JP2010262950A - Superconducting electromagnet and transport method therefor - Google Patents

Superconducting electromagnet and transport method therefor Download PDF

Info

Publication number
JP2010262950A
JP2010262950A JP2009110204A JP2009110204A JP2010262950A JP 2010262950 A JP2010262950 A JP 2010262950A JP 2009110204 A JP2009110204 A JP 2009110204A JP 2009110204 A JP2009110204 A JP 2009110204A JP 2010262950 A JP2010262950 A JP 2010262950A
Authority
JP
Japan
Prior art keywords
superconducting coil
refrigerator
superconducting
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110204A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
彰一 横山
Shuichi Nakagawa
修一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009110204A priority Critical patent/JP2010262950A/en
Publication of JP2010262950A publication Critical patent/JP2010262950A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress increase in the temperature of a superconducting coil in transport and storage, and to reduce the amount of consumption of refrigerants, when reinjecting the refrigerants by also suppressing an increase in temperature of the superconducting coil when a refrigerating machine stops. <P>SOLUTION: A superconducting electromagnet includes the superconducting coil 7 that is provided in a vacuum vessel 15 and is arranged in a refrigerant vessel 2 for storing the refrigerant 8 for cooling; the refrigeration machine 1 provided at an upper portion of the refrigerant vessel 2 through the vacuum vessel 15; and a conductive cooling member 30 for thermally short-circuiting a low-temperature stage 6 of the refrigeration machine 1 and the superconducting coil 7. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば医療用磁気共鳴イメージング装置に用いられる強磁界を発生する超電導電磁石及びその輸送方法に関するものである。   The present invention relates to a superconducting electromagnet that generates a strong magnetic field used in, for example, a medical magnetic resonance imaging apparatus and a method for transporting the same.

従来の超電導電磁石の構成を図3に示す。この図に示すように、真空容器15内に配設された液体ヘリウム容器2内に収容された磁界発生用の超電導コイル7と、液体ヘリウム容器2の上部で磁界の弱い部位に真空容器15を貫通して液体ヘリウム容器2を冷却するように配設された冷凍機1とを備え、冷凍機1によって液体ヘリウム容器2を冷却することにより、超電導コイル7への熱侵入を低減するようにしていた。(例えば特許文献1参照)   The configuration of a conventional superconducting electromagnet is shown in FIG. As shown in this figure, the superconducting coil 7 for generating a magnetic field housed in the liquid helium container 2 disposed in the vacuum container 15, and the vacuum container 15 in the upper part of the liquid helium container 2 at a weak magnetic field portion. The refrigerator 1 is provided so as to pass through and cool the liquid helium container 2, and the liquid helium container 2 is cooled by the refrigerator 1 to reduce heat intrusion into the superconducting coil 7. It was. (For example, see Patent Document 1)

また、液体ヘリウムを使用せず、超電導コイルを巻装した巻枠と複数のヒートパイプとを一体的に構成し、各ヒートパイプを冷凍機で冷却することにより超電導コイルへの熱侵入を低減して所定の温度以下に保つようにしているものもある。(例えば特許文献2参照)   In addition, without using liquid helium, the winding frame around which the superconducting coil is wound and a plurality of heat pipes are integrated, and each heat pipe is cooled by a refrigerator to reduce heat intrusion into the superconducting coil. Some of them are kept below a predetermined temperature. (For example, see Patent Document 2)

特開2005−210015号公報(段落0029、図1)JP 2005-210015 (paragraph 0029, FIG. 1) 特開平7−57927号公報(段落0006、0011−0012、図1)Japanese Unexamined Patent Publication No. 7-57927 (paragraphs 0006, 0011-0012, FIG. 1)

特許文献1に示されたものは、冷凍機によって液体ヘリウム容器を冷却するものであるのに加えて、航空機等での輸送時には液体ヘリウムを貯液した状態で輸送ができないことが多く、液体ヘリウムを抜いてしまうことから、輸送時及び保管時に超電導コイルの温度が上昇し、再冷却時に液体ヘリウムが多く必要になるという問題点があった。   In addition to cooling the liquid helium container with a refrigerator, the one disclosed in Patent Document 1 often cannot be transported in a state in which liquid helium is stored during transportation on an aircraft or the like. Therefore, there is a problem that the temperature of the superconducting coil rises during transportation and storage, and a lot of liquid helium is required during recooling.

また、特許文献2に示されたものは、液体ヘリウムを使用しないため、冷凍機が停止した場合には、超電導コイルの温度が直ちに上昇し、超電導コイルの発生磁界を直ちに停止する必要があるという問題点があった。   Moreover, since the thing shown by patent document 2 does not use liquid helium, when a refrigerator stops, the temperature of a superconducting coil rises immediately and it is necessary to stop the magnetic field generated of a superconducting coil immediately. There was a problem.

この発明は、上記のような問題点を解決するためになされたもので、輸送時及び保管時における超電導コイルの温度上昇を抑制することができ、冷凍機停止時における温度上昇も抑制することができる超電導電磁石及びその輸送方法を提供することを目的とする。   The present invention has been made to solve the above problems, and can suppress the temperature rise of the superconducting coil during transportation and storage, and can also suppress the temperature rise when the refrigerator is stopped. An object of the present invention is to provide a superconducting electromagnet that can be used and a method for transporting the same.

この発明に係る超電導電磁石は、真空容器中に設けられ、冷却用の冷媒を収容した冷媒容器中に配設された超電導コイルと、上記真空容器を経て上記冷媒容器の上部に設けられた冷凍機と、上記冷凍機の低温ステージと上記超電導コイルとを熱短絡する伝導冷却部材とを備えたものである。   A superconducting electromagnet according to the present invention is provided in a vacuum vessel, a superconducting coil provided in a refrigerant vessel containing a cooling refrigerant, and a refrigerator provided above the refrigerant vessel through the vacuum vessel And a conductive cooling member that thermally short-circuits the low-temperature stage of the refrigerator and the superconducting coil.

この発明に係る超電導電磁石は上記のように構成され、冷媒容器内に配設された超電導コイルと冷凍機とを伝導冷却部材で熱短絡しているため、冷媒である液体ヘリウムが無い
状態でも超電導コイルを低温に保持することができる。
The superconducting electromagnet according to the present invention is configured as described above, and the superconducting coil disposed in the refrigerant container and the refrigerator are thermally short-circuited by the conductive cooling member. Therefore, even when there is no liquid helium as the refrigerant, the superconducting magnet is provided. The coil can be kept at a low temperature.

また、超電導コイルの輸送の前後における保管中に冷凍機を運転し、輸送時に上記冷凍機を停止するようにしているため、空輸等の短時間の輸送であれば、輸送後に冷媒を注液する場合の初期冷却量を大幅に低減することができる。なお、船舶による輸送の場合は輸送時間が長時間となるが、船舶内の電源あるいは持ち込み電源によって輸送中も冷凍機を運転することが可能であるため、輸送途中をも含めて冷却保持が可能となるものである。   In addition, since the refrigerator is operated during storage before and after the transport of the superconducting coil and the refrigerator is stopped during the transportation, the refrigerant is injected after the transportation for a short transportation such as air transportation. In this case, the initial cooling amount can be greatly reduced. In the case of transportation by ship, it takes a long time to transport, but since the refrigerator can be operated during transportation with the power supply or carry-in power supply in the ship, it can be kept cool even during transportation. It will be.

この発明の実施の形態1による超電導電磁石の構成を示すもので、(a)は縦断面図、(b)は(a)のA−A線に沿った断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The structure of the superconducting electromagnet by Embodiment 1 of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is sectional drawing along the AA line of (a). この発明の実施の形態2による超電導電磁石の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the superconducting electromagnet by Embodiment 2 of this invention. 従来の超電導電磁石の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the conventional superconducting electromagnet.

実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による超電導電磁石の構成を示すもので、(a)は縦断面図、(b)は(a)のA−A線に沿った断面図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. 1A and 1B show a configuration of a superconducting electromagnet according to Embodiment 1, wherein FIG. 1A is a longitudinal sectional view, and FIG. 1B is a sectional view taken along line AA in FIG.

これらの図に示すように、真空によって常温部と断熱するための真空容器15の中に、輻射シールド10によって覆われた冷媒容器2が設けられ、この冷媒容器2の中に超電導コイル7が配設されている。冷媒容器2中にはまた、冷媒としての液体ヘリウム8が収容され、その液面と冷媒容器2との空間にはヘリウムガス16が充満し、超電導コイル7を冷却するようにされている。   As shown in these drawings, a refrigerant container 2 covered with a radiation shield 10 is provided in a vacuum container 15 for heat insulation from a normal temperature part by vacuum, and a superconducting coil 7 is arranged in the refrigerant container 2. It is installed. The refrigerant container 2 also contains liquid helium 8 as a refrigerant, and the space between the liquid surface and the refrigerant container 2 is filled with helium gas 16 to cool the superconducting coil 7.

さらに、液体ヘリウム8の蒸発を抑制するために真空容器15の上部に冷凍機1が設けられ、その第1段目低温ステージ3及び第2段目低温ステージ6がスリーブ4を介して真空容器15、輻射シールド10及び冷媒容器2を貫通し、第2段目低温ステージ6と超電導コイル7とを伝導冷却部材30で接続して熱短絡するようにしている。   Further, in order to suppress evaporation of the liquid helium 8, the refrigerator 1 is provided above the vacuum container 15, and the first stage low temperature stage 3 and the second stage low temperature stage 6 are connected to the vacuum container 15 via the sleeve 4. The second low temperature stage 6 and the superconducting coil 7 are connected by the conductive cooling member 30 so as to be thermally short-circuited through the radiation shield 10 and the refrigerant container 2.

このような構成において、冷凍機1を運転することにより、超電導コイル7が例えば4.2Kの温度に保持される。従って、この状態において、超電導コイル7が何らかの原因で超電導状態から常伝導状態に転移(クエンチ)し、超電導コイル内の蓄積エネルギーによって超電導コイルの温度が上昇して液体ヘリウム8が消滅したとしても、冷凍機1と超電導コイル7とが伝導冷却部材30で熱短絡されているため、超電導コイル7の温度が上昇しようとしても冷凍機1で冷却が継続され、再度、液体ヘリウム8が注液されるまでの間、超電導コイル7を十分に冷却することができるので、液体ヘリウム8を注液する際における貯液までの初期冷却に要する液体ヘリウムの必要量を低減することができる。   In such a configuration, by operating the refrigerator 1, the superconducting coil 7 is maintained at a temperature of, for example, 4.2K. Therefore, in this state, even if the superconducting coil 7 transitions (quenches) from the superconducting state to the normal conducting state for some reason, the temperature of the superconducting coil rises due to the stored energy in the superconducting coil, and the liquid helium 8 disappears. Since the refrigerator 1 and the superconducting coil 7 are thermally short-circuited by the conductive cooling member 30, the cooling is continued in the refrigerator 1 even if the temperature of the superconducting coil 7 increases, and liquid helium 8 is injected again. Since the superconducting coil 7 can be sufficiently cooled until this time, the required amount of liquid helium required for the initial cooling to the liquid storage when the liquid helium 8 is injected can be reduced.

また、超電導電磁石を輸送する際には冷媒である液体ヘリウムを抜くことが多く、冷媒を抜くと超電導コイル7の温度が上昇してしまうが、この実施の形態によれば、冷凍機1の第2段目低温ステージ6と超電導コイル7とを伝導冷却部材30で熱短絡しているため、輸送時もしくは輸送前後の保管時に冷凍機1を運転すれば超電導コイル7の温度上昇を抑制することが可能となり、液体ヘリウムを再注液する際に超電導コイル7を液体ヘリウム温度まで冷却するためのヘリウム消費量を抑制することができる。   Further, when transporting the superconducting electromagnet, the liquid helium, which is a refrigerant, is often extracted, and when the refrigerant is extracted, the temperature of the superconducting coil 7 rises. According to this embodiment, the temperature of the refrigerator 1 is increased. Since the second low-temperature stage 6 and the superconducting coil 7 are thermally short-circuited by the conductive cooling member 30, if the refrigerator 1 is operated during transportation or storage before and after transportation, the temperature rise of the superconducting coil 7 can be suppressed. This makes it possible to suppress helium consumption for cooling the superconducting coil 7 to the liquid helium temperature when liquid helium is reinjected.

例えば、超電導コイル7と冷媒容器2の被冷却重量が2500kgの超電導電磁石において、従来のように超電導コイル7を直接冷却する伝導冷却部材30が無い構造では、冷媒である液体ヘリウム8を抜いて冷凍機1を停止すると、超電導コイル7の温度がおよそ1週間
で100K程度まで上昇する。この状態から液体ヘリウムを注液しようとすると、貯液が始まるまでに約1000リットルを消費し、冷凍機1を運転しても50K程度に達するまでに30日
以上を要する。
For example, in a superconducting electromagnet in which the superconducting coil 7 and the refrigerant container 2 have a weight to be cooled of 2500 kg and there is no conductive cooling member 30 that directly cools the superconducting coil 7 as in the prior art, the liquid helium 8 that is the refrigerant is removed and frozen. When the machine 1 is stopped, the temperature of the superconducting coil 7 rises to about 100K in about one week. If liquid helium is to be injected from this state, about 1000 liters will be consumed before the liquid storage starts, and even if the refrigerator 1 is operated, it takes 30 days or more to reach about 50K.

一方、実施の形態1のように、伝導冷却部材30により冷凍機1の第2段目低温ステージ6と超電導コイル7とを熱短絡した構成の超電導電磁石においては、熱コンダクタンスを5W/Kで構成した場合、100Kの超電導コイルが40Kに達するまでに3.9日間、20Kに達するまでに4.5日間で冷却でき、5日間以内で液体ヘリウム温度にまで冷却することができる
ため、輸送における冷凍機1の停止期間が1週間程度あったとしても、4,5日間冷凍機1を運転することにより液体ヘリウムの消費量を大幅に低減することができる。
On the other hand, in the superconducting electromagnet having the configuration in which the second low temperature stage 6 of the refrigerator 1 and the superconducting coil 7 are thermally short-circuited by the conductive cooling member 30 as in the first embodiment, the thermal conductance is configured at 5 W / K. In this case, the 100K superconducting coil can be cooled for 3.9 days to reach 40K, 4.5 days to reach 20K, and cooled to liquid helium temperature within 5 days. Even if the period is about one week, the consumption of liquid helium can be significantly reduced by operating the refrigerator 1 for 4 or 5 days.

また、液体ヘリウム消費量は20Kに冷却できている場合には50リットルとなり上述の1/20、40Kに冷却できている場合には200リットルとなり上述の1/5に大幅に抑制することができる。
このように、超電導コイル7と冷凍機1とを伝導冷却部材30で熱短絡することにより、どの温度状態であっても良く冷却することが可能である。
In addition, the consumption of liquid helium is 50 liters when it is cooled to 20K, and it is 200 liters when it is cooled to 1/20 as described above and 40K, which can be significantly suppressed to 1/5 as described above. .
As described above, the superconducting coil 7 and the refrigerator 1 are thermally short-circuited by the conductive cooling member 30 so that the cooling can be performed in any temperature state.

実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図2は、実施の形態2による超電導電磁石の構成を示す断面図である。この図において、図1と同一または相当部分には同一符号を付して説明を省略する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view showing the configuration of the superconducting electromagnet according to the second embodiment. In this figure, the same or corresponding parts as in FIG.

図1と異なる点は、伝導冷却部材を薄肉ステンレス管内にヘリウムガスなどを加圧封入して形成したいわゆるヒートパイプ32で形成した点にある。ヒートパイプ32を用いることにより、実施の形態1と同様に輸送時もしくは輸送前後の保管時に冷凍機1を運転すれば超電導コイル7の温度上昇を抑制することが可能である一方、輸送時等に係わらず冷凍機1が停止した時に熱侵入によって冷凍機1が温度上昇し超電導コイル7の温度より高
くなって熱負荷となってしまうことがあるが、ヒートパイプ32を用いることにより熱スイッチの効果があるため冷凍機1からの熱侵入が超電導コイル7に伝わりにくくなり、温度上昇を抑制することができる。
The difference from FIG. 1 is that the conductive cooling member is formed by a so-called heat pipe 32 formed by pressurizing and sealing helium gas in a thin stainless steel tube. By using the heat pipe 32, the temperature rise of the superconducting coil 7 can be suppressed if the refrigerator 1 is operated during transportation or storage before and after transportation as in the first embodiment. Regardless, when the refrigerator 1 stops, the temperature of the refrigerator 1 rises due to heat intrusion and becomes higher than the temperature of the superconducting coil 7, resulting in a heat load. Therefore, it is difficult for heat intrusion from the refrigerator 1 to be transmitted to the superconducting coil 7, and temperature rise can be suppressed.

実施の形態3.
次に、この発明の実施の形態3について説明する。実施の形態3は超電導電磁石の輸送方法を提供するものである。
実施の形態1あるいは2の構成を有する超電導電磁石を空輸または船舶輸送する場合は、冷媒8の液体ガスを抜き取ることになるため、そのままでは超電導コイル7が温度上昇してしまう。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described. Embodiment 3 provides a method for transporting a superconducting electromagnet.
When the superconducting electromagnet having the configuration of the first or second embodiment is transported by air or ship, the liquid gas of the refrigerant 8 is extracted, so that the temperature of the superconducting coil 7 rises as it is.

このため、例えば輸送に際しての搬出待機時には冷凍機1およびガス圧縮機に電源を供給して運転し、超電導コイル7を最低温度まで冷却する。空輸の場合は、その間の電源供給が困難であるため冷凍機1を停止する。この場合、超電導コイル7は温度上昇するが、空輸の場合は輸送時間が比較的短いため到着後に冷凍機1を再度運転して冷却を開始すれば低温を維持することができる。船舶輸送の場合は、輸送時間が長時間であるが冷凍機の電源は船舶電源もしくは発電機持ち込み運転により供給可能であることから輸送中も冷却保持が可能である。   For this reason, for example, at the time of waiting for unloading during transportation, power is supplied to the refrigerator 1 and the gas compressor and the superconducting coil 7 is cooled to the minimum temperature. In the case of air transportation, since it is difficult to supply power during that time, the refrigerator 1 is stopped. In this case, although the temperature of the superconducting coil 7 rises, in the case of air transportation, since the transportation time is relatively short, it is possible to maintain the low temperature by operating the refrigerator 1 again after arrival and starting cooling. In the case of ship transportation, although the transportation time is long, the power supply of the refrigerator can be supplied by ship power supply or generator operation, so that it can be kept cooled during transportation.

1 冷凍機、 2 冷媒容器、 3 第1段目低温ステージ、 4 スリーブ、 6 第2段目低温ステージ、 7 超電導コイル、 8 液体ヘリウム、 10 輻射シールド、
15 真空容器、 16 ヘリウムガス、 30 伝導冷却部材、 32 ヒートパイプ。
DESCRIPTION OF SYMBOLS 1 Refrigerator, 2 Refrigerant container, 3 1st stage low temperature stage, 4 Sleeve, 6 2nd stage low temperature stage, 7 Superconducting coil, 8 Liquid helium, 10 Radiation shield,
15 vacuum vessel, 16 helium gas, 30 conduction cooling member, 32 heat pipe.

Claims (3)

真空容器中に設けられ、冷却用の冷媒を収容した冷媒容器中に配設された超電導コイルと、上記真空容器を経て上記冷媒容器の上部に設けられた冷凍機と、上記冷凍機の低温ステージと上記超電導コイルとを熱短絡する伝導冷却部材とを備えたことを特徴とする超電導電磁石。   A superconducting coil disposed in a refrigerant container provided in a vacuum container and containing a cooling refrigerant, a refrigerator provided on the refrigerant container through the vacuum container, and a low-temperature stage of the refrigerator And a conductive cooling member that thermally short-circuits the superconducting coil. 上記伝導冷却部材がヒートパイプであることを特徴とする請求項1記載の超電導電磁石。   The superconducting electromagnet according to claim 1, wherein the conductive cooling member is a heat pipe. 請求項1または請求項2記載の超電導電磁石の輸送時に上記冷凍機を停止し、輸送前及び輸送後における上記超電導電磁石の保管中に上記冷凍機を運転して上記超電導コイルを低温に保持することを特徴とする超電導電磁石の輸送方法。   The refrigerator is stopped when the superconducting electromagnet according to claim 1 or 2 is transported, and the superconducting coil is kept at a low temperature by operating the refrigerator during storage of the superconducting magnet before and after transporting. A method for transporting a superconducting electromagnet.
JP2009110204A 2009-04-29 2009-04-29 Superconducting electromagnet and transport method therefor Pending JP2010262950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110204A JP2010262950A (en) 2009-04-29 2009-04-29 Superconducting electromagnet and transport method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110204A JP2010262950A (en) 2009-04-29 2009-04-29 Superconducting electromagnet and transport method therefor

Publications (1)

Publication Number Publication Date
JP2010262950A true JP2010262950A (en) 2010-11-18

Family

ID=43360833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110204A Pending JP2010262950A (en) 2009-04-29 2009-04-29 Superconducting electromagnet and transport method therefor

Country Status (1)

Country Link
JP (1) JP2010262950A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789865A (en) * 2012-07-19 2012-11-21 中国科学院电工研究所 Conduction-cooled structure of superconducting magnet
JP2014068772A (en) * 2012-09-28 2014-04-21 Hitachi Medical Corp Superconducting magnet apparatus and magnetic resonance imaging apparatus
CN106531396A (en) * 2016-11-29 2017-03-22 上海联影医疗科技有限公司 Superconduction magnet assembly and maintenance method of same
CN108657667A (en) * 2018-07-06 2018-10-16 宁波健信核磁技术有限公司 A kind of cold magnet transport container of superconduction
CN110993246A (en) * 2019-12-12 2020-04-10 中国科学院合肥物质科学研究院 Long-path cooling system of space-propelled ground environment-simulated superconducting magnet system
JPWO2021005732A1 (en) * 2019-07-10 2021-01-14

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635504A (en) * 1986-06-26 1988-01-11 Toshiba Corp Superconducting magnet device
JPH08203726A (en) * 1995-01-27 1996-08-09 Mitsubishi Electric Corp Superconducting coil device
JPH09306722A (en) * 1996-05-16 1997-11-28 Toshiba Corp Superconducting magnet device
JP2002158110A (en) * 2000-11-21 2002-05-31 Hitachi Ltd Superconductive coil cooling device
JP2002208512A (en) * 2001-01-09 2002-07-26 Sumitomo Electric Ind Ltd High-temperature superconducting coil cooling method and cooling structure
JP2004140411A (en) * 2004-02-09 2004-05-13 Mitsubishi Electric Corp Superconductive magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635504A (en) * 1986-06-26 1988-01-11 Toshiba Corp Superconducting magnet device
JPH08203726A (en) * 1995-01-27 1996-08-09 Mitsubishi Electric Corp Superconducting coil device
JPH09306722A (en) * 1996-05-16 1997-11-28 Toshiba Corp Superconducting magnet device
JP2002158110A (en) * 2000-11-21 2002-05-31 Hitachi Ltd Superconductive coil cooling device
JP2002208512A (en) * 2001-01-09 2002-07-26 Sumitomo Electric Ind Ltd High-temperature superconducting coil cooling method and cooling structure
JP2004140411A (en) * 2004-02-09 2004-05-13 Mitsubishi Electric Corp Superconductive magnet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789865A (en) * 2012-07-19 2012-11-21 中国科学院电工研究所 Conduction-cooled structure of superconducting magnet
JP2014068772A (en) * 2012-09-28 2014-04-21 Hitachi Medical Corp Superconducting magnet apparatus and magnetic resonance imaging apparatus
CN106531396A (en) * 2016-11-29 2017-03-22 上海联影医疗科技有限公司 Superconduction magnet assembly and maintenance method of same
CN108657667A (en) * 2018-07-06 2018-10-16 宁波健信核磁技术有限公司 A kind of cold magnet transport container of superconduction
JPWO2021005732A1 (en) * 2019-07-10 2021-01-14
WO2021005732A1 (en) * 2019-07-10 2021-01-14 三菱電機株式会社 Superconducting electromagnet
JP7118275B2 (en) 2019-07-10 2022-08-15 三菱電機株式会社 superconducting electromagnet
CN110993246A (en) * 2019-12-12 2020-04-10 中国科学院合肥物质科学研究院 Long-path cooling system of space-propelled ground environment-simulated superconducting magnet system
CN110993246B (en) * 2019-12-12 2021-11-19 中国科学院合肥物质科学研究院 Long-path cooling system of space-propelled ground environment-simulated superconducting magnet system

Similar Documents

Publication Publication Date Title
JP2010262950A (en) Superconducting electromagnet and transport method therefor
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
KR101919983B1 (en) Cooling system and method for cooling superconducting magnet devices
US20090275478A1 (en) Method and apparatus for maintaining a superconducting system at a predetermined temperature during transit
JP2010245524A (en) Apparatus and method of cooling superconducting magnetic assembly
JP2008192848A (en) Magnetic-field generator
CN107110928B (en) System and method for cooling a magnetic resonance imaging apparatus
US20170115366A1 (en) System and method for cooling a magnetic resonance imaging device
JP2002208512A (en) High-temperature superconducting coil cooling method and cooling structure
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
JP5833284B2 (en) Cooling system
KR20080029001A (en) Refrigeration system for superconducting devices
JP2011082229A (en) Conduction-cooled superconducting magnet
JP2009243837A (en) Very low temperature cooling device
JP2007173460A (en) Superconducting electromagnet device
JP6901622B2 (en) A superconducting magnet whose cold head heat path is cooled by a heat exchanger
US20120190552A1 (en) Precooling device, superconducting magnet and magnetic resonance imaging apparatus
JP7208914B2 (en) Thermal bath heat exchanger for superconducting magnets
JP2017031986A (en) Cryogenic refrigerant supply system
US20220236349A1 (en) Accelerated cooldown of low-cryogen magnetic resonance imaging (mri) magnets
JP2011253873A (en) Superconductivity electromagnet
US20210065946A1 (en) Superconducting magnet with thermal battery
JP2004116914A (en) Cooling pipe and cryogenic cryostat using it
GB2436136A (en) Apparatus for cooling utilising the free circulation of a gaseous cryogen
JP2004169991A (en) Maintenance method for refrigerator for super-conductive magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305