JP2005294471A - Method for magnetizing bulk super-conductor - Google Patents

Method for magnetizing bulk super-conductor Download PDF

Info

Publication number
JP2005294471A
JP2005294471A JP2004106330A JP2004106330A JP2005294471A JP 2005294471 A JP2005294471 A JP 2005294471A JP 2004106330 A JP2004106330 A JP 2004106330A JP 2004106330 A JP2004106330 A JP 2004106330A JP 2005294471 A JP2005294471 A JP 2005294471A
Authority
JP
Japan
Prior art keywords
bulk
metal ring
oxide superconducting
magnetizing
superconducting bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004106330A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujishiro
代 博 之 藤
Tetsuo Oka
徹 雄 岡
Kazuya Yokoyama
山 和 哉 横
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Japan Science and Technology Agency filed Critical Aisin Seiki Co Ltd
Priority to JP2004106330A priority Critical patent/JP2005294471A/en
Publication of JP2005294471A publication Critical patent/JP2005294471A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pulse-magnetizing a bulk super-conductor or a method for cooling and magnetizing a magnetic field, wherein a given reinforcement strength is ensured by both an immersion of resin such as epoxy and a metal ring fitting, and besides a cooling efficiency is enhanced by restraining excessive heat generation, resulting in reducing a time period of stabilizing the temperature of an oxide super-conductor bulk, thereby reducing a time required for a magnetization process. <P>SOLUTION: In the method for pulse-magnetizing the bulk super-conductor, a bottom face of the annular, disc-shaped and pillar-shaped oxide super-conductor bulk is brought into contact with a cold stage for mounting, a current is flown to a magnetization coil provided on an outer peripheral side of the bulk to generate a pulse magnetic field, and the bulk is magnetized to a direction perpendicular to the bottom face in a refrigerant or in a low temperature state obtained by a freezer. Prior to the magnetization of the bulk, an immersion resin film in the surface of the bulk is eliminated, and a first metal ring having a lacking part is closely adhered or fitted into the outside of the bulk, and further a second metal ring is closely adhered or fitted into an outside of the first metal ring. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バルク超伝導体の着磁方法に係り、特に酸化物超伝導バルクの、パルス着磁方法もしくは磁場冷却着磁方法に関するものである。   The present invention relates to a method for magnetization of a bulk superconductor, and more particularly to a pulse magnetization method or a magnetic field cooling magnetization method for an oxide superconducting bulk.

酸化物超伝導バルクのパルス着磁方法では、その超伝導擬似単結晶の一面に一致させた前記酸化物超伝導バルクの底面をコールド・ステージに接して載置し、所定の温度に冷却した後、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流してパルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で得られる所定の低温状態で前記底面に鉛直な方向に着磁する。   In the pulsed magnetization method of an oxide superconducting bulk, the bottom surface of the oxide superconducting bulk matched with one surface of the superconducting quasi-single crystal is placed in contact with a cold stage and cooled to a predetermined temperature. And applying a current to a magnetized coil provided on the outer peripheral side of the oxide superconducting bulk to generate a pulsed magnetic field so that the oxide superconducting bulk is perpendicular to the bottom surface at a predetermined low temperature obtained in a refrigerant. Magnetize in the direction.

酸化物超伝導バルクの磁場冷却着磁方法では、その超伝導擬似単結晶の一面に一致させた前記酸化物超伝導バルクの底面をコールド・ステージに接して載置し、前記酸化物超伝導バルクの外周側に設けた着磁コイルに定常電流を流して定常磁場を発生させた後、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる所定の温度まで冷却しながら定常磁場の強度を下げて、前記底面に鉛直な方向に着磁する。   In the magnetic field cooling magnetization method of the oxide superconducting bulk, the bottom surface of the oxide superconducting bulk matched with one surface of the superconducting quasi-single crystal is placed in contact with a cold stage, and the oxide superconducting bulk is placed. A steady current is passed through a magnetizing coil provided on the outer peripheral side of the steel to generate a steady magnetic field, and then the oxide superconducting bulk is cooled to a predetermined temperature obtained in a refrigerant or by a refrigerator, The strength is lowered and magnetized in a direction perpendicular to the bottom surface.

ここで扱う酸化物超伝導バルクは、図1(A)に示すように、一般に円環状、円板状、または円柱状であって、その底面は超伝導擬似単結晶のab面に一致し、これに鉛直な厚さ方向(c軸方向)に着磁する(例えば、非特許文献1及び2)が、超伝導遷移温度以下に冷却した状態で、着磁コイルに電流を流す際に、酸化物超伝導バルクの側面方向に強い電磁的反発力が作用し、これを破壊する可能性がある。   As shown in FIG. 1A, the oxide superconducting bulk handled here is generally annular, disc-shaped, or cylindrical, and its bottom surface coincides with the ab plane of the superconducting pseudo single crystal, When magnetized in the thickness direction (c-axis direction) perpendicular to this (for example, Non-Patent Documents 1 and 2) but cooled to the superconducting transition temperature or lower, oxidation occurs when current is passed through the magnetizing coil. There is a possibility that a strong electromagnetic repulsive force acts in the lateral direction of the superconducting bulk and destroys it.

そこで、図1(B)に示すように、前記酸化物超伝導バルク1を、外周からエポキシ樹脂などの樹脂皮膜5で包んで含浸し、補強する処置が講じられている。(従来技術1)
また、特許文献1には、超電導バルク材料の補強構造として金属環による、側面からの圧縮応力を用いることが開示されている。(従来技術2)
Therefore, as shown in FIG. 1 (B), a measure is taken to wrap the oxide superconducting bulk 1 with a resin film 5 such as an epoxy resin from the outer periphery and impregnate and reinforce it. (Prior art 1)
Further, Patent Document 1 discloses that a compressive stress from the side surface caused by a metal ring is used as a reinforcing structure for a superconducting bulk material. (Prior art 2)

酸化物超伝導バルクを最も高性能に着磁する方法は磁場中冷却(Field Cooling;FC)であるが、液体ヘリウムを使った大型の超伝導マグネットを要するので、実用的ではなく、より簡便なパルス着磁法が使われている。
特にパルス着磁法においてIMRA法(反復着磁法)が用いられるようになり、補強処置として前記従来技術1と2を組み合わせると、捕捉磁場は30Kで3.8Tを記録できるようになったが、捕捉磁場が前記FCに比べて少ないという欠点があった。
The method of magnetizing the oxide superconducting bulk with the highest performance is field cooling (FC), but it requires a large superconducting magnet using liquid helium, which is not practical and simpler. The pulse magnetization method is used.
In particular, the IMRA method (repetitive magnetization method) has come to be used in the pulse magnetization method, and when the conventional techniques 1 and 2 are combined as a reinforcing treatment, the trapped magnetic field can be recorded at 3.8T at 30K. The trapping magnetic field has a drawback that it is smaller than the FC.

これは、磁束の侵入で起こる発熱のために温度が上昇することに起因しており、特に酸化物超伝導バルクに含浸されたエポキシ樹脂皮膜が放熱の妨げとなって、温度の安定までに長い時間を要するという問題があるためである。   This is because the temperature rises due to heat generation caused by the penetration of magnetic flux, and in particular, the epoxy resin film impregnated in the oxide superconducting bulk hinders heat dissipation, and it takes a long time to stabilize the temperature. This is because it takes time.

また、金属環が、樹脂含浸するために付着したエポキシ樹脂皮膜5の表面に取り付けられているので、放熱のための熱伝導が考慮されていなかった。このため、磁束の侵入で起こる発熱のために温度が上昇してしまい、ある程度以上の大きな捕捉磁場を得ることができないという問題があった。   In addition, since the metal ring is attached to the surface of the epoxy resin film 5 attached to impregnate the resin, heat conduction for heat radiation has not been considered. For this reason, there is a problem that the temperature rises due to heat generation caused by the penetration of the magnetic flux, and it is not possible to obtain a trapped magnetic field larger than a certain level.

従来、含浸後の含浸用樹脂皮膜5の厚さは、せいぜい1mm程度であり、冷却にはあまり影響しないものと考えられていたが、本発明者らの実験によれば、この1mm程度の樹脂皮膜の存在により、樹脂のない場合に比較して、酸化物超伝導バルクの温度(超伝導遷移温度以下)の安定までに3倍以上の時間を必要とすることが判明した。   Conventionally, the thickness of the impregnating resin film 5 after impregnation is at most about 1 mm, and it has been considered that the thickness of the resin film 5 is not so much affected by cooling. Due to the presence of the film, it has been found that it takes three times or more to stabilize the temperature of the oxide superconducting bulk (below the superconducting transition temperature) as compared to the case without the resin.

その理由として、本発明者らは、酸化物超伝導バルク1について、その超伝導疑似単結晶のab面内に沿う方向と、ab面に垂直な方向に関して、熱伝導率kに異方性が有り、ab面に垂直な方向(c軸方向)よりも、ab面内に沿う方向への熱伝導率が数倍高く、そのため、底面だけでなく、側面からの熱放散の寄与率が重要であることを把握した。   The reason is that the thermal conductivity k of the oxide superconducting bulk 1 has anisotropy in the direction along the ab plane of the superconducting pseudo single crystal and the direction perpendicular to the ab plane. Yes, the thermal conductivity in the direction along the ab plane is several times higher than the direction perpendicular to the ab plane (c-axis direction). Therefore, the contribution of heat dissipation from the side as well as the bottom is important. I figured out that there was.

そこで、先に特許文献2において開示したように、本発明者らは以上の知見に基き、酸化物超伝導バルクの温度を安定化する時間を短縮し、冷却効率を向上して、着磁工程に必要な時間を短縮できるバルク超伝導体のパルス着磁方法を提供した。   Therefore, as previously disclosed in Patent Document 2, the present inventors have shortened the time for stabilizing the temperature of the oxide superconducting bulk based on the above knowledge, improved the cooling efficiency, and the magnetization process. A pulsed magnetization method for bulk superconductors that can reduce the time required for the above is provided.

それは、前記酸化物超伝導バルクの着磁に先立って、図1(C)に示すように、含浸後の酸化物超伝導バルク1の表面部分にある含浸用樹脂皮膜を取り除き、酸化物超伝導バルク1の周囲に金属環を嵌合させることを特徴とするものである。(従来技術3)   Prior to magnetization of the oxide superconducting bulk, as shown in FIG. 1 (C), the impregnating resin film on the surface portion of the oxide superconducting bulk 1 after impregnation is removed, and the oxide superconducting material is removed. A metal ring is fitted around the bulk 1. (Prior art 3)

しかしながら前記従来技術3によって、前記金属環を通じた放熱をより良くするため熱伝導率の高い金属を使うと、一般に熱伝導率の高い金属は電気伝導性も高く、印加された着磁用パルス磁場により発生する渦電流が大きくなり、余分な発熱とそれによる温度上昇を招いてしまう場合がある、という新たな問題が発生した。   However, when a metal having a high thermal conductivity is used in order to improve heat dissipation through the metal ring according to the prior art 3, generally a metal having a high thermal conductivity has a high electrical conductivity, and an applied pulsed magnetic field for magnetization is used. As a result, the eddy current generated by the current increases, resulting in a new problem that excessive heat generation and the resulting temperature increase may occur.

エィチ.フジシロ、エス.コハヤシ(H.Fujishiro and S.Kohayashi):アイ・イー・イー・イー・トランス.スーパーコンダクタ(IEEE Trans.Supercond.)第12巻(2002年)1124頁H. Fujishiro, S. H. Fujishiro and S. Kohayashi: I E E E Trans. Superconductor (IEEE Trans. Supercond.), Volume 12 (2002), p. 1124 エィチ.フジシロ、エム.イケベ、ティー.ナイトウ、ケー.ノト(H.Fujishiro,M.Ikebe,T.Naito and K.Noto):ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス(Jpn.J.Appl.Phys.)第33巻(1994年)4965頁H. Fujishiro, M. Ikebe, tea. Naito, K. Noto (H. Fujishiro, M. Ikebe, T. Naito and K. Noto): Japanese Journal of Applied Physics, Jpn. J. Appl. Phys., Vol. 33 (1994) 4965. 特開平11−335120号公報JP 11-335120 A 特願2003−112116号公報Japanese Patent Application No. 2003-112116

本発明は、パルス着磁方法における上記の諸問題を解決するためになされたものであり、エポキシなどの樹脂含浸と金属環嵌合の双方による所定の補強強度を確保した上で、余分な発熱を抑え、冷却効率を向上して、酸化物超伝導バルクの温度を安定化する時間を短縮し、着磁工程に必要な時間を短縮できるバルク超伝導体の着磁方法を提供することを目的とする。   The present invention has been made to solve the above-described problems in the pulse magnetizing method. Excess heat generation is ensured by ensuring a predetermined reinforcing strength by both resin impregnation and metal ring fitting such as epoxy. The purpose is to provide a bulk superconductor magnetization method capable of reducing the time required to stabilize the temperature of the oxide superconducting bulk, reducing the time required for the magnetization process, and improving the cooling efficiency And

本発明は、又、磁場冷却着磁方法において生じる、上記の諸問題に対応する問題を解決するためになされたものであり、エポキシなどの樹脂含浸と金属環嵌合の双方による所定の補強強度を確保した上で、余分な発熱を抑え、冷却効率を向上して、酸化物超伝導バルクの温度を安定化する時間を短縮し、着磁工程に必要な時間を短縮できるバルク超伝導体の着磁方法を提供することを第2の目的とする。   The present invention was also made to solve the problems corresponding to the above-mentioned problems that occur in the magnetic field cooling and magnetization method, and has a predetermined reinforcement strength by both resin impregnation such as epoxy and metal ring fitting. Of bulk superconductors that can reduce the time required for the magnetizing process by reducing the time required to stabilize the temperature of the oxide superconducting bulk by suppressing excessive heat generation and improving cooling efficiency. A second object is to provide a magnetization method.

上記目的を達成するために、本発明によるバルク超伝導体の着磁方法は、環状、円板状または円柱状の酸化物超伝導バルクの底面が超伝導擬似単結晶の一面に一致するようにして、前記底面をコールド・ステージに接して載置し、所定の温度に冷却した後、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流してパルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる所定の低温状態で前記底面に鉛直な方向に着磁する、バルク超伝導体のパルス着磁方法において、前記酸化物超伝導バルクの着磁に先立って、前記酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、前記酸化物超伝導バルクの外側に、切れ目及び/又は切り欠きを有する第1の金属環を嵌合させ、さらに、前記第1の金属環の外側に、第2の金属環を嵌合させる、ことを特徴とする。   In order to achieve the above object, the method for magnetizing a bulk superconductor according to the present invention is such that the bottom surface of an oxide, superconducting bulk of a ring, disk or column is coincident with one surface of a superconducting quasi-single crystal. The bottom surface is placed in contact with a cold stage, cooled to a predetermined temperature, and then a current is passed through a magnetizing coil provided on the outer peripheral side of the oxide superconducting bulk to generate a pulsed magnetic field, In the pulse superconducting method of a bulk superconductor, the oxide superconducting bulk is magnetized in a direction perpendicular to the bottom surface at a predetermined low temperature obtained in a refrigerant or by a refrigerator. Prior to magnetization, the resin film for impregnation on the surface portion of the oxide superconducting bulk is removed, and a first metal ring having a cut and / or a notch is fitted outside the oxide superconducting bulk. Let, and before Outside the first metal ring, fitting the second metal ring, characterized in that.

また、上記目的を達成するために、本発明によるバルク超伝導体の着磁方法は、環状、円板状または円柱状の酸化物超伝導バルクの底面が超伝導擬似単結晶の一面に一致するようにして、前記底面をコールド・ステージに接して載置し、前記酸化物超伝導バルクの外周側に設けた着磁コイルに定常電流を流して定常磁場を発生させた後、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる所定の温度まで冷却しながら定常磁場の強度を下げて、前記底面に鉛直な方向に着磁する、バルク超伝導体の磁場中冷却着磁方法において、前記酸化物超伝導バルクの着磁に先立って、前記酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、前記酸化物超伝導バルクの外側に、切れ目及び/又は切り欠きを有する第1の金属環を嵌合させ、さらに、前記第1の金属環の外側に、第2の金属環を嵌合させる、ことを特徴とする。   In order to achieve the above object, the bulk superconductor magnetization method according to the present invention is such that the bottom surface of an annular, disk-shaped or columnar oxide superconducting bulk coincides with one surface of a superconducting quasi-single crystal. Thus, after placing the bottom surface in contact with the cold stage and generating a steady magnetic field by flowing a steady current through a magnetizing coil provided on the outer peripheral side of the oxide superconducting bulk, A method of cooling and magnetizing a bulk superconductor in a magnetic field by lowering the strength of a stationary magnetic field while cooling a conductive bulk to a predetermined temperature obtained in a refrigerant or by a refrigerator, and magnetizing it in a direction perpendicular to the bottom surface. Before the magnetization of the oxide superconducting bulk, the impregnating resin film on the surface portion of the oxide superconducting bulk is removed, and cuts and / or notches are formed outside the oxide superconducting bulk. Having first gold Ring Mate, further outside the first metal ring, fitting the second metal ring, characterized by.

好ましくは請求項3に係り、前記第1の金属環は、セラミック粉末を混入した樹脂を介して前記酸化物超伝導バルクに嵌合し、熱的に密着することを特徴とする。   Preferably, according to a third aspect of the present invention, the first metal ring is fitted into the oxide superconducting bulk through a resin mixed with ceramic powder, and is thermally adhered.

好ましくは請求項4に係り、前記第1の金属環は、焼き嵌めによって、前記酸化物超伝導バルクに嵌合し、熱的に密着することを特徴とする。   Preferably, according to a fourth aspect of the present invention, the first metal ring is fitted into the oxide superconducting bulk by shrink fitting and thermally adhered thereto.

好ましくは請求項5に係り、前記第2の金属環は、セラミック粉末を混入した樹脂を介して前記第1の金属環に嵌合し、機械的に密着することを特徴とする。   Preferably, according to a fifth aspect of the present invention, the second metal ring is fitted into the first metal ring via a resin mixed with ceramic powder and mechanically adhered.

好ましくは請求項6に係り、前記第2の金属環は、焼き嵌めによって、前記第1の金属環に嵌合し、機械的に密着することを特徴とする。   Preferably, according to a sixth aspect of the present invention, the second metal ring is fitted into the first metal ring by shrink fitting and mechanically adhered.

好ましくは請求項7に係り、前記セラミック粉末は、窒化硅素、窒化チタン、酸化硅素または酸化チタンのうち一種或いは複数種の混合物からなることを特徴とする。   Preferably, according to claim 7, the ceramic powder is made of one or a mixture of silicon nitride, titanium nitride, silicon oxide or titanium oxide.

好ましくは請求項8に係り、前記第1の金属環の切れ目及び/又は切り欠きは、環の円周に直角な方向に、単一又は複数個の切れ目、単一又は複数個の切り欠き、又はこれらを組み合わせたものであることを特徴とする。   Preferably, according to claim 8, the cut and / or notch of the first metal ring is a single or a plurality of cuts, a single or a plurality of cuts in a direction perpendicular to the circumference of the ring, Or a combination of these.

本発明は、樹脂含浸と金属環による補強強度を確保しつつ、熱放散性を向上して、金属環における無駄な発熱を抑えることができるので、冷却効率が向上し、酸化物超伝導バルクの温度を安定化する時間を短縮し、着磁工程に必要な時間を短縮することができると共に、従来よりも大きい捕捉磁場を安定に発生させることができる。   The present invention can improve the heat dissipation while suppressing the resin heat impregnation and the reinforcing strength by the metal ring, and suppress unnecessary heat generation in the metal ring. The time required for stabilizing the temperature can be shortened, the time required for the magnetizing step can be shortened, and a larger trapping magnetic field can be stably generated than before.

以下、本発明に係る実施の形態を、図面を参照して具体的に説明する。   Embodiments according to the present invention will be specifically described below with reference to the drawings.

再び図1(A)を参照すると、本発明に係る酸化物超伝導バルク1は、例えば、REBaCu7−y(ここで、REは稀土類元素であり、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luから選ばれる1種類または2種類以上の元素を示す。)を主成分とするもので、要すれば、この相中にREBaCuOやREBaCu10などを分散したものを用いる。 Referring to FIG. 1A again, the oxide superconducting bulk 1 according to the present invention is, for example, REBa 2 Cu 3 O 7-y (where RE is a rare earth element, and Y, Nd, Sm, One or two or more elements selected from Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu.), And if necessary, RE 2 BaCuO 5 in this phase. Or a dispersion of RE 4 Ba 2 Cu 2 O 10 or the like is used.

再び図1(B)、(C)を参照すると、酸化物超伝導バルク1は、エポキシなどの樹脂皮膜5で包んで含浸した後、酸化物超伝導バルク1の表面部分(上面、底面、及び外側面のすべてを含む。環状(図示していない)の場合は、さらに内側面を含む。)にある含浸用樹脂皮膜5が取り除かれる。   Referring again to FIGS. 1B and 1C, the oxide superconducting bulk 1 is wrapped and impregnated with a resin film 5 such as an epoxy, and then the surface portion (upper surface, bottom surface, and The resin film 5 for impregnation on the outer surface (including the inner surface in the case of an annular shape (not shown)) is removed.

次に、図2(A)を参照すると、切れ目15を有する第1の金属環10が酸化物超伝導バルク1の側面に嵌合される。
次に、図2(B)を参照すると、第2の金属環20が第1の金属環10の外側面に嵌合される。
ここで、図2(B)におけるX−X断面図である図2(C)に示すように、酸化物超伝導バルク1、第1の金属環10、第2の金属環20の高さは等しく、嵌合後の上面部と底面部は平坦になり、着磁の際に、底面部からの冷却が効率的に行われる。
Next, referring to FIG. 2A, the first metal ring 10 having the cut 15 is fitted to the side surface of the oxide superconducting bulk 1.
Next, referring to FIG. 2B, the second metal ring 20 is fitted to the outer surface of the first metal ring 10.
Here, as shown in FIG. 2C, which is an XX cross-sectional view in FIG. 2B, the heights of the oxide superconducting bulk 1, the first metal ring 10, and the second metal ring 20 are as follows. Equally, the upper surface portion and the bottom surface portion after the fitting become flat, and cooling from the bottom surface portion is efficiently performed at the time of magnetization.

ここで、第1の金属環10は、熱伝導率の高い金属、例えば、銅、又はアルミニウムからなることが好ましい。
また、第2の金属環20は、第1の金属環の金属に比べて電気伝導率が低く、かつ剛性の高い金属、例えば、鋼からなることが好ましい。
Here, the first metal ring 10 is preferably made of a metal having high thermal conductivity, for example, copper or aluminum.
Moreover, it is preferable that the 2nd metal ring 20 consists of a metal with low electrical conductivity compared with the metal of a 1st metal ring, and high rigidity, for example, steel.

酸化物超伝導バルク1の外周に対する第1の金属環10の密着性を高めて、両者の間の熱伝導性を高めるために、両者の間に熱伝導率の高い樹脂接着剤(例えば、窒化硅素、窒化チタン、酸化硅素、酸化チタンなどの熱伝導性の高いセラミック粉末を混入したエポキシ樹脂)を用い、あるいは、第1の金属環10を焼き嵌めする。
ここで、前記樹脂はグリースを含んでもよい。
In order to enhance the adhesion of the first metal ring 10 to the outer periphery of the oxide superconducting bulk 1 and to enhance the thermal conductivity between the two, a resin adhesive having a high thermal conductivity (for example, nitriding) (Epoxy resin mixed with ceramic powder having high thermal conductivity such as silicon, titanium nitride, silicon oxide, titanium oxide) or the first metal ring 10 is shrink-fitted.
Here, the resin may include grease.

また、第1の金属環10に対する第2の金属環20による機械的補強強度を高めるために、両者の間に第1及び第2の金属環の機械的密着性を高めることができる樹脂接着剤(例えば、窒化硅素、窒化チタン、酸化硅素、酸化チタンなどのセラミック粉末を混入したエポキシ樹脂)を用い、あるいは、第2の金属環20を焼き嵌めする。   Further, in order to increase the mechanical reinforcement strength of the second metal ring 20 with respect to the first metal ring 10, a resin adhesive capable of increasing the mechanical adhesion of the first and second metal rings between the two. (For example, epoxy resin mixed with ceramic powder such as silicon nitride, titanium nitride, silicon oxide, or titanium oxide) is used, or the second metal ring 20 is shrink-fitted.

このように2重の金属環で嵌合した酸化物超伝導バルク1を、例えばその底面が、冷凍機の内部の伝熱部に繋がるコールド・ステージに接するようにして載置する。
そして、パルス着磁法、もしくは磁場冷却法による着磁工程に入る。
例えばパルス着磁法の場合は、所定の温度に冷却した後で、酸化物超伝導バルク1の外周側に設けた着磁コイルに電流を流し、パルス磁場を発生させ、酸化物超伝導バルク1を、前記底面に鉛直な方向(c軸)に着磁する。
Thus, the oxide superconducting bulk 1 fitted with the double metal ring is placed so that, for example, the bottom surface thereof is in contact with the cold stage connected to the heat transfer section inside the refrigerator.
Then, the magnetizing process is performed by the pulse magnetizing method or the magnetic field cooling method.
For example, in the case of the pulse magnetizing method, after cooling to a predetermined temperature, a current is passed through a magnetizing coil provided on the outer peripheral side of the oxide superconducting bulk 1 to generate a pulsed magnetic field. Is magnetized in a direction perpendicular to the bottom surface (c-axis).

その際、酸化物超伝導バルク1の内部に発生する熱は、底面に加えて、側面からも第1の金属環10を介して効果的に放熱される。
熱伝導率の高い金属は、通常電気伝導率も高いが、前記切れ目15の存在により、第1の金属環10全体の円周方向の電気的抵抗は大きくなり、着磁の際の渦電流を抑えることができる。
At that time, heat generated inside the oxide superconducting bulk 1 is effectively dissipated from the side surface through the first metal ring 10 in addition to the bottom surface.
A metal having a high thermal conductivity usually has a high electrical conductivity. However, due to the presence of the slit 15, the electrical resistance in the circumferential direction of the entire first metal ring 10 increases, and an eddy current during magnetization is generated. Can be suppressed.

一方、第2の金属環20は剛性が高いので、着磁の際に十分な圧縮応力を与えることができるだけでなく、電気的抵抗が大きいので、着磁の際の渦電流を抑えることができる。   On the other hand, since the second metal ring 20 has high rigidity, not only can a sufficient compressive stress be applied during magnetization, but also the electrical resistance is large, so that eddy currents during magnetization can be suppressed. .

第1の金属環を備える目的が良好な熱伝導と、円周方向に大きい電気的抵抗にあるので、第1の金属環は、図3(A)に示すように、1つの切れ目15で有する場合の他、図3(B)に示すように、2つあるいはそれ以上の切れ目15、16を有してもよい。
図3(B)のような場合は、熱放散のバランスがよくなる。
Since the purpose of providing the first metal ring is good heat conduction and large electrical resistance in the circumferential direction, the first metal ring has one cut 15 as shown in FIG. In addition to the case, as shown in FIG. 3B, two or more cuts 15 and 16 may be provided.
In the case of FIG. 3B, the heat dissipation balance is improved.

さらには、図3(C)に示すように、切れ目15と切り欠き10cを有してもよい。
この場合も、熱放散のバランスがよくなる他、渦電流を実質的に増やさないで、第1の金属環10の、嵌合前の位置取り作業を簡単にできる。
Furthermore, as shown in FIG. 3C, a cut 15 and a notch 10c may be provided.
Also in this case, the balance of heat dissipation is improved, and the positioning operation of the first metal ring 10 before fitting can be simplified without substantially increasing the eddy current.

本発明における酸化物超伝導バルクの冷却は、上記のように冷凍機の冷却部のコールド・ステージによってなされることに限定されない。すなわち、冷凍機を用いる代わりに該酸化物超伝導バルクを液体窒素、液体ネオン、液体ヘリウム、液体アルゴンのうちのいずれか一種の冷媒を用いることによって冷却し、利用することで、同等或いは類似した効果をもたらすことができる。   The cooling of the oxide superconducting bulk in the present invention is not limited to being performed by the cold stage of the cooling unit of the refrigerator as described above. That is, instead of using a refrigerator, the oxide superconducting bulk is cooled or used by using any one kind of refrigerant of liquid nitrogen, liquid neon, liquid helium, and liquid argon. Can have an effect.

また、冷媒は冷凍機によって冷却される状態として用いることもでき、必ずしもその沸点で用いることに限定されない。すなわち、冷凍機を用いて冷却された液体或いは気体の状態にある冷媒により該酸化物超伝導バルクを所定の温度に冷却して用いることができる。   Moreover, a refrigerant | coolant can also be used as a state cooled with a refrigerator, and is not necessarily limited to using at the boiling point. That is, the oxide superconducting bulk can be cooled to a predetermined temperature with a refrigerant in a liquid or gas state cooled using a refrigerator.

このような液体又は気体による冷却の場合、放熱性を上げられる範囲で、第1の金属環は延伸されてフィン効果を持たせ、さらに酸化物超伝導バルクの一部又は全部を覆っていてもよい。   In the case of cooling with such a liquid or gas, the first metal ring may be stretched to have a fin effect and cover part or all of the oxide superconducting bulk as long as heat dissipation is improved. Good.

(A)は、酸化物超伝導バルクの斜視図、(B)は、表面に含浸用エポキシ樹脂皮膜が形成されていることを示す酸化物超伝導バルクの断面図、(C)は、含浸用エポキシ樹脂皮膜が除去された後の酸化物超伝導バルクを示す断面図である。(A) is a perspective view of an oxide superconducting bulk, (B) is a cross-sectional view of an oxide superconducting bulk showing that an epoxy resin film for impregnation is formed on the surface, and (C) is for impregnation. It is sectional drawing which shows the oxide superconductor bulk after an epoxy resin film is removed. (A)は、酸化物超伝導バルクに第1の金属環を嵌合した状態を示す斜視図、(B)は、(A)にさらに第2の金属環を嵌合した状態を示す斜視図、(C)は、(B)におけるX−X断面図である。(A) is a perspective view showing a state in which the first metal ring is fitted to the oxide superconducting bulk, and (B) is a perspective view showing a state in which the second metal ring is further fitted to (A). (C) is XX sectional drawing in (B). (A)〜(C)は、第1の金属環の種々の態様を示す斜視図である。(A)-(C) are perspective views which show the various aspects of a 1st metal ring.

符号の説明Explanation of symbols

1 酸化物超伝導バルク
5 含浸用樹脂
10、10a、10b 第1の金属環
10c 切り欠き
15、16 切れ目
20 第2の金属環
DESCRIPTION OF SYMBOLS 1 Oxide superconducting bulk 5 Resin for impregnation 10, 10a, 10b 1st metal ring 10c Notch 15, 16 Break 20 2nd metal ring

Claims (8)

環状、円板状または円柱状の酸化物超伝導バルクの底面が超伝導擬似単結晶の一面に一致するようにして、前記底面をコールド・ステージに接して載置し、所定の温度に冷却した後、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流してパルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる所定の低温状態で前記底面に鉛直な方向に着磁する、バルク超伝導体のパルス着磁方法において、
前記酸化物超伝導バルクの着磁に先立って、
前記酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、
前記酸化物超伝導バルクの外側に、切れ目及び/又は切り欠きを有する第1の金属環を嵌合させ、
さらに、前記第1の金属環の外側に、第2の金属環を嵌合させる、
ことを特徴とするバルク超伝導体の着磁方法。
The bottom surface of the annular, disk-shaped or cylindrical oxide superconducting bulk was placed in contact with the cold stage so that the bottom surface coincided with one surface of the superconducting quasi-single crystal, and cooled to a predetermined temperature. Thereafter, a current is passed through a magnetized coil provided on the outer peripheral side of the oxide superconducting bulk to generate a pulsed magnetic field, and the oxide superconducting bulk is kept in a predetermined low temperature state obtained in a refrigerant or by a refrigerator. In the pulse magnetization method of the bulk superconductor, which is magnetized in a direction perpendicular to the bottom surface,
Prior to magnetization of the oxide superconducting bulk,
Removing the resin film for impregnation on the surface portion of the oxide superconducting bulk;
Fitting a first metal ring having a cut and / or a notch on the outside of the oxide superconducting bulk;
Furthermore, a second metal ring is fitted outside the first metal ring.
A method for magnetizing a bulk superconductor.
環状、円板状または円柱状の酸化物超伝導バルクの底面が超伝導擬似単結晶の一面に一致するようにして、前記底面をコールド・ステージに接して載置し、前記酸化物超伝導バルクの外周側に設けた着磁コイルに定常電流を流して定常磁場を発生させた後、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる所定の温度まで冷却しながら定常磁場の強度を下げて、前記底面に鉛直な方向に着磁する、バルク超伝導体の磁場中冷却着磁方法において、
前記酸化物超伝導バルクの着磁に先立って、
前記酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、
前記酸化物超伝導バルクの外側に、切れ目及び/又は切り欠きを有する第1の金属環を嵌合させ、
さらに、前記第1の金属環の外側に、第2の金属環を嵌合させる、
ことを特徴とするバルク超伝導体の着磁方法。
The oxide superconducting bulk is placed in contact with a cold stage so that the bottom of the annular, disc-shaped or columnar oxide superconducting bulk coincides with one surface of the superconducting quasi-single crystal. A steady current is passed through a magnetizing coil provided on the outer peripheral side of the substrate to generate a steady magnetic field, and then the oxide superconducting bulk is cooled to a predetermined temperature obtained in a refrigerant or by a refrigerator, In the method of cooling and magnetizing a bulk superconductor in a magnetic field, lowering the strength and magnetizing in a direction perpendicular to the bottom surface
Prior to magnetization of the oxide superconducting bulk,
Removing the resin film for impregnation on the surface portion of the oxide superconducting bulk;
Fitting a first metal ring having a cut and / or a notch on the outside of the oxide superconducting bulk;
Furthermore, a second metal ring is fitted outside the first metal ring.
A method for magnetizing a bulk superconductor.
前記第1の金属環は、セラミック粉末を混入した樹脂を介して前記酸化物超伝導バルクに嵌合し、熱的に密着することを特徴とする請求項1又は2に記載のバルク超伝導体の着磁方法。   3. The bulk superconductor according to claim 1, wherein the first metal ring is fitted and thermally adhered to the oxide superconducting bulk through a resin mixed with ceramic powder. 4. Magnetization method. 前記第1の金属環は、焼き嵌めによって、前記酸化物超伝導バルクに嵌合し、熱的に密着することを特徴とする請求項1又は2に記載のバルク超伝導体の着磁方法。   3. The method for magnetizing a bulk superconductor according to claim 1, wherein the first metal ring is fitted into the oxide superconducting bulk and thermally adhered thereto by shrink fitting. 4. 前記第2の金属環は、セラミック粉末を混入した樹脂を介して前記第1の金属環に嵌合し、機械的に密着することを特徴とする請求項1ないし4のいずれかに記載のバルク超伝導体の着磁方法。   The bulk according to any one of claims 1 to 4, wherein the second metal ring is fitted into the first metal ring via a resin mixed with ceramic powder and mechanically adhered. Magnetization method of superconductor. 前記第2の金属環は、焼き嵌めによって、前記第1の金属環に嵌合し、機械的に密着することを特徴とする請求項1ないし4のいずれかに記載のバルク超伝導体の着磁方法。   5. The bulk superconductor according to claim 1, wherein the second metal ring is fitted into the first metal ring by mechanical shrinkage by shrink fitting. Magnetic method. 前記セラミック粉末は、窒化硅素、窒化チタン、酸化硅素または酸化チタンのうち一種或いは複数種の混合物からなることを特徴とする請求項3又は5に記載のバルク超伝導体の着磁方法。   The method for magnetizing a bulk superconductor according to claim 3 or 5, wherein the ceramic powder is made of one or a mixture of silicon nitride, titanium nitride, silicon oxide, and titanium oxide. 前記第1の金属環の切れ目及び/又は切り欠きは、環の円周に直角な方向に、単一又は複数個の切れ目、単一又は複数個の切り欠き、又はこれらを組み合わせたものであることを特徴とする請求項1ないし7のいずれかに記載のバルク超伝導体の着磁方法。
The cut and / or notch of the first metal ring is a single or a plurality of cuts, a single or a plurality of cuts, or a combination thereof in a direction perpendicular to the circumference of the ring. The method for magnetizing a bulk superconductor according to any one of claims 1 to 7.
JP2004106330A 2004-03-31 2004-03-31 Method for magnetizing bulk super-conductor Pending JP2005294471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106330A JP2005294471A (en) 2004-03-31 2004-03-31 Method for magnetizing bulk super-conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106330A JP2005294471A (en) 2004-03-31 2004-03-31 Method for magnetizing bulk super-conductor

Publications (1)

Publication Number Publication Date
JP2005294471A true JP2005294471A (en) 2005-10-20

Family

ID=35327076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106330A Pending JP2005294471A (en) 2004-03-31 2004-03-31 Method for magnetizing bulk super-conductor

Country Status (1)

Country Link
JP (1) JP2005294471A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023160A (en) * 2010-07-14 2012-02-02 Railway Technical Research Institute Strong magnetic field small superconducting magnet
JP2012023159A (en) * 2010-07-14 2012-02-02 Railway Technical Research Institute Simple superconducting magnet and manufacturing method of the same
JP2013203612A (en) * 2012-03-29 2013-10-07 Awaji Materia Co Ltd Film-forming agent for superconducting bulk body, coating for superconducting bulk body, superconducting bulk body with coating, and superconducting bulk magnet
WO2016117658A1 (en) * 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet
JPWO2014189043A1 (en) * 2013-05-22 2017-02-23 新日鐵住金株式会社 Oxide superconducting bulk magnet
WO2017169422A1 (en) * 2016-03-31 2017-10-05 株式会社イムラ材料開発研究所 Superconducting magnetic field generating element and production method therefor
US20180301260A1 (en) * 2015-10-02 2018-10-18 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2000277333A (en) * 1999-03-26 2000-10-06 Aisin Seiki Co Ltd Method of magnetizing superconductor and superconducting magnet system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2000277333A (en) * 1999-03-26 2000-10-06 Aisin Seiki Co Ltd Method of magnetizing superconductor and superconducting magnet system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023160A (en) * 2010-07-14 2012-02-02 Railway Technical Research Institute Strong magnetic field small superconducting magnet
JP2012023159A (en) * 2010-07-14 2012-02-02 Railway Technical Research Institute Simple superconducting magnet and manufacturing method of the same
JP2013203612A (en) * 2012-03-29 2013-10-07 Awaji Materia Co Ltd Film-forming agent for superconducting bulk body, coating for superconducting bulk body, superconducting bulk body with coating, and superconducting bulk magnet
JPWO2014189043A1 (en) * 2013-05-22 2017-02-23 新日鐵住金株式会社 Oxide superconducting bulk magnet
WO2016117658A1 (en) * 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet
JPWO2016117658A1 (en) * 2015-01-21 2017-11-09 新日鐵住金株式会社 Oxide superconducting bulk magnet
US20180012690A1 (en) * 2015-01-21 2018-01-11 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
US10643772B2 (en) 2015-01-21 2020-05-05 Nippon Steel Corporation Oxide superconducting bulk magnet
US20180301260A1 (en) * 2015-10-02 2018-10-18 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
EP3358581A4 (en) * 2015-10-02 2019-05-15 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
US10748691B2 (en) 2015-10-02 2020-08-18 Nippon Steel Corporation Oxide superconducting bulk magnet
WO2017169422A1 (en) * 2016-03-31 2017-10-05 株式会社イムラ材料開発研究所 Superconducting magnetic field generating element and production method therefor

Similar Documents

Publication Publication Date Title
Al'tov Stabilization of superconducting magnetic systems
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
JPH11186025A (en) Superconducting coil
US20210336498A1 (en) Rotor and machine with a superconducting permanent magnet in a rotor carrier
JP2005294471A (en) Method for magnetizing bulk super-conductor
JP2013219195A (en) Conduction cooling plate of superconducting coil and superconducting coil device
JP2002208512A (en) High-temperature superconducting coil cooling method and cooling structure
JP5043955B2 (en) Superconducting synchronous motor
JP4612991B2 (en) Superconducting switch device
US20210344256A1 (en) Rotor and machine having superconducting permanent magnets
JPH10335137A (en) Cooling method and conducting method for superconductor
JP2014075522A (en) Superconducting bulk body with cavity and superconducting bulk magnet mounting the same
Kumakura et al. Improved superconducting properties of in-situ PIT-processed MgB/sub 2/tapes
JPH10275719A (en) Method for cooling superconductor
JP3727122B2 (en) Superconducting bulk magnet
JP2004319798A (en) Method for pulse magnetizing bulk superconductor
JP2004111581A (en) Superconducting magnet unit
JP2004319797A (en) Pulse magnetizing method of bulk superconductor
JPH08203726A (en) Superconducting coil device
JPH10116725A (en) Superconducting magnet device
JP5603297B2 (en) Superconducting magnet and manufacturing method thereof
Solovyov et al. Performance of layer wound epoxy-impregnated coils made from a multifilamentary cable of exfoliated YBCO
JP2011155096A (en) Superconducting electromagnet device
JP2006332499A (en) Method for pulse magnetizing bulk superconductor and super conducting magnet device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507