JP2002208512A - High-temperature superconducting coil cooling method and cooling structure - Google Patents

High-temperature superconducting coil cooling method and cooling structure

Info

Publication number
JP2002208512A
JP2002208512A JP2001001361A JP2001001361A JP2002208512A JP 2002208512 A JP2002208512 A JP 2002208512A JP 2001001361 A JP2001001361 A JP 2001001361A JP 2001001361 A JP2001001361 A JP 2001001361A JP 2002208512 A JP2002208512 A JP 2002208512A
Authority
JP
Japan
Prior art keywords
coil
cooling
refrigerator
superconducting coil
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001001361A
Other languages
Japanese (ja)
Inventor
Kengo Okura
健吾 大倉
Kenichi Sato
謙一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001001361A priority Critical patent/JP2002208512A/en
Publication of JP2002208512A publication Critical patent/JP2002208512A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique with the refrigeration for retarding the quenching of a superconducting coil for a required time even if a refrigerator is stopped in a method of cooling down a high-temperature superconducting coil. SOLUTION: A high-temperature superconducting coil 11 is mounted on a refrigerator 31, and the superconducting coil 11 is cooled down by direct heat conduction between the coil 11 and the refrigerator 31. In this method, a solid refrigerant 33' that functions as a heat sink for heat that penetrates into the coil 11 by a predicted disturbance is arranged around the superconducting coil 11 to cool it down. A cooling plate 12 is fixed to the coil 12 so as to efficiently conduct heat released from the coil 11 to the solid refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温超電導コイル
を冷却するための方法および冷却構造物に関し、特に、
固体冷媒を使用して冷凍機により直接冷却する高温超電
導コイルの冷却方法および冷却構造物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a cooling structure for cooling a high-temperature superconducting coil.
The present invention relates to a cooling method and a cooling structure for a high-temperature superconducting coil directly cooled by a refrigerator using a solid refrigerant.

【0002】[0002]

【従来の技術】超電導体について、超電導状態を生成さ
せかつそれを安定に保つためには、超電導体を臨界温度
以下の温度で冷却することが必要である。その冷却方法
には、液体ヘリウム等の液体の冷媒により超電導体を冷
却する方式、および直接極低温冷凍機で冷却する方式等
がある。一般に、超電導マグネット等の冷却剤による冷
却は、液体ヘリウム中に直接超電導コイル等の被冷却体
が設けられる浸漬冷却方法と、真空容器中に設置された
被冷却体が循環ヘリウム等によって熱交換器を介して冷
却される強制循環冷却法とに大別することができる。冷
凍機を用いる方法では、必要とされる冷凍容量の規模に
よって形式の異なる種々の冷凍機が用いられる。kWレ
ベルの冷凍能力が必要な場合、タービン型の膨張器を備
えた冷凍機が用いられる一方、酸化物超電導体のような
より高い冷凍温度で超電導状態が得られる材料を冷却す
る場合、SolvayやG−Mサイクルによる2段膨張
式冷凍機等を用いることができる。
2. Description of the Related Art In order to generate a superconducting state and keep it stable, it is necessary to cool the superconductor at a temperature lower than a critical temperature. The cooling method includes a method of cooling the superconductor with a liquid refrigerant such as liquid helium, and a method of cooling directly with a cryogenic refrigerator. Generally, cooling with a coolant such as a superconducting magnet is performed by a immersion cooling method in which a cooled object such as a superconducting coil is directly provided in liquid helium, or a heat exchanger using a circulating helium or the like to cool the cooled object installed in a vacuum vessel. And a forced circulation cooling method in which cooling is performed through In the method using a refrigerator, various types of refrigerators having different types are used depending on the required refrigerating capacity. When a kW-level refrigeration capacity is required, a refrigerator equipped with a turbine-type expander is used. On the other hand, when cooling a material capable of obtaining a superconducting state at a higher refrigeration temperature such as an oxide superconductor, Solvay or For example, a two-stage expansion refrigerator using a GM cycle can be used.

【0003】[0003]

【発明が解決しようとする課題】上述した冷却方式のう
ち、冷凍機による方式では、冷凍機が停止したとき、超
電導コイルの温度が短時間で上がり、急激にクエンチが
生じるおそれがある。たとえば、超電導コイルを使用す
るリニアモーターカーの場合、コイルがクエンチする
と、磁気力が消失し、磁気浮上が不可能になる。そのよ
うな事態が急激におこれば、運転事故につながる危険性
がある。
Among the cooling methods described above, in the method using a refrigerator, when the refrigerator is stopped, the temperature of the superconducting coil rises in a short time, and there is a possibility that quench may occur rapidly. For example, in the case of a linear motor car using a superconducting coil, when the coil is quenched, the magnetic force is lost and magnetic levitation becomes impossible. If such a situation occurs suddenly, there is a risk of driving accident.

【0004】本発明の目的は、冷凍機を使用した超電導
体の冷却方式について、冷凍機が停止しても超電導体の
クエンチを必要な時間くいとめることができる技術を提
供することにある。
[0004] It is an object of the present invention to provide a technique for cooling a superconductor using a refrigerator, which can quench the superconductor for a required time even if the refrigerator is stopped.

【0005】[0005]

【課題を解決するための手段】本発明により、高温超電
導コイルを冷凍機に取り付け、該コイルと該冷凍機との
間の直接的な熱伝導により、該コイルを冷却する方法が
提供され、該方法は、予測される外乱による該コイルへ
の侵入熱に対してヒートシンクとして機能できる量の固
体冷媒を該コイルの周囲に配置して、該コイルの冷却を
行うことを特徴とする。
According to the present invention, there is provided a method of attaching a high temperature superconducting coil to a refrigerator and cooling the coil by direct heat conduction between the coil and the refrigerator. The method is characterized in that cooling of the coil is provided by placing an amount of solid refrigerant around the coil that can function as a heat sink against heat entering the coil due to expected disturbances.

【0006】本発明において、該コイルに接触しかつ該
コイルの外側に所定の長さで突き出る熱伝導性の部材
を、該コイルに取りつけることが好ましい。そのような
部材は、必要な量の固体冷媒を保持するのに有効であ
る。そのような部材は、典型的に、コイルに取りつけら
れる円盤形状の冷却板である。固体冷媒は、少なくとも
該部材を覆うよう該コイルの周囲に配置することが好ま
しい。
In the present invention, it is preferable that a heat conductive member that comes into contact with the coil and protrudes outside the coil by a predetermined length is attached to the coil. Such a member is effective to hold the required amount of solid refrigerant. Such a member is typically a disc-shaped cooling plate attached to the coil. Preferably, the solid refrigerant is arranged around the coil so as to cover at least the member.

【0007】本発明において、コイルは、たとえば、リ
ニアモーターカーに設けられるものである。本発明の好
ましい態様において、固体冷媒は固体窒素である。
In the present invention, the coil is provided, for example, in a linear motor car. In a preferred embodiment of the present invention, the solid refrigerant is solid nitrogen.

【0008】また本発明により、上記冷却方法に使用さ
れる冷却構造物が提供され、該冷却構造物は、高温超電
導コイルと、該コイルに取りつけられた、該コイルに接
触しかつ該コイルの外側に所定の長さで突き出る熱伝導
性の部材とを備える。
According to the present invention, there is further provided a cooling structure used in the above-mentioned cooling method, the cooling structure comprising a high-temperature superconducting coil, and a coil attached to the coil and in contact with the coil and outside the coil. And a thermally conductive member protruding at a predetermined length.

【0009】[0009]

【発明の実施の形態】図1に本発明による方法に使用さ
れる冷却構造物の一例を示す。冷却構造物10におい
て、冷凍機(図示せず)により冷却すべき複数のパンケ
ーキ型高温超電導コイル11が積み重ねられている。コ
イル11の積層体において、隣り合うコイル11同士の
間には、図2に示すような円盤形状の冷却板12が配置
されている。冷却板12は、良熱伝導体からなる。複数
の冷却板12は、コイル11に接触し、コイル11とと
もに積層されている。また、冷却板12は、コイル11
の積層体から所定の長さで外側に突き出るような外径を
有する。図1に示すように、本発明によれば、冷却板1
2のコイル積層体から突き出た部分12a上に固体冷媒
13、典型的に固体窒素が配置された状態で、冷凍機に
よるコイル11の冷却が行われる。本発明では、該突き
出た部分12aを少なくとも覆うよう固体冷媒13を配
置することが好ましい。
FIG. 1 shows an example of a cooling structure used in the method according to the present invention. In the cooling structure 10, a plurality of pancake-type high-temperature superconducting coils 11 to be cooled by a refrigerator (not shown) are stacked. In the laminated body of the coils 11, a disc-shaped cooling plate 12 as shown in FIG. 2 is arranged between the adjacent coils 11. The cooling plate 12 is made of a good heat conductor. The plurality of cooling plates 12 are in contact with the coil 11 and are stacked together with the coil 11. In addition, the cooling plate 12 is
Has an outer diameter protruding outward at a predetermined length from the laminate. According to the present invention, as shown in FIG.
The cooling of the coil 11 by the refrigerator is performed in a state where the solid refrigerant 13, typically solid nitrogen, is disposed on the portion 12a protruding from the coil stack of No. 2. In the present invention, it is preferable to dispose the solid refrigerant 13 so as to cover at least the protruding portion 12a.

【0010】コイル11は普通ダブルパンケーキ構造で
巻線されるが、そのようダブルパンケーキの間に良熱伝
導性の冷却板12を冷凍機のコールドヘッドに繋がるよ
う挿入すれば、パンケーキの冷却効率を上げることがで
きる。また、冷却板12の外径をコイル11の外径より
十分大きくして固体冷媒(典型的に固体窒素)と冷却板
との接触面積を広くすれば、固体冷媒の比較的小さい熱
伝導率を補い、コイル11からの発熱を固体冷媒の内部
に効率よく逃がすことができる。こうすれば、固体冷媒
の内部において顕著な温度分布が生じるのを回避するこ
とができる。
The coil 11 is usually wound in a double pancake structure. If a cooling plate 12 having good thermal conductivity is inserted between such double pancakes so as to be connected to the cold head of the refrigerator, the coil 11 is formed. Cooling efficiency can be increased. If the outer diameter of the cooling plate 12 is made sufficiently larger than the outer diameter of the coil 11 to increase the contact area between the solid refrigerant (typically, solid nitrogen) and the cooling plate, a relatively small thermal conductivity of the solid refrigerant can be obtained. In other words, heat generated from the coil 11 can be efficiently released into the solid refrigerant. In this way, it is possible to avoid occurrence of a remarkable temperature distribution inside the solid refrigerant.

【0011】冷却板12には、熱伝導率の高い任意の材
料を使用することができる。そのような材料には、銅、
アルミニウム等の熱伝導率の比較的高い金属が含まれ
る。一方、コイル磁場によって渦電流が発生しないよう
な材料を冷却板12に使用することが好ましい。したが
って、比較的高い熱伝導率を有しかつ顕著な渦電流を発
生しない、Cu−Ni合金等の銅合金、高強度アルミニ
ウム合金を冷却板12に用いることがより好ましい。
The cooling plate 12 can be made of any material having a high thermal conductivity. Such materials include copper,
Metals having relatively high thermal conductivity such as aluminum are included. On the other hand, a material that does not generate eddy current due to the coil magnetic field is preferably used for the cooling plate 12. Therefore, it is more preferable to use a copper alloy such as a Cu—Ni alloy or a high-strength aluminum alloy having a relatively high thermal conductivity and not generating a remarkable eddy current for the cooling plate 12.

【0012】本発明による方法では、予測される外乱に
よるコイルへの侵入熱に対してヒートシンクとして機能
できる量の固体冷媒をコイルの周囲に配置する。したが
って、冷却板12のコイル積層体から突き出た部分12
aの長さは、ヒートシンクとして機能できる量の固体冷
媒を冷却板12上に保持できるよう、設定することが好
ましい。外乱によるコイルへの侵入熱は、たとえば、外
部磁場によるコイルの交流損失により予測することがで
きる。そのような予測に基づいて求められた固体冷媒の
必要量をコイルの周囲に効率よく保持できるよう、冷却
板21の外径が決定される。
In the method according to the present invention, an amount of the solid refrigerant that can function as a heat sink against heat entering the coil due to a predicted disturbance is disposed around the coil. Therefore, the portion 12 of the cooling plate 12 protruding from the coil laminate
It is preferable that the length of “a” is set so that an amount of solid refrigerant that can function as a heat sink can be held on the cooling plate 12. The heat entering the coil due to the disturbance can be predicted, for example, by the AC loss of the coil due to the external magnetic field. The outer diameter of the cooling plate 21 is determined so that the required amount of the solid refrigerant obtained based on such a prediction can be efficiently held around the coil.

【0013】図3(a)および(b)に、図1に示す冷
却構造物を使用して、高温超電導コイルを冷却するプロ
セスを示す。図3(a)に示すとおり、高温超電導コイ
ル11および冷却板12を含む冷却構造物10は、冷凍
機31の冷却ステージ(コールドヘッド)31aに取り
付けられる。コイル11および冷却板12が取付けられ
た冷凍機31の冷却ステージ31aは、容器34内に収
容される。容器34は、たとえば、真空によって断熱を
行なう1層以上の断熱壁を備えることができる。高温超
電導コイル11には、電力供給のための電流リード35
が接続される。冷却ステージ31aを収容する容器34
には、液体窒素等の液体の冷却剤33がまず充填され
る。液体の冷却剤33は、超電導コイル11を収容する
容器34の空間内に注入することができる。冷却ステー
ジ31aに取付けられた超電導コイル11は、液体の冷
却剤33に浸漬され、冷却剤の温度(たとえば液体窒素
の場合、約77K)まで、まず冷却される。
FIGS. 3A and 3B show a process of cooling the high-temperature superconducting coil using the cooling structure shown in FIG. As shown in FIG. 3A, the cooling structure 10 including the high-temperature superconducting coil 11 and the cooling plate 12 is attached to a cooling stage (cold head) 31 a of the refrigerator 31. The cooling stage 31 a of the refrigerator 31 to which the coil 11 and the cooling plate 12 are attached is housed in a container 34. The container 34 can include, for example, one or more layers of heat insulating walls that are insulated by vacuum. The high-temperature superconducting coil 11 has a current lead 35 for supplying power.
Is connected. Container 34 for accommodating cooling stage 31a
Is first filled with a liquid coolant 33 such as liquid nitrogen. The liquid coolant 33 can be injected into the space of the container 34 that houses the superconducting coil 11. The superconducting coil 11 attached to the cooling stage 31a is immersed in a liquid coolant 33 and first cooled to the temperature of the coolant (for example, about 77K in the case of liquid nitrogen).

【0014】次に、冷凍機31の運転を始め、冷却ステ
ージ31a上の被冷却物を、冷却ステージ31aと被冷
却物との間の直接的な熱伝導により冷却する。冷却構造
物10が冷却剤の固体−液体共存温度(たとえば液体窒
素の場合63.1K)以下に冷凍機31によって冷却さ
れると、該温度において冷却構造物10の周囲に固化さ
れた冷却剤(たとえば固体窒素)が生成されるようにな
る。冷却板12は、冷却材33の冷凍機31による冷却
を促進し、すみやかな固化に寄与する。そして、冷却構
造物10は、固化された冷却剤33’によって覆われ
る。このような状態を図3(b)に示す。冷却ステージ
31aに取付けられた超電導コイル11および冷却板1
2は、固化された冷却剤(たとえば固体窒素)33’に
よって覆われている。このような状態で、超電導コイル
11を冷凍機31によって冷却し、コイル11を超電導
状態に維持する。コイル11は、冷凍機31の冷凍能力
に従って冷却され、所定の温度たとえば20Kまたはそ
れ以下の温度まで冷却される。
Next, the operation of the refrigerator 31 is started, and the object to be cooled on the cooling stage 31a is cooled by direct heat conduction between the cooling stage 31a and the object to be cooled. When the cooling structure 10 is cooled by the refrigerator 31 below the solid-liquid coexistence temperature of the coolant (for example, 63.1K in the case of liquid nitrogen), the coolant solidified around the cooling structure 10 at that temperature ( For example, solid nitrogen) is generated. The cooling plate 12 promotes cooling of the coolant 33 by the refrigerator 31 and contributes to quick solidification. Then, the cooling structure 10 is covered with the solidified coolant 33 '. Such a state is shown in FIG. Superconducting coil 11 and cooling plate 1 attached to cooling stage 31a
2 is covered by a solidified coolant (eg, solid nitrogen) 33 '. In such a state, superconducting coil 11 is cooled by refrigerator 31, and coil 11 is maintained in a superconducting state. The coil 11 is cooled according to the refrigerating capacity of the refrigerator 31 and is cooled to a predetermined temperature, for example, 20 K or lower.

【0015】固体窒素のような固体冷媒の熱容量は、液
体の状態に比べて1桁大きい。そのような固体冷媒は、
液体冷媒に比べて、侵入熱に対し温度が上昇しにくい。
したがって、固体冷媒をコイルの周囲に配置した状態で
コイルを冷却すれば、外乱による熱を固体冷媒に吸収さ
せ、コイルの温度上昇を設計した温度マージンの範囲内
に容易に収めることができる。冷却中、所定量の固体冷
媒でコイルを覆っておけば、たとえ冷凍機が停止して
も、コイルにおいて発生し得る熱を固体冷媒に吸収さ
せ、所定の時間(たとえば、冷凍機の運転を復帰できる
時間、具体的にはたとえば1時間)、コイルの温度上昇
を所定の温度マージン以下に抑え、コイルの超電導状態
を維持しておくことができる。このようにして急激なク
エンチの発生を阻止し、安定したコイルの運転が可能に
なる。このような外乱による熱を吸収するのに必要な固
体冷媒の量は、コイルのサイズ、外乱によるコイル発熱
量等に応じて見積もることができる。そのようにして見
積もった固体冷媒の必要量に応じて、冷却板のコイルか
ら突き出る長さ(あるいは冷却板の外径またはサイズ)
を設定することができる。
The heat capacity of a solid refrigerant such as solid nitrogen is one order of magnitude greater than that of a liquid state. Such solid refrigerants
As compared to liquid refrigerant, the temperature is less likely to rise due to intrusion heat.
Therefore, if the coil is cooled in a state where the solid refrigerant is arranged around the coil, heat caused by disturbance can be absorbed by the solid refrigerant, and the temperature rise of the coil can be easily kept within a designed temperature margin. If the coil is covered with a predetermined amount of solid refrigerant during cooling, even if the refrigerator is stopped, the heat that can be generated in the coil is absorbed by the solid refrigerant, and the operation of the refrigerator is resumed for a predetermined time (for example, As long as possible (specifically, for example, one hour), the temperature rise of the coil can be suppressed to a predetermined temperature margin or less, and the superconducting state of the coil can be maintained. In this way, rapid quench is prevented from occurring, and stable operation of the coil becomes possible. The amount of the solid refrigerant required to absorb the heat due to the disturbance can be estimated according to the size of the coil, the heat generated by the coil due to the disturbance, and the like. The length protruding from the coil of the cooling plate (or the outside diameter or size of the cooling plate) according to the estimated amount of the solid refrigerant thus estimated.
Can be set.

【0016】なお、マグネットシステムの総容量を抑
え、コンパクトなシステムを得るには、コイルの周囲に
配置する固体冷媒の量を必要最小限にすることが好まし
い。このような観点からは、上記装置において、冷却ス
テージ、冷却構造物および冷媒を収容する容器の大きさ
(容積)は必要最小限に設計することが好ましい。
In order to suppress the total capacity of the magnet system and obtain a compact system, it is preferable to minimize the amount of solid refrigerant disposed around the coil. From such a viewpoint, in the above-described apparatus, it is preferable that the size (volume) of the cooling stage, the cooling structure, and the container accommodating the refrigerant be designed to the minimum necessary.

【0017】本発明において、冷凍機には、必要とされ
る冷凍容量の規模によって種々の冷凍機を用いることが
できる。たとえば、蓄冷式冷凍サイクルを利用したもの
で、一般にクライオクーラと呼ばれる冷凍機を好ましく
用いることができる。具体的には、SolvayやG−
Mサイクルによる2段膨張式冷凍機(Solvay冷凍
機およびGM冷凍機)が好ましく用いられる。一方、ス
ターリング冷凍機を使用してもよい。本発明では、これ
らの形式の10K程度まで冷却できる市販の冷凍機を典
型的に使用することができる。本発明では、2またはそ
れ以上の冷却ステージを冷凍機を用いることができる。
複数の冷却ステージを有する多段式冷凍機を用いる場
合、冷却剤の表面を、到達温度の高い冷却ステージと到
達温度の低い冷却ステージとの間に配置させることが好
ましい。
In the present invention, various types of refrigerators can be used depending on the required refrigerating capacity. For example, a refrigerator using a regenerative refrigeration cycle, and a refrigerator generally called a cryocooler can be preferably used. Specifically, Solvey and G-
An M-cycle two-stage expansion refrigerator (Solvay refrigerator and GM refrigerator) is preferably used. On the other hand, a Stirling refrigerator may be used. In the present invention, these types of commercially available refrigerators capable of cooling to about 10K can be typically used. In the present invention, a refrigerator can be used for two or more cooling stages.
When a multi-stage refrigerator having a plurality of cooling stages is used, it is preferable to arrange the surface of the coolant between a cooling stage having a high ultimate temperature and a cooling stage having a low ultimate temperature.

【0018】本発明では、コイルの周囲に配置させる冷
媒として、飽和蒸気圧温度が液体ヘリウムよりも高い冷
媒を用いることができる。用いられる冷媒として、窒素
の他に、水素、酸素、ネオン、アルゴン、天然ガス、ア
ンモニア、およびその混合物等を挙げることができる。
たとえば、大気圧下の飽和蒸気圧温度が15K〜100
Kである冷媒を好ましく用いることができる。冷却剤と
して窒素を用いる場合、大気圧下において冷凍機の冷却
により液体窒素を固体窒素に変えることができる。
In the present invention, a refrigerant having a saturated vapor pressure higher than that of liquid helium can be used as the refrigerant disposed around the coil. As the refrigerant used, in addition to nitrogen, hydrogen, oxygen, neon, argon, natural gas, ammonia, a mixture thereof, and the like can be given.
For example, when the saturated vapor pressure temperature under atmospheric pressure is 15K to 100
A refrigerant that is K can be preferably used. When nitrogen is used as a coolant, liquid nitrogen can be changed to solid nitrogen by cooling a refrigerator under atmospheric pressure.

【0019】本発明において、高温超電導コイルを構成
する超電導体は、典型的に、酸化物超電導体等のより高
い臨界温度を有する超電導体である。酸化物超電導体に
は、Y1Ba2Cu37-Y(0≦Y<1)等のイットリウ
ム系酸化物超電導体、Bi2Sr2Ca1Cu28-Y、B
2Sr2Ca2Cu310-X、(Bi,Pb)2Sr2Ca
1Cu28-X、(Bi,Pb)2Sr2Ca2Cu310-X
(0≦X<1)等のビスマス系酸化物超電導体、Tl1
Ba2Ca2Cu39-X 、Tl2Ba2Ca2Cu310-Z
(0≦Z<1)等のタリウム系酸化物超電導体などがあ
る。本発明において、超電導コイルには、パンケーキ型
のコイルのほか、ソレノイド型のコイルも使用すること
ができる。超電導コイルの数は任意であり、1個のコイ
ルについて本発明を適用してもよいし、複数のコイルに
本発明を適用してもよい。
In the present invention, the superconductor constituting the high-temperature superconducting coil is typically a superconductor having a higher critical temperature, such as an oxide superconductor. The oxide superconductor includes an yttrium-based oxide superconductor such as Y 1 Ba 2 Cu 3 O 7 -Y (0 ≦ Y <1), Bi 2 Sr 2 Ca 1 Cu 2 O 8-Y , B
i 2 Sr 2 Ca 2 Cu 3 O 10-x , (Bi, Pb) 2 Sr 2 Ca
1 Cu 2 O 8-X , (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O 10-X
Bismuth-based oxide superconductor such as (0 ≦ X <1), Tl 1
Ba 2 Ca 2 Cu 3 O 9 -X, Tl 2 Ba 2 Ca 2 Cu 3 O 10-Z
There is a thallium-based oxide superconductor such as (0 ≦ Z <1). In the present invention, a superconducting coil may be a pancake coil or a solenoid coil. The number of superconducting coils is arbitrary, and the present invention may be applied to one coil or the present invention may be applied to a plurality of coils.

【0020】本発明は、リニアモータカー(MAGLE
V)、種々の産業用マグネットや電力機器用マグネット
等の超電導コイルを使用する種々の装置や機器に適用す
ることができる。たとえば、本発明をリニアモータカー
等に使用される車載用超電導コイルに使用した場合、事
故で冷凍機の電源が停止した場合でも、所定の時間コイ
ルの顕著な温度上昇をくいとめることができ、輸送手段
の安全を確保することができる。
The present invention relates to a linear motor car (MAGLE).
V), and can be applied to various devices and devices using superconducting coils such as various industrial magnets and power device magnets. For example, when the present invention is used for an in-vehicle superconducting coil used in a linear motor car or the like, even if the power of the refrigerator is stopped due to an accident, it is possible to suppress a remarkable temperature rise of the coil for a predetermined time, and Safety can be ensured.

【0021】[0021]

【発明の効果】本発明の方法によれば、冷凍機が停止し
ても一定期間コイルを運転させることができる。本発明
の冷却構造によれば、コイルの周囲における固体冷媒の
生成を促進することができ、さらに、コイルの発熱を容
易に固体冷媒に伝えてコイル温度の上昇を効果的にくい
とめることができる。本発明は、超電導コイルを使用す
る種々のシステム、装置、および機器に適用できるが、
たとえば、リニアモータカーのマグネットシステムに使
用すれば、冷凍機が停止しても、コイルの運転を一定時
間行わせることができ、輸送手段の安全を確保すること
ができる。
According to the method of the present invention, the coil can be operated for a certain period even if the refrigerator is stopped. ADVANTAGE OF THE INVENTION According to the cooling structure of this invention, generation | occurrence | production of the solid refrigerant | coolant in the periphery of a coil can be promoted, Furthermore, the heat generation of a coil can be easily transmitted to a solid refrigerant | coolant, and it can be determined that it is difficult to raise the coil temperature effectively. Although the present invention is applicable to various systems, devices, and devices that use superconducting coils,
For example, if used in a magnet system of a linear motor car, even if the refrigerator is stopped, the operation of the coil can be performed for a certain period of time, and the safety of the transportation means can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による冷却構造物の一例を示す側面図
である。
FIG. 1 is a side view showing an example of a cooling structure according to the present invention.

【図2】 図1に示す冷却構造物の冷却板の1つを示す
斜視図である。
FIG. 2 is a perspective view showing one of cooling plates of the cooling structure shown in FIG.

【図3】 (a)および(b)は、図1に示す冷却構造
を使用して、本発明により超電導コイルを冷却していく
様子を示す模式図である。
FIGS. 3A and 3B are schematic views showing a state in which a superconducting coil is cooled according to the present invention using the cooling structure shown in FIG.

【符号の説明】[Explanation of symbols]

10 冷却構造物、11 高温超電導コイル、12 冷
却板、31 冷凍機、31a 冷却ステージ、33 冷
却剤、34 容器。
Reference Signs List 10 cooling structure, 11 high-temperature superconducting coil, 12 cooling plate, 31 refrigerator, 31a cooling stage, 33 coolant, 34 container.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 41/02 ZAA H01F 5/08 ZAAG Fターム(参考) 5H113 AA01 CC01 DB14 DC14 KK02 KK10 5H609 BB07 BB08 BB19 PP02 PP09 QQ06 QQ21 QQ23 RR46 RR61 RR73 RR74 5H641 GG01 GG07 GG21 JB03 JB05──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 41/02 ZAA H01F 5/08 ZAAG F-term (Reference) 5H113 AA01 CC01 DB14 DC14 KK02 KK10 5H609 BB07 BB08 BB19 PP02 PP09 QQ06 QQ21 QQ23 RR46 RR61 RR73 RR74 5H641 GG01 GG07 GG21 JB03 JB05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 高温超電導コイルを冷凍機に取り付け、
前記コイルと前記冷凍機との間の直接的な熱伝導によ
り、前記コイルを冷却する方法において、 予測される外乱による前記コイルへの侵入熱に対してヒ
ートシンクとして機能できる量の固体冷媒を前記コイル
の周囲に配置して、前記コイルの冷却を行うことを特徴
とする、高温超電導コイルの冷却方法。
1. A high-temperature superconducting coil is attached to a refrigerator.
In a method for cooling the coil by direct heat conduction between the coil and the refrigerator, an amount of solid refrigerant that can function as a heat sink against heat entering the coil due to predicted disturbance A cooling method for cooling the high-temperature superconducting coil, wherein the cooling is performed by disposing the coil around the coil.
【請求項2】 前記コイルに接触しかつ前記コイルの外
側に所定の長さで突き出る熱伝導性の部材が、前記コイ
ルに取りつけられる、請求項1に記載の冷却方法。
2. The cooling method according to claim 1, wherein a heat conductive member that contacts the coil and projects a predetermined length outside the coil is attached to the coil.
【請求項3】 前記コイルが、リニアモーターカーに設
けられるものである、請求項1または2に記載の冷却方
法。
3. The cooling method according to claim 1, wherein the coil is provided in a linear motor car.
【請求項4】 前記固体冷媒が固体窒素である、請求項
1〜3のいずれか1項に記載の冷却方法。
4. The cooling method according to claim 1, wherein said solid refrigerant is solid nitrogen.
【請求項5】 高温超電導コイルと、 前記コイルに取りつけられた、前記コイルに接触しかつ
前記コイルの外側に所定の長さで突き出る熱伝導性の部
材とを備える、請求項2に記載の冷却方法に使用される
冷却構造物。
5. The cooling system according to claim 2, further comprising a high-temperature superconducting coil, and a heat conductive member attached to the coil and in contact with the coil and protruding outside the coil by a predetermined length. Cooling structure used in the method.
JP2001001361A 2001-01-09 2001-01-09 High-temperature superconducting coil cooling method and cooling structure Withdrawn JP2002208512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001361A JP2002208512A (en) 2001-01-09 2001-01-09 High-temperature superconducting coil cooling method and cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001361A JP2002208512A (en) 2001-01-09 2001-01-09 High-temperature superconducting coil cooling method and cooling structure

Publications (1)

Publication Number Publication Date
JP2002208512A true JP2002208512A (en) 2002-07-26

Family

ID=18870012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001361A Withdrawn JP2002208512A (en) 2001-01-09 2001-01-09 High-temperature superconducting coil cooling method and cooling structure

Country Status (1)

Country Link
JP (1) JP2002208512A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237060A (en) * 2004-02-17 2005-09-02 Sumitomo Electric Ind Ltd Cooling system for superconductive motor
JP2007321050A (en) * 2006-05-31 2007-12-13 Kyoto Univ Cryogenic cold-storing medium, and cryogenic refrigeration method and cryogenic refrigeration system, using the same
EP1953772A2 (en) 2007-02-05 2008-08-06 Hitachi, Ltd. Magnetic field generator
JP2008283803A (en) * 2007-05-11 2008-11-20 Railway Technical Res Inst Superconducting magnet for magnetic-levitation railway vehicle
JP2008279917A (en) * 2007-05-11 2008-11-20 Railway Technical Res Inst Operation system of super-conductive magnet for magnetically-suspended railway vehicle
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
KR101345776B1 (en) 2012-12-20 2013-12-27 한국기초과학지원연구원 Initial cooling prediction system and method of superconducting magnet
JP2016018902A (en) * 2014-07-09 2016-02-01 株式会社日立メディコ Superconducting electromagnet device
JP2016211749A (en) * 2015-04-28 2016-12-15 株式会社前川製作所 Superconductor cooling device and cooling method
CN107579625A (en) * 2017-08-14 2018-01-12 中国科学院长春光学精密机械与物理研究所 Motor temperature regulating device for infrared band test system
CN109887701A (en) * 2019-03-06 2019-06-14 上海交通大学 A kind of superconducting magnet refrigerating mechanism and application method for levitated superconducting magnet train
JP2019207916A (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Superconducting coil body and superconducting device
CN110993247A (en) * 2019-12-19 2020-04-10 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment
JP2021175284A (en) * 2020-04-27 2021-11-01 健吾 大倉 Motor device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237060A (en) * 2004-02-17 2005-09-02 Sumitomo Electric Ind Ltd Cooling system for superconductive motor
JP4501449B2 (en) * 2004-02-17 2010-07-14 住友電気工業株式会社 Cooling device for superconducting motor
JP2007321050A (en) * 2006-05-31 2007-12-13 Kyoto Univ Cryogenic cold-storing medium, and cryogenic refrigeration method and cryogenic refrigeration system, using the same
EP1953772A2 (en) 2007-02-05 2008-08-06 Hitachi, Ltd. Magnetic field generator
JP2008192848A (en) * 2007-02-05 2008-08-21 Hitachi Ltd Magnetic-field generator
US7764153B2 (en) 2007-02-05 2010-07-27 Hitachi, Ltd. Magnetic field generator
JP2008283803A (en) * 2007-05-11 2008-11-20 Railway Technical Res Inst Superconducting magnet for magnetic-levitation railway vehicle
JP2008279917A (en) * 2007-05-11 2008-11-20 Railway Technical Res Inst Operation system of super-conductive magnet for magnetically-suspended railway vehicle
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor
JP2011035216A (en) * 2009-08-04 2011-02-17 Railway Technical Res Inst Re-based superconducting coil conduction cooling method and device therefor
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
KR101345776B1 (en) 2012-12-20 2013-12-27 한국기초과학지원연구원 Initial cooling prediction system and method of superconducting magnet
WO2014098346A1 (en) * 2012-12-20 2014-06-26 한국기초과학지원연구원 System and method for predicting initial cooling of superconducting magnet
JP2016018902A (en) * 2014-07-09 2016-02-01 株式会社日立メディコ Superconducting electromagnet device
JP2016211749A (en) * 2015-04-28 2016-12-15 株式会社前川製作所 Superconductor cooling device and cooling method
CN107579625A (en) * 2017-08-14 2018-01-12 中国科学院长春光学精密机械与物理研究所 Motor temperature regulating device for infrared band test system
JP2019207916A (en) * 2018-05-28 2019-12-05 住友電気工業株式会社 Superconducting coil body and superconducting device
JP7151173B2 (en) 2018-05-28 2022-10-12 住友電気工業株式会社 Superconducting coil body and superconducting equipment
CN109887701A (en) * 2019-03-06 2019-06-14 上海交通大学 A kind of superconducting magnet refrigerating mechanism and application method for levitated superconducting magnet train
CN109887701B (en) * 2019-03-06 2021-01-01 上海交通大学 Superconducting magnet cooling device for superconducting magnetic suspension train and use method
CN110993247A (en) * 2019-12-19 2020-04-10 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment
CN110993247B (en) * 2019-12-19 2021-11-19 中国科学院合肥物质科学研究院 T-stage high-field superconducting magnet system for space-propelled ground simulation environment
JP2021175284A (en) * 2020-04-27 2021-11-01 健吾 大倉 Motor device

Similar Documents

Publication Publication Date Title
JP2002208512A (en) High-temperature superconducting coil cooling method and cooling structure
US7816826B2 (en) Thermosyphon cooled superconductor
JP5043955B2 (en) Superconducting synchronous motor
JP2006324325A (en) Super-conducting magnet apparatus
CA2210540A1 (en) Cooling method and energizing method of superconductor
JP4821047B2 (en) High temperature superconducting coil cooling system
JPH10275719A (en) Method for cooling superconductor
JP2010262950A (en) Superconducting electromagnet and transport method therefor
KR101888503B1 (en) Power supply for conduction cooled superconducting equipment
JP4799757B2 (en) Superconducting magnet
JP2004222494A (en) Vacuum retention method and superconducting machine with vacuum retention
JP2004111581A (en) Superconducting magnet unit
JP2010267661A (en) Superconducting magnet device unit
JP2952552B2 (en) Current leads for superconducting equipment
JPH11112043A (en) Current lead for super conducting device
JP3284406B2 (en) Superconducting wire connecting device for cryogenic equipment
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPH10247753A (en) Superconducting device and control method thereof
JP2607661Y2 (en) Cryogenic container
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2000150224A (en) Excitation control method of superconducting coil
JP3382794B2 (en) Permanent current switch
JPH06275875A (en) Conduction cooling-type superconducting electromagnet device
JPH11329834A (en) Superconducting device with conductor formed of superconducting material
CN220306059U (en) Pluggable nitrogen fixation cooling high-temperature superconducting magnet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401