JP6021791B2 - Permanent current switch and superconducting device equipped with it - Google Patents

Permanent current switch and superconducting device equipped with it Download PDF

Info

Publication number
JP6021791B2
JP6021791B2 JP2013245952A JP2013245952A JP6021791B2 JP 6021791 B2 JP6021791 B2 JP 6021791B2 JP 2013245952 A JP2013245952 A JP 2013245952A JP 2013245952 A JP2013245952 A JP 2013245952A JP 6021791 B2 JP6021791 B2 JP 6021791B2
Authority
JP
Japan
Prior art keywords
permanent current
current switch
superconducting
winding frame
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013245952A
Other languages
Japanese (ja)
Other versions
JP2014209543A (en
Inventor
泰昭 寺尾
孝史 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013245952A priority Critical patent/JP6021791B2/en
Publication of JP2014209543A publication Critical patent/JP2014209543A/en
Application granted granted Critical
Publication of JP6021791B2 publication Critical patent/JP6021791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/02Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers by conversion into electric waveforms and subsequent integration, e.g. using tachometer generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/02Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers by conversion into electric waveforms and subsequent integration, e.g. using tachometer generator
    • G01C22/025Differential odometers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1293Printer information exchange with computer
    • G06F3/1295Buffering means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/12Digital output to print unit, e.g. line printer, chain printer
    • G06F3/1297Printer code translation, conversion, emulation, compression; Configuration of printer parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2215/00Arrangements for producing a permanent visual presentation of the output data
    • G06K2215/0082Architecture adapted for a particular function
    • G06K2215/0088Collated printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)

Description

本発明は、超電導による永久電流が流れる閉回路を形成する永久電流スイッチ、及びその永久電流スイッチを備える超電導装置に関する。 The present invention relates to a permanent current switch that forms a closed circuit through which a permanent current flows by superconductivity, and a superconducting device including the permanent current switch.

例えばMRI(磁気共鳴画像)装置やNMR(核磁気共鳴)装置など、静磁場を発生させる必要がある装置では、超電導磁石(超電導マグネット)を永久電流モードで運転することで静磁場を発生させる。永久電流モードとは、永久電流によって超電導磁石を励磁することを意味し、永久電流モードで超電導磁石を運転するには、超電導線で構成され、超電導磁石が組み込まれた閉回路に永久電流を流さなくてはならない。 For example, in a device that needs to generate a static magnetic field, such as an MRI (magnetic resonance imaging) device or an NMR (nuclear magnetic resonance) device, a superconducting magnet (superconducting magnet) is operated in a permanent current mode to generate a static magnetic field. Permanent current mode means exciting a superconducting magnet with a permanent current, and in order to operate a superconducting magnet in the permanent current mode, a permanent current is passed through a closed circuit composed of superconducting wires and incorporating the superconducting magnet. Must-have.

超電導磁石が組み込まれた閉回路に永久電流を流すには、まず、切断された閉回路の外部の電源から超電導磁石に電流を供給し、超電導磁石に流れる電流値が定格に達した後に閉回路を接続して、供給された電流を超電導線で構成された閉回路に閉じ込める。この閉じ込められた電流が、永久電流として閉回路を流れるが、上記閉回路の切断及び接続は、閉回路において超電導磁石に接続された永久電流スイッチによって切り換えられる。この永久電流スイッチは、超電導磁石を含む閉回路を構成するのに必要な部材であり、永久電流スイッチとしては、熱式、磁気式、機械式などの方式が考案されているが、作製の容易さから「熱式の永久電流スイッチ」が主に採用されている。 In order to pass a permanent current through a closed circuit in which a superconducting magnet is incorporated, first, a current is supplied to the superconducting magnet from an external power source of the cut closed circuit, and after the current value flowing through the superconducting magnet reaches the rating, the closed circuit Is connected to confine the supplied current in a closed circuit composed of superconducting wires. This confined current flows through the closed circuit as a permanent current, and the disconnection and connection of the closed circuit is switched by the permanent current switch connected to the superconducting magnet in the closed circuit. This permanent current switch is a member necessary for forming a closed circuit including a superconducting magnet. As the permanent current switch, a thermal type, a magnetic type, a mechanical type, or the like has been devised, but it is easy to manufacture. Therefore, "thermal permanent current switches" are mainly used.

具体的に、熱式の永久電流スイッチは、永久電流スイッチ自体の内部に組み込まれたヒータへの通電を制御することで、該永久電流スイッチを構成する超電導線を、超電導状態(スイッチON状態)又は常伝導状態(スイッチOFF状態)に切り換える。この切り換えによって超電導線を超電導状態(スイッチON状態)にすれば、超電導磁石が組み込まれた閉回路が形成されるので、外部の電源から供給された電流を閉回路に閉じ込めて超電導磁石を永久電流モードで励磁することができる。逆に、永久電流スイッチの超電導線を常伝導状態(スイッチOFF状態)にすれば、閉回路が切断されるので、永久電流モードは解消される。 Specifically, the thermal type permanent current switch controls the energization of the heater incorporated inside the permanent current switch itself to bring the superconducting wires constituting the permanent current switch into a superconducting state (switch ON state). Or switch to the normal conduction state (switch OFF state). If the superconducting wire is put into the superconducting state (switch ON state) by this switching, a closed circuit incorporating the superconducting magnet is formed, so that the current supplied from the external power supply is confined in the closed circuit and the superconducting magnet is permanently currented. Can be excited in mode. On the contrary, if the superconducting wire of the permanent current switch is set to the normal conduction state (switch OFF state), the closed circuit is disconnected and the permanent current mode is eliminated.

このような永久電流スイッチはすでに周知であるが、その構成及び動作については、特許文献1〜3に示すような様々な工夫がなされている。
特許文献1に開示の永久電流スイッチは、冷凍機によって伝導冷却される超電導コイルと並列に接続され、前記冷凍機によって伝導冷却されて前記超電導コイルに流れる電流のスイッチングを行う永久電流スイッチにおいて、スイッチ用超電導線が巻回された巻き線部と、該巻き線部を加熱するヒータと、巻き線部に当接する断熱材とを含むとともに、巻き線部を断熱材を介して伝導冷却する冷却部材を配置したことを特徴とするものである。
Such a permanent current switch is already well known, but the configuration and operation thereof have been devised in various ways as shown in Patent Documents 1 to 3.
The permanent current switch disclosed in Patent Document 1 is a switch in a permanent current switch that is connected in parallel with a superconducting coil that is conducted and cooled by a refrigerating machine and that switches the current that is conducted and cooled by the refrigerating machine and flows through the superconducting coil. A cooling member that includes a winding portion around which a superconducting wire is wound, a heater that heats the winding portion, and a heat insulating material that abuts on the winding portion, and conducts and cools the winding portion via the heat insulating material. Is characterized by the arrangement of.

また、特許文献2に開示の永久電流スイッチは、冷却源で冷却されて超電導状態となる超電導コイルに接続され、前記冷却源より伝導で冷却されて前記超電導コイルに流れる電流のスイッチングを行う永久電流スイッチにおいて、前記超電導コイルに接続されるスイッチ用超電導線が巻枠に巻かれたスイッチ巻線部を有するスイッチ部と、前記スイッチ巻線部を加熱するための加熱手段と、前記スイッチ部を固定してそのスイッチ巻線部を伝導冷却するスイッチ支持部材と、前記冷却源より伝導によって冷却されている低温ステージと、前記スイッチ支持部材と前記低温ステージとを熱的に短絡および切り離しするための熱スイッチとを備えたことを特徴とするものである。 Further, the permanent current switch disclosed in Patent Document 2 is connected to a superconducting coil that is cooled by a cooling source and becomes a superconducting state, and is cooled by conduction from the cooling source to switch the current flowing through the superconducting coil. In the switch, the switch portion having the switch winding portion in which the superconducting wire for the switch connected to the superconducting coil is wound around the winding frame, the heating means for heating the switch winding portion, and the switch portion are fixed. The heat for thermally short-circuiting and disconnecting the switch support member for conducting and cooling the switch winding portion, the low-temperature stage cooled by conduction from the cooling source, and the switch support member and the low-temperature stage. It is characterized by having a switch.

さらに、特許文献3に開示の永久電流スイッチは、巻枠上に巻回された超電導線およびヒータ線とからなるコイルを備えた永久電流スイッチにおいて、前記コイルの外側に離間して円筒状部材を配置し、前記コイルと前記円筒状部材との間に形成される筒状空隙部の一側を開放するとともに、他側を閉塞し、この閉塞部に複数の貫通孔を設けたことを特徴とするものである。 Further, the permanent current switch disclosed in Patent Document 3 is a permanent current switch including a coil composed of a superconducting wire and a heater wire wound on a winding frame, and a cylindrical member is separated from the outside of the coil. It is characterized in that one side of the cylindrical gap formed between the coil and the cylindrical member is opened and the other side is closed, and a plurality of through holes are provided in the closed portion. To do.

特開平10−189324号公報Japanese Unexamined Patent Publication No. 10-189324 特開平8−138928号公報Japanese Unexamined Patent Publication No. 8-138928 特開昭63−81874号公報Japanese Unexamined Patent Publication No. 63-81874

ところで、特許文献1に開示の永久電流スイッチは、スイッチとして機能する超電導線を、熱抵抗の高い断熱材と冷却部材の間に挟むように設けている。斯かる構成を有する特許文献1の永久電流スイッチでは、ヒータ線の熱による冷凍機への負荷を低減することはできるかもしれないが、ヒータ線の発熱を止めて超電導線の超電導状態への復帰を行う場合には、ヒータ線と断熱材に挟まれた超電導線の冷却に過剰な時間が必要となるおそれがある。 By the way, in the permanent current switch disclosed in Patent Document 1, a superconducting wire functioning as a switch is provided so as to be sandwiched between a heat insulating material having a high thermal resistance and a cooling member. The permanent current switch of Patent Document 1 having such a configuration may be able to reduce the load on the refrigerator due to the heat of the heater wire, but it stops the heat generation of the heater wire and returns the superconducting wire to the superconducting state. In this case, excessive time may be required to cool the superconducting wire sandwiched between the heater wire and the heat insulating material.

また、特許文献2に開示の永久電流スイッチは、スイッチがOFFとなった時、つまり、加熱手段であるヒータの温度が高いときには物理的に冷凍機と永久電流スイッチの間を切り離して、熱的なコンタクトを避ける。また、この永久電流スイッチは、スイッチをONする時、つまり、スイッチ用超電導線を冷却する必要があるときには、冷凍機と永久電流スイッチを物理的に再度接続させる。 Further, the permanent current switch disclosed in Patent Document 2 physically separates the refrigerator and the permanent current switch when the switch is turned off, that is, when the temperature of the heater which is the heating means is high, and thermally. Avoid contact. Further, this permanent current switch physically reconnects the refrigerator and the permanent current switch when the switch is turned on, that is, when it is necessary to cool the superconducting wire for the switch.

このような特許文献2の永久電流スイッチでは、熱スイッチにおける物理的接続(つまり、機械的接続)の精度を、繰り返し行われる接続と切り離しの中で常に一定に保つことは困難であり、接続する度に接続の精度が異なってしまう。加えて、物理的接続の精度は、熱スイッチの個体差にも大きく影響される。さらには、接続と切り離しを繰り返すことで、熱スイッチの機械的な接続部の磨耗等によって熱伝達特性(つまり、冷却特性)が劣化してしまうおそれがある。 In such a permanent current switch of Patent Document 2, it is difficult to keep the accuracy of the physical connection (that is, the mechanical connection) in the thermal switch constant in the repeated connection and disconnection, and the connection is made. The accuracy of the connection will be different each time. In addition, the accuracy of the physical connection is greatly affected by individual differences in the thermal switch. Further, by repeating the connection and disconnection, the heat transfer characteristic (that is, the cooling characteristic) may be deteriorated due to the wear of the mechanical connection portion of the heat switch.

さらに、特許文献3に開示の永久電流スイッチは、超電導線によるコイルの外周を囲むように筒状空隙部を設けていて、液体ヘリウム中に浸漬されている。筒状空隙部は、一側を開放し、他側に貫通孔を形成しているので、永久電流スイッチが液体ヘリウム中に浸漬されている限り、筒状空隙部には、一側の開放部分から液体ヘリウムが常に流入する構成となっている。つまり、永久電流スイッチは、ヒータ線の加熱によって液体ヘリウムが蒸発しても、気体となったヘリウムは貫通孔から逃散してゆくので、液体ヘリウムの流入を抑制する手段を備えていない筒状空隙部へは液体ヘリウムが流入し続ける。従って、筒状空隙部は、常に冷却部として作用させることはできても、断熱部として作用させることは非常に困難である。 Further, the permanent current switch disclosed in Patent Document 3 is provided with a tubular void portion so as to surround the outer periphery of the coil by the superconducting wire, and is immersed in liquid helium. Since the tubular gap portion is open on one side and a through hole is formed on the other side, as long as the permanent current switch is immersed in liquid helium, the tubular gap portion has an open portion on one side. Liquid helium always flows in from the water. That is, even if the liquid helium evaporates due to the heating of the heater wire, the permanent current switch does not have a means for suppressing the inflow of the liquid helium because the helium that has become a gas escapes from the through hole. Liquid helium continues to flow into the part. Therefore, although the tubular void portion can always act as a cooling portion, it is very difficult to act as a heat insulating portion.

以上のように、従来の永久電流スイッチでは、スイッチの接続と切断を所望のタイミングで安定的かつ自在に切り換えることが困難であり、また、スイッチを切断するためのヒータの熱が、超電導コイルを冷却するための冷凍機に大きな負荷をかけたり、不要な液体ヘリウムの蒸発を起こしている。
そこで本発明は、スイッチの接続と切断を所望のタイミングで安定的かつ自在に切り換えることができ、且つスイッチを切断するためのヒータの熱によって超電導コイルを冷却するための冷凍機にかかる負荷や液体ヘリウムの蒸発量を抑制することができる永久電流スイッチを提供することを目的とする。
As described above, in the conventional permanent current switch, it is difficult to stably and freely switch the connection and disconnection of the switch at a desired timing, and the heat of the heater for disconnecting the switch causes the superconducting coil. It puts a heavy load on the refrigerator for cooling and causes unnecessary evaporation of liquid helium.
Therefore, the present invention can stably and freely switch the connection and disconnection of the switch at a desired timing, and the load and liquid applied to the refrigerator for cooling the superconducting coil by the heat of the heater for disconnecting the switch. It is an object of the present invention to provide a permanent current switch capable of suppressing the amount of evaporation of helium.

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明に係る永久電流スイッチは、コイルを巻回するための巻枠と、前記巻枠にコイル状に巻回されたヒータ線と、前記ヒータ線に重なるようにコイル状に巻回された超伝導線と、前記巻枠を支持する筐体とを備え、冷凍機で冷却される超電導装置内に設けられた超電導コイルを含む超電導回路を断続する永久電流スイッチであって、前記永久電流スイッチは、前記筐体の内部と外部とを連通させ且つ前記筐体の内部に気体及び/又は液体の冷媒を供給する導入口を有することを特徴とする。
In order to achieve the above object, the following technical measures have been taken in the present invention.
The permanent current switch according to the present invention includes a winding frame for winding a coil, a heater wire wound in a coil shape around the winding frame, and a superconducting wire wound in a coil shape so as to overlap the heater wire. A permanent current switch that includes a conducting wire and a housing that supports the winding frame and that interrupts a superconducting circuit including a superconducting coil provided in a superconducting device that is cooled by a refrigerator. It is characterized by having an introduction port for communicating the inside and the outside of the housing and supplying a gas and / or liquid refrigerant inside the housing.

ここで、前記筐体が、前記冷凍機と熱的に接続するように構成されているとよい。
また、前記筐体が、前記筐体の内部に存在する気体の冷媒を液体に凝縮する凝縮部を有するとよい。
さらに、前記巻枠が、伝熱量を制限する伝熱制限部材を介して前記冷凍機の冷却部材上
に支持されているとよい。
Here, it is preferable that the housing is configured to be thermally connected to the refrigerator.
Further, it is preferable that the housing has a condensing portion that condenses the gaseous refrigerant existing inside the housing into a liquid.
Further, it is preferable that the winding frame is supported on the cooling member of the refrigerator via a heat transfer limiting member that limits the amount of heat transfer.

また、前記伝熱制限部材が、前記巻枠と前記冷却部材との間に空間を形成するように、前記冷却部材上に前記巻枠を支持するとよい。
ここで、前記巻枠が、軸心方向を上下に向けて前記冷却部材に対して縦置きされており、前記伝熱制限部材が、前記巻枠の上端側又は下端側を支持することで、前記巻枠の下端側に前記空間を形成するとよい。
Further, the winding frame may be supported on the cooling member so that the heat transfer limiting member forms a space between the winding frame and the cooling member.
Here, the winding frame is vertically placed with respect to the cooling member with the axial direction facing up and down, and the heat transfer limiting member supports the upper end side or the lower end side of the winding frame. The space may be formed on the lower end side of the winding frame.

さらに、前記伝熱制限部材が、前記筐体を兼ねて構成されていてもよい。
本発明に係る超電導装置は、上述のいずれかの永久電流スイッチを有し、前記永久電流スイッチの筐体の外部から前記筐体の導入口に冷媒を供給する冷媒供給源を有することを特徴とする。
ここで、前記筐体の内部の冷媒を、前記筐体の導入口から前記筐体の外部へ排出する排出手段を有するとよい。
Further, the heat transfer limiting member may be configured to also serve as the housing.
The superconducting device according to the present invention is characterized by having any of the above-mentioned permanent current switches and having a refrigerant supply source for supplying a refrigerant from the outside of the housing of the permanent current switch to the introduction port of the housing. To do.
Here, it is preferable to have a discharge means for discharging the refrigerant inside the housing from the introduction port of the housing to the outside of the housing.

さらに、前記超電導装置は、前記超電導コイルを冷却する液体ヘリウムを有し、前記冷媒供給源は、前記液体ヘリウムであるとよい。
なお、本発明にかかる永久電流スイッチの最も好ましい形態は、コイルを巻回するための巻枠と、前記巻枠にコイル状に巻回されたヒータ線と、前記ヒータ線に重なるようにコイル状に巻回された超伝導線と、前記巻枠を支持する筐体とを備え、冷凍機で冷却される超電導装置内に設けられた超電導コイルを含む超電導回路を断続する永久電流スイッチであって、前記永久電流スイッチは、前記筐体の内部と外部とを連通させ且つ前記筐体の内部に気体及び/又は液体の冷媒を供給する導入口を有し、前記巻枠が、伝熱量を制限する伝熱制限部材を介して前記冷凍機の冷却部材上に支持されていることを特徴とする。
Further, the superconducting device may have a liquid helium for cooling the superconducting coil, and the refrigerant supply source may be the liquid helium.
The most preferable form of the permanent current switch according to the present invention is a winding frame for winding a coil, a heater wire wound in a coil shape around the winding frame, and a coil shape so as to overlap the heater wire. It is a permanent current switch that has a superconducting wire wound around it and a housing that supports the winding frame, and interrupts a superconducting circuit including a superconducting coil provided in a superconducting device cooled by a refrigerator. The permanent current switch has an introduction port that communicates the inside and the outside of the housing and supplies a gas and / or liquid refrigerant to the inside of the housing, and the winding frame limits the amount of heat transfer. It is characterized in that it is supported on the cooling member of the refrigerator via a heat transfer limiting member.

本発明による永久電流スイッチによれば、スイッチの接続と切断を所望のタイミングで安定的かつ自在に切り換えることができ、且つスイッチを切断するためのヒータの熱によって超電導コイルを冷却するための冷凍機にかかる負荷や液体ヘリウムの蒸発量を抑制することができる。 According to the permanent current switch according to the present invention, the connection and disconnection of the switch can be stably and freely switched at a desired timing, and the refrigerator for cooling the superconducting coil by the heat of the heater for disconnecting the switch. It is possible to suppress the load applied to the liquid helium and the amount of evaporation of liquid helium.

第1実施形態の永久電流スイッチが設けられる超電導装置の構成を示す図である。It is a figure which shows the structure of the superconducting apparatus provided with the permanent current switch of 1st Embodiment. 永久電流スイッチの断面を示す図である。It is a figure which shows the cross section of a permanent current switch. 凝縮部を備えた永久電流スイッチの断面を示す図である。It is a figure which shows the cross section of the permanent current switch provided with the condensing part. 第2実施形態の永久電流スイッチが設けられる超電導装置の構成を示す図である。It is a figure which shows the structure of the superconducting apparatus provided with the permanent current switch of 2nd Embodiment. 第3実施形態による永久電流スイッチの内部の構成を示す断面図である。It is sectional drawing which shows the internal structure of the permanent current switch by 3rd Embodiment. 第4実施形態による永久電流スイッチの内部の構成を示す断面図である。It is sectional drawing which shows the internal structure of the permanent current switch by 4th Embodiment. 第5実施形態による永久電流スイッチの内部の構成を示す断面図である。It is sectional drawing which shows the internal structure of the permanent current switch by 5th Embodiment. 第6実施形態による永久電流スイッチの内部の構成を示す断面図である。It is sectional drawing which shows the internal structure of the permanent current switch by 6th Embodiment.

以下、図面を参照しながら、本発明の実施形態について説明する。なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。従って、本発明の技術的範囲は、本実施形態に開示内容に限定されるものではない。また、以下に説明する各実施形態において、同一の構成部材には、同一の符号及び同一の名称を付すこととする。従って、同一の符号及び同一の名称が付された構成部材については、同じ説明を繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below are examples that embody the present invention, and the specific examples do not limit the configuration of the present invention. Therefore, the technical scope of the present invention is not limited to the contents disclosed in the present embodiment. Further, in each of the embodiments described below, the same constituent members will be given the same reference numerals and the same names. Therefore, the same description will not be repeated for the components having the same reference numerals and the same names.

[第1実施形態]
図1及び図2を参照して、本発明の第1実施形態による永久電流スイッチ1Aについて説明する。図1は、MRI(磁気共鳴画像)装置やNMR(核磁気共鳴)装置などに用いられる磁場発生装置である超電導装置10の概略構成を示す図である。図2は、永久電流スイッチ1Aの内部の構成を示す断面図である。
[First Embodiment]
The permanent current switch 1A according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a schematic configuration of a superconducting device 10 which is a magnetic field generator used in an MRI (magnetic resonance imaging) device, an NMR (nuclear magnetic resonance) device, and the like. FIG. 2 is a cross-sectional view showing the internal configuration of the permanent current switch 1A.

まず、図1を参照して、永久電流スイッチ1Aが設けられる超電導装置10の構成を説明する。
超電導装置10は、収納容器2と、収納容器2に収納された超電導コイル3と、収納容器2の外表面が室温の大気と触れないように収納容器2を内部に保持する真空容器4と、超電導コイル3を超電導転移温度以下に冷却する冷却手段5とを有する。
First, the configuration of the superconducting device 10 provided with the permanent current switch 1A will be described with reference to FIG.
The superconducting device 10 includes a storage container 2, a superconducting coil 3 stored in the storage container 2, a vacuum container 4 that holds the storage container 2 inside so that the outer surface of the storage container 2 does not come into contact with the air at room temperature, and the like. It has a cooling means 5 for cooling the superconducting coil 3 to a temperature equal to or lower than the superconducting transition temperature.

収納容器2は、例えば薄肉のステンレス鋼など、機械強度及び耐腐食性に優れた材料で形成された中空の容器である。収納容器2は、後に詳述する超電導コイル3を収納すると共に冷却手段5も収納し、これによって、収納容器2内の超電導コイル3が超電導転移温
度以下にまで冷却される。
超電導転移温度とは、熱力学温度にして数K(ケルビン)といった極低温である。従って、ステンレス鋼など熱伝導性の高い材料で形成された収納容器2を室温に置いた場合、室温から収納容器2内へ熱が侵入するので、収納容器2の内部を超電導転移温度以下に保つのは困難である。そこで収納容器2は、外表面が室温の大気と触れないように、内部が真空となった後述する真空容器4内に保持される。
The storage container 2 is a hollow container made of a material having excellent mechanical strength and corrosion resistance, such as thin-walled stainless steel. The storage container 2 stores the superconducting coil 3 described in detail later and also stores the cooling means 5, whereby the superconducting coil 3 in the storage container 2 is cooled to the superconducting transition temperature or lower.
The superconducting transition temperature is an extremely low temperature of several K (Kelvin) in terms of thermodynamic temperature. Therefore, when the storage container 2 made of a material having high thermal conductivity such as stainless steel is placed at room temperature, heat enters the storage container 2 from the room temperature, so that the inside of the storage container 2 is kept below the superconducting transition temperature. Is difficult. Therefore, the storage container 2 is held in a vacuum container 4, which will be described later, in which the inside is evacuated so that the outer surface does not come into contact with the atmosphere at room temperature.

超電導コイル3は、超電導体(超電導物質)からなる線材を巻回して得られるコイルであり、収納容器2内に収容される。超電導転移温度以下で超電導コイル3に電流が供給されると、供給された電流は、いわゆる永久電流として電気抵抗がほぼゼロ0となった超電導コイルを流れ続ける。超電導コイル3は、この永久電流が引き起こす電磁誘導によって磁場を発生する。 The superconducting coil 3 is a coil obtained by winding a wire rod made of a superconductor (superconducting substance), and is housed in a storage container 2. When a current is supplied to the superconducting coil 3 below the superconducting transition temperature, the supplied current continues to flow through the superconducting coil having an electric resistance of almost zero as a so-called permanent current. The superconducting coil 3 generates a magnetic field by electromagnetic induction caused by this permanent current.

また、超電導コイル3には、該超伝導コイル3に電流を供給する電源部(外部の電源)が接続可能となっており、また、永久電流を流す閉回路を形成するために、後述する永久電流スイッチ1Aが超電導コイル3に接続されている。永久電流スイッチ1AのON(接続)とOFF(切断)を切り替えることで、永久電流を流す閉回路の形成と解消を切り替えることができ、永久電流スイッチ1Aを接続すれば閉回路が形成され、切断すれば閉回路が解消される。このとき、閉回路を形成するケーブルは、超電導コイル3と同様に超電導体から形成される。 Further, a power supply unit (external power supply) that supplies a current to the superconducting coil 3 can be connected to the superconducting coil 3, and in order to form a closed circuit through which a permanent current flows, a permanent power supply unit, which will be described later, is formed. The current switch 1A is connected to the superconducting coil 3. By switching ON (connection) and OFF (disconnection) of the permanent current switch 1A, it is possible to switch the formation and elimination of a closed circuit through which a permanent current flows. If the permanent current switch 1A is connected, a closed circuit is formed and disconnection. If this is done, the closed circuit will be eliminated. At this time, the cable forming the closed circuit is formed from the superconductor like the superconducting coil 3.

真空容器4は、収納容器2と同様に、例えばステンレス鋼など、機械強度及び耐腐食性に優れた材料で形成された中空の容器であり、超電導コイル3を収納する収納容器2を内部に保持する。真空容器4は、内部が超電導転移温度以下といった極低温となる収納容器2の外表面が室温の大気と触れないように、真空に保った内部に収納容器2を保持する。言い換えれば、真空容器4は、真空の空間を隔てて収納容器2を保持している。つまり、収納容器2と真空容器4は、いわゆる魔法瓶の構造を形成しており、収納容器2と室温とは真空容器4による真空の空間を隔てて断熱される。 Like the storage container 2, the vacuum container 4 is a hollow container made of a material having excellent mechanical strength and corrosion resistance, such as stainless steel, and holds the storage container 2 for storing the superconducting coil 3 inside. To do. The vacuum container 4 holds the storage container 2 in a vacuum so that the outer surface of the storage container 2 having an extremely low temperature such as the superconducting transition temperature or lower does not come into contact with the air at room temperature. In other words, the vacuum container 4 holds the storage container 2 across the vacuum space. That is, the storage container 2 and the vacuum container 4 form a so-called thermos structure, and the storage container 2 and the room temperature are insulated from each other by separating the vacuum space by the vacuum container 4.

冷却手段5は、例えば、GM(ギフォード・マクマホン)冷凍機などの極低温冷凍機(以下、単に冷凍機という)である。冷却手段5である冷凍機(以下、冷凍機5という)は、棒状かつ長尺であって、一端側に圧縮機等を含む駆動部50が設けられ、さらに、駆動部50から他端に向かう中途部に熱交換を行う第1段ステージ51を有し、他端側に第2段ステージ52を有する2段構成となっている。第1段ステージ51は、例えば30K程度にまで冷却可能な熱交換部であり、第2段ステージ52は、4K程度にまで冷却可能な熱交換部である。 The cooling means 5 is, for example, a cryogenic refrigerator (hereinafter, simply referred to as a refrigerator) such as a GM (Gifford McMahon) refrigerator. The refrigerator (hereinafter referred to as the refrigerator 5) which is the cooling means 5 is rod-shaped and long, has a drive unit 50 including a compressor or the like on one end side, and further goes from the drive unit 50 to the other end. It has a two-stage configuration with a first-stage stage 51 for heat exchange in the middle and a second-stage stage 52 on the other end side. The first stage stage 51 is a heat exchange unit that can be cooled to, for example, about 30 K, and the second stage stage 52 is a heat exchange unit that can be cooled to about 4 K.

図1に示すように、冷凍機5は、真空容器4の外部から真空容器4と収納容器2を貫通して、第2段ステージ52を収納容器2の内部で保持している。冷凍機5の駆動部50は真空容器4の貫通孔の周囲で気密に保持され、第1段ステージ51は収納容器2に密に接続され、第2段ステージ52は収納容器2の内部で、熱抵抗の低い板状の冷却部材6(例えば銅製の部材)を介して超電導コイル3に接続されている。ここで、冷却部材6は、第2段ステージ52の延長であると見ることができる。図1に示すように、超電導コイル3が第2段ステージ52に接続されることで、例えば4Kといった超電導転移温度以下にまで超電導コイル3を冷却することができる。 As shown in FIG. 1, the refrigerator 5 penetrates the vacuum container 4 and the storage container 2 from the outside of the vacuum container 4 and holds the second stage stage 52 inside the storage container 2. The drive unit 50 of the refrigerator 5 is airtightly held around the through hole of the vacuum container 4, the first stage stage 51 is tightly connected to the storage container 2, and the second stage stage 52 is inside the storage container 2. It is connected to the superconducting coil 3 via a plate-shaped cooling member 6 having a low thermal resistance (for example, a copper member). Here, the cooling member 6 can be seen as an extension of the second stage stage 52. As shown in FIG. 1, by connecting the superconducting coil 3 to the second stage stage 52, the superconducting coil 3 can be cooled to a temperature below the superconducting transition temperature of, for example, 4K.

上述の構成を有する超電導装置10は、さらに、永久電流スイッチ1Aを有する。以下、図1及び図2を参照して、永久電流スイッチ1Aについて説明する。
永久電流スイッチ1Aは、上述したように、永久電流を流す閉回路を形成するために、超電導コイル3に導線(ケーブル)によって接続されるものであり、巻枠11、ヒータ線12、スイッチ部13、及びこれらを内部に格納する筐体(外筒部材)14を含んで構成される。
The superconducting device 10 having the above configuration further includes a permanent current switch 1A. Hereinafter, the permanent current switch 1A will be described with reference to FIGS. 1 and 2.
As described above, the permanent current switch 1A is connected to the superconducting coil 3 by a conducting wire (cable) in order to form a closed circuit through which a permanent current flows, and the winding frame 11, the heater wire 12, and the switch portion 13 are connected. , And a housing (outer cylinder member) 14 for storing these inside.

巻枠11は、例えば外径15mm程度の円柱形状の胴部Mを有する部材であり、後述するヒータ線12による発熱の伝熱を抑制するために、例えばGFRP(ガラス繊維強化プラスチック)などの熱抵抗の高い材料で構成されている。巻枠11は、円柱形状の胴部Mの両端に円板状の平板(フランジ)F1,F2を有し、いわゆるボビンとして構成されて
いる。巻枠11の一方のフランジF1には、胴部Mと重ならない位置に胴部Mの長手方向に沿った導入口(貫通孔T)が設けられている。
The winding frame 11 is, for example, a member having a cylindrical body portion M having an outer diameter of about 15 mm, and in order to suppress heat transfer of heat generated by the heater wire 12 described later, for example, heat of GFRP (glass fiber reinforced plastic) or the like is used. It is made of a material with high resistance. The winding frame 11 has disc-shaped flat plates (flange) F1 and F2 at both ends of a cylindrical body portion M, and is configured as a so-called bobbin. One flange F1 of the winding frame 11 is provided with an introduction port (through hole T) along the longitudinal direction of the body portion M at a position not overlapping with the body portion M.

ヒータ線12は、コンスタンタン線など、通電により発熱する導電性の部材であり、例えば外径15mm巻枠に巻幅100mm程度で100Ωに相当する長さが無誘導巻でコイル状に巻き付けられる。
スイッチ部13は、例えばCuNi/NbTiなどの超電導体で構成される超電導線であり、室温時の両端抵抗が100Ωとなる長さが、巻枠11に巻き付けられたヒータ線12の上に重なるように無誘導巻でコイル状に巻き付けられる。このスイッチ部13は、超電導転移点以下に冷却されれば、電気抵抗がほぼゼロ0となるのでON(接続)状態となり、ヒータ線12の発熱によって超電導転移点を超えれば、電気抵抗が発生するのでOFF(切断)状態となる。
The heater wire 12 is a conductive member such as a constantan wire that generates heat when energized. For example, the heater wire 12 is wound around a winding frame having an outer diameter of 15 mm in a coil shape with a winding width of about 100 mm and a length corresponding to 100 Ω.
The switch unit 13 is a superconducting wire composed of a superconductor such as CuNi / NbTi, so that the length at which the resistance at both ends at room temperature is 100Ω overlaps with the heater wire 12 wound around the winding frame 11. It is wound in a coil shape with no induction winding. When the switch unit 13 is cooled below the superconducting transition point, the electric resistance becomes almost zero 0, so that the switch unit 13 is turned on (connected). If the heat generated by the heater wire 12 exceeds the superconducting transition point, electric resistance is generated. Therefore, it is in the OFF (disconnect) state.

外筒部材14は、例えば銅などの熱抵抗の低い材料で構成された円筒形状の部材であって、ヒータ線12及びスイッチ部13が巻回された巻枠11を円筒内に内包し、巻枠11のフランジF1,F2と気密に接続することで巻枠11を保持するものである。このとき外筒部材14は、スイッチ部13との間に所定の間隔の空間Sを確保できる程度の内径を有している。 The outer cylinder member 14 is a cylindrical member made of a material having a low thermal resistance such as copper, and the winding frame 11 around which the heater wire 12 and the switch portion 13 are wound is enclosed in the cylinder and wound. The winding frame 11 is held by airtightly connecting to the flanges F1 and F2 of the frame 11. At this time, the outer cylinder member 14 has an inner diameter sufficient to secure a space S at a predetermined interval from the switch portion 13.

上述の通り、ヒータ線12及びスイッチ部13が巻回された巻枠11を外筒部材14内に保持することで、図2に示すような断面構成を有する永久電流スイッチ1Aが構成されるが、ヒータ線12及びスイッチ部13の端部は、永久電流スイッチ1Aの外に引き出され、ヒータ線12は超電導装置10の外部の電源に接続されている。
さらに、永久電流スイッチ1Aは、巻枠11のフランジF1,F2に形成された貫通孔Tに、永久電流スイッチ1Aの内部と外部を連通するための銅製の導管Pが設けられている。この導管Pによって、永久電流スイッチ1Aの内部に気体及び/又は液体の冷媒を供給することができ、また、永久電流スイッチ1Aの内部を排気することができる。この冷媒の供給及び排気については、永久電流スイッチ1Aの動作として後述する。
As described above, by holding the winding frame 11 around which the heater wire 12 and the switch portion 13 are wound in the outer cylinder member 14, the permanent current switch 1A having the cross-sectional configuration as shown in FIG. 2 is configured. The ends of the heater wire 12 and the switch portion 13 are drawn out of the permanent current switch 1A, and the heater wire 12 is connected to an external power source of the superconducting device 10.
Further, the permanent current switch 1A is provided with a copper conduit P for communicating the inside and the outside of the permanent current switch 1A in the through holes T formed in the flanges F1 and F2 of the winding frame 11. By this conduit P, a gas and / or liquid refrigerant can be supplied to the inside of the permanent current switch 1A, and the inside of the permanent current switch 1A can be exhausted. The supply and exhaust of the refrigerant will be described later as the operation of the permanent current switch 1A.

再び図1を参照して、超電導装置10内における永久電流スイッチ1Aの配置について説明する。永久電流スイッチ1Aは、超電導コイル3が発する磁場の影響が少ない位置で、外筒部材(筐体)14が熱抵抗の低い板状の冷却部材(例えば銅製の部材)7に物理的に接触することで支持され、この冷却部材7が冷凍機5の第2段ステージ52と物理的に接続される。ここで、冷却部材7は、第2段ステージ52の延長であると見ることができる。このようにして、永久電流スイッチ1Aは、冷凍機5の第2段ステージ52と熱的に接続されるので、スイッチ部13の超電導転移点である4.2K付近にまで冷却される。 The arrangement of the permanent current switch 1A in the superconducting device 10 will be described with reference to FIG. 1 again. In the permanent current switch 1A, the outer cylinder member (housing) 14 physically contacts the plate-shaped cooling member (for example, a copper member) 7 having a low thermal resistance at a position where the influence of the magnetic field generated by the superconducting coil 3 is small. The cooling member 7 is physically connected to the second stage 52 of the refrigerator 5. Here, the cooling member 7 can be seen as an extension of the second stage stage 52. In this way, since the permanent current switch 1A is thermally connected to the second stage 52 of the refrigerator 5, it is cooled to the vicinity of 4.2K, which is the superconducting transition point of the switch unit 13.

その上で、巻枠11のフランジF1に設けられた銅製の導管Pには、超電導装置10の外部に設けられた排気ポンプ8と、冷媒供給源9が接続されている。排気ポンプ8は、永久電流スイッチ1Aの内部を排気するポンプ(排気手段)であり、冷媒供給源9は、永久電流スイッチ1Aの内部にヘリウムガスを供給する供給源である。冷媒供給源9とフランジF1に設けられた導管Pを接続する配管は、ヘリウムガスが永久電流スイッチ1Aへの到達時に極力4.2K付近となるように、収納容器2の内部において冷却機5に対して熱アンカを取る構造を有している。さらに排気ポンプ8及び冷媒供給源9の配管には、それぞれ開閉バルブV1又はV2が設けられている。 On top of that, the exhaust pump 8 provided outside the superconducting device 10 and the refrigerant supply source 9 are connected to the copper conduit P provided on the flange F1 of the winding frame 11. The exhaust pump 8 is a pump (exhaust means) that exhausts the inside of the permanent current switch 1A, and the refrigerant supply source 9 is a supply source that supplies helium gas to the inside of the permanent current switch 1A. The pipe connecting the refrigerant supply source 9 and the conduit P provided on the flange F1 is connected to the cooler 5 inside the storage container 2 so that the helium gas reaches the permanent current switch 1A as close to 4.2K as possible. On the other hand, it has a structure that takes a heat anchor. Further, an on-off valve V1 or V2 is provided in the piping of the exhaust pump 8 and the refrigerant supply source 9, respectively.

上述の構成を有する永久電流スイッチ1Aの動作について、以下に説明する。
まず、超電導コイル3が冷凍機5によって超電導転移点以下に冷却されて且つ励磁されていない状態から、超電導コイル3に永久電流を流して励磁する過程を説明しながら永久電流スイッチ1Aの動作を説明する。
まず、超電導装置10は、超電導コイル3が4.2Kといった超電導転移点以下に冷却された状態で、永久電流スイッチ1Aのヒータ線12に通電してスイッチ部13の温度を超電導転移点より上に維持している。これによって永久電流スイッチ1Aは、スイッチ部13がOFF(切断)状態となり、超電導コイル3に永久電流を流す閉回路が解消された状態である。このとき、永久電流スイッチ1Aの内部は、排気ポンプ8によってほぼ真空に排気されており、ヒータ線12と永久電流スイッチ1Aの外筒部材14は真空の空間S
によって断熱される。従って、永久電流スイッチ1Aの外筒部材14は、冷凍機5によって冷却されて超電導転移点以下の温度に保たれている。
The operation of the permanent current switch 1A having the above configuration will be described below.
First, the operation of the permanent current switch 1A will be explained while explaining the process of exciting the superconducting coil 3 by passing a permanent current through the superconducting coil 3 from a state in which the superconducting coil 3 is cooled below the superconducting transition point by the refrigerator 5 and not excited. To do.
First, in the superconducting device 10, in a state where the superconducting coil 3 is cooled below the superconducting transition point such as 4.2K, the heater wire 12 of the permanent current switch 1A is energized to raise the temperature of the switch unit 13 above the superconducting transition point. Maintaining. As a result, the permanent current switch 1A is in a state in which the switch unit 13 is turned off (disconnected) and the closed circuit for passing the permanent current through the superconducting coil 3 is eliminated. At this time, the inside of the permanent current switch 1A is almost evacuated by the exhaust pump 8, and the heater wire 12 and the outer cylinder member 14 of the permanent current switch 1A are in the vacuum space S.
Insulated by. Therefore, the outer cylinder member 14 of the permanent current switch 1A is cooled by the refrigerator 5 and kept at a temperature equal to or lower than the superconducting transition point.

この状態から、周知の方法によって、超電導装置10の外部の電源から超電導コイル3に電流を供給し、超電導コイル3を励磁する。超電導コイル3に流れる電流が定格に達した後、ヒータ線12への通電を止め、排気ポンプ8側の開閉バルブV1を閉じると共に、冷媒供給源9側の開閉バルブV2を開け、ヘリウムガスを永久電流スイッチ1A内に流入させる。なお、流入するヘリウムガスによって永久電流スイッチ1Aの外筒部材14の温度が若干上昇し、冷凍機5の熱負荷が上昇してしまう。しかし、このとき既に超電導コイル3は定格磁場を発生しており、励磁操作時の主な熱源となる超電導コイル3の交流発熱は収まっているため、流入するヘリウムガスの熱負荷が冷凍機5へ加わっても大きな負荷とはならない。しかし、冷凍機5への負荷を更に下げるために、冷媒供給源9で事前にヘリウムガスを冷却しても良い。 From this state, a current is supplied to the superconducting coil 3 from an external power source of the superconducting device 10 by a well-known method to excite the superconducting coil 3. After the current flowing through the superconducting coil 3 reaches the rating, the energization of the heater wire 12 is stopped, the on-off valve V1 on the exhaust pump 8 side is closed, and the on-off valve V2 on the refrigerant supply source 9 side is opened to permanently release the helium gas. It flows into the current switch 1A. The temperature of the outer cylinder member 14 of the permanent current switch 1A rises slightly due to the inflowing helium gas, and the heat load of the refrigerator 5 rises. However, at this time, the superconducting coil 3 has already generated a rated magnetic field, and the AC heat generated by the superconducting coil 3 which is the main heat source during the excitation operation is contained, so that the heat load of the inflowing helium gas is transferred to the refrigerator 5. Even if it is added, it does not become a large load. However, in order to further reduce the load on the refrigerator 5, the helium gas may be cooled in advance by the refrigerant supply source 9.

永久電流スイッチ1A内に流入したヘリウムガスは、外筒部材14の内壁に触れることで4.2K以下に冷却されて液体ヘリウムに再凝縮し、外筒部材14内に貯まる。このように永久電流スイッチ1A内に存在するヘリウムガス及び液体ヘリウムによってヒータ線12が冷却されて、スイッチ部13が超電導転移点以下に冷却される。このとき、冷媒供給源9から供給されるヘリウムガスは、永久電流スイッチ1Aに至るまでに液化するように冷却されるとより好ましい。 The helium gas flowing into the permanent current switch 1A is cooled to 4.2 K or less by touching the inner wall of the outer cylinder member 14, recondensed in liquid helium, and stored in the outer cylinder member 14. In this way, the heater wire 12 is cooled by the helium gas and liquid helium existing in the permanent current switch 1A, and the switch portion 13 is cooled below the superconducting transition point. At this time, it is more preferable that the helium gas supplied from the refrigerant supply source 9 is cooled so as to be liquefied before reaching the permanent current switch 1A.

スイッチ部13が超電導転移点以下に冷却されると、永久電流スイッチ1Aのスイッチ部13がON(接続)状態となり、超電導コイル3に永久電流を流す閉回路が形成されるので、超電導コイル3に電流を供給した外部の電源を超電導コイル3から切り離す。この一連の動作を経て、超電導コイル3は永久電流が流れる永久電流モードで運転され、磁場を発生し続けることができる。 When the switch unit 13 is cooled below the superconducting transition point, the switch unit 13 of the permanent current switch 1A is turned on (connected), and a closed circuit for passing a permanent current through the superconducting coil 3 is formed. The external power supply to which the current is supplied is disconnected from the superconducting coil 3. Through this series of operations, the superconducting coil 3 is operated in a permanent current mode in which a permanent current flows, and can continue to generate a magnetic field.

超電導コイル3の運転を停止するには、冷媒供給源9側の開閉バルブV2を閉じると共に、排気ポンプ8側の開閉バルブV1を開けて、永久電流スイッチ1Aの内部を真空に排気する。その排気と同時又は排気後にヒータ線12に通電して、スイッチ部13の温度を超電導転移点を超える温度にまで上昇させる。スイッチ部13の温度が超電導転移点を超えれば、スイッチ部13がOFF(切断)状態となり、超電導コイル3に永久電流を流す閉回路が解消されるので、超電導コイル3へは永久電流が流れなくなり、超電導コイル3は磁場の発生を停止する。このとき、永久電流スイッチ1A内の空間Sは、内部に貯まっていた液体ヘリウムがヒータ線12の熱によって気化した熱抵抗の高いヘリウムガスで満たされるので、ヒータ線12及びスイッチ部13と外筒部材14とは空間Sによってほぼ断熱された状態となる。 To stop the operation of the superconducting coil 3, the on-off valve V2 on the refrigerant supply source 9 side is closed and the on-off valve V1 on the exhaust pump 8 side is opened to exhaust the inside of the permanent current switch 1A to a vacuum. The heater wire 12 is energized at the same time as or after the exhaust, and the temperature of the switch unit 13 is raised to a temperature exceeding the superconducting transition point. When the temperature of the switch unit 13 exceeds the superconducting transition point, the switch unit 13 is turned off (disconnected), and the closed circuit in which the permanent current flows through the superconducting coil 3 is eliminated, so that the permanent current does not flow through the superconducting coil 3. , The superconducting coil 3 stops the generation of the magnetic field. At this time, the space S in the permanent current switch 1A is filled with helium gas having a high thermal resistance vaporized by the heat of the heater wire 12 for the liquid helium stored inside, so that the heater wire 12, the switch portion 13, and the outer cylinder The member 14 is substantially insulated by the space S.

上述のように、永久電流スイッチ1A内の内部には液体ヘリウムが貯まるので、液体ヘリウムによるスイッチ部13の冷却効果を高めるなど液体ヘリウムを効率的に利用するためには、図1及び図2に示すように、巻枠11の胴部Mの長手方向が重力方向に対してほぼ垂直方向となるように(つまり、胴部Mが水平となるように)、永久電流スイッチ1Aを横置きにするのが好ましい。 As described above, since liquid helium is accumulated inside the permanent current switch 1A, in order to efficiently use the liquid helium such as enhancing the cooling effect of the switch portion 13 by the liquid helium, FIGS. 1 and 2 are shown. As shown, the permanent current switch 1A is placed horizontally so that the longitudinal direction of the body M of the winding frame 11 is substantially perpendicular to the direction of gravity (that is, the body M is horizontal). Is preferable.

本実施形態で説明した永久電流スイッチ1Aを用いれば、永久電流スイッチ1AをOFF状態とする際に、永久電流スイッチ1Aの内部を、熱抵抗の高いヘリウムガス等で満たしたり真空状態に排気したりといった断熱状態で保持することができる。これによって、永久電流スイッチ1Aの発熱部分と冷凍機5間での熱的な抵抗を増やすことができ、冷凍機5への負荷を低減することができる。また、永久電流スイッチ1AをON状態とする際には、永久電流スイッチ1Aの内部で液体に凝縮された液体ヘリウムによってヒータ線12の熱を吸収し、スイッチ部13を超電導状態に保つことができる。このような構成を有することで、永久電流スイッチ1Aは、OFF状態(スイッチ部13が常伝導状態)において、永久電流スイッチ1Aの内部を断熱状態で保持することができるので、ヒータ線12の通電による発熱を冷凍機5側へ伝えることはほとんど無い。また、永久電流スイッチ1Aは、ON状態(スイッチ部13が超電導状態)において、液体ヘリウム等の冷媒によってスイッチ部13が冷却されて超電導状態を維持できるため、安定したスイッチング動
作を実現することが出来る。
When the permanent current switch 1A described in the present embodiment is used, when the permanent current switch 1A is turned off, the inside of the permanent current switch 1A can be filled with helium gas having high thermal resistance or exhausted to a vacuum state. It can be held in a heat-insulated state. As a result, the thermal resistance between the heat generating portion of the permanent current switch 1A and the refrigerator 5 can be increased, and the load on the refrigerator 5 can be reduced. Further, when the permanent current switch 1A is turned on, the heat of the heater wire 12 can be absorbed by the liquid helium condensed in the liquid inside the permanent current switch 1A, and the switch unit 13 can be kept in the superconducting state. .. With such a configuration, the permanent current switch 1A can hold the inside of the permanent current switch 1A in a heat-insulated state in the OFF state (the switch unit 13 is in the normal conduction state), so that the heater wire 12 is energized. The heat generated by the above is hardly transmitted to the refrigerator 5 side. Further, in the permanent current switch 1A, in the ON state (the switch unit 13 is in the superconducting state), the switch unit 13 can be cooled by a refrigerant such as liquid helium to maintain the superconducting state, so that stable switching operation can be realized. ..

最後に、永久電流スイッチ1A内に導入されたヘリウムガスは、外筒部材14の内壁に触れることで4.2K以下に冷却されて液体ヘリウムに再凝縮すると説明したが、この再凝縮の速度を上げるために、図3に示すように外筒部材(筐体)14の内壁に凝縮部15を形成した永久電流スイッチ1Bを用いてもよい。凝縮部15は、具体的には外筒部材の内壁に形成された溝であり、このような溝を形成することで外筒部材14の内壁の表面積を大きくとることができ、ヘリウムガスと外筒部材14の内壁の間の熱交換が容易となる。 Finally, it was explained that the helium gas introduced into the permanent current switch 1A is cooled to 4.2 K or less by touching the inner wall of the outer cylinder member 14 and recondensed into liquid helium. In order to raise the current, a permanent current switch 1B having a condensing portion 15 formed on the inner wall of the outer cylinder member (housing) 14 may be used as shown in FIG. Specifically, the condensing portion 15 is a groove formed on the inner wall of the outer cylinder member, and by forming such a groove, the surface area of the inner wall of the outer cylinder member 14 can be increased, and the helium gas and the outer surface can be increased. Heat exchange between the inner walls of the tubular member 14 becomes easy.

[第2実施形態]
図4を参照して、本発明の第2実施形態について説明する。図4は、MRI(磁気共鳴画像)装置やNMR(核磁気共鳴)装置などに用いられる磁場発生装置である超電導装置20の概略構成を示す図である。本実施形態において、超電導装置20は、第1実施形態で説明した超電導装置10とほぼ同様の構成を有し、同じく第1実施形態で説明した永久電流スイッチ1A又は1Bを設けている。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a schematic configuration of a superconducting device 20 which is a magnetic field generator used in an MRI (magnetic resonance imaging) device, an NMR (nuclear magnetic resonance) device, and the like. In the present embodiment, the superconducting device 20 has substantially the same configuration as the superconducting device 10 described in the first embodiment, and is provided with the permanent current switch 1A or 1B also described in the first embodiment.

図4を参照して、永久電流スイッチ1Aが設けられる超電導装置20の構成を説明する。
超電導装置20では、超電導コイル3は、液体ヘリウムHに浸漬されている。また、冷凍機5の第2段ステージ52は、液体ヘリウムHに浸漬されることなく、収納容器2内で気化したヘリウムガスを再凝縮するためのフィン53が設けられている。また、収納容器2と真空容器4の間には、超電導装置20の外部から収納容器2内に侵入する輻射による熱を遮蔽するための遮蔽シールド16が設けられている。
The configuration of the superconducting device 20 provided with the permanent current switch 1A will be described with reference to FIG.
In the superconducting device 20, the superconducting coil 3 is immersed in liquid helium H. Further, the second stage 52 of the refrigerator 5 is provided with fins 53 for recondensing the helium gas vaporized in the storage container 2 without being immersed in the liquid helium H. Further, between the storage container 2 and the vacuum container 4, a shielding shield 16 for shielding heat due to radiation entering the storage container 2 from the outside of the superconducting device 20 is provided.

このような構成の超電導装置20において、永久電流スイッチ1Aは、第1実施形態と同様に冷却部材7によって支持されると共に、冷凍機5の第2段ステージ52と熱的に接続されて冷却されている。その上で、永久電流スイッチ1Aの巻枠11のフランジF1に設けられた導管Pは、冷凍機5の第2段ステージ52に設けられたフィン53の近傍に開口が配置されるように取り回されて配管されている。 In the superconducting device 20 having such a configuration, the permanent current switch 1A is supported by the cooling member 7 as in the first embodiment, and is thermally connected to the second stage 52 of the refrigerator 5 to be cooled. ing. On top of that, the conduit P provided on the flange F1 of the winding frame 11 of the permanent current switch 1A is arranged so that an opening is arranged in the vicinity of the fin 53 provided on the second stage 52 of the refrigerator 5. It is piped.

永久電流スイッチ1Aを、超電導装置20内において本実施形態のように用いても、第1実施形態における永久電流スイッチ1Aと同様の効果を得ることができる。つまり、本実施形態における永久電流スイッチ1AをOFF状態とするとき、ヒータ線12が発熱しているため永久電流スイッチ1Aの内部は比較的温度の高いヘリウムガスで満たされて、外筒部材14とヒータ線12及びスイッチ部13との間の熱絶縁性を向上させることができる。このとき、永久電流スイッチ1Aの内部は、ヒータ線12の発熱による温度上昇に伴って圧力が上昇し、内部のヘリウムガスが永久電流スイッチ1Aから排出される。しかし、排出されたヘリウムガスは、冷凍機5の第2段ステージ52に設けられた再凝縮用のフィン53付近に排出されるので、フィン53によって液体ヘリウムに再凝縮される。 Even if the permanent current switch 1A is used in the superconducting device 20 as in the present embodiment, the same effect as that of the permanent current switch 1A in the first embodiment can be obtained. That is, when the permanent current switch 1A in the present embodiment is turned off, the heater wire 12 generates heat, so that the inside of the permanent current switch 1A is filled with helium gas having a relatively high temperature, and the outer cylinder member 14 and the outer cylinder member 14. The thermal insulation between the heater wire 12 and the switch portion 13 can be improved. At this time, the pressure inside the permanent current switch 1A rises as the temperature rises due to the heat generated by the heater wire 12, and the helium gas inside is discharged from the permanent current switch 1A. However, since the discharged helium gas is discharged in the vicinity of the recondensing fin 53 provided in the second stage 52 of the refrigerator 5, the fin 53 recondenses the discharged helium gas into liquid helium.

また、永久電流スイッチ1AをON状態とするとき、ヒータ線12は発熱していないので、永久電流スイッチ1Aは冷凍機5により4.2K以下に冷却される。この冷却によって、永久電流スイッチ1Aの内部の圧力は永久電流スイッチ1Aの外部に比べて低くなるので、この圧力差によって、第2段ステージ52に設けられたフィン53近傍の比較的低温のヘリウムガスが、フランジF1に設けられた導管Pを通して永久電流スイッチ1Aの内部に導入される。永久電流スイッチ1Aの内部に導入されたヘリウムガスは、外筒部材14の内壁に触れることで4.2K以下に冷却されて液体ヘリウムに再凝縮し、永久電流スイッチ1Aの内部に貯まる。 Further, when the permanent current switch 1A is turned on, the heater wire 12 does not generate heat, so that the permanent current switch 1A is cooled to 4.2 K or less by the refrigerator 5. Due to this cooling, the pressure inside the permanent current switch 1A becomes lower than that outside the permanent current switch 1A. Therefore, due to this pressure difference, a relatively low temperature helium gas near the fins 53 provided in the second stage stage 52. Is introduced into the permanent current switch 1A through the conduit P provided in the flange F1. The helium gas introduced into the permanent current switch 1A is cooled to 4.2 K or less by touching the inner wall of the outer cylinder member 14, recondensed in liquid helium, and stored inside the permanent current switch 1A.

本実施形態で説明したように、超電導コイル3が液体ヘリウムHに浸漬されて冷却される構成の超電導装置20の場合、永久電流スイッチ1Aに対して第1実施形態で説明したような排気ポンプ8や冷媒供給源9を接続しなくともよい。収納容器2内の液体ヘリウムH乃至はこの液体ヘリウムHから蒸発したヘリウムガスを冷媒供給源9の代わりに用いるように永久電流スイッチ1Aの導管Pを構成すれば、例えば永久電流スイッチ1AをOFF状態とする際に、永久電流スイッチ1Aの内部を、熱抵抗の高いヘリウムガス等で満たすといった断熱状態で保持することができる。これによって、永久電流スイッチ1Aの発
熱部分と冷凍機5の間での熱的な抵抗を増やすことができ、冷凍機5への負荷を低減することができる。また、永久電流スイッチ1AをON状態とする際には、永久電流スイッチ1Aの内部で液体に凝縮された液体ヘリウムによってヒータ線12の熱を吸収し、スイッチ部13を超電導状態に保つことができる。このような構成を有することで、永久電流スイッチ1Aは、OFF状態(スイッチ部13が常伝導状態)において、永久電流スイッチ1Aの内部を断熱状態で保持することができるので、ヒータ線12の通電による発熱を冷凍機5側へ伝えることはほとんど無い。また、永久電流スイッチ1Aは、ON状態(スイッチ部13が超電導状態)において、液体ヘリウム等の冷媒によってスイッチ部13が冷却されて超電導状態を維持できるため、安定したスイッチング動作を実現することが出来る。
As described in the present embodiment, in the case of the superconducting device 20 having a configuration in which the superconducting coil 3 is immersed in the liquid helium H and cooled, the exhaust pump 8 as described in the first embodiment for the permanent current switch 1A. And the refrigerant supply source 9 need not be connected. If the conduit P of the permanent current switch 1A is configured so that the liquid helium H in the storage container 2 or the helium gas evaporated from the liquid helium H is used instead of the refrigerant supply source 9, for example, the permanent current switch 1A is in the OFF state. At this time, the inside of the permanent current switch 1A can be maintained in a heat-insulated state such as being filled with helium gas or the like having a high thermal resistance. As a result, the thermal resistance between the heat generating portion of the permanent current switch 1A and the refrigerator 5 can be increased, and the load on the refrigerator 5 can be reduced. Further, when the permanent current switch 1A is turned on, the heat of the heater wire 12 can be absorbed by the liquid helium condensed in the liquid inside the permanent current switch 1A, and the switch unit 13 can be kept in the superconducting state. .. With such a configuration, the permanent current switch 1A can hold the inside of the permanent current switch 1A in a heat-insulated state in the OFF state (the switch unit 13 is in the normal conduction state), so that the heater wire 12 is energized. The heat generated by the above is hardly transmitted to the refrigerator 5 side. Further, in the permanent current switch 1A, in the ON state (the switch unit 13 is in the superconducting state), the switch unit 13 can be cooled by a refrigerant such as liquid helium to maintain the superconducting state, so that stable switching operation can be realized. ..

[第3実施形態]
図5を参照しながら、本発明の第3実施形態について説明する。
図5は、本実施形態による永久電流スイッチ1Cの内部の構成を示す断面図である。本実施形態による永久電流スイッチ1Cは、第1実施形態による超電導装置10や第2実施形態による超電導装置20などの超電導装置で用いられる永久電流スイッチであり、上述の永久電流スイッチ1A,1Bと同様に、ON(接続)とOFF(切断)を切り替えることで、永久電流を流す閉回路の形成と解消を切り替えることができる。以下の説明では、一例として、永久電流スイッチ1Cを超電導装置10に設ける場合を説明する。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a cross-sectional view showing the internal configuration of the permanent current switch 1C according to the present embodiment. The permanent current switch 1C according to the present embodiment is a permanent current switch used in a superconducting device such as the superconducting device 10 according to the first embodiment and the superconducting device 20 according to the second embodiment, and is the same as the above-mentioned permanent current switches 1A and 1B. By switching between ON (connection) and OFF (disconnection), it is possible to switch the formation and elimination of a closed circuit through which a permanent current flows. In the following description, as an example, a case where the permanent current switch 1C is provided in the superconducting device 10 will be described.

図5を参照し、永久電流スイッチ1Cの構成を説明する。尚、本実施形態以降の各実施形態では、冷却部材7において永久電流スイッチが載置される面である載置面からほぼ垂直に離れる方向を上方といい、その反対に載置面にほぼ垂直に近づく方向を下方という。図5の永久電流スイッチ1Cを図1に示す超電導装置10のように配置した場合、下方が重力方向に対応する。 The configuration of the permanent current switch 1C will be described with reference to FIG. In each embodiment after this embodiment, the direction in which the cooling member 7 is substantially perpendicular to the mounting surface, which is the surface on which the permanent current switch is mounted, is referred to as an upper direction, and vice versa. The direction approaching is called downward. When the permanent current switch 1C of FIG. 5 is arranged like the superconducting device 10 shown in FIG. 1, the lower part corresponds to the direction of gravity.

永久電流スイッチ1Cは、上述のように、永久電流を流す閉回路を形成するために、導線(ケーブル)によって超電導コイル3に接続されるものである。この永久電流スイッチ1Cは、巻枠11と、ヒータ線12と、スイッチ部13と、これらを内部に格納する筐体14Aと、筐体14A内で巻枠11を支持する支持部17と、筐体14A内にヘリウムガスを導入し筐体14A内からヘリウムガスを排出する導管P1と、筐体14A内へ導入されるヘリウムガスの温度を計測する温度センサ18とを備える。本実施形態において、巻枠11は銅で構成されているが、ステンレス鋼などの金属やGFRPで構成されてもよい。 As described above, the permanent current switch 1C is connected to the superconducting coil 3 by a conducting wire (cable) in order to form a closed circuit through which a permanent current flows. The permanent current switch 1C includes a winding frame 11, a heater wire 12, a switch portion 13, a housing 14A for storing these, a support portion 17 for supporting the winding frame 11 in the housing 14A, and a housing. It includes a conduit P1 that introduces helium gas into the body 14A and discharges helium gas from the housing 14A, and a temperature sensor 18 that measures the temperature of the helium gas introduced into the housing 14A. In the present embodiment, the winding frame 11 is made of copper, but may be made of a metal such as stainless steel or GFRP.

巻枠11、ヒータ線12、及びスイッチ部13は、第1実施形態で説明した永久電流スイッチ1A,1Bにおける構成とほぼ同様の構成を有する。しかし、本実施形態において、巻枠11のフランジF1には、貫通孔Tは設けられていない。
筐体14Aは、例えば、直方体形状、立方体形状及び円柱形状など、冷凍機5の冷却部材7上に配置可能な形状で、ヒータ線12及びスイッチ部13が巻回された巻枠11である熱スイッチを格納可能な大きさを有する中空の容器であり、例えば薄肉のステンレス鋼など、機械強度及び耐腐食性に優れた材料で形成されている。図5に示すように、冷却部材7上に配置される筐体14Aは気密な容器であるが、筐体14Aの内部と外部を連絡すると共に後述する導管P1が接続される貫通孔T1が、冷却部材7から十分に離れた位置で、内部に溜まった液体ヘリウムが筐体14A外へ漏れ出さない位置に形成されている。
The winding frame 11, the heater wire 12, and the switch unit 13 have substantially the same configurations as those in the permanent current switches 1A and 1B described in the first embodiment. However, in the present embodiment, the flange F1 of the winding frame 11 is not provided with the through hole T.
The housing 14A has a shape that can be arranged on the cooling member 7 of the refrigerator 5, such as a rectangular parallelepiped shape, a cubic shape, and a cylindrical shape, and is a winding frame 11 around which the heater wire 12 and the switch portion 13 are wound. It is a hollow container having a size capable of storing a switch, and is made of a material having excellent mechanical strength and corrosion resistance, such as thin-walled stainless steel. As shown in FIG. 5, the housing 14A arranged on the cooling member 7 is an airtight container, but the through hole T1 connecting the inside and the outside of the housing 14A and connecting the conduit P1 described later is formed. It is formed at a position sufficiently distant from the cooling member 7 so that the liquid helium accumulated inside does not leak to the outside of the housing 14A.

支持部17は、図5に示すように、筐体14A内で、巻枠11を筐体14Aと接することのないように支持すると共に筐体14Aに対して位置決めするものであって、巻枠11を支持する強度を有する柱状又はブロック(塊)状の部材である。この支持部17は、金属よりも熱伝導率の低いGFRPなどの樹脂で構成される。
支持部17は、筐体14A内で、胴部Mが冷却部材7とほぼ平行となるように配置された巻枠11のフランジF1,F2を支持することで巻枠11を位置決めする。支持部17は、例えば、フランジF1の上方と下方において、フランジF1と筐体14Aの間に挟み込まれるように配置されて、筐体14Aに対してフランジF1を支持する。支持部17は、フランジF1と同様にフランジF2も支持することで、巻枠11の全体を筐体14A内
で支持し位置決めする。このとき、支持部17は、巻枠11を、筐体14Aの上下の壁面からほぼ等しく間隔(空間)を空けると共に、左右の壁面からほぼ等しく間隔(空間)を空けるように、筐体14A内のほぼ中央付近に支持すると好ましい。
As shown in FIG. 5, the support portion 17 supports the winding frame 11 in the housing 14A so as not to come into contact with the housing 14A and positions the winding frame 11 with respect to the housing 14A. It is a columnar or block-shaped member having strength to support 11. The support portion 17 is made of a resin such as GFRP, which has a lower thermal conductivity than metal.
The support portion 17 positions the winding frame 11 by supporting the flanges F1 and F2 of the winding frame 11 arranged so that the body portion M is substantially parallel to the cooling member 7 in the housing 14A. The support portion 17 is arranged above and below the flange F1 so as to be sandwiched between the flange F1 and the housing 14A, and supports the flange F1 with respect to the housing 14A. The support portion 17 supports and positions the entire winding frame 11 in the housing 14A by supporting the flange F2 as well as the flange F1. At this time, the support portion 17 has the winding frame 11 in the housing 14A so as to have a substantially equal space (space) from the upper and lower wall surfaces of the housing 14A and a substantially equal space (space) from the left and right wall surfaces. It is preferable to support it near the center of the.

このような支持部17は、例えば、円板状のフランジF1,F2の各円周面の下方の2点を2つの支持部17で支持し、同じくフランジF1,F2の各円周面の上方の2点を2つの支持部17で支持する。つまり、フランジF1,F2のそれぞれは、各円周面が上下あわせて4つの支持部17を用いて4点で支持される。このとき、支持部17は、その強度が許す限り小さな面積でフランジF1,F2及び筐体14Aと接する形状に構成されるのが好ましい。フランジF1,F2及び筐体14Aとの接点の面積を可能な限り小さくすることで、フランジF1,F2と筐体14Aとの間の伝熱量を可能な限り小さくすることができる。 Such a support portion 17 supports, for example, two points below the circumferential surfaces of the disc-shaped flanges F1 and F2 by the two support portions 17, and also above the circumferential surfaces of the flanges F1 and F2. The two points of the above are supported by two support portions 17. That is, each of the flanges F1 and F2 is supported at four points by using four support portions 17 in which the circumferential surfaces of the flanges F1 and F2 are vertically combined. At this time, it is preferable that the support portion 17 is formed in a shape in contact with the flanges F1 and F2 and the housing 14A in an area as small as the strength allows. By making the area of contact between the flanges F1 and F2 and the housing 14A as small as possible, the amount of heat transfer between the flanges F1 and F2 and the housing 14A can be made as small as possible.

上述の構成の支持部17は、フランジF1,F2と筐体14Aの間の伝熱量を制限する伝熱制限部材でもあり、この伝熱制限部材である支持部17を介して、巻枠11を筐体14A内で冷凍機5の冷却部材7上に支持することができる。伝熱制限部材である支持部17は、上述のように巻枠11を冷却部材7上に支持して、巻枠11と冷却部材7との間に空間Sを形成する。筐体14A内を真空に排気して巻枠11と冷却部材7との間の空間Sを真空にしたときに、巻枠11と筐体14A(冷却部材7)の間に真空の断熱層が形成される。従って、巻枠11と筐体14Aの間の伝熱は、フランジF1,F2と筐体14Aの間の伝熱制限部材を介しての伝熱にほぼ限られるので、巻枠11と筐体14A(冷却部材7)の間を効果的に断熱することができる。 The support portion 17 having the above-described configuration is also a heat transfer limiting member that limits the amount of heat transfer between the flanges F1 and F2 and the housing 14A, and the winding frame 11 is passed through the support portion 17 that is the heat transfer limiting member. It can be supported on the cooling member 7 of the refrigerator 5 in the housing 14A. The support portion 17, which is a heat transfer limiting member, supports the winding frame 11 on the cooling member 7 as described above, and forms a space S between the winding frame 11 and the cooling member 7. When the space S between the winding frame 11 and the cooling member 7 is evacuated by exhausting the inside of the housing 14A to a vacuum, a vacuum heat insulating layer is formed between the winding frame 11 and the housing 14A (cooling member 7). It is formed. Therefore, the heat transfer between the winding frame 11 and the housing 14A is substantially limited to the heat transfer via the heat transfer limiting member between the flanges F1 and F2 and the housing 14A. It is possible to effectively insulate the space between (cooling members 7).

導管P1は、図5に示すように、筐体14Aの上方に設けられた貫通孔T1に接続され、筐体14Aの内部と外部を連通するためのステンレス鋼からなる管体である。導管P1は、第1実施形態による導管Pと同様に、超電導装置の外部に設けられた排気ポンプ8と、冷媒供給源9に接続される。筐体14Aの内部と外部を連通する導管P1が排気ポンプ8及び冷媒供給源9に接続されていることによって、筐体14Aの内部、つまり永久電流スイッチ1Cの内部にヘリウムガス及び/又は液体ヘリウムを供給することができ、また、永久電流スイッチ1Cの内部を排気することができる。 As shown in FIG. 5, the conduit P1 is a pipe body made of stainless steel that is connected to a through hole T1 provided above the housing 14A and for communicating the inside and the outside of the housing 14A. The conduit P1 is connected to an exhaust pump 8 provided outside the superconducting device and a refrigerant supply source 9 as in the conduit P according to the first embodiment. By connecting the conduit P1 that communicates the inside and the outside of the housing 14A to the exhaust pump 8 and the refrigerant supply source 9, helium gas and / or liquid helium is inside the housing 14A, that is, inside the permanent current switch 1C. Can be supplied, and the inside of the permanent current switch 1C can be exhausted.

しかし、液体ヘリウムなどの液体の冷媒を、導管P1を通して永久電流スイッチ1Cの内部に円滑に供給することは困難であるため、通常、導管P1には気体のヘリウムガスが供給される。導管P1を通じて筐体14Aの内部に流入したヘリウムガスは、冷却部材7と接する筐体14Aによって冷却されて液化し、液体ヘリウムとなって筐体14Aの内部(永久電流スイッチ1Cの内部)に溜まる。 However, since it is difficult to smoothly supply a liquid refrigerant such as liquid helium to the inside of the permanent current switch 1C through the conduit P1, a gaseous helium gas is usually supplied to the conduit P1. The helium gas that has flowed into the housing 14A through the conduit P1 is cooled and liquefied by the housing 14A in contact with the cooling member 7, becomes liquid helium, and accumulates inside the housing 14A (inside the permanent current switch 1C). ..

そこで、導管P1を流通するヘリウムガスの液化を防ぐために、導管P1は所定の温度に保たれる必要があり、導管P1にはヒータ線12と同様に電流によって発熱するヒータ線19が巻き付けられている。ヒータ線19の発熱によって導管P1を所定温度に維持すれば、導管P1を流通するヘリウムガスが導管P1の途中で液化して導管P1を塞ぐ栓となるのを防ぐことができる。 Therefore, in order to prevent the helium gas flowing through the conduit P1 from being liquefied, the conduit P1 needs to be kept at a predetermined temperature, and a heater wire 19 that generates heat by an electric current is wound around the conduit P1 like the heater wire 12. There is. If the conduit P1 is maintained at a predetermined temperature by the heat generated by the heater wire 19, it is possible to prevent the helium gas flowing through the conduit P1 from liquefying in the middle of the conduit P1 and becoming a plug that closes the conduit P1.

導管P1を熱伝導率の高い銅で構成すると導管P1内でヘリウムガスが液化し易くなるので、金属の中でも熱伝導率の低いステンレス鋼を用いて導管P1を構成するのが好ましい。
温度センサ18は、導管P1を流通するヘリウムガスの温度を計測するセンサである。温度センサ18は、図5に示すように、筐体14Aにおいて導管P1と筐体14Aの接合部である貫通孔T1の近傍に設けられ、導管P1を通って筐体14A内に流入する直前、又は流入した直後のヘリウムガスの温度を計測する。
If the conduit P1 is made of copper having a high thermal conductivity, helium gas is likely to be liquefied in the conduit P1. Therefore, it is preferable to construct the conduit P1 using stainless steel having a low thermal conductivity among metals.
The temperature sensor 18 is a sensor that measures the temperature of the helium gas flowing through the conduit P1. As shown in FIG. 5, the temperature sensor 18 is provided in the vicinity of the through hole T1 which is the joint portion between the conduit P1 and the housing 14A in the housing 14A, and immediately before flowing into the housing 14A through the conduit P1. Alternatively, measure the temperature of the helium gas immediately after the inflow.

尚、温度センサ18が設けられる位置は、図5で示す位置に限らず、導管P1上であってもよい。
図5では、筐体14Aにおいて巻枠11のフランジF1側の上方に導管P1が設けられているが、導管P1と同様の破線で示す導管P2を、筐体14Aにおいて巻枠11のフランジF2側の上方に設けてもよい。つまり、筐体14Aにおいて、巻枠11を挟んで導管P1とは反対側に、筐体14A内のヘリウムガスを排気するための導管P2を設ける。
The position where the temperature sensor 18 is provided is not limited to the position shown in FIG. 5, and may be on the conduit P1.
In FIG. 5, the conduit P1 is provided above the flange F1 side of the winding frame 11 in the housing 14A, but the conduit P2 shown by the broken line similar to the conduit P1 is shown on the flange F2 side of the winding frame 11 in the housing 14A. It may be provided above. That is, in the housing 14A, the conduit P2 for exhausting the helium gas in the housing 14A is provided on the side opposite to the conduit P1 with the winding frame 11 interposed therebetween.

導管P2の経路の途中に筐体14Aから外部への流出は許すが外部から筐体14Aへの流入を制限する逆止弁を設けて、この逆止弁を有する導管P2を排気ポンプ8に接続すれば、導管P1から筐体14A内に流入したヘリウムガスを筐体14A内から導管P2へ流出させる一方通行の流路を形成することができ、ヘリウムガスの導入及び排出を円滑に行うことができる。 A check valve is provided in the middle of the path of the conduit P2 to allow the outflow from the housing 14A to the outside but restrict the inflow from the outside to the housing 14A, and the conduit P2 having this check valve is connected to the exhaust pump 8. Then, a one-way flow path can be formed in which the helium gas that has flowed into the housing 14A from the conduit P1 is discharged from the housing 14A to the conduit P2, and the helium gas can be smoothly introduced and discharged. it can.

本実施形態による永久電流スイッチ1Cを用いれば、ヒータ線12及びスイッチ部13が巻回された巻枠11である熱スイッチと冷凍機5の冷却部材7の間の高い断熱性が、支持部17及び巻枠11と冷却部材7との間の空間Sによって得られるので、ヒータ線12の発熱が冷却部材7へ逃げることがほとんど無くなる。これにより、より少ないヒータ線12の発熱によって永久電流スイッチ1CをOFFにする(切断する)ことができる。 When the permanent current switch 1C according to the present embodiment is used, the high heat insulating property between the heat switch, which is the winding frame 11 around which the heater wire 12 and the switch portion 13 are wound, and the cooling member 7 of the refrigerator 5 is provided, and the support portion 17 is provided. Since it is obtained by the space S between the winding frame 11 and the cooling member 7, the heat generated by the heater wire 12 hardly escapes to the cooling member 7. As a result, the permanent current switch 1C can be turned off (cut off) by generating less heat from the heater wire 12.

尚、上述の説明では、永久電流スイッチ1Cを超電導装置10に設けた場合について説明したが、永久電流スイッチ1Bと同様に、永久電流スイッチ1Cを排気ポンプ8及び冷媒供給源9を備えない超電導装置20に設けることもできる。
[第4実施形態]
図6を参照しながら、本発明の第4実施形態について説明する。
In the above description, the case where the permanent current switch 1C is provided in the superconducting device 10 has been described. However, similarly to the permanent current switch 1B, the permanent current switch 1C is not provided with the exhaust pump 8 and the refrigerant supply source 9. It can also be provided at 20.
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to FIG.

図6は、本実施形態による永久電流スイッチ1Dの内部の構成を示す断面図である。本実施形態による永久電流スイッチ1Dは、第1実施形態による超電導装置10や第2実施形態による超電導装置20などの超電導装置で用いられる永久電流スイッチであり、上述の永久電流スイッチ1A〜1Cと同様に、ON(接続)とOFF(切断)を切り替えることで、永久電流を流す閉回路の形成と解消を切り替えることができる。以下の説明では、一例として、永久電流スイッチ1Dを超電導装置10に設けた場合を説明する。 FIG. 6 is a cross-sectional view showing the internal configuration of the permanent current switch 1D according to the present embodiment. The permanent current switch 1D according to the present embodiment is a permanent current switch used in a superconducting device such as the superconducting device 10 according to the first embodiment and the superconducting device 20 according to the second embodiment, and is the same as the above-mentioned permanent current switches 1A to 1C. By switching between ON (connection) and OFF (disconnection), it is possible to switch the formation and elimination of a closed circuit through which a permanent current flows. In the following description, as an example, a case where the permanent current switch 1D is provided in the superconducting device 10 will be described.

図6を参照し、永久電流スイッチ1Dの構成を説明する。
図6に示すように、永久電流スイッチ1Dは、上述の実施形態で説明した巻枠11とほぼ同様の構成の巻枠11Aと、ヒータ線12及びスイッチ部13が巻回された巻枠11A(熱スイッチ)を冷却部材7上に支持する支持部17Aとを備えている。永久電流スイッチ1Dは、冷却部材7において永久電流スイッチ1Dが載置される面である載置面に対して、巻枠11Aを縦置きする構成を有している。つまり、巻枠11Aは、巻枠11Aの軸心が上下方向に沿って当該載置面に対してほぼ垂直となるように配置され、支持部17Aによって冷却部材7上に支持される。
The configuration of the permanent current switch 1D will be described with reference to FIG.
As shown in FIG. 6, the permanent current switch 1D includes a winding frame 11A having substantially the same configuration as the winding frame 11 described in the above embodiment, and a winding frame 11A around which the heater wire 12 and the switch portion 13 are wound. It is provided with a support portion 17A that supports the heat switch) on the cooling member 7. The permanent current switch 1D has a configuration in which the winding frame 11A is vertically placed on the mounting surface on which the permanent current switch 1D is mounted in the cooling member 7. That is, the winding frame 11A is arranged so that the axis of the winding frame 11A is substantially perpendicular to the mounting surface along the vertical direction, and is supported on the cooling member 7 by the support portion 17A.

巻枠11Aは、巻枠11とほぼ同様の構成であって、胴部Mと2つの円板状の平板であるフランジF1a,F2を備えている。巻枠11Aにおいて巻枠11と異なる構成は、フランジF1aの形状である。
フランジF1aは、フランジF2よりも大きな径を有する円板状の平板で胴部M及びフランジF2と同心状あって、巻枠11Aが冷却部材7上に配置される際に、フランジF2よりも上方に配置される。フランジF2よりも大径のフランジF1aを、フランジF2と冷却部材7の間に空間Sを確保しつつ下方から支持することによって、巻枠11Aは、冷却部材7に対して縦置きされる。
The winding frame 11A has substantially the same structure as the winding frame 11, and includes a body portion M and flanges F1a and F2 which are two disc-shaped flat plates. The structure of the winding frame 11A that differs from that of the winding frame 11 is the shape of the flange F1a.
The flange F1a is a disc-shaped flat plate having a diameter larger than that of the flange F2, is concentric with the body portion M and the flange F2, and is above the flange F2 when the winding frame 11A is arranged on the cooling member 7. Is placed in. By supporting the flange F1a having a diameter larger than that of the flange F2 from below while ensuring a space S between the flange F2 and the cooling member 7, the winding frame 11A is vertically placed with respect to the cooling member 7.

支持部17Aは、図6に示すように、巻枠11AのフランジF1a(つまり、巻枠11Aの上端側)を下方から支持する部材であって、フランジF1aとほぼ同径の円筒状に形成されたステンレス鋼の筒体である。支持部17Aは、巻枠11Aの軸心方向の長さよりも大きな全長を有する薄肉の筒体であり、その筒体(支持部17A)の一端の開口を、冷却部材7において永久電流スイッチ1Dが載置される面である載置面に気密に固定し、該筒体(支持部17A)の他端の開口側で、筒体(支持部17A)内にフランジF2側から挿入された巻枠11AのフランジF1aを支持する。支持部17Aの他端の開口側と巻枠11AのフランジF1aを気密に接着又は接合すれば、巻枠11Aを、円筒状の支持部17A内で気密に保持することができる。 As shown in FIG. 6, the support portion 17A is a member that supports the flange F1a of the winding frame 11A (that is, the upper end side of the winding frame 11A) from below, and is formed in a cylindrical shape having substantially the same diameter as the flange F1a. It is a stainless steel cylinder. The support portion 17A is a thin-walled tubular body having a total length larger than the axial length of the winding frame 11A, and the permanent current switch 1D in the cooling member 7 opens an opening at one end of the tubular body (support portion 17A). A winding frame that is airtightly fixed to the mounting surface, which is the surface on which the cylinder is mounted, and is inserted into the cylinder (support portion 17A) from the flange F2 side at the opening side of the other end of the cylinder (support portion 17A). The flange F1a of 11A is supported. If the opening side of the other end of the support portion 17A and the flange F1a of the winding frame 11A are hermetically bonded or joined, the winding frame 11A can be hermetically held in the cylindrical support portion 17A.

上述の構成の支持部17Aは、フランジF1aと冷却部材7の間の伝熱量を極力小さくするためにその強度が許す限り薄肉に形成され、伝熱制限部材として働く。このような構成の支持部17Aによって、巻枠11AのフランジF2は、支持部17Aの全長のうち巻枠11Aの軸心方向に沿った長さより長い分だけ冷却部材7から離れて、フランジF2の
下方(つまり、巻枠11Aの下端側)に空間Sが形成される。
The support portion 17A having the above-described configuration is formed as thin as possible in order to minimize the amount of heat transfer between the flange F1a and the cooling member 7, and acts as a heat transfer limiting member. Due to the support portion 17A having such a configuration, the flange F2 of the winding frame 11A is separated from the cooling member 7 by a length longer than the length along the axial direction of the winding frame 11A in the total length of the support portion 17A, and the flange F2 A space S is formed below (that is, on the lower end side of the winding frame 11A).

このような支持部17Aは、その内部に巻枠11Aを格納して支持することに加えて、該内部が真空に排気されることで、巻枠11Aと支持部17A及び冷却部材7との間に空間Sを含む真空層(断熱層)を形成するので、伝熱制限部材としての働きに加えて、第3実施形態における筐体14Aの働きも実現する。従って、伝熱制限部材である支持部17Aは、筐体を兼ねて構成されているといえる。 In addition to storing and supporting the winding frame 11A inside the support portion 17A, the inside of the support portion 17A is exhausted to a vacuum, so that the winding frame 11A is between the support portion 17A and the cooling member 7. Since the vacuum layer (heat insulating layer) including the space S is formed in the space S, in addition to the function as a heat transfer limiting member, the function of the housing 14A in the third embodiment is also realized. Therefore, it can be said that the support portion 17A, which is a heat transfer limiting member, is configured to also serve as a housing.

ここで、図6に示すように、支持部17Aの上方に、第3実施形態で説明した貫通孔T1及び導管P1を設けて排気ポンプ8及び冷媒供給源9に接続し、支持部17A内へのヘリウムガスの導入及び排気を行うことができる。
このとき、導管P1は、フランジF1aと支持部17Aが接着又は接合する部位の近傍であれば好ましい。導管P1には、第3実施形態と同様に、ヒータ線19を巻き付けてもよい。また、支持部17Aに、第3実施形態で説明した導管P2を設けて排気ポンプ8に接続することもできる。さらに、貫通孔T1及び導管P1の近傍に温度センサ18を設けて、支持部17A内に流入する直前、又は流入した直後のヘリウムガスの温度を計測することもできる。
Here, as shown in FIG. 6, a through hole T1 and a conduit P1 described in the third embodiment are provided above the support portion 17A, connected to the exhaust pump 8 and the refrigerant supply source 9, and into the support portion 17A. Helium gas can be introduced and exhausted.
At this time, the conduit P1 is preferably in the vicinity of the portion where the flange F1a and the support portion 17A are bonded or joined. The heater wire 19 may be wound around the conduit P1 as in the third embodiment. Further, the support portion 17A may be provided with the conduit P2 described in the third embodiment and connected to the exhaust pump 8. Further, a temperature sensor 18 may be provided in the vicinity of the through hole T1 and the conduit P1 to measure the temperature of the helium gas immediately before or immediately after the inflow into the support portion 17A.

上述の構成を有する永久電流スイッチ1Dを用いれば、熱伝導率の低い薄肉の支持部17Aの伝熱量が非常に小さいので、フランジF1aから支持部17Aを通って冷却部材7に至る熱パスの伝熱量を非常に小さく抑えることができる。これに加えて、ヒータ線12及びスイッチ部13が巻回された巻枠11Aと冷凍機5の冷却部材7の間の高い断熱性が支持部17A及び巻枠11Aと冷却部材7との間の空間Sによって得られるので、ヒータ線12の発熱が冷却部材7へ逃げることがほぼ無くなる。これにより、より少ないヒータ線12の発熱によってスイッチ動作をOFFにする(切断する)ことができる永久電流スイッチ1Dを、伝熱制限部材と筐体を兼ねた支持部17Aを用いた簡易な構成で実現することができる。 If the permanent current switch 1D having the above configuration is used, the amount of heat transfer to the thin-walled support portion 17A having low thermal conductivity is very small, so that the heat path is transferred from the flange F1a through the support portion 17A to the cooling member 7. The amount of heat can be kept very small. In addition to this, the high heat insulating property between the winding frame 11A around which the heater wire 12 and the switch portion 13 are wound and the cooling member 7 of the refrigerator 5 is provided between the supporting portion 17A and the winding frame 11A and the cooling member 7. Since it is obtained by the space S, the heat generated by the heater wire 12 hardly escapes to the cooling member 7. As a result, the permanent current switch 1D, which can turn off (cut) the switch operation by generating less heat from the heater wire 12, has a simple configuration using a support portion 17A that also serves as a heat transfer limiting member and a housing. It can be realized.

尚、上述の説明では、永久電流スイッチ1Dを超電導装置10に設けた場合について説明したが、永久電流スイッチ1Bと同様に、永久電流スイッチ1Dを排気ポンプ8及び冷媒供給源9を備えない超電導装置20に設けることもできる。
[第5実施形態]
図7を参照しながら、本発明の第5実施形態について説明する。
In the above description, the case where the permanent current switch 1D is provided in the superconducting device 10 has been described. However, similarly to the permanent current switch 1B, the permanent current switch 1D is not provided with the exhaust pump 8 and the refrigerant supply source 9. It can also be provided at 20.
[Fifth Embodiment]
A fifth embodiment of the present invention will be described with reference to FIG. 7.

図7は、本実施形態による永久電流スイッチ1Eの内部の構成を示す断面図である。本実施形態による永久電流スイッチ1Eは、第1実施形態による超電導装置10や第2実施形態による超電導装置20などの超電導装置で用いられる永久電流スイッチであり、上述の永久電流スイッチ1A〜1Dと同様に、ON(接続)とOFF(切断)を切り替えることで、永久電流を流す閉回路の形成と解消を切り替えることができる。以下の説明では、一例として、永久電流スイッチ1Eを超電導装置10に設けた場合を説明する。 FIG. 7 is a cross-sectional view showing the internal configuration of the permanent current switch 1E according to the present embodiment. The permanent current switch 1E according to the present embodiment is a permanent current switch used in a superconducting device such as the superconducting device 10 according to the first embodiment and the superconducting device 20 according to the second embodiment, and is the same as the above-mentioned permanent current switches 1A to 1D. By switching between ON (connection) and OFF (disconnection), it is possible to switch the formation and elimination of a closed circuit through which a permanent current flows. In the following description, as an example, a case where the permanent current switch 1E is provided in the superconducting device 10 will be described.

図7を参照し、永久電流スイッチ1Eの構成を説明する。
図7に示すように、永久電流スイッチ1Eは、上述の実施形態で説明した巻枠11と、ヒータ線12及びスイッチ部13が巻回された巻枠11(熱スイッチ)を冷却部材7上に支持する支持部17Bとを備えている。永久電流スイッチ1Eは、永久電流スイッチ1Dと同様に、冷却部材7において永久電流スイッチ1Eが載置される面である載置面に対して、巻枠11を縦置きする構成を有している。つまり、巻枠11は、巻枠11の軸心が上下方向に沿って当該載置面に対してほぼ垂直となるように配置され、支持部17Bを介して、つまり支持部17Bを挟んで冷却部材7上に支持されている。図7において巻枠11は、フランジF1が上方となるように縦置きされているが、フランジF2が上方となるように縦置きされてもよい。
The configuration of the permanent current switch 1E will be described with reference to FIG. 7.
As shown in FIG. 7, in the permanent current switch 1E, the winding frame 11 described in the above-described embodiment and the winding frame 11 (heat switch) around which the heater wire 12 and the switch portion 13 are wound are placed on the cooling member 7. It is provided with a support portion 17B for supporting. Similar to the permanent current switch 1D, the permanent current switch 1E has a configuration in which the winding frame 11 is vertically placed on the mounting surface on which the permanent current switch 1E is mounted in the cooling member 7. .. That is, the winding frame 11 is arranged so that the axis of the winding frame 11 is substantially perpendicular to the mounting surface along the vertical direction, and is cooled via the support portion 17B, that is, across the support portion 17B. It is supported on the member 7. In FIG. 7, the winding frame 11 is vertically arranged so that the flange F1 is upward, but the winding frame 11 may be vertically arranged so that the flange F2 is upward.

支持部17Bは、縦置きされた巻枠11の下方(つまり、巻枠11の下端側)のフランジ(例えば、フランジF2)に固定されると共に、冷却部材7上に固定されることによって、巻枠11と冷却部材7の間に空間Sを確保しつつ巻枠11の下端側を冷却部材7に対して支持するものである。支持部17Bは、例えば、円板状のフランジF2とほぼ同じ大きさ及び形状の底面を有する円柱形状で、内部が中空となった部材であって、ステンレス
鋼等の金属で構成される。
The support portion 17B is fixed to a flange (for example, flange F2) below the vertically placed winding frame 11 (that is, the lower end side of the winding frame 11), and is fixed on the cooling member 7 to wind the support portion 17B. The lower end side of the winding frame 11 is supported with respect to the cooling member 7 while securing a space S between the frame 11 and the cooling member 7. The support portion 17B is, for example, a member having a cylindrical shape having a bottom surface having substantially the same size and shape as the disk-shaped flange F2 and having a hollow inside, and is made of a metal such as stainless steel.

このような構成を有する円柱形状の支持部17Bは、一方の底面(端面)で巻枠11の下端側であるフランジF2と接し、他方の底面(端面)で冷却部材7と接する。このとき、支持部17B内部の中空の部分は、巻枠11のフランジF2を冷却部材7から隔てる空間Sを形成し、この空間Sが真空に排気されることでフランジF2と冷却部材7の間に真空の断熱層を形成する。この断熱層によって、巻枠11と冷却部材7の間を効果的に断熱することができる。尚、真空となった空間Sによる断熱効果を効果的に得るためには、支持部17Bは、銅よりも熱伝導率の低いステンレス鋼を用いるのが好ましく、可能な限り薄肉となるように構成するとよい。 The cylindrical support portion 17B having such a configuration is in contact with the flange F2 on the lower end side of the winding frame 11 on one bottom surface (end face) and in contact with the cooling member 7 on the other bottom surface (end face). At this time, the hollow portion inside the support portion 17B forms a space S that separates the flange F2 of the winding frame 11 from the cooling member 7, and when this space S is exhausted to a vacuum, between the flange F2 and the cooling member 7. A vacuum insulation layer is formed on the floor. With this heat insulating layer, the space between the winding frame 11 and the cooling member 7 can be effectively heat-insulated. In order to effectively obtain the heat insulating effect of the vacuumed space S, it is preferable to use stainless steel having a lower thermal conductivity than copper for the support portion 17B, and the support portion 17B is configured to be as thin as possible. It is good to do.

ここで、図7に示すように、支持部17Bの上方に、第3実施形態で説明した貫通孔T1及び導管P1を設けて排気ポンプ8及び冷媒供給源9に接続し、支持部17B内へのヘリウムガスの導入及び排気を行うことができる。
このとき、導管P1は、支持部17BとフランジF2が接着又は接合する部位の近傍であれば好ましい。導管P1には、第3実施形態と同様に、ヒータ線19を巻き付けてもよい。また、支持部17Bに、第3実施形態で説明した導管P2を設けて排気ポンプ8に接続することもできる。さらに、貫通孔T1及び導管P1の近傍に温度センサ18を設けて、支持部17B内に流入する直前、又は流入した直後のヘリウムガスの温度を計測することもできる。
Here, as shown in FIG. 7, a through hole T1 and a conduit P1 described in the third embodiment are provided above the support portion 17B to connect to the exhaust pump 8 and the refrigerant supply source 9, and enter the support portion 17B. Helium gas can be introduced and exhausted.
At this time, the conduit P1 is preferably in the vicinity of the portion where the support portion 17B and the flange F2 are bonded or joined. The heater wire 19 may be wound around the conduit P1 as in the third embodiment. Further, the support portion 17B may be provided with the conduit P2 described in the third embodiment and connected to the exhaust pump 8. Further, a temperature sensor 18 may be provided in the vicinity of the through hole T1 and the conduit P1 to measure the temperature of the helium gas immediately before or immediately after the inflow into the support portion 17B.

上述の構成を有する永久電流スイッチ1Eを用いれば、巻枠11と冷凍機5の冷却部材7の間の高い断熱性が支持部17B内の空間Sによって得られると共に、熱伝導率の低い薄肉の支持部17Bの伝熱量が非常に小さいので、フランジF2から支持部17Bを通って冷却部材7に至る熱パスの伝熱量を非常に小さく抑えることができる。これにより、熱スイッチであるヒータ線12及びスイッチ部13が巻回された巻枠11を気密に覆う筐体を必要とせず、より少ないヒータ線12の発熱によってスイッチ動作をOFFにする(切断する)ことができる永久電流スイッチ1Eを、簡易な構成で実現することができる。 If the permanent current switch 1E having the above configuration is used, high heat insulation between the winding frame 11 and the cooling member 7 of the refrigerator 5 can be obtained by the space S in the support portion 17B, and a thin wall having a low thermal conductivity can be obtained. Since the heat transfer amount of the support portion 17B is very small, the heat transfer amount of the heat path from the flange F2 to the cooling member 7 through the support portion 17B can be suppressed to be very small. As a result, the heater wire 12 which is a heat switch and the winding frame 11 around which the switch portion 13 is wound do not need a housing for airtightly covering, and the switch operation is turned off (disconnected) by the heat generation of the heater wire 12 which is less. ) Can be realized with a simple configuration.

尚、上述の説明では、永久電流スイッチ1Eを超電導装置10に設けた場合について説明したが、永久電流スイッチ1Bと同様に、永久電流スイッチ1Eを排気ポンプ8及び冷媒供給源9を備えない超電導装置20に設けることもできる。
[第6実施形態]
図8を参照しながら、本発明の第6実施形態について説明する。
In the above description, the case where the permanent current switch 1E is provided in the superconducting device 10 has been described. However, similarly to the permanent current switch 1B, the permanent current switch 1E is not provided with the exhaust pump 8 and the refrigerant supply source 9. It can also be provided at 20.
[Sixth Embodiment]
A sixth embodiment of the present invention will be described with reference to FIG.

図8は、本実施形態による永久電流スイッチ1Fの内部の構成を示す断面図である。本実施形態による永久電流スイッチ1Fは、第5実施形態による永久電流スイッチ1Eの変形例である。従って、第1実施形態による超電導装置10や第2実施形態による超電導装置20などの超電導装置で用いられて、永久電流を流す閉回路の形成と解消を切り替えることができる。以下の説明では、一例として、永久電流スイッチ1Fを超電導装置10に設けた場合を説明する。 FIG. 8 is a cross-sectional view showing the internal configuration of the permanent current switch 1F according to the present embodiment. The permanent current switch 1F according to the present embodiment is a modification of the permanent current switch 1E according to the fifth embodiment. Therefore, it can be used in superconducting devices such as the superconducting device 10 according to the first embodiment and the superconducting device 20 according to the second embodiment, and it is possible to switch the formation and elimination of a closed circuit through which a permanent current flows. In the following description, as an example, a case where the permanent current switch 1F is provided in the superconducting device 10 will be described.

図8を参照し、永久電流スイッチ1Fの構成を説明する。
図8に示すように、永久電流スイッチ1Fは、上述の実施形態で説明した巻枠11とほぼ同様の構成を有し、内部に貫通孔を有すると共に縦置きされる巻枠11Bと、ヒータ線12及びスイッチ部13が巻回された巻枠11B(熱スイッチ)を冷却部材7上に支持する支持部17Cとを備えている。永久電流スイッチ1Fは、永久電流スイッチ1Eと同様に、冷却部材7において永久電流スイッチ1Fが載置される面である載置面に対して、巻枠11Bを縦置きする構成を有している。つまり、巻枠11Bは、巻枠11Bの軸心が上下方向に沿って当該載置面に対してほぼ垂直となるように配置され、支持部17Cを介して、つまり支持部17Cを挟んで冷却部材7上に支持されている。図8において巻枠11Bは、フランジF1が上方となるように縦置きされているが、フランジF2が上方となるように縦置きされてもよい。
The configuration of the permanent current switch 1F will be described with reference to FIG.
As shown in FIG. 8, the permanent current switch 1F has substantially the same configuration as the winding frame 11 described in the above-described embodiment, has a through hole inside, and has a winding frame 11B vertically installed, and a heater wire. A support portion 17C for supporting the winding frame 11B (heat switch) around which the 12 and the switch portion 13 are wound is provided on the cooling member 7. Similar to the permanent current switch 1E, the permanent current switch 1F has a configuration in which the winding frame 11B is vertically placed on the mounting surface on which the permanent current switch 1F is mounted in the cooling member 7. .. That is, the winding frame 11B is arranged so that the axis of the winding frame 11B is substantially perpendicular to the mounting surface along the vertical direction, and is cooled via the support portion 17C, that is, across the support portion 17C. It is supported on the member 7. In FIG. 8, the winding frame 11B is vertically placed so that the flange F1 faces upward, but may be vertically placed so that the flange F2 faces upward.

巻枠11Bは、上述の実施形態で説明した巻枠11と同様に、フランジF1、胴部M及びフランジF2によって構成されるが、フランジF1、胴部M、フランジF2を巻枠11の軸心位置で貫通する貫通孔を有する。巻枠11Bは、銅などの金属で構成される。
支持部17Cは、縦置きされた巻枠11Bの下方(つまり、巻枠11Bの下端側)のフランジ(例えば、フランジF2)に固定されると共に、冷却部材7上に固定されることによって、巻枠11Bと冷却部材7の間に空間Sを確保しつつ巻枠11Bの下端側を冷却部材7に対して支持するものである。支持部17Cは、例えば、円板状のフランジF2とほぼ同じ大きさ及び形状の底面を有する円柱形状で、内部が中空となった第1支持部と、巻枠11Bの軸心位置に形成された貫通孔に対応する円柱形状で、内部が中空となった第2支持部とが一体となった部材であって、ステンレス鋼等の金属で構成される。第1支持部は第5実施形態による支持部17Bに対応し、第1支持部内の中空の部分は、空間Sに相当する。円柱形状の第2支持部は、同じく円柱形状の第1支持部とほぼ同軸となるように第1支持部と一体となっており、第2支持部の中空の部分と第1支持部の空間Sは連通している。
The winding frame 11B is composed of a flange F1, a body portion M, and a flange F2, similarly to the winding frame 11 described in the above embodiment. The flange F1, the body portion M, and the flange F2 are the axial centers of the winding frame 11. It has a through hole that penetrates at the position. The winding frame 11B is made of a metal such as copper.
The support portion 17C is fixed to the flange (for example, the flange F2) below the vertically placed winding frame 11B (that is, the lower end side of the winding frame 11B), and is fixed on the cooling member 7 to wind the support portion 17C. The lower end side of the winding frame 11B is supported with respect to the cooling member 7 while securing a space S between the frame 11B and the cooling member 7. The support portion 17C has, for example, a cylindrical shape having a bottom surface having substantially the same size and shape as the disk-shaped flange F2, and is formed at the axial position of the winding frame 11B and the first support portion having a hollow inside. It is a member that has a cylindrical shape corresponding to the through hole and is integrated with a second support portion having a hollow inside, and is made of a metal such as stainless steel. The first support portion corresponds to the support portion 17B according to the fifth embodiment, and the hollow portion in the first support portion corresponds to the space S. The cylindrical second support portion is integrated with the first support portion so as to be substantially coaxial with the cylindrical first support portion, and the space between the hollow portion of the second support portion and the first support portion. S is communicating.

支持部17Cの第2支持部は、巻枠11Bの軸心方向に沿った長さとほぼ同じ長さを有し、フランジF2側から巻枠11Bの貫通孔に挿入される。第2支持部は、巻枠11Bの貫通孔と密に接し、第1支持部と共に巻枠11Bを支持する。
ここで、図8に示すように、支持部17Cの第2支持部の上方に、第3実施形態で説明した貫通孔T1及び導管P1を設けて排気ポンプ8及び冷媒供給源9に接続し、支持部17C内へのヘリウムガスの導入及び排気を行うことができる。
The second support portion of the support portion 17C has a length substantially the same as the length along the axial direction of the winding frame 11B, and is inserted into the through hole of the winding frame 11B from the flange F2 side. The second support portion is in close contact with the through hole of the winding frame 11B and supports the winding frame 11B together with the first support portion.
Here, as shown in FIG. 8, a through hole T1 and a conduit P1 described in the third embodiment are provided above the second support portion of the support portion 17C and connected to the exhaust pump 8 and the refrigerant supply source 9. Helium gas can be introduced and exhausted into the support portion 17C.

このとき、貫通孔T1及び導管P1は、第2支持部がフランジF1の上端面から露出した部分に設けられる。導管P1には、第3実施形態と同様に、ヒータ線19を巻き付けてもよい。さらに、貫通孔T1及び導管P1の近傍に温度センサ18を設けて、支持部17C内に流入する直前、又は流入した直後のヘリウムガスの温度を計測することもできる。
上述の構成の巻枠11B及び支持部17Cを有する永久電流スイッチ1Fによれば、巻枠11Bを構成する金属の量を、支持部17Cの第2支持部が挿入される貫通孔の分だけ減らすことができるので、巻枠11B、ひいては永久電流スイッチ1Fの熱容量を減少させることができる。また、熱容量の小さい巻枠11Bは、より小さなヒータ線12の発熱によって容易に温度が上昇すると共に、貫通孔に挿入された第2支持部に導入されるヘリウムガスによって効果的に冷却されるので、スイッチ動作のON(接続)とOFF(切断)を迅速に切り換えることができる永久電流スイッチ1Fを、簡易な構成で実現することができる。
At this time, the through hole T1 and the conduit P1 are provided in a portion where the second support portion is exposed from the upper end surface of the flange F1. The heater wire 19 may be wound around the conduit P1 as in the third embodiment. Further, a temperature sensor 18 may be provided in the vicinity of the through hole T1 and the conduit P1 to measure the temperature of the helium gas immediately before or immediately after the inflow into the support portion 17C.
According to the permanent current switch 1F having the winding frame 11B and the supporting portion 17C having the above-described configuration, the amount of metal constituting the winding frame 11B is reduced by the amount of the through hole into which the second supporting portion of the supporting portion 17C is inserted. Therefore, the heat capacity of the winding frame 11B and, by extension, the permanent current switch 1F can be reduced. Further, the winding frame 11B having a small heat capacity easily rises in temperature due to the heat generated by the smaller heater wire 12, and is effectively cooled by the helium gas introduced into the second support portion inserted into the through hole. , The permanent current switch 1F capable of quickly switching between ON (connection) and OFF (disconnection) of the switch operation can be realized with a simple configuration.

尚、上述の説明では、永久電流スイッチ1Fを超電導装置10に設けた場合について説明したが、永久電流スイッチ1Bと同様に、永久電流スイッチ1Fを排気ポンプ8及び冷媒供給源9を備えない超電導装置20に設けることもできる。
ところで、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、動作条件や測定条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
In the above description, the case where the permanent current switch 1F is provided in the superconducting device 10 has been described. However, similarly to the permanent current switch 1B, the permanent current switch 1F is not provided with the exhaust pump 8 and the refrigerant supply source 9. It can also be provided at 20.
By the way, it should be considered that the embodiments disclosed this time are exemplary in all respects and are not restrictive. In particular, in the embodiments disclosed this time, matters not explicitly disclosed, for example, operating conditions, measurement conditions, various parameters, dimensions, weights, volumes of components, etc., deviate from the range normally implemented by those skilled in the art. A value that can be easily assumed by a person skilled in the art is adopted.

具体的に、上述した第1実施形態及び第2実施形態において、永久電流スイッチ1A及び1Bでは、巻枠11の一方のフランジF1には、胴部Mと重ならない位置に胴部Mの長手方向に沿った導入口(貫通孔T)が設けられると説明したが、この貫通孔Tの数は1つとは限らない。フランジF1とフランジF2に1つずつ貫通孔Tが設けられてもよいし、フランジF1とフランジF2のいずれかに複数の貫通孔Tが設けられてもよい。このように、複数の貫通孔Tが設けられた場合でも、各貫通孔Tを通じて永久電流スイッチ1A及び1B内に気体及び/又は液体の冷媒を供給することができ、また、永久電流スイッチ1A及び1Bの内部を排気することができる。 Specifically, in the first embodiment and the second embodiment described above, in the permanent current switches 1A and 1B, one flange F1 of the winding frame 11 is located at a position not overlapping with the body portion M in the longitudinal direction of the body portion M. Although it has been explained that the introduction port (through hole T) is provided along the above, the number of the through holes T is not limited to one. One through hole T may be provided in each of the flange F1 and the flange F2, or a plurality of through holes T may be provided in either the flange F1 and the flange F2. In this way, even when a plurality of through holes T are provided, gas and / or liquid refrigerant can be supplied into the permanent current switches 1A and 1B through the through holes T, and the permanent current switches 1A and 1A and The inside of 1B can be exhausted.

1A〜1F 永久電流スイッチ
2 収納容器
3 超電導コイル
4 真空容器
5 冷凍機
6,7 冷却部材
8 排気ポンプ
9 冷媒供給源
10,20 超電導装置
11,11A,11B 巻枠
12,19 ヒータ線
13 スイッチ部
14,14A 筐体(外筒部材)
15 凝縮部
16 遮蔽シールド
17,17A〜17C 支持部
18 温度センサ
50 駆動部
51 第1段ステージ
52 第2段ステージ
53 フィン
F1,F1a,F2 フランジ
H 液体ヘリウム
T,T1 貫通孔
P,P1,P2 導管
M 胴部
S 空間
V1,V2 開閉バルブ
1A ~ 1F Permanent current switch 2 Storage container 3 Superconducting coil 4 Vacuum container 5 Refrigerator 6,7 Cooling member 8 Exhaust pump 9 Refrigerant supply source 10,20 Superconducting device 11,11A, 11B Winding frame 12,19 Heater wire 13 Switch part 14,14A housing (outer cylinder member)
15 Condensing part 16 Shielding shield 17, 17A to 17C Support part 18 Temperature sensor 50 Driving part 51 First stage stage 52 Second stage stage 53 Fins F1, F1a, F2 Flange H Liquid helium T, T1 Through hole P, P1, P2 Conduit M Body S Space V1, V2 Open / Close Valve

Claims (9)

コイルを巻回するための巻枠と、前記巻枠にコイル状に巻回されたヒータ線と、前記ヒータ線に重なるようにコイル状に巻回された超伝導線と、前記巻枠を支持する筐体とを備え、冷凍機で冷却される超電導装置内に設けられた超電導コイルを含む超電導回路を断続する永久電流スイッチであって、
前記永久電流スイッチは、前記筐体の内部と外部とを連通させ且つ前記筐体の内部に気体及び/又は液体の冷媒を供給する導入口を有し、
前記巻枠が、伝熱量を制限する伝熱制限部材を介して前記冷凍機の冷却部材上に支持されている
ことを特徴とする永久電流スイッチ。
Supports a winding frame for winding a coil, a heater wire wound in a coil shape around the winding frame, a superconducting wire wound in a coil shape so as to overlap the heater wire, and the winding frame. It is a permanent current switch that interrupts the superconducting circuit including the superconducting coil provided in the superconducting device cooled by the refrigerator.
It said persistent current switch is to have a feed port for supplying a gas and / or liquid coolant in the interior of the housing inside and outside and the housing communicates with the,
A permanent current switch , wherein the winding frame is supported on a cooling member of the refrigerator via a heat transfer limiting member that limits the amount of heat transfer.
前記筐体が、前記冷凍機と熱的に接続するように構成されていることを特徴とする請求項1に記載の永久電流スイッチ。 The permanent current switch according to claim 1, wherein the housing is configured to be thermally connected to the refrigerator. 前記筐体が、前記筐体の内部に存在する気体の冷媒を液体に凝縮する凝縮部を有することを特徴とする請求項1又は2に記載の永久電流スイッチ。 The permanent current switch according to claim 1 or 2, wherein the housing has a condensing portion that condenses a gaseous refrigerant existing inside the housing into a liquid. 前記伝熱制限部材が、前記巻枠と前記冷却部材との間に空間を形成するように、前記冷却部材上に前記巻枠を支持することを特徴とする請求項に記載の永久電流スイッチ。 The heat transfer limiting member is said to form a space between the spool and the cooling member, the permanent current switch according to claim 1, characterized in that for supporting the reel on the cooling member .. 前記巻枠が、軸心方向を上下に向けて前記冷却部材に対して縦置きされており、
前記伝熱制限部材が、前記巻枠の上端側又は下端側を支持することで、前記巻枠の下端側に前記空間を形成することを特徴とする請求項に記載の永久電流スイッチ。
The winding frame is vertically placed with respect to the cooling member with the axial direction facing up and down.
The permanent current switch according to claim 4 , wherein the heat transfer limiting member forms the space on the lower end side of the winding frame by supporting the upper end side or the lower end side of the winding frame.
前記伝熱制限部材が、前記筐体を兼ねて構成されていることを特徴とする請求項4又は5に記載の永久電流スイッチ。 The permanent current switch according to claim 4 or 5 , wherein the heat transfer limiting member is configured to also serve as the housing. 請求項1〜のいずれかに記載の永久電流スイッチを有し、
前記永久電流スイッチの筐体の外部から前記筐体の導入口に冷媒を供給する冷媒供給源を有することを特徴とする超電導装置。
The permanent current switch according to any one of claims 1 to 6 is provided.
A superconducting device comprising a refrigerant supply source for supplying a refrigerant from the outside of the housing of the permanent current switch to the introduction port of the housing.
前記筐体の内部の冷媒を、前記筐体の導入口から前記筐体の外部へ排出する排出手段を有することを特徴とする請求項に記載の超電導装置。 The superconducting device according to claim 7 , further comprising a discharge means for discharging the refrigerant inside the housing from the introduction port of the housing to the outside of the housing. 前記超電導装置は、前記超電導コイルを冷却する液体ヘリウムを有し、
前記冷媒供給源は、前記液体ヘリウムであることを特徴とする請求項に記載の超電導装置。
The superconducting device has a liquid helium that cools the superconducting coil.
The superconducting device according to claim 7 , wherein the refrigerant supply source is the liquid helium.
JP2013245952A 2013-03-28 2013-11-28 Permanent current switch and superconducting device equipped with it Expired - Fee Related JP6021791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245952A JP6021791B2 (en) 2013-03-28 2013-11-28 Permanent current switch and superconducting device equipped with it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013069190 2013-03-28
JP2013069190 2013-03-28
JP2013245952A JP6021791B2 (en) 2013-03-28 2013-11-28 Permanent current switch and superconducting device equipped with it

Publications (2)

Publication Number Publication Date
JP2014209543A JP2014209543A (en) 2014-11-06
JP6021791B2 true JP6021791B2 (en) 2016-11-09

Family

ID=51903600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245952A Expired - Fee Related JP6021791B2 (en) 2013-03-28 2013-11-28 Permanent current switch and superconducting device equipped with it

Country Status (1)

Country Link
JP (1) JP6021791B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6418957B2 (en) * 2015-01-15 2018-11-07 株式会社神戸製鋼所 Permanent current switch and superconducting device
CN114026661B (en) * 2019-07-10 2023-07-11 三菱电机株式会社 Superconducting electromagnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933592A (en) * 1972-07-26 1974-03-28
JPS63239876A (en) * 1987-03-27 1988-10-05 Toshiba Corp Thermal permanent current switch
JP2000068567A (en) * 1998-08-24 2000-03-03 Showa Electric Wire & Cable Co Ltd Conduction cooling perpetual current switch
JP2005090928A (en) * 2003-09-22 2005-04-07 Sumitomo Heavy Ind Ltd Dilution refrigerating machine
JP5679987B2 (en) * 2008-12-22 2015-03-04 コーニンクレッカ フィリップス エヌ ヴェ Superconducting switch cooled by internal cavity filled with liquid or gaseous refrigerant

Also Published As

Publication number Publication date
JP2014209543A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP3996935B2 (en) Cryostat structure
JP4468388B2 (en) Magnetic field generator
EP3523582B1 (en) Passive flow direction biasing of cryogenic thermosiphon
WO2010140398A1 (en) Refrigerator cooling-type superconducting magnet
JP2013522574A (en) Method and apparatus for controlling temperature in a cryogenic cryostat using stationary and flowing gases
JP2013118228A (en) Superconductive electromagnet device, cooling method of the same, and magnetic resonance imaging apparatus
JP6378039B2 (en) Superconducting magnet, MRI equipment, NMR equipment
JP2009000517A5 (en)
US11573279B2 (en) Displacer in magnetic resonance imaging system
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
US20100267567A1 (en) Superconducting magnet system with cooling system
JP6021791B2 (en) Permanent current switch and superconducting device equipped with it
JPWO2014147698A1 (en) Superconducting magnet cooling method and superconducting magnet
JP6104007B2 (en) Current supply device
US10732239B2 (en) Cryogen-free magnet system comprising a magnetocaloric heat sink
JP4799757B2 (en) Superconducting magnet
JP6491828B2 (en) Superconducting magnet system
Batey et al. Integration of superconducting magnets with cryogen-free dilution refrigerator systems
JP6644889B2 (en) Magnetic resonance imaging (MRI) device and cryostat for MRI device
JP3858269B2 (en) Cooling tube and cryogenic cryostat using the same
JP6158700B2 (en) Superconducting magnet device and superconducting device
JP7208914B2 (en) Thermal bath heat exchanger for superconducting magnets
JP5920924B2 (en) Superconducting magnet device and magnetic resonance imaging device
JP6418957B2 (en) Permanent current switch and superconducting device
JP2014175524A (en) Superconducting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees