらに第2外管
12b及′び第3螺旋状フイン13aを介して同様に行
なわれる。
The high-pressure helium gas 63 flowing through the second pipe line 12 undergoes heat exchange from the first spiral fin Ilb through the first outer pipe 11c and the second spiral fin 12a, and the high-pressure helium gas 63 flowing through the third pipe line 13 undergoes heat exchange. The helium gas 63 is further supplied in the same manner through the second outer tube 12b and the third spiral fin 13a.

しかし、以上のように構成された冷媒ガス冷却器8では
、各管路にそれぞれ高圧ヘリウムガス63を流すと、伝
熱部材10と各管路相互壁間の伝熱抵抗で、外側に位置
する管路の高圧ヘリウムガスの冷却温度が高くなり、複
数個の各管路の高圧ヘリウムガス63を同様に最低到達
温度に冷却できないという欠点があった。
However, in the refrigerant gas cooler 8 configured as described above, when high-pressure helium gas 63 is caused to flow through each pipe, heat transfer resistance between the heat transfer member 10 and the mutual walls of each pipe leads to There was a drawback that the cooling temperature of the high pressure helium gas in the pipes became high, and the high pressure helium gas 63 in each of the plurality of pipes could not be similarly cooled to the lowest temperature.

この考案は上記のような従来のものの欠点を除去するた
めになされたもので、伝熱部材の円筒軸に直角方向の伝
熱経路を持つ渦巻状管を、上記伝熱部材上に一定の間隔
を設けで並列した伝熱フィン上に固着することにより、
各管路を流れる高圧ヘリウムガスを均一に冷却できる冷
媒ガス冷却器を提供することを目的とする。
This idea was made in order to eliminate the drawbacks of the conventional ones as mentioned above.A spiral tube with a heat transfer path perpendicular to the cylindrical axis of the heat transfer member is placed on the heat transfer member at a constant interval. By providing and fixing on the parallel heat transfer fins,
It is an object of the present invention to provide a refrigerant gas cooler that can uniformly cool high-pressure helium gas flowing through each pipe.

以下、この考案の一実施例を図について説明する。An embodiment of this invention will be described below with reference to the drawings.

第3図において、10は従来のものと同形状の伝熱部材
であり、14a、14bおよび14cは上記伝熱部材1
0の外周に密着させ一定の間隔をおいて設けた第1、第
2および第3の伝熱フィン、15は上記第1伝熱フイン
14aの側部伝熱面に当接させて渦巻状に巻回し半田付
などにより冶金的に接合し、第1管路11を構成する第
1渦巻管、16および17は、第2伝熱フイン14bお
よび第3伝熱フイン14cに上記第1渦巻管15と同様
にそれぞれ接合し、第2管路12および第3管路13を
構成する第2渦巻管および第3渦巻管である。
In FIG. 3, 10 is a heat transfer member having the same shape as the conventional one, and 14a, 14b and 14c are the heat transfer members 1.
The first, second and third heat transfer fins 15, which are closely attached to the outer periphery of the heat transfer fin 14a and spaced apart from each other, are arranged in a spiral shape by contacting the side heat transfer surface of the first heat transfer fin 14a. The first spiral tubes 16 and 17 constituting the first conduit 11 are metallurgically joined by winding and soldering or the like, and the first spiral tubes 15 are connected to the second heat transfer fin 14b and the third heat transfer fin 14c. The second spiral tube and the third spiral tube are respectively joined in the same manner as in FIG.

このように構成された冷媒ガス冷却器8では、複数個の
管路にそれぞれ渦巻管の外側から内方向へ高圧ヘリウム
ガス63を流すと、各管路の高圧ヘリウムガス63は、
渦巻管壁、伝熱フィンおよび伝熱部材を介し予冷冷凍機
7の低温端(冷熱源)と熱交換し、冷却器出口ではS゛
同一温度に冷却される。
In the refrigerant gas cooler 8 configured in this way, when high-pressure helium gas 63 is caused to flow inward from the outside of the spiral tube through each of the plurality of pipes, the high-pressure helium gas 63 in each pipe is as follows.
Heat is exchanged with the low-temperature end (cold heat source) of the precooling refrigerator 7 through the spiral tube wall, heat transfer fins, and heat transfer member, and the temperature is cooled to the same temperature S at the outlet of the cooler.

なお第4図はこの考案の他の実施例を示すもので、伝熱
フィンの両氏熱面にそれぞれ渦巻管を設けた場合であり
、多流路の場合コンパクトに構成できる。
FIG. 4 shows another embodiment of this invention, in which spiral tubes are provided on both heating surfaces of the heat transfer fins, allowing for a compact configuration in the case of multiple channels.

第5図はこの考案の他のもう一つの実施例を示したもの
で、伝熱部材を各管路ユニットに切離し積層して多流路
を構成する様にした場合であり、工作が容易となり、ま
た各管路の接続配管方向を任意に選べることができる。
Figure 5 shows another embodiment of this invention, in which the heat transfer member is separated into each pipe unit and laminated to form a multi-channel unit, which makes the work easier. Moreover, the connecting direction of each pipe can be arbitrarily selected.

なお、上記実施例は、予冷冷凍機7を冷熱源とするもの
について説明したが、液体窒素、液体酸素等の冷媒を冷
熱源とするクライオスタットに広く適用しうろことは勿
論である。
Although the above embodiment has been described using the precooling refrigerator 7 as a cold source, it is of course applicable to a wide range of cryostats that use a refrigerant such as liquid nitrogen or liquid oxygen as a cold source.

以上述べたようにこの考案によれば、伝熱部材に直交す
る伝熱経路を有する複数の渦巻管を並列に配列するとと
もに、この渦巻管内の外側から内側に向って冷媒などの
流体を流通させるようにしたので、各渦巻管は単一の冷
熱源に対して必然的に同一温度条件の伝熱路が形成され
ることになり、各渦巻管内の冷媒ガスをそれぞれ一様の
温度に冷却することができる優れた効果を有するばかり
でなく、各渦巻管内の外側から内側に向って冷媒ガスを
流通させるようにすることによって、冷熱源と、各渦巻
管内の冷媒ガスとの熱交換が、対向流的な伝熱路を介し
て行い得るようになり、冷熱源のもつ寒冷を冷媒側に最
大限に有効に採り出してこれを有効に利用することがで
き、性能向上に著しく寄与する優れた実用的効果を有す
るものである。
As described above, according to this invention, a plurality of spiral tubes having heat transfer paths orthogonal to the heat transfer member are arranged in parallel, and a fluid such as a refrigerant is circulated from the outside to the inside of the spiral tubes. As a result, each spiral tube inevitably forms a heat transfer path with the same temperature conditions for a single cold source, and the refrigerant gas in each spiral tube is cooled to a uniform temperature. Not only does it have an excellent effect, but by circulating the refrigerant gas from the outside to the inside of each volute tube, heat exchange between the cold heat source and the refrigerant gas in each vortex tube can be carried out from the opposite side. This is now possible through a fluid heat transfer path, and the cold contained in the cold heat source can be extracted to the refrigerant side as effectively as possible and used effectively, making it an excellent technology that significantly contributes to improved performance. It has practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超電導マグネット装置の一例を示す路線図、第
2図は従来の冷媒ガス冷却器を示すもので、イはブ部破
断正面図、口は平面図、第3図はこの考案の一実施例を
示すもので、イは一部破断正面図、口は平面図、第4図
および第5図は夫々この考案の他の実施例を示す一部破
断正面図である。 図中、10は伝熱部材、14a、14b、14Cはそれ
ぞれ第1、第2、第3の伝熱フィン、15.16.17
はそれぞれ第1、第2、第3の渦巻管である。 尚図中同一符号は同−又は相当部分を示す。
Fig. 1 is a route map showing an example of a superconducting magnet device, Fig. 2 is a conventional refrigerant gas cooler, A is a cutaway front view of the bulge, the mouth is a plan view, and Fig. 3 is an example of this invention. Embodiment A is a partially cutaway front view, FIG. 4 is a plan view, and FIGS. 4 and 5 are partially cutaway front views showing other embodiments of this invention. In the figure, 10 is a heat transfer member, 14a, 14b, and 14C are first, second, and third heat transfer fins, respectively.
are the first, second, and third spiral tubes, respectively. Note that the same reference numerals in the drawings indicate the same or equivalent parts.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)一定温度に冷却された筒形の伝熱部材と、この伝
熱部材の外表面に一定の間隔をあけて垂直に植立した平
板状の複数個の伝熱フィンと、この各伝熱フィンの少な
くとも片側伝熱面上に冶金的に固着した渦巻管とによっ
て構成され、上記伝熱部材に直交する伝熱経路を有する
複数の管路を並列に配設し、上記渦巻管の外側から内側
に向って流体を流通させるようにしたことを特徴とする
冷媒ガス冷却器。
(1) A cylindrical heat transfer member cooled to a constant temperature, a plurality of flat heat transfer fins vertically planted on the outer surface of the heat transfer member at certain intervals, and each of the heat transfer fins. A spiral tube metallurgically fixed on at least one side of the heat transfer surface of the heat fin, and a plurality of conduits having heat transfer paths perpendicular to the heat transfer member are arranged in parallel, and the outer side of the spiral tube is arranged in parallel. A refrigerant gas cooler characterized in that fluid is caused to flow inward from the inside.
(2)伝熱フィンの両伝熱面上にそれぞれ渦巻状管を固
着したことを特徴とする実用新案登録請求の範囲第(1
)項記載の冷媒ガス冷却器。
(2) Utility model registration claim No. 1 characterized in that spiral tubes are fixed on both heat transfer surfaces of the heat transfer fin, respectively.
Refrigerant gas cooler described in ).
(3)伝熱部材を各管路ユニットごとに切離し、これら
を積層して多流路を構成したことを特徴とする実用新案
登録請求の範囲第(1)項または第(2)項記載の冷媒
ガス冷却器。
(3) Utility model registration claim 1 or 2, characterized in that the heat transfer member is separated into each conduit unit and laminated to form a multi-flow path. Refrigerant gas cooler.
JP18848980U 1980-12-27 1980-12-27 refrigerant gas cooler Expired JPS6016872Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18848980U JPS6016872Y2 (en) 1980-12-27 1980-12-27 refrigerant gas cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18848980U JPS6016872Y2 (en) 1980-12-27 1980-12-27 refrigerant gas cooler

Publications (2)

Publication Number Publication Date
JPS57114270U JPS57114270U (en) 1982-07-15
JPS6016872Y2 true JPS6016872Y2 (en) 1985-05-24

Family

ID=29992099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18848980U Expired JPS6016872Y2 (en) 1980-12-27 1980-12-27 refrigerant gas cooler

Country Status (1)

Country Link
JP (1) JPS6016872Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491828B2 (en) * 2014-07-09 2019-03-27 株式会社日立製作所 Superconducting magnet system

Also Published As

Publication number Publication date
JPS57114270U (en) 1982-07-15

Similar Documents

Publication Publication Date Title
JP3323568B2 (en) Multi-stage thermosiphon with built-in plate fin heat exchanger
CN103968878A (en) Low-temperature pulsating heat tube experiment apparatus
JPS60117061A (en) Condenser of evaporation and outflow of liquid refrigerant
US2405722A (en) Heat exchange structure
US6578629B1 (en) Application of heat pipe science to heating, refrigeration and air conditioning systems
JP2002267289A (en) Plate heat exchanger
CN102538388A (en) Three-stream spiral wound type heat exchange equipment for secondary refrigeration and low-temperature liquefaction of LNG (liquefied natural gas)
CN101629767A (en) Dual-temperature industrial water cooling machine set
JPS6016872Y2 (en) refrigerant gas cooler
JP2003269822A (en) Heat exchanger and refrigerating cycle
JPH0586050B2 (en)
CN207180104U (en) A kind of air cooled condenser
JPH01142389A (en) Heat exchanger for high-purity fluid
US4289197A (en) Heat exchanger
JPH04198839A (en) Heat absorbing wall for space environment testing apparatus
GB2149901A (en) Low temperature containers
CN214792729U (en) Integrated air cooler
JPS59222906A (en) Current lead for superconductive coil
CN217737991U (en) Novel multi-fluid tank sleeve combined heat exchanger
CN216282124U (en) Efficient water chilling unit
CN210505562U (en) Crude hydrofluoric acid primary cooler
JPS60201197A (en) Cryogenic fluid transport piping
CN211739569U (en) Condenser for air conditioner
JP2546256Y2 (en) Laminated plate heat exchanger
JPS62299005A (en) Superconducting magnet device