JPH08203726A - Superconducting coil device - Google Patents

Superconducting coil device

Info

Publication number
JPH08203726A
JPH08203726A JP7011609A JP1160995A JPH08203726A JP H08203726 A JPH08203726 A JP H08203726A JP 7011609 A JP7011609 A JP 7011609A JP 1160995 A JP1160995 A JP 1160995A JP H08203726 A JPH08203726 A JP H08203726A
Authority
JP
Japan
Prior art keywords
superconducting coil
temperature
current
superconducting
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7011609A
Other languages
Japanese (ja)
Inventor
Akihiko Ariyoshi
昭彦 有吉
Akihiro Harada
昭弘 原田
Kazuki Moritsu
一樹 森津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7011609A priority Critical patent/JPH08203726A/en
Publication of JPH08203726A publication Critical patent/JPH08203726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE: To provide a superconducting magnet device which provide stable operating properties in an energizing process and a demagnetizing process. CONSTITUTION: During energizing and magnetizing time, a helium vessel 2 is decompressed by means of a pressure reducing pump 8 and the temperature of liquid helium 3 is lowered to below 4.2K, thereby lowering the temperature of a superconducting coil 1. This drop in the temperature increases a temperature margin of the superconducting coil 1 and reduces instability of the superconducting coil 1. In the steady permanent current mode, the pressure reduction is stopped and the pressure reducing pump 8 is removed, thereby operating the superconducting coil 1 at the temperature of 4.2K.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導マグネット等
の超電導コイル装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil device such as a superconducting magnet.

【0002】[0002]

【従来の技術】図7は、例えば医療用磁気共鳴イメージ
ング装置等に使用される従来の超電導マグネット装置を
示す図である。図において、超電導コイル1は極低温容
器であるヘリウム容器2に貯えられた液体ヘリウム3に
浸漬されて約4.2Kの極低温に冷却されその温度に保
たれる。その液体ヘリウム3の蒸発量を少なくするため
に、ヘリウム容器2と全体を覆う真空容器6との間に輻
射熱シールド4、5が設けられており、ヘリウム容器
2、輻射熱シールド4、5、真空容器6の各々は熱的に
絶縁されている。そして、輻射熱シールド4、5は冷凍
機7により低温に保たれ液体ヘリウム3の蒸発量を少な
くしている。
2. Description of the Related Art FIG. 7 is a diagram showing a conventional superconducting magnet device used in, for example, a medical magnetic resonance imaging apparatus. In the figure, the superconducting coil 1 is immersed in liquid helium 3 stored in a helium container 2 which is a cryogenic container, cooled to a cryogenic temperature of about 4.2 K, and maintained at that temperature. In order to reduce the evaporation amount of the liquid helium 3, radiant heat shields 4 and 5 are provided between the helium container 2 and the vacuum container 6 covering the whole, and the helium container 2, the radiant heat shields 4 and 5, the vacuum container Each of 6 is thermally insulated. The radiant heat shields 4 and 5 are kept at a low temperature by the refrigerator 7 to reduce the evaporation amount of the liquid helium 3.

【0003】図8は超電導マグネット装置の回路を示し
た図で、12は電流供給用リード、13は超電導コイル
1の短絡開放を行う永久電流スイッチ(以下PCSと呼
ぶ)、14はPCS13に抵抗を発生させるためのヒー
ター、15はPCSヒーター用電源、16は励消磁用電
源、17は保護素子を示す。
FIG. 8 is a diagram showing a circuit of a superconducting magnet device. Reference numeral 12 is a current supply lead, 13 is a permanent current switch (hereinafter referred to as PCS) for short-circuiting and opening the superconducting coil 1, and 14 is a resistance for the PCS 13. A heater for generation, 15 is a power source for a PCS heater, 16 is a power source for excitation / demagnetization, and 17 is a protection element.

【0004】次に動作について説明する。超電導マグネ
ット装置の運転を行う場合には、先ず電流供給用リード
12を取り付けた後、PCSヒーター用電源15からヒ
ーター14に通電してPCS13を開放状態とする。次
に、励消磁用電源16から超電導コイル1に電流を供給
して励磁を行い、所定の磁界出力になったところでヒー
ター14をOFFにしてPCS13を短絡状態にする
(励磁過程)。これにより、電流が超電導コイル1に閉
じ込められ(永久電流モード)、定常状態として超電導
マグネット装置特有の高い安定した磁界を得ることがで
きる。永久電流モードにした後、熱侵入を少なくするた
めに電流供給用リード12を取り外し励磁が完了する。
Next, the operation will be described. When the superconducting magnet device is operated, first, the current supply lead 12 is attached, and then the heater 14 is energized from the PCS heater power source 15 to open the PCS 13. Next, a current is supplied from the excitation / demagnetization power supply 16 to the superconducting coil 1 to perform excitation, and when a predetermined magnetic field output is reached, the heater 14 is turned off and the PCS 13 is short-circuited (excitation process). As a result, the current is confined in the superconducting coil 1 (permanent current mode), and it is possible to obtain a stable and high magnetic field peculiar to the superconducting magnet device as a steady state. After the permanent current mode is set, the current supply lead 12 is removed to reduce heat intrusion, and the excitation is completed.

【0005】消磁を行う場合には、再び電流供給用リー
ド12を取り付け、励消磁用電源16からの電流を立ち
上がらせる。励消磁用電源16からの電流が超電導コイ
ル1の電流と同一となったところでPCSヒーター用電
源15からヒーター14に通電してPCS13を開放状
態とする。次に、励消磁用電源16の電流を零まで低減
する。電流が零になった後、ヒーター14をOFFに
し、電流供給用リード12を取り外して消磁が完了する
(消磁過程)。
When performing degaussing, the current supply lead 12 is attached again and the current from the excitation / degaussing power supply 16 is made to rise. When the current from the excitation / demagnetization power supply 16 becomes the same as the current of the superconducting coil 1, the PCS heater power supply 15 energizes the heater 14 to open the PCS 13. Next, the current of the excitation / demagnetization power supply 16 is reduced to zero. After the current becomes zero, the heater 14 is turned off and the current supply lead 12 is removed to complete the demagnetization (degaussing process).

【0006】[0006]

【発明が解決しようとする課題】従来超電導マグネット
装置は以上のように構成され運転されるので、その励磁
過程および消磁過程には、PCS13のヒーター14に
よる熱発生や電流供給用リード12からの熱侵入により
液体ヘリウムの温度が上昇し超電導コイル1の温度的な
余裕が永久電流モード時よりも少なくなる。また、励磁
および消磁の動作に伴い発生電磁力が変化して超電導コ
イル1にスリップが発生し易い状態にある。そして、ス
リップが発生すると摩擦による熱発生があり線材温度の
上昇から、最悪の場合には超電導コイル1に超電導状態
が破壊するクエンチが発生する。このように、従来の超
電導マグネット装置では、励磁および消磁動作時には定
常運転時に比較して著しく不安定性が増すという問題点
があった。
Since the conventional superconducting magnet device is constructed and operated as described above, heat is generated by the heater 14 of the PCS 13 and heat from the current supply lead 12 is used during its excitation and demagnetization processes. The temperature of the liquid helium rises due to the penetration, and the temperature margin of the superconducting coil 1 becomes smaller than that in the persistent current mode. Further, the electromagnetic force generated changes with the operations of excitation and demagnetization, and slippage is likely to occur in the superconducting coil 1. Then, when slip occurs, heat is generated due to friction, and the temperature of the wire rod rises. In the worst case, a quench in which the superconducting state is destroyed occurs in the superconducting coil 1. As described above, the conventional superconducting magnet device has a problem that the instability is significantly increased during the excitation and demagnetization operations as compared with the steady operation.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、励磁および消磁時にも安定した
運転特性が得られる超電導マグネット装置を得ることを
目的とする。また、上記目的を極力経済的に実現せんと
するものである。
The present invention has been made to solve the above problems, and an object of the present invention is to obtain a superconducting magnet device which can obtain stable operation characteristics during excitation and demagnetization. Moreover, it is intended to realize the above object economically as much as possible.

【0008】[0008]

【課題を解決するための手段】この発明の請求項1に係
る超電導コイル装置は、励磁過程および消磁過程におけ
る超電導コイルの温度を永久電流モードにおける温度よ
り低下せしめるようにしたものである。
A superconducting coil device according to a first aspect of the present invention is configured so that the temperature of the superconducting coil in the excitation process and the demagnetization process is made lower than the temperature in the permanent current mode.

【0009】また、請求項2に係る超電導コイル装置
は、励磁過程および消磁過程において極低温容器内を減
圧して冷媒の温度を下げるようにしたものである。
In the superconducting coil device according to the second aspect of the invention, the temperature of the refrigerant is lowered by depressurizing the inside of the cryogenic container during the excitation process and the demagnetization process.

【0010】また、請求項3に係る超電導コイル装置
は、超電導コイルの熱を極低温容器外へ導出する熱伝導
体を備え、励磁過程および消磁過程において上記極低温
容器外から冷凍機により上記熱伝導体を介して上記超電
導コイルを冷却するようにしたものである。
Further, a superconducting coil device according to a third aspect of the present invention includes a heat conductor for guiding the heat of the superconducting coil to the outside of the cryogenic container, and the heat from the outside of the cryogenic container is used by the refrigerator in the exciting process and the degaussing process. The superconducting coil is cooled via a conductor.

【0011】また、請求項4に係る超電導コイル装置
は、冷媒の熱を極低温容器外へ導出する熱伝導体を備
え、励磁過程および消磁過程において上記極低温容器外
から冷凍機により上記熱伝導体を介して上記冷媒を冷却
するようにしたものである。
A superconducting coil device according to a fourth aspect of the present invention is provided with a heat conductor for guiding the heat of the refrigerant to the outside of the cryogenic container, and the heat conduction from the outside of the cryogenic container by the refrigerator in the exciting process and the degaussing process. The refrigerant is cooled through the body.

【0012】[0012]

【作用】この発明の請求項1に係る超電導コイル装置に
おいては、励消磁時、超電導コイルの温度を低くする
分、温度的な余裕が増大し、同励消磁時にその特有の熱
侵入等に基づく超電導コイルの不安定性が低減する。
In the superconducting coil device according to the first aspect of the present invention, when the temperature of the superconducting coil is lowered during excitation / demagnetization, the temperature margin increases, and due to the peculiar heat penetration and the like during the same excitation / demagnetization. The instability of the superconducting coil is reduced.

【0013】また、請求項2に係る超電導コイル装置に
おいては、励消磁時、極低温容器内を減圧することで冷
媒の温度が下がり、これに伴って超電導コイルの温度が
低下する。
Further, in the superconducting coil device according to the second aspect, the temperature of the refrigerant is lowered by depressurizing the inside of the cryogenic container at the time of demagnetization, and the temperature of the superconducting coil is accordingly reduced.

【0014】また、請求項3に係る超電導コイル装置に
おいては、励消磁時、冷凍機により熱伝導体を介して超
電導コイルが直接冷却されその温度が低下する。
Further, in the superconducting coil device according to the third aspect of the present invention, at the time of excitation / demagnetization, the superconducting coil is directly cooled by the refrigerator via the heat conductor, and the temperature thereof is lowered.

【0015】また、請求項4に係る超電導コイル装置に
おいては、励消磁時、冷凍機により熱伝導体を介して冷
媒が冷却されその温度が下がり、これに伴って超電導コ
イルの温度が低下する。
Further, in the superconducting coil device according to the fourth aspect, the refrigerant is cooled by the refrigerator through the heat conductor and its temperature is lowered at the time of demagnetization, and accordingly, the temperature of the superconducting coil is lowered.

【0016】[0016]

【実施例】【Example】

実施例1.図1はこの発明の実施例1による超電導マグ
ネット装置の構成を断面で示すもので、従来と同様、医
療用磁気共鳴イメージング装置に使用されるものであ
る。図において、超電導コイル1、ヘリウム容器2、液
体ヘリウム3、輻射熱シールド4、5、真空容器6およ
び冷凍機7は従来装置と同一のもので、個々の説明は省
略する。8は減圧ポンプで、排気管9を介してヘリウム
容器2内と連通する構造となっている。なお、図示は省
略するが、超電導マグネット装置の回路構成は従来の図
8と同様である。
Example 1. 1 is a sectional view showing the structure of a superconducting magnet device according to a first embodiment of the present invention, which is used in a magnetic resonance imaging apparatus for medical use as in the prior art. In the figure, the superconducting coil 1, the helium container 2, the liquid helium 3, the radiant heat shields 4, 5, the vacuum container 6 and the refrigerator 7 are the same as those in the conventional device, and their explanations are omitted. A decompression pump 8 is structured to communicate with the inside of the helium container 2 via an exhaust pipe 9. Although illustration is omitted, the circuit configuration of the superconducting magnet device is the same as that of the conventional FIG.

【0017】次に、図1の超電導マグネット装置を励磁
する場合(励磁過程)の動作を、図2のタイミングチャ
ートを参照して説明する。励磁動作に入る前の初期状態
(図2の時刻t=t0)では、ヘリウム容器2内の圧力
0はほぼ1気圧(=0.1MPa)で、超電導コイル
1の温度は液体ヘリウム3の温度T0=4.2Kに保た
れている。ここで超電導マグネット装置の励磁を行おう
とすると、先ず、減圧ポンプ8により排気管9から排気
を行いヘリウム容器2内を減圧する。これに伴い、液体
ヘリウム3は例えば図3に示す蒸気圧特性に従い温度が
低下する。
Next, the operation of exciting the superconducting magnet device of FIG. 1 (excitation process) will be described with reference to the timing chart of FIG. In the initial state before the exciting operation (time t = t 0 in FIG. 2), the pressure P 0 in the helium container 2 is approximately 1 atm (= 0.1 MPa), and the temperature of the superconducting coil 1 is equal to that of the liquid helium 3. The temperature T 0 is kept at 4.2K. When the superconducting magnet device is to be excited, the decompression pump 8 first evacuates the exhaust pipe 9 to decompress the helium container 2. Along with this, the temperature of the liquid helium 3 drops, for example, according to the vapor pressure characteristic shown in FIG.

【0018】超電導コイル1の温度が当初の温度T0
り低い所定の温度T1に達するまで減圧する(時刻t=
1)と、以後、減圧ポンプ8はその時の圧力P1を維持
する。この状態で電流供給用リード12を取り付け(時
刻t=t2)、更に、PCSヒーター用電源15からヒ
ーター14に通電してONとすると、PCS13が開放
状態となる(時刻t=t3)。
The pressure is reduced until the temperature of the superconducting coil 1 reaches a predetermined temperature T 1 lower than the initial temperature T 0 (time t =
t 1) and, thereafter, vacuum pump 8 to maintain the pressure P 1 at that time. In this state, the current supply lead 12 is attached (time t = t 2 ), and when the heater 14 is energized by the PCS heater power source 15 to turn it on, the PCS 13 is opened (time t = t 3 ).

【0019】以上により準備が整うので、励消磁用電源
16を操作して時刻t=t4から電流を立ち上げる。こ
の電流の通電により、超電導コイル1には磁界が発生す
る。電流磁界が所望の値I0、B0にまで到達すると(時
刻t=t5)、励消磁用電源16はその出力電流値I0
保持する。次に、ヒーター14への通電をOFFしてP
CS13を短絡状態とした(時刻t=t6)後、再び励
消磁用電源16を操作して出力電流を下降させ(時刻t
=t7)、時刻t=t8で電流零となる。
Now that the preparation is completed, the excitation / demagnetization power supply 16 is operated to start the current from time t = t 4 . A magnetic field is generated in the superconducting coil 1 by passing this current. When the current magnetic field reaches the desired values I 0 and B 0 (time t = t 5 ), the excitation / demagnetization power supply 16 holds the output current value I 0 . Next, turn off the power supply to the heater 14 and set P
After the CS 13 is short-circuited (time t = t 6 ), the excitation / demagnetization power supply 16 is operated again to decrease the output current (time t
= T 7 ), the current becomes zero at time t = t 8 .

【0020】その後、時刻t=t9で電流供給用リード
12を取り外すと、時刻t=t2から開始されたいわゆ
る励磁過程が終了する。以降、前述した熱的な不安定要
因がなくなるので、時刻t=t10から減圧ポンプ8によ
る排気動作を止めると、ヘリウム容器2内の圧力はほぼ
1気圧(P0)に戻り、超電導コイル1の温度も元の温
度T0(約4.2K)になる(時刻t=t11)。即ち、
超電導マグネット装置は永久電流モードである定常運転
の状態になり励磁が完了する。
After that, when the current supply lead 12 is removed at time t = t 9 , the so-called excitation process started at time t = t 2 ends. After that, since the above-mentioned thermal instability factor disappears, the pressure inside the helium container 2 returns to about 1 atm (P 0 ) when the evacuation operation by the decompression pump 8 is stopped from the time t = t 10 , and the superconducting coil 1 Also becomes the original temperature T 0 (about 4.2 K) (time t = t 11 ). That is,
The superconducting magnet device enters the state of steady operation in the permanent current mode, and the excitation is completed.

【0021】次に、超電導コイル1の温度をその励磁過
程で特別に低下させた場合の効果等につき、具体的な材
料、物性に基づき説明する。図4は、実用化されている
NbTi超電導線材の、温度をパラメータとした臨界電
流特性の一例で、以下、超電導コイル1にこの図4の超
電導線材を使用した場合について説明する。
Next, effects and the like when the temperature of the superconducting coil 1 is specially lowered in the exciting process will be described based on concrete materials and physical properties. FIG. 4 is an example of the critical current characteristics of a practically used NbTi superconducting wire with temperature as a parameter. Hereinafter, the case where the superconducting wire of FIG. 4 is used for the superconducting coil 1 will be described.

【0022】図4において、特性Aは超電導コイルの温
度が4.2Kのときの臨界電流(A)と磁束密度(T=
Tesla)との関係を示す。今、超電導コイルを電流
250(A)、コイル内最高磁束密度3.1(T)の動
作点(図中、○印で示す)で運転するものとすると、こ
の動作点を含む臨界電流特性Bは図に示すように温度
5.4Kの特性に相当する。従って、超電導コイルの温
度的な余裕は1.2Kである。
In FIG. 4, the characteristic A is the critical current (A) and the magnetic flux density (T = T = 2) when the temperature of the superconducting coil is 4.2K.
(Tesla). Now, assuming that the superconducting coil is operated at an operating point with a current of 250 (A) and a maximum magnetic flux density in the coil of 3.1 (T) (indicated by a circle in the figure), the critical current characteristic B including this operating point Corresponds to the characteristic at a temperature of 5.4K as shown in the figure. Therefore, the temperature margin of the superconducting coil is 1.2K.

【0023】励磁過程の中で、超電導コイルの不安定性
が最も増すのは、図2の時刻t=t5からt6の期間、即
ち、電流が立ち上がりその最大値(定常値)に達する過
渡時で、このときにコイルにスリップが起きるとその摩
擦熱により超電導コイルの温度は約0.9K上昇し、温
度的な余裕はわずか0.3Kに減少する。しかし、この
実施例1では、図2の時刻t=t1からt10の期間、減
圧ポンプ8によりヘリウム容器2内を減圧することで、
超電導コイルの温度を低下させているので、その分、温
度的な余裕が増大し、超電導コイルの不安定性を減らす
ことができる。
In the excitation process, the instability of the superconducting coil is most increased during the period from time t = t 5 to t 6 in FIG. 2, that is, when the current rises and reaches its maximum value (steady value) in the transient state. If the coil slips at this time, the frictional heat causes the temperature of the superconducting coil to rise by about 0.9K and the thermal margin to decrease to only 0.3K. However, in the first embodiment, the pressure inside the helium container 2 is reduced by the pressure reducing pump 8 during the period from time t = t 1 to t 10 in FIG.
Since the temperature of the superconducting coil is lowered, the temperature margin increases correspondingly, and the instability of the superconducting coil can be reduced.

【0024】即ち、上記時刻t=t1からt10の期間、
ヘリウム容器2内の圧力を、例えば、0.0240(M
Pa)まで減圧したとすると、液体ヘリウムの温度は約
3.0Kとなり(図3)、超電導コイル1の温度も約
3.0Kにまで下げることができる。この結果、超電導
コイルの臨界電流特性は図4のCに示す特性となり、超
電導コイルの温度的な余裕が1.2Kから2.4Kに増
大する訳である。
That is, the period from the time t = t 1 to t 10 ,
The pressure in the helium container 2 is, for example, 0.0240 (M
If the pressure is reduced to Pa), the temperature of liquid helium becomes about 3.0K (FIG. 3), and the temperature of superconducting coil 1 can also be lowered to about 3.0K. As a result, the critical current characteristic of the superconducting coil becomes the characteristic shown in C of FIG. 4, and the temperature margin of the superconducting coil increases from 1.2K to 2.4K.

【0025】以上、励磁過程について説明したが、永久
電流モードから電流を降下させる消磁過程においても、
励磁過程における場合と同様、ヘリウム容器2内の圧力
を下げ超電導コイル1の温度を4.2Kより低い温度に
まで下げることで温度的な余裕が大きくなり、不安定性
が少ない超電導マグネット装置を得ることができる。
The excitation process has been described above. However, even in the demagnetization process of decreasing the current from the permanent current mode,
As in the case of the excitation process, the pressure in the helium container 2 is lowered to lower the temperature of the superconducting coil 1 to a temperature lower than 4.2K, thereby increasing the temperature margin and obtaining a superconducting magnet device with less instability. You can

【0026】励消磁時以外は、排気管9や減圧ポンプ8
等の減圧装置を外すことも可能である。この減圧装置を
外すことで、熱侵入を減らすことができ、また、超電導
マグネット装置の必要設置空間を小さくして従来の超電
導マグネット装置と同様の設置スペースで運転を行うこ
とができる。
Except at the time of demagnetization, the exhaust pipe 9 and the decompression pump 8
It is also possible to remove the pressure reducing device such as. By removing this decompression device, heat intrusion can be reduced, and the required installation space of the superconducting magnet device can be reduced to operate in the same installation space as the conventional superconducting magnet device.

【0027】また、超電導マグネット装置がその本来の
運転形態である永久電流モードで運転される期間が数ヶ
月、数年に及ぶのに比較して、励消磁に要する時間は数
時間程度である。従って、超電導マグネット装置が複数
台設置されているような場合には、各装置の励消磁の作
業を時間的にずらせることにより、1セットの減圧装置
の共用使用が可能となり、上述したコイル安定化対策を
極めて経済的に実現することができる。
Further, as compared with the period in which the superconducting magnet device is operated in the permanent current mode, which is the original operating mode thereof, for several months or several years, the time required for excitation / demagnetization is about several hours. Therefore, when a plurality of superconducting magnet devices are installed, one set of decompressor can be used in common by shifting the excitation / demagnetization work of each device in terms of time. Countermeasures can be realized extremely economically.

【0028】実施例2.図5はこの発明の実施例2によ
る超電導マグネット装置の構成を示す断面図である。1
〜6は実施例1の場合と同様のものである。10は冷凍
機で、超電導コイル1を4.2Kより低い温度で冷却可
能なように、実施例1の冷凍機7よりその冷却能力が強
化されている。11は超電導コイル1の熱をヘリウム容
器2外へ導出するためその一端が超電導コイル1に直接
接合された熱伝導体である。
Embodiment 2 FIG. FIG. 5 is a sectional view showing the structure of a superconducting magnet device according to a second embodiment of the present invention. 1
6 are the same as those in the first embodiment. Reference numeral 10 denotes a refrigerator, the cooling capacity of which is enhanced as compared with the refrigerator 7 of the first embodiment so that the superconducting coil 1 can be cooled at a temperature lower than 4.2K. Reference numeral 11 denotes a heat conductor whose one end is directly joined to the superconducting coil 1 to guide the heat of the superconducting coil 1 to the outside of the helium container 2.

【0029】次に動作、特に超電導マグネット装置の励
磁動作について説明する。先ず、冷凍機10により熱伝
導体11を介して超電導コイル1を冷却し、超電導コイ
ル1の温度を4.2Kより低い所定の温度にまで低下さ
せる。その後は実施例1と同様に、電流供給用リード1
2を取り付けヒーター14をONにしてPCS13を開
放状態とする。励消磁用電源16より電流を流して励磁
を行い、所定の磁界出力になったところでヒーター14
をOFFにしてPCS13を短絡状態とする。その後、
励消磁用電源16の電流を下降させ電流供給用リード1
2を取り外して励磁過程が終了すると、冷凍機10の出
力を調整して超電導コイル1の温度を元の4.2Kと
し、永久電流モードに入る。なお、消磁過程において
も、同様に、冷凍機10の出力を調整することで超電導
コイル1の温度を所定値まで低下させる。
Next, the operation, particularly the exciting operation of the superconducting magnet device will be described. First, the refrigerator 10 cools the superconducting coil 1 via the heat conductor 11 to lower the temperature of the superconducting coil 1 to a predetermined temperature lower than 4.2K. After that, as in the first embodiment, the current supply lead 1
2 is attached and the heater 14 is turned on to open the PCS 13. A current is supplied from the excitation / demagnetization power supply 16 to perform excitation, and when the predetermined magnetic field output is reached, the heater 14
Is turned off to bring the PCS 13 into a short circuit state. afterwards,
The current of the power supply 16 for excitation / demagnetization is lowered to lead 1 for supplying current.
When 2 is removed and the excitation process is completed, the output of the refrigerator 10 is adjusted to bring the temperature of the superconducting coil 1 back to 4.2K, and the permanent current mode is entered. In the demagnetization process as well, the output of the refrigerator 10 is adjusted to reduce the temperature of the superconducting coil 1 to a predetermined value.

【0030】以上のように、実施例2では、ヘリウム容
器2内に熱伝導体11を備えたので、冷凍機10により
超電導コイル1を直接冷却してその温度を下げることが
可能となるので、実施例1と同様、超電導線材の臨界電
流特性が良くなり、超電導コイルの温度的な余裕を大き
くすることができ、超電導コイルの不安定性を減らすこ
とができる。
As described above, in the second embodiment, since the heat conductor 11 is provided in the helium container 2, it is possible to directly cool the superconducting coil 1 by the refrigerator 10 and lower its temperature. As in Example 1, the critical current characteristics of the superconducting wire are improved, the temperature margin of the superconducting coil can be increased, and the instability of the superconducting coil can be reduced.

【0031】なお、冷凍機10としては、超電導コイル
1を直接冷却するため、従来の冷凍機7より冷却能力を
強化したものとする必要があるが、既述した通り、励消
磁の期間は比較的短時間であり、この時間定格の過負荷
運転に耐えるもので十分であり、比較的軽微な能力強化
策で足りる。また、励消磁時のみ、従来の冷凍機7に能
力強化用の冷凍機を併設して行う方式とすれば、実施例
1でも説明した通り、この能力強化用冷凍機1台を複数
台の超電導マグネット装置に対して共用することで費用
節減を実現することができる。
Since the refrigerator 10 directly cools the superconducting coil 1, it is necessary to have a higher cooling capacity than the conventional refrigerator 7. However, as described above, the periods of excitation / demagnetization are compared. It is a relatively short time, and it is sufficient to withstand overload operation of this time rating, and a relatively slight capacity enhancement measure is sufficient. Further, if only the conventional refrigerating machine 7 is provided with a refrigerating machine for capacity enhancement only during excitation / demagnetization, as described in the first embodiment, one refrigerating machine for capacity enhancement is used as a plurality of superconducting superconductors. Cost sharing can be realized by sharing the magnet device.

【0032】実施例3.図6はこの発明の実施例3によ
る超電導マグネット装置の構成を示す断面図である。実
施例2と異なるのは熱伝導体21である。即ち、この熱
伝導体21は冷凍機10により液体ヘリウム3から熱を
奪い、液体ヘリウム3の温度を低下させる。そして、超
電導コイル1はこの温度の低下した液体ヘリウム3によ
って冷却され温度が低下する。
Example 3. 6 is a sectional view showing the structure of a superconducting magnet device according to a third embodiment of the present invention. The difference from the second embodiment is the heat conductor 21. That is, the heat conductor 21 draws heat from the liquid helium 3 by the refrigerator 10 and lowers the temperature of the liquid helium 3. Then, the superconducting coil 1 is cooled by the liquid helium 3 whose temperature has dropped, and the temperature thereof drops.

【0033】超電導コイル1の温度を下げるという点で
は間接的な冷却方式となるが、熱伝導体が直接超電導コ
イル1に接触しないので、この部分の電気的な絶縁処理
が容易となる利点がある。
Although an indirect cooling system is adopted in that the temperature of the superconducting coil 1 is lowered, the heat conductor does not come into direct contact with the superconducting coil 1, so that there is an advantage that electrical insulation of this portion can be facilitated. .

【0034】説明の重複は避けるが、実施例3において
も前述実施例と同様、励消磁時における超電導コイルの
不安定性を減らすことができる。
Although the description will not be repeated, the instability of the superconducting coil at the time of excitation / demagnetization can be reduced in the third embodiment as in the above-described embodiments.

【0035】なお、この発明の適用上、励消磁過程のみ
超電導コイルの温度を下げるための手段、その低下させ
る温度値、更には超電導線材、冷媒等については上記実
施例で説明したものに限定されるものではないことは勿
論であり、また、この発明は、医療用磁気共鳴イメージ
ング装置用の超電導マグネット装置に限らず、広く超電
導コイル装置に適用でき同等の効果を奏する。
In the application of the present invention, the means for lowering the temperature of the superconducting coil only in the excitation / demagnetization process, the temperature value to be lowered, the superconducting wire and the refrigerant are limited to those described in the above embodiment. Needless to say, the present invention is not limited to the superconducting magnet device for the medical magnetic resonance imaging apparatus, but can be widely applied to the superconducting coil device and has the same effect.

【0036】[0036]

【発明の効果】以上のように、この発明の請求項1に係
る超電導コイル装置においては、励消磁過程のみ超電導
コイルの温度を永久電流モード時より下げるようにした
ので、低コストの対策で、同励消磁時における超電導コ
イルの不安定性を低減することができる。
As described above, in the superconducting coil device according to claim 1 of the present invention, the temperature of the superconducting coil is set to be lower than that in the persistent current mode only during the demagnetization process, so that it is possible to reduce the cost. It is possible to reduce instability of the superconducting coil during the same demagnetization.

【0037】また、請求項2に係る超電導コイル装置に
おいては、励消磁時、極低温容器内を減圧することで冷
媒の温度を下げ、これによって超電導コイルの温度を下
げるようにしたので、従来からの冷凍装置を変える必要
がなく、低コストで超電導コイルの不安定性の低減を実
現することができる。
Further, in the superconducting coil device according to the second aspect of the present invention, the temperature of the refrigerant is lowered by depressurizing the inside of the cryogenic container at the time of demagnetization, so that the temperature of the superconducting coil is lowered. It is not necessary to change the refrigerating apparatus, and the instability of the superconducting coil can be reduced at low cost.

【0038】また、請求項3に係る超電導コイル装置に
おいては、励消磁時、冷凍機により熱伝導体を介して超
電導コイルを直接冷却してその温度を下げるようにした
ので、従来からのタイプの冷凍機の能力増強のみで足
り、低コストで超電導コイルの不安定性の低減を実現す
ることができる。
Further, in the superconducting coil device according to the third aspect of the present invention, at the time of demagnetization, the refrigerating machine directly cools the superconducting coil through the heat conductor to lower its temperature. Only increasing the capacity of the refrigerator is sufficient, and the instability of the superconducting coil can be reduced at low cost.

【0039】また、請求項4に係る超電導コイル装置に
おいては、励消磁時、冷凍機により熱伝導体を介して冷
媒の温度を下げ、これによって超電導コイルの温度を下
げるようにしたので、従来からのタイプの冷凍機の能力
増強のみで足り、低コストで超電導コイルの不安定性の
低減を実現することができる。
Further, in the superconducting coil device according to the fourth aspect, the temperature of the refrigerant is lowered by the refrigerator via the heat conductor at the time of demagnetization, so that the temperature of the superconducting coil is lowered. It is sufficient to increase the capacity of the refrigerator of this type, and the instability of the superconducting coil can be reduced at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例1による超電導マグネット
装置の構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a superconducting magnet device according to a first embodiment of the present invention.

【図2】 実施例1における超電導マグネット装置の励
磁過程におけるタイミングチャートである。
FIG. 2 is a timing chart in the excitation process of the superconducting magnet device in the first embodiment.

【図3】 ヘリウムの飽和蒸気圧と温度との関係を表の
形で示す図である。
FIG. 3 is a table showing the relationship between the saturated vapor pressure of helium and temperature.

【図4】 NbTi超電導線材の臨界電流特性を示す図
である。
FIG. 4 is a diagram showing a critical current characteristic of an NbTi superconducting wire.

【図5】 この発明の実施例2による超電導マグネット
装置の構成を示す断面図である。
FIG. 5 is a sectional view showing the structure of a superconducting magnet device according to a second embodiment of the present invention.

【図6】 この発明の実施例3による超電導マグネット
装置の構成を示す断面図である。
FIG. 6 is a sectional view showing a structure of a superconducting magnet device according to a third embodiment of the present invention.

【図7】 従来の超電導マグネット装置の構成を示す断
面図である。
FIG. 7 is a cross-sectional view showing a configuration of a conventional superconducting magnet device.

【図8】 従来の超電導マグネット装置の回路を示す図
である。
FIG. 8 is a diagram showing a circuit of a conventional superconducting magnet device.

【符号の説明】[Explanation of symbols]

1 超電導コイル、2 ヘリウム容器、3 液体ヘリウ
ム、7,10 冷凍機、8 減圧ポンプ、11,12
熱伝導体、13 PCS、16 励消磁用電源。
1 superconducting coil, 2 helium container, 3 liquid helium, 7, 10 refrigerator, 8 decompression pump, 11, 12
Heat conductor, 13 PCS, 16 Power supply for excitation / demagnetization.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイル、この超電導コイルを冷却
する冷媒、上記超電導コイルと冷媒とを格納する極低温
容器、上記超電導コイルに電流を供給する電源、および
上記超電導コイルの短絡開放を行う永久電流スイッチを
備え、上記永久電流スイッチを開放状態として上記電源
により上記超電導コイルの電流を上昇させ上記電流が所
定値に達した後上記永久電流スイッチを短絡状態とする
励磁過程、この励磁過程に続き上記永久電流スイッチを
定常的に短絡状態として上記電流を上記超電導コイルに
閉じ込める永久電流モード、およびこの永久電流モード
に続き上記永久電流スイッチを短絡状態から開放状態と
して上記電源により上記超電導コイルの電流を下降させ
る消磁過程の運転形態を有する超電導コイル装置におい
て、 上記励磁過程および消磁過程における上記超電導コイル
の温度を上記永久電流モードにおける温度より低下せし
めるようにしたことを特徴とする超電導コイル装置。
1. A superconducting coil, a refrigerant for cooling the superconducting coil, a cryogenic container for storing the superconducting coil and the refrigerant, a power supply for supplying a current to the superconducting coil, and a permanent current for short-circuiting and opening the superconducting coil. A switch is provided, the permanent current switch is opened, the current of the superconducting coil is increased by the power source, and the permanent current switch is short-circuited after the current reaches a predetermined value. Permanent current mode in which the persistent current switch is constantly short-circuited to confine the current in the superconducting coil, and following this permanent current mode, the permanent current switch is switched from the short-circuited state to the open state to lower the current in the superconducting coil by the power supply. In a superconducting coil device having an operating mode of a demagnetizing process, Superconducting coil apparatus the temperature of the superconducting coil in the demagnetization process called characterized in that as allowed to lower than the temperature in the persistent current mode.
【請求項2】 励磁過程および消磁過程において極低温
容器内を減圧して冷媒の温度を下げることにより、超電
導コイルの温度を低下せしめるようにしたことを特徴と
する請求項1記載の超電導コイル装置。
2. The superconducting coil device according to claim 1, wherein the temperature of the superconducting coil is lowered by reducing the temperature of the refrigerant by depressurizing the cryogenic container during the exciting process and the degaussing process. .
【請求項3】 超電導コイルの熱を極低温容器外へ導出
する熱伝導体を備え、励磁過程および消磁過程において
上記極低温容器外から冷凍機により上記熱伝導体を介し
て上記超電導コイルを冷却することにより、上記超電導
コイルの温度を低下せしめるようにしたことを特徴とす
る請求項1記載の超電導コイル装置。
3. A heat conductor for radiating the heat of the superconducting coil to the outside of the cryogenic container, and cooling the superconducting coil from outside the cryogenic container by a refrigerator through the heat conductor during the excitation process and the degaussing process. The superconducting coil device according to claim 1, wherein the temperature of the superconducting coil is lowered by doing so.
【請求項4】 冷媒の熱を極低温容器外へ導出する熱伝
導体を備え、励磁過程および消磁過程において上記極低
温容器外から冷凍機により上記熱伝導体を介して上記冷
媒を冷却することにより、上記超電導コイルの温度を低
下せしめるようにしたことを特徴とする請求項1記載の
超電導コイル装置。
4. A heat conductor for radiating the heat of the refrigerant to the outside of the cryogenic container, wherein the refrigerant is cooled from outside the cryogenic container by a refrigerator via the heat conductor during the excitation process and the degaussing process. The superconducting coil device according to claim 1, wherein the temperature of the superconducting coil is lowered by the above.
JP7011609A 1995-01-27 1995-01-27 Superconducting coil device Pending JPH08203726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7011609A JPH08203726A (en) 1995-01-27 1995-01-27 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7011609A JPH08203726A (en) 1995-01-27 1995-01-27 Superconducting coil device

Publications (1)

Publication Number Publication Date
JPH08203726A true JPH08203726A (en) 1996-08-09

Family

ID=11782657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7011609A Pending JPH08203726A (en) 1995-01-27 1995-01-27 Superconducting coil device

Country Status (1)

Country Link
JP (1) JPH08203726A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097207A (en) * 2000-04-20 2001-11-08 권영한 High temperature superconducting magnet system
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor
JP2012030071A (en) * 2010-07-30 2012-02-16 General Electric Co <Ge> System and method for operating magnetic resonance imaging system during ramping
JP2013144099A (en) * 2011-12-12 2013-07-25 Toshiba Corp Magnetic resonance imaging apparatus
JP2014068772A (en) * 2012-09-28 2014-04-21 Hitachi Medical Corp Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2018538021A (en) * 2015-10-16 2018-12-27 シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. Magnetic resonance imaging system enabling high-speed magnetic field gradient
CN112162577A (en) * 2020-09-25 2021-01-01 上海联影医疗科技股份有限公司 Magnetic resonance equipment temperature control circuit, system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097207A (en) * 2000-04-20 2001-11-08 권영한 High temperature superconducting magnet system
JP2010262950A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Superconducting electromagnet and transport method therefor
JP2012030071A (en) * 2010-07-30 2012-02-16 General Electric Co <Ge> System and method for operating magnetic resonance imaging system during ramping
JP2013144099A (en) * 2011-12-12 2013-07-25 Toshiba Corp Magnetic resonance imaging apparatus
JP2014068772A (en) * 2012-09-28 2014-04-21 Hitachi Medical Corp Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2018538021A (en) * 2015-10-16 2018-12-27 シナプティヴ メディカル (バルバドス) インコーポレイテッドSynaptive Medical (Barbados) Inc. Magnetic resonance imaging system enabling high-speed magnetic field gradient
CN112162577A (en) * 2020-09-25 2021-01-01 上海联影医疗科技股份有限公司 Magnetic resonance equipment temperature control circuit, system and method
CN112162577B (en) * 2020-09-25 2021-06-22 上海联影医疗科技股份有限公司 Magnetic resonance equipment temperature control circuit, system and method

Similar Documents

Publication Publication Date Title
US8384504B2 (en) Superconducting quick switch
US8134434B2 (en) Superconducting quick switch
US6545474B2 (en) Controlling method of superconductor magnetic field application apparatus, and nuclear magnetic resonance apparatus and superconducting magnet apparatus using the method
JPH04350906A (en) Method and apparatus for cooling oxide superconducting coil
US5787714A (en) Cooling method and energizing method of superconductor
JPH08203726A (en) Superconducting coil device
JP5017640B2 (en) Cryogenic refrigeration method and cryogenic refrigeration system
JPH10335137A (en) Cooling method and conducting method for superconductor
KR101888503B1 (en) Power supply for conduction cooled superconducting equipment
JP6326804B2 (en) Superconducting magnet and measuring device
JPH11233334A (en) Conduction cooling type superconducting electromagnet
US3650117A (en) Paraelectric refrigerator
JP3646427B2 (en) Magnetization method of superconductor and superconducting magnet device
JP2004259925A (en) Conduction cooling type superconductive magnet device for nuclear magnetic resonator
JP3646426B2 (en) Magnetization method of superconductor and superconducting magnet device
JP2004111581A (en) Superconducting magnet unit
JP4151674B2 (en) Magnetization method of superconducting magnet device
JP2005294471A (en) Method for magnetizing bulk super-conductor
JP3117173B2 (en) Superconducting magnet device with refrigerator
JP2005019884A (en) Cryogenic cooling device
JPH09102413A (en) Superconductive magnetic device
JP3382794B2 (en) Permanent current switch
JP2000150224A (en) Excitation control method of superconducting coil
JPH10116725A (en) Superconducting magnet device
JP3734630B2 (en) Conduction-cooled superconducting magnet system