JPH01142389A - Heat exchanger for high-purity fluid - Google Patents

Heat exchanger for high-purity fluid

Info

Publication number
JPH01142389A
JPH01142389A JP30003187A JP30003187A JPH01142389A JP H01142389 A JPH01142389 A JP H01142389A JP 30003187 A JP30003187 A JP 30003187A JP 30003187 A JP30003187 A JP 30003187A JP H01142389 A JPH01142389 A JP H01142389A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
outer tank
heat transfer
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30003187A
Other languages
Japanese (ja)
Inventor
Yoshio Kobayashi
小林 喜雄
Shozo Onishi
省三 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Reinetsu KK
Original Assignee
Hitachi Reinetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Reinetsu KK filed Critical Hitachi Reinetsu KK
Priority to JP30003187A priority Critical patent/JPH01142389A/en
Publication of JPH01142389A publication Critical patent/JPH01142389A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the speed of fluid around a heat transfer tube and improve heat transmission coefficient by a method wherein a heat transfer tube, connected to a high-purity fluid pipeline system, is arranged in the shape of a coil between an outer tank and an inner tank arranged concentrically and provided with a connecting port to be connected to a heat source pipeline system. CONSTITUTION:High-temperature circulating water enters into the outer tank 2 of a heat exchanger 1 through an inlet port 2a and flows upwardly through an annular space between the outer tank 2 and an inner tank 3 while contacting with a heat transfer tube 4. The circulating water filling the outer tank 2 flows into the inner tank 3 and flows out of the outlet port 3a of the bottom of the inner tank to make circulation. On the other hand, ultra-pure water enters into the heat transfer tube 4 through an inlet port 4a and effects heat exchange between high-temperature circulating water while heated ultra-pure water flows out of an outlet port 4b and is supplied to demanding sites. According to this method, the flow passage of heat medium or circulating water is narrowed by the outer tank 2, the inner tank 3 and the heat transfer tube 4; therefore, a sufficient flow speed may be obtained, a heat transmission coefficient may be improved and the heat exchanger can be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度流体用熱交換器に係り、特に、例えば
超純水等の高純度流体を、その純度を低下させることな
く熱交換するのに好適な高純度流体用熱交換器に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat exchanger for high-purity fluids, and in particular, for heat exchange of high-purity fluids such as ultrapure water without reducing its purity. The present invention relates to a high-purity fluid heat exchanger suitable for

〔従来の技術〕[Conventional technology]

従来、熱源配管系を循環する熱媒体と、高純度流体配管
系を流通する、例えば超純水等の高純度流体とを熱交換
する装置としては、熱媒体を満たす槽内にテフロン製チ
ューブをコイル状にした伝熱管を装備させ、伝熱管内に
高純度流体を流通させるようにしていた。あるいは、高
純度流体を槽内に、熱媒体を伝熱管に流通させるものも
あった。
Conventionally, as a device for exchanging heat between a heat medium circulating in a heat source piping system and a high-purity fluid such as ultrapure water flowing in a high-purity fluid piping system, a Teflon tube is placed in a tank filled with the heat medium. It was equipped with a coiled heat exchanger tube, and a high purity fluid was made to flow inside the heat exchanger tube. Alternatively, there was also one in which a high-purity fluid was passed through a tank and a heat medium was passed through a heat transfer tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のいずれの装置にしても、検測の流体速度を容易に
大きくできないことから、装置全体の熱貫流率が小さく
、その結果、熱交換器が大形化するという問題があった
In any of the above devices, since the fluid velocity for measurement cannot be easily increased, the heat transmission coefficient of the entire device is low, and as a result, there is a problem that the heat exchanger becomes large.

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、伝熱管周りの流体速度を大きくシ、熱貫流
率を向上して熱交換器を小形化した高純度流体用熱交換
器の提供を、その目的とするものである。
The present invention was made in order to solve the problems of the prior art described above, and is a heat exchanger for high-purity fluid that increases the fluid velocity around the heat transfer tube, improves the heat transmission coefficient, and downsizes the heat exchanger. Its purpose is to provide vessels.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために1本発明に係る高純度流体用
熱交換器の構成は、熱源配管系の熱媒体と高純度流体配
管系の高純度流体とを熱交換する高純度流体用熱交換器
であって、前記熱源配管系との接続口を有する外槽と、
この外槽と同心状に当該外槽内に配設され、前記熱源配
管系との接続口を有する内槽とを備え、これら外槽と内
槽との間に形成される前記熱媒体の流通すべき領域内に
In order to achieve the above objects, the configuration of the high purity fluid heat exchanger according to the present invention is a high purity fluid heat exchanger for exchanging heat between the heat medium in the heat source piping system and the high purity fluid in the high purity fluid piping system. an outer tank having a connection port with the heat source piping system;
An inner tank is provided concentrically with the outer tank and has a connection port with the heat source piping system, and a flow of the heat medium is formed between the outer tank and the inner tank. within the should area.

前記高純度流体配管系に接続する伝熱管をコイル状に配
設したものである。
Heat exchanger tubes connected to the high-purity fluid piping system are arranged in a coil shape.

〔作用〕[Effect]

上記の技術的手段による働きを、外槽底部に熱媒体流入
口、内槽底部に熱媒体流出口をそれぞれ熱源配管系との
接続口として設けた例によって説明する。
The operation of the above technical means will be explained using an example in which a heat medium inlet is provided at the bottom of the outer tank and a heat medium outlet is provided at the bottom of the inner tank as connection ports with the heat source piping system.

熱源配管系から送給された水等の熱媒体は、外槽底部の
熱媒体流入口から熱交換器内に入り、外槽と内槽とによ
り形成されたリング状空間領域を伝熱管に接触しながら
上方へ溜ってゆき上端まで達すると内槽内へ流れ込み、
内槽底部の熱媒体流出口から熱源配管系へ戻って以下循
環する。
The heat medium such as water supplied from the heat source piping system enters the heat exchanger through the heat medium inlet at the bottom of the outer tank, and contacts the heat transfer tubes through the ring-shaped space area formed by the outer tank and the inner tank. It accumulates upwards, and when it reaches the top, it flows into the inner tank.
The heat medium returns to the heat source piping system from the heat medium outlet at the bottom of the inner tank and is circulated thereafter.

一方、超純水等の高純度流体は、高純度流体配管系から
伝熱管へ入り、熱媒体と熱交換したのち高純度配管系を
経て需要先へ供給される。
On the other hand, high-purity fluid such as ultra-pure water enters the heat transfer tube from the high-purity fluid piping system, exchanges heat with the heat medium, and then is supplied to the consumer via the high-purity piping system.

−このとき、熱媒体の流路が、外槽、内槽、および伝熱
管により狭められるために十分な流速が得られ、熱貫流
率が向上し、結果として熱交換器は小形のものでよいこ
とになる。
- At this time, the flow path of the heat medium is narrowed by the outer tank, inner tank, and heat transfer tubes, so a sufficient flow rate is obtained, improving the heat transfer coefficient, and as a result, the heat exchanger can be small. It turns out.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図および第2図を参照し
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、本発明の一実施例に係る純水用熱交換器を備
えた純水加温装置の系統図、第2図は、その純水用熱交
換器の略示構成図である。
FIG. 1 is a system diagram of a pure water heating device equipped with a pure water heat exchanger according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of the pure water heat exchanger. .

第1,2図において、1は、高純度流体用熱交換器に係
る純水用熱交換器、2は、純水用熱交換器を構成する外
槽、3は、純水用熱交換器を構成する内槽で、この内槽
3は、外槽2と同心状に当該外槽2内に配設されている
64は、高純度流体に係る超純水を流通させる伝熱管で
あり、この伝熱管4は、例えばテフロン製のチューブを
コイル状にして、外槽2と内槽3との間に形成されるリ
ング状空間領域に螺旋状に配設している。この伝熱管4
は、途中に継手のない単管を曲げてコイル状にしたもの
である65は、外槽2と内槽3との空間を確保し、かつ
流路の案内板を兼ねるスペーサであり、前記空間に複数
個取付けるものである。
In Figures 1 and 2, 1 is a pure water heat exchanger related to a high purity fluid heat exchanger, 2 is an outer tank constituting the pure water heat exchanger, and 3 is a pure water heat exchanger. This inner tank 3 is arranged in the outer tank 2 concentrically with the outer tank 2. 64 is a heat transfer tube through which ultrapure water related to a high purity fluid flows, The heat transfer tube 4 is a coiled tube made of, for example, Teflon, and is spirally arranged in a ring-shaped space region formed between the outer tank 2 and the inner tank 3. This heat exchanger tube 4
65 is a spacer that secures a space between the outer tank 2 and the inner tank 3 and also serves as a guide plate for the flow path. Multiple units are to be installed on the

6は、外槽2の上部に設ける蓋、7は、その蓋6に設け
た自動エア抜き弁である。
6 is a lid provided on the upper part of the outer tank 2, and 7 is an automatic air vent valve provided on the lid 6.

8は、高純度流体配管に係る純水配管系で、純水流入口
4a、純水流出口4bの面接続口を介して上記の伝熱管
4に接続している。
Reference numeral 8 denotes a pure water piping system related to high-purity fluid piping, which is connected to the heat exchanger tube 4 through a surface connection port of a pure water inlet 4a and a pure water outlet 4b.

9は、熱源水となる冷水の配管系である。9 is a piping system for cold water serving as a heat source water.

10は、冷媒ガスを圧縮する圧縮機、11は凝縮器、1
2は膨張弁、13は、蒸発器として機能する水冷却器、
14は、これら機器を接続して冷凍サイクルを構成する
ための冷媒管路である。
10 is a compressor that compresses refrigerant gas; 11 is a condenser; 1
2 is an expansion valve; 13 is a water cooler that functions as an evaporator;
14 is a refrigerant pipe line for connecting these devices to form a refrigeration cycle.

15は、熱源配管系に係る循環水配管系で、本実施例で
は熱媒体として水が用いられている。
Reference numeral 15 denotes a circulating water piping system related to the heat source piping system, in which water is used as the heat medium in this embodiment.

16は、循環水配管系に実線矢印のように水を循環させ
る循環ポンプである。循環水配管系15は、上記の外槽
2の底部に設けた循環水流人口2a、および内槽3の底
部に設けた循環水流出口3aの面接続口を介して純水用
熱交換器1に接続している。
Reference numeral 16 denotes a circulation pump that circulates water in the circulating water piping system as indicated by the solid line arrow. The circulating water piping system 15 is connected to the pure water heat exchanger 1 through the surface connection port of the circulating water flow port 2a provided at the bottom of the outer tank 2 and the circulating water outlet 3a provided at the bottom of the inner tank 3. Connected.

次に、このような純水加温装置の作用を第1゜2図を参
照して説明する6図中、実線矢印は熱媒体である循環水
の流れの方向、破線矢印は、熱源水である冷水の流れの
方向、2点鎖線矢印は、高純度流体である超純水の流れ
の方向を示している。
Next, the operation of such a pure water heating device will be explained with reference to Figures 1 and 2. In Figure 6, the solid line arrows indicate the flow direction of the circulating water, which is the heat medium, and the broken line arrows indicate the flow direction of the heat source water. The direction of flow of certain cold water, the dashed-dot arrow, indicates the direction of flow of ultrapure water, which is a high-purity fluid.

圧縮機10から吐出される高温高圧の冷媒ガスは、凝縮
器11において循環水配管系15の循環水に放熱し、冷
媒は凝縮液化する。低温となった液冷媒は膨張弁12を
経て減圧され、水冷却器13に入り、ここで冷水配管系
9の冷水と熱交換して液冷媒は蒸発気化する。気化した
低温低圧の冷媒ガスは圧縮機10に戻り以下同じサイク
ルを繰り返す。
The high-temperature, high-pressure refrigerant gas discharged from the compressor 10 radiates heat to the circulating water of the circulating water piping system 15 in the condenser 11, and the refrigerant is condensed and liquefied. The low-temperature liquid refrigerant is depressurized through the expansion valve 12 and enters the water cooler 13, where it exchanges heat with the cold water in the cold water piping system 9 and evaporates. The vaporized low-temperature, low-pressure refrigerant gas returns to the compressor 10 and repeats the same cycle.

凝縮器11で加熱された高温の循環水は循環水流人口2
aから純水用熱交換器1の外槽2内に入り、外槽2と内
槽3との間に形成されているリング状の空間領域を伝熱
管4に接触しながら上方へ溜ってゆき、外槽2を満たし
た循環水は内槽3内へ流れ込み、内槽底部の循環水流中
口3aから循環水配管系15へ戻って以下循環する。
The high temperature circulating water heated by the condenser 11 has a circulating water flow population 2
It enters the outer tank 2 of the pure water heat exchanger 1 from a, and moves upward through the ring-shaped space area formed between the outer tank 2 and the inner tank 3 while coming into contact with the heat transfer tubes 4. The circulating water that filled the outer tank 2 flows into the inner tank 3, returns to the circulating water piping system 15 from the circulating water flow center opening 3a at the bottom of the inner tank, and is circulated thereafter.

一方、純水配管系8の超純水は、純水流入口4aから伝
熱管4内へ入り、高温の循環水と熱交換して加温され、
加温された超純水は純水流出口4bから純水配管系8を
経て需要先へ供給される。
On the other hand, the ultrapure water in the pure water piping system 8 enters the heat transfer tube 4 from the pure water inlet 4a and is heated by exchanging heat with the high temperature circulating water.
The heated ultrapure water is supplied from the pure water outlet 4b to the consumer via the pure water piping system 8.

本実施例の純水用熱交換器によれば、熱媒体である循環
水の流路が、外槽2、内槽3、および伝熱管4により狭
められるため十分な流速が得られ、熱貫流率が向上し、
結果として熱交換器は小形のものでよいことになる。
According to the pure water heat exchanger of this embodiment, the flow path of the circulating water, which is a heat medium, is narrowed by the outer tank 2, the inner tank 3, and the heat transfer tube 4, so that a sufficient flow rate can be obtained, and the heat exchange rate has improved,
As a result, the heat exchanger can be small.

そこで、本実施例の効果を、熱貫流率の数値で従来技術
と比較してみる。
Therefore, the effect of this embodiment will be compared with the conventional technology in terms of the heat transfer coefficient.

本実施例の内槽のある純水用熱交換器に関し、伝熱管は
、テフロン製で、外径12mm、内径111、管肉厚0
.5mmのものを用い、伝熱管周囲の循環水の流速およ
び熱貫流率を実験により測定した。
Regarding the pure water heat exchanger with an inner tank of this example, the heat transfer tube is made of Teflon, has an outer diameter of 12 mm, an inner diameter of 111 mm, and a tube wall thickness of 0.
.. Using a 5 mm tube, the flow velocity and heat transmission coefficient of circulating water around the heat exchanger tube were measured by experiment.

その結果、最大流速U、a、= 0 、26 m/ s
で強制対流となり、熱貫流率に坤290kcaQ /m
2h℃であった。
As a result, the maximum flow velocity U,a, = 0, 26 m/s
Forced convection occurs, resulting in a heat transfer coefficient of 290 kcaQ/m
It was 2h°C.

一方、内槽のない従来の純水用熱交換器について、上記
と同寸法のテフロン製伝熱管を装備し、槽の上部から循
環水を流入させ槽底部から流出させる条件で、最大流速
および熱貫流率を文献のデータを参照して推定した。文
献としては、「伝熱工学資料 改訂第3版」2日本機械
学会、昭和50年2月発行 を参照した。
On the other hand, regarding a conventional pure water heat exchanger without an inner tank, it is equipped with Teflon heat exchanger tubes of the same dimensions as above, and the maximum flow rate and heat exchanger are The penetration rate was estimated with reference to literature data. As for the literature, "Heat Transfer Engineering Materials Revised Third Edition" 2, Japan Society of Mechanical Engineers, published in February 1975 was referred to.

熱媒体が槽内を均一な速度分布で降下すると仮定すると
、熱媒体である循環水の最大流速は、U−ax= 0 
、042 m/ sと推定される。しかし、実際には、
伝熱管の配置が密になるため、伝熱管付近が死水となり
、上記の流速は期待できない。
Assuming that the heating medium descends in the tank with a uniform velocity distribution, the maximum flow rate of the circulating water, which is the heating medium, is U-ax = 0
, 042 m/s. However, in reality,
Since the heat exchanger tubes are arranged closely, the area near the heat exchanger tubes becomes dead water, and the above flow rate cannot be expected.

この場合、循環水の流れは、強制、自然共存対流となり
、さらに壁部による干渉がある。いずれにしても熱貫流
率は文献記載のデータを参照して推定せざるを得ないも
のである。
In this case, the flow of circulating water is forced and natural convection, and there is also interference from the wall. In any case, the thermal transmission coefficient must be estimated with reference to data described in literature.

一般に、熱貫流率には式(1)で表わされる。Generally, the heat transmission coefficient is expressed by equation (1).

K =(Ro+ RT+ R五十 R1)−1・・・(
1)ここで Ro:管外表面の熱抵抗 RT :管自体の熱抵抗 RI :管内表面の熱抵抗 R1:管外よごれの熱抵抗 RO=α0″″1 α0:管外表面熱伝導率 また、 α0: N umλ/d           ・・・
(2)ここで、λ :流体の熱伝導率 d :管外径 Nu+s:平均ヌセルト数 「伝熱工学資料 改訂第3版J P、37より、平均ヌ
セルト数は式(3)で表わされる。
K = (Ro+ RT+ R50 R1)-1...(
1) Here, Ro: Thermal resistance of the outer surface of the tube RT: Thermal resistance of the tube itself RI: Thermal resistance of the inner surface of the tube R1: Thermal resistance of dirt outside the tube RO=α0″″1 α0: Thermal conductivity of the outer surface of the tube α0: N umλ/d...
(2) Here, λ: Fluid thermal conductivity d: Pipe outer diameter Nu+s: Average Nusselt number From "Heat Transfer Engineering Materials Revised 3rd Edition JP, 37, the average Nusselt number is expressed by equation (3).

Nu*= 0 、53 CGrx−P rt)”’  
    −(3)ここで、G r t aグラスホフ数 Przニブラントル数 この式(3)に従来技術の条件の諸数値を代入して計算
するが、煩雑であるから結果のみ示せば、N□句14.
2  となり、前記[伝熱工学資料 改訂第3版JP、
39 第6図より、伝熱管群の平均ヌセルト数N ul
l’  は次のように推定される。
Nu*= 0, 53 CGrx-P rt)"'
-(3) Here, G r t a Grashof number Prz Nybrandtl number Calculation is performed by substituting various numerical values of the conditions of the prior art into this equation (3), but since it is complicated, only the results are shown. N□ clause 14 ..
2, and the above [Heat Transfer Engineering Materials Revised 3rd Edition JP,
39 From Figure 6, the average Nusselt number N ul of the heat exchanger tube group
l' is estimated as follows.

Nun”F Nun X 0 、5 = 7 、1よっ
て式(2)から αo4330kcaQ/m”h’c Ro= 3 、03 X 10−3m”h ’C/kc
a Qそこで、式(1)から に4170kcaQ/m”h”c  と推定される。
Nun"F Nun
a Q Therefore, from equation (1), it is estimated to be 4170 kcaQ/m"h"c.

したがって、本実施例によれば従来技術にくらべ、熱貫
流率は約70%向上したことになる。
Therefore, according to this example, the heat transmission coefficient is improved by about 70% compared to the conventional technology.

熱貫流率の向上による熱交換器の小形化のほか、第1,
2図の実施例によれば次の効果もある。
In addition to reducing the size of the heat exchanger by improving the heat transmission coefficient,
The embodiment shown in FIG. 2 also has the following effects.

すなわち、熱媒体と接触する範囲では、伝熱管。That is, heat exchanger tubes in the area where they come into contact with the heat transfer medium.

には継目がないため、熱媒体の水が高純度流体の超純水
に混入する恐れがなく、かつす伝熱管が螺旋状に配設さ
れているため、伝熱管内の液体を排出するときもスムー
ズに行うことができる。
Because there are no joints, there is no risk of the heat medium water getting mixed with the high-purity fluid ultrapure water, and the heat exchanger tubes are arranged in a spiral, so when discharging the liquid inside the heat exchanger tubes, It can also be done smoothly.

また、内槽3内は循環水の温水が満たされて蓄熱槽とし
ての機能を有するものである。
Furthermore, the inner tank 3 is filled with warm circulating water and functions as a heat storage tank.

なお、前述の実施例では、純水用熱交換器を備えた純水
加温装置の例を説明したが、本発明はこれに限らず、純
水用熱交換器を純水冷却装置に適用してもよいことは言
うまでもない。
In addition, in the above embodiment, an example of a pure water heating device equipped with a pure water heat exchanger was explained, but the present invention is not limited to this, and the pure water heat exchanger can be applied to a pure water cooling device. Needless to say, it is okay to do so.

また、前述の純水加温装置では、熱源配管系の熱媒体は
冷凍サイクルの凝縮器部で加熱されているが、このほか
熱源配管系中に蓄熱槽を装備してもよいことは言うまで
もない。
Furthermore, in the pure water heating device described above, the heat medium in the heat source piping system is heated in the condenser section of the refrigeration cycle, but it goes without saying that a heat storage tank may also be installed in the heat source piping system. .

さらに、第2図に示す純水用熱交換器では、伝熱管は単
管を螺旋状に配設したものを示しているが、純水流入、
流出口にヘッダーを設けて伝熱管を複数管群、螺旋状に
配設しても差支えない。
Furthermore, in the pure water heat exchanger shown in Fig. 2, the heat exchanger tubes are shown as single tubes arranged in a spiral shape, but the pure water inflow,
There is no problem even if a header is provided at the outlet and the heat transfer tubes are arranged in a plurality of tube groups in a spiral shape.

またさらに、前述の実施例では純水用熱交換器の例を説
明したが、本発明はこれに限定されるものでなく、他の
高純度流体の加温、冷却等にも適用できるものである。
Further, in the above-mentioned embodiments, an example of a heat exchanger for pure water was explained, but the present invention is not limited to this, and can be applied to heating, cooling, etc. of other high-purity fluids. be.

また、前述の実施例では、第2図に示したように、外槽
2の底部に循環水流人口2aを設け、内4’!i3の底
部に循環水流出口3aを設け、実線矢印のように熱媒体
を流通させる例を説明したが、本発明はこれに限定され
るものではない。例えば、内槽側に循環水流入口を設け
、外槽側に循環水流出口を設け、内槽を満たした熱媒体
が外槽へ流れ込み高純水の流通する伝熱管と熱交換する
ように構成しても同様の効果が期待されるものである。
Further, in the above embodiment, as shown in FIG. 2, the circulating water flow 2a is provided at the bottom of the outer tank 2, and the inner 4'! Although an example has been described in which the circulating water outlet 3a is provided at the bottom of i3 and the heat medium is circulated as shown by the solid arrow, the present invention is not limited to this. For example, a structure may be constructed in which a circulating water inlet is provided on the inner tank side and a circulating water outlet is provided on the outer tank side, so that the heat medium filling the inner tank flows into the outer tank and exchanges heat with the heat transfer tube through which high-purity water flows. Similar effects are expected.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、伝熱管周りの流体
速度を大きくし、熱貫流率を向上して熱交換器を小形化
した高純度流体用熱交換器を提供することができる。
As described above, according to the present invention, it is possible to provide a heat exchanger for high-purity fluid in which the fluid velocity around the heat transfer tubes is increased, the heat transmission coefficient is improved, and the heat exchanger is downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る純水用熱交換器を備
えた純水加温装置の系統図、第2図は、その純水用熱交
換器の略示構成図である。 1・・・純水用熱交換器、2・・・外槽、2a・・・循
環水流入口、3・・・内槽、3a・・・循環水流出口、
4・・・伝熱管、4a・・・純水流入口、4b・・・純
水流出口、8・・・純水配管系、10・・・圧縮機、1
1・・・凝縮器、13・・・水冷却器、15・・・循環
水配管系、16・・・循環ポンプ。
FIG. 1 is a system diagram of a pure water heating device equipped with a pure water heat exchanger according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of the pure water heat exchanger. . 1... Heat exchanger for pure water, 2... Outer tank, 2a... Circulating water inlet, 3... Inner tank, 3a... Circulating water outlet,
4... Heat exchanger tube, 4a... Pure water inlet, 4b... Pure water outlet, 8... Pure water piping system, 10... Compressor, 1
1... Condenser, 13... Water cooler, 15... Circulating water piping system, 16... Circulating pump.

Claims (1)

【特許請求の範囲】[Claims] 1、熱源配管系の熱媒体と高純度流体配管系の高純度流
体とを熱交換する高純度流体用熱交換器であつて、前記
熱源配管系との接続口を有する外槽と、この外槽と同心
状に当該外槽内に配設され、前記熱源配管系との接続口
を有する内槽とを備え、これら外槽と内槽との間に形成
される前記熱媒体の流通すべき領域内に、前記高純度流
体配管系に接続する伝熱管をコイル状に配設したことを
特徴とする高純度流体用熱交換器。
1. A high-purity fluid heat exchanger for exchanging heat between a heat medium in a heat source piping system and a high-purity fluid in a high-purity fluid piping system, which comprises an outer tank having a connection port with the heat source piping system, and the outer tank. an inner tank disposed concentrically within the outer tank and having a connection port with the heat source piping system; 1. A heat exchanger for high-purity fluid, characterized in that heat exchanger tubes connected to the high-purity fluid piping system are arranged in a coil shape within the region.
JP30003187A 1987-11-30 1987-11-30 Heat exchanger for high-purity fluid Pending JPH01142389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30003187A JPH01142389A (en) 1987-11-30 1987-11-30 Heat exchanger for high-purity fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30003187A JPH01142389A (en) 1987-11-30 1987-11-30 Heat exchanger for high-purity fluid

Publications (1)

Publication Number Publication Date
JPH01142389A true JPH01142389A (en) 1989-06-05

Family

ID=17879874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30003187A Pending JPH01142389A (en) 1987-11-30 1987-11-30 Heat exchanger for high-purity fluid

Country Status (1)

Country Link
JP (1) JPH01142389A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428495B1 (en) * 2000-07-24 2004-04-28 한국에너지기술연구원 Double-tube hot water tank with heat exchange tube
KR100644931B1 (en) * 2004-09-23 2006-11-15 전석영 Heat exchanger for boiler
CN103017578A (en) * 2011-09-21 2013-04-03 浚鑫科技股份有限公司 Pure water heating system
US10392065B2 (en) 2014-06-16 2019-08-27 Ino Vision Ltd. Bicycle seat and lock assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436653A (en) * 1977-08-25 1979-03-17 Nitsushin Kemikaru Kougiyou Kk Heat exchanger for chemicals
JPS57139245A (en) * 1981-02-14 1982-08-28 Akuro Enaajii Corp Heat exchanger combined drain apparatus for solar heat collector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436653A (en) * 1977-08-25 1979-03-17 Nitsushin Kemikaru Kougiyou Kk Heat exchanger for chemicals
JPS57139245A (en) * 1981-02-14 1982-08-28 Akuro Enaajii Corp Heat exchanger combined drain apparatus for solar heat collector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428495B1 (en) * 2000-07-24 2004-04-28 한국에너지기술연구원 Double-tube hot water tank with heat exchange tube
KR100644931B1 (en) * 2004-09-23 2006-11-15 전석영 Heat exchanger for boiler
CN103017578A (en) * 2011-09-21 2013-04-03 浚鑫科技股份有限公司 Pure water heating system
US10392065B2 (en) 2014-06-16 2019-08-27 Ino Vision Ltd. Bicycle seat and lock assembly

Similar Documents

Publication Publication Date Title
US6351951B1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
CN108962484A (en) Hyperconductive cable crosses ice chest, cooling system and cooling means with phase-change heat-exchange
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
JPH0527037B2 (en)
JPH01142389A (en) Heat exchanger for high-purity fluid
EP3842724B1 (en) Heat exchanger and heat exchange system including the same
CN210512743U (en) Novel explosion-proof heat exchanger
CN108106466A (en) A kind of corrosion-resistant and high-temperature resistant is without leakage formula quartz heat-exchanger rig and preparation method
CN208832731U (en) Heat exchanger, heat-exchanging water tank and heat-exchange system
Maghrabie et al. Influence of shell and helically coiled tube heat exchanger position on its thermal performance
JPS5836265B2 (en) Heat exchanger for chilled water production equipment
CN207422952U (en) A kind of heat exchanger of Combined type belt heating arrangements
JPS6016872Y2 (en) refrigerant gas cooler
JPS63254397A (en) Built-in fan type heat exchange tube
CN219502003U (en) Device for chlorination condensation process
US1423695A (en) Heat exchanger or condenser
CN206930187U (en) Votator
KR200349474Y1 (en) Thermosiphon Heat Pipe Type Heat Exchanger
CN209588437U (en) A kind of refrigerator
JPH0468558B2 (en)
JPS621583Y2 (en)
JPH05312300A (en) Vaporizer for low temperature liquid
JPH0547956Y2 (en)
JPS5925952B2 (en) Regenerative refrigerant natural circulation heat transfer device