JP2004319797A - Pulse magnetizing method of bulk superconductor - Google Patents

Pulse magnetizing method of bulk superconductor Download PDF

Info

Publication number
JP2004319797A
JP2004319797A JP2003112116A JP2003112116A JP2004319797A JP 2004319797 A JP2004319797 A JP 2004319797A JP 2003112116 A JP2003112116 A JP 2003112116A JP 2003112116 A JP2003112116 A JP 2003112116A JP 2004319797 A JP2004319797 A JP 2004319797A
Authority
JP
Japan
Prior art keywords
superconducting bulk
oxide superconducting
bulk
oxide
metal ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003112116A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujishiro
代 博 之 藤
Tetsuo Oka
徹 雄 岡
Kazuya Yokoyama
山 和 哉 横
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Japan Science and Technology Agency filed Critical Aisin Seiki Co Ltd
Priority to JP2003112116A priority Critical patent/JP2004319797A/en
Publication of JP2004319797A publication Critical patent/JP2004319797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetizing method of a superconducting bulk in which the time required for magnetization process can be shortened by shortening the time required for settling the temperature of an oxide superconducting bulk and enhancing the cooling efficiency. <P>SOLUTION: A flat and annular or planar oxide superconducting bulk 1 is mounted while touching one face of its superconducting false single crystal to a cold stage 2. A current is fed to a magnetization coil 3 provided on the outer circumferential side of the oxide superconducting bulk to generate a pulse magnetic field and the oxide superconducting bulk is magnetized in the direction perpendicular to the face at a cryogenic temperature being attained in a refrigerant or by means of a refrigerating machine. In such a pulse magnetizing method of a bulk superconductor, a resin film for impregnation is removed from the surface part of the oxide superconducting bulk and a metal ring is fitted to the circumference thereof. Since the oxide superconducting bulk is not impregnated with resin or impregnating resin is removed before magnetization and then a metal ring having a high thermal conductivity is fitted to the circumference thereof, the time required for magnetization process can be shortened by shortening the temperature settling time of the oxide superconducting bulk and enhancing the cooling efficiency. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、扁平な環状または板状の酸化物超伝導バルクを、その超伝導疑似単結晶の一面をコールド・ステージに接して載置すると共に、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流し、パルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で、前記面に鉛直な方向に着磁するバルク超伝導体のパルス着磁方法に関する。
【0002】
【従来の技術】
ここで扱う酸化物超伝導バルクは、一般に円環状または円板状、円柱状であって、通常、図1に示すように、超伝導疑似単結晶のab面に鉛直な厚さ方向(c軸方向)に着磁する(例えば、非特許文献1および2)が、超伝導遷移温度以下に冷却した状態で、着磁コイルに電流を流す際に、酸化物超伝導バルクに強い電磁力が作用し、これを破壊する可能性がある。そこで、前記酸化物超伝導バルクの外周からエポキシ樹脂などの樹脂を含浸し、補強する処置が講じられている。また、特許文献1には、超電導バルク材料の補強構造として金属リングによる圧縮応力を用いることが開示されている。
【0003】
パルス着磁法ではIMRA法(反復着磁法)が用いられるようになり、捕捉磁場は30Kで3.8Tを記録できるようになったが、捕捉磁場はFCに比べて少ない欠点があった。これは磁束の侵入で起こる発熱のために温度が上昇することに起因するが、酸化物超伝導バルクに含浸されたエポキシ樹脂皮膜が放熱の妨げとなって、温度の安定までに長い時間を要するという問題があった。
【0004】
また、補強構造としての金属リングにおいても、含浸されたエポキシ樹脂皮膜の表面に取り付けられているため、放熱のための熱伝導が考慮されていなかった。このため、磁束の侵入で起こる発熱のために温度が上昇し大きな捕捉磁場を得ることができない問題があった。
【0005】
【非特許文献1】
エッチ.フジシロ、エス.コハヤシ(H.Fujishiro and S.Kohayashi):アイイーイーイー トランス.スーパーコンダクター(:IEEE Trans.Supercond)12巻 2002 1124頁
【非特許文献2】
エッチ.フジシロ、エム.イケダ、テー.ナイトウ、ケー.ノト(H.Fujishiro,M.Ikebe,T.Naito and K.Noto):ジャーナルオブアプライドフィジックス(J.Appl.Phys) 33巻 1994
4965ページ
【特許文献1】
特開平11−335120号公報(第2頁、図第1)
【0006】
【発明が解決しようとする課題】
従来、樹脂の含浸は、せいぜい、酸化物超伝導バルクの表面から1mm程度であり、冷却にはあまり影響しないものと考えられているが、本発明者らの実験によれば、この1mm程度の樹脂の存在が、樹脂のない場合に比較して、酸化物超伝導バルクの温度(超伝導遷移温度以下)の安定までに3倍以上の時間を必要とすることが判明した。
【0007】
本発明は、上記事情に基づいてなされたもので、酸化物超伝導バルクの温度を安定化する時間を短縮し、冷却効率を向上して、着磁工程に必要な時間を短縮できるバルク超伝導体のパルス着磁方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明では、扁平な環状または板状の酸化物超伝導バルクを、その超伝導疑似単結晶の一面をコールド・ステージに接して載置すると共に、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流し、パルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる低温状態で前記面に鉛直な方向に着磁するバルク超伝導体のパルス着磁方法において、前記酸化物超伝導バルクの着磁に先立って、酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、酸化物超伝導バルクの周囲に金属環を嵌合させることを特徴とする。
【0009】
この場合、本発明の実施の形態として、前記金属環が、熱伝導率の高いセラミック粉末を混入した樹脂を介して前記酸化物超伝導バルクに嵌合し、密着すること、また、前記樹脂が、窒化硅素、窒化チタン、酸化硅素、酸化チタン等のセラミック粉末を混入したエポキシ樹脂であること、あるいは、前記金属環が、焼き嵌めによって、前記酸化物超伝導バルクに嵌合することが、それぞれ、有効である。
【0010】
【発明の実施の形態】
以下、本発明に係る実施の形態を、図面を参照して具体的に説明する。ここでは、扁平な円環状(または円板状、円柱状)の酸化物超伝導バルク1を、その超伝導疑似単結晶の一面をコールド・ステージ2に接して載置する。酸化物超伝導バルク1の外周側に設けた着磁コイル3に電流を流し、パルス磁場を発生させ、酸化物超伝導バルク1を、前記面に鉛直な方向に着磁するバルク超伝導体のパルス着磁方法において、酸化物超伝導バルク1の着磁に先立って、表面のエポキシ樹脂を取り除き、その周囲に高い熱伝導率の金属環5を嵌合させる(図1(c)を参照)。
【0011】
上述の酸化物超伝導バルク1は、例えば、REBaCu7−y(ここで、REはY、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luから選ばれる1種類または2種類以上の元素を示す)を主成分とするもので、要すれば、この相中にREBaCuOやREBaCu10などを分散したものを用いる。また、コールド・ステージ2は、冷凍機の伝熱部に繋がっていて、その上面にサファイア板6を設けて、これに酸化物超伝導バルク1を載置しても良い。
実施の形態では図2に示すように、コールド・ステージ2に熱伝導用の円板9を有する銅の伝熱ロッド7を介して、前記冷凍機の冷凍部10に接続されることもある。
【0012】
このような酸化物超伝導バルク1は、77K(窒素の沸点)で磁場をトラップして1T(テスラ)程度の磁束密度が得られるが、63K(窒素の融点)、51K(酸素の融点)などの低温ではその数倍の磁束密度が達成される。上述のような、マグネットとしての使用態様で、前記の酸化物超伝導バルク1を用いると、強い電磁力により破壊する畏れがあり、このような事情から、一般には、ステンレス製のリングを嵌めて補強したり、超伝導バルクの表面に樹脂を含浸して補強している。
【0013】
パルス着磁法では、IMRA法(反復着磁法)が用いられるようになり、捕捉磁場は30Kで3.8Tを記録できるようになったが、捕捉磁場はFCに比べて少ない。これは、磁束の侵入で起こる発熱のために温度が上昇することに起因する。先述のように樹脂を含浸させた場合、温度の安定までに長い時間を要するという問題があった。
【0014】
本発明者は、酸化物超伝導バルク1について、その超伝導疑似単結晶のab面内に沿う方向と、ab面に垂直な方向に関して、熱伝導率kに異方性が有り、図3の実験データで示されるように、ab面に垂直な方向よりも、ab面内に沿う方向への熱伝導率が数倍高いことを把握している。そこで、本発明では、酸化物超伝導バルク1に着磁する場合の方法として、超伝導バルクの、樹脂を含浸させない或いは含浸された樹脂を取り除いたab面を直接コールド・ステージ2に、あるいは、実施例のように銅の伝熱ロッド7を介して冷凍機の冷却部で冷却することにより、冷却時間の短縮を図るものである。しかも、熱伝導率の高い酸化物超伝導バルク1のab面に沿う方向への放熱性を高めるために、酸化物超伝導バルク1の外周に熱伝導性の高い金属環5を嵌合している(図1(c)参照)。
【0015】
特に、着磁に際して発生した熱を酸化物超伝導バルク1から除くために、酸化物超伝導バルク1の外周に対する金属環5の密着性(熱伝導性)を高めるように、その外周と金属環5との間に熱伝導率の高い樹脂接着剤(例えば、窒化硅素、窒化チタン、酸化硅素、酸化チタンなどの粉末を混入したエポキシ樹脂)を用い、あるいは、金属環5を焼き嵌めするのである。なお、液体窒素による冷媒での直接冷却では、バルク全体を金属で被覆しておいてもよい。
【0016】
本発明における酸化物超伝導バルクの冷却は、上記のように冷凍機の冷却部によってなされることに限定されない。すなわち、冷凍機を用いる代わりに該酸化物超伝導バルクを液体窒素、液体ネオン、液体ヘリウム、液体アルゴンのうちのいずれか一種の冷媒を用いることによって冷却し、利用することで、同等或いは類似した効果をもたらすことができる。このように用いる該酸化物超伝導バルクは一般に冷媒中に浸漬されることで冷却される。該冷媒は、液体に限定されず、気体でもよい。又、冷媒は冷凍機によって冷却される状態として用いることもでき、必ずしもその沸点で用いることに限定されない。すなわち、冷凍機を用いて冷却された液体或いは気体の状態にある冷媒により該酸化物超伝導バルクを所定の温度に冷却して用いることができる。
【0017】
【発明の効果】
本発明は、以上詳述したように、酸化物超伝導バルクの着磁に先立って、樹脂を含浸させない或いは含浸された樹脂を取り除き、その周囲に高い熱伝導率の金属環を嵌合させることにより、酸化物超伝導バルクの温度を安定化する時間を短縮し、冷却効率を向上して、着磁工程に必要な時間を短縮することができる。
【図面の簡単な説明】
【図1】超伝導バルクの断面を模式的に示した図で、(a)は表面に含浸エポキシ樹脂皮膜が形成された超伝導バルクの表面に平行な断面図、(b)は表面に垂直な断面図、(c)は、本発明の超伝導バルクの表面に垂直な断面図である。
【図2】本発明のパルス着磁方法を実施する場合の具体的構成を示す模式図である。
【図3】熱伝導性に関しての異方性を開示した実験グラフである。
【符号の説明】
1 酸化物超伝導バルク
2 コールド・ステージ
3 着磁コイル
5 金属環
6 サファイア板
7 伝熱ロッド
8 真空容器
9 円板
10 冷凍機の冷却部
11 エポキシ樹脂皮膜
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a flat annular or plate-shaped oxide superconducting bulk is placed on one side of a superconducting pseudo-single crystal in contact with a cold stage, and provided on the outer peripheral side of the oxide superconducting bulk. The present invention relates to a pulse magnetizing method for a bulk superconductor in which a current is caused to flow in a magnetizing coil to generate a pulse magnetic field, and the oxide superconducting bulk is magnetized in a coolant in a direction perpendicular to the surface.
[0002]
[Prior art]
The oxide superconducting bulk to be treated here is generally in the shape of a ring, a disk, or a column. As shown in FIG. 1, usually, as shown in FIG. (For example, Non-Patent Documents 1 and 2), but when a current is applied to the magnetizing coil in a state where the magnet is cooled to a superconducting transition temperature or lower, a strong electromagnetic force acts on the oxide superconducting bulk. And could destroy it. Therefore, measures have been taken to impregnate and reinforce a resin such as an epoxy resin from the outer periphery of the oxide superconducting bulk. Patent Literature 1 discloses that a compressive stress by a metal ring is used as a reinforcing structure of a superconducting bulk material.
[0003]
In the pulse magnetization method, the IMRA method (repeated magnetization method) has been used, and a recording magnetic field of 3.8 T can be recorded at 30 K. However, there is a drawback that the magnetic recording field is smaller than that of FC. This is because the temperature rises due to heat generated by the penetration of magnetic flux, but it takes a long time for the temperature to stabilize because the epoxy resin film impregnated in the oxide superconducting bulk prevents heat dissipation. There was a problem.
[0004]
Further, in the metal ring as the reinforcing structure, since the metal ring is attached to the surface of the impregnated epoxy resin film, heat conduction for heat dissipation is not considered. For this reason, there has been a problem that the temperature rises due to heat generated by the penetration of the magnetic flux, and a large trapped magnetic field cannot be obtained.
[0005]
[Non-patent document 1]
Etch. Fujishiro, S. Kobayashi (H. Fujishiro and S. Kohayashi): IEE Trans. Superconductor (: IEEE Trans. Supercond.), Vol. 12, 2002, page 1124 [Non-Patent Document 2]
Etch. Fujishiro, M. Ikeda, TA. Naito, K. Noto (H. Fujishiro, M. Ikebe, T. Naito and K. Noto): Journal of Applied Physics (J. Appl. Phys) 33, 1994
4965 pages [Patent Document 1]
JP-A-11-335120 (page 2, FIG. 1)
[0006]
[Problems to be solved by the invention]
Conventionally, the impregnation of the resin is at most about 1 mm from the surface of the oxide superconducting bulk, and is considered to have little effect on cooling. However, according to experiments by the present inventors, this about 1 mm was considered. It has been found that the presence of the resin requires three times or more time to stabilize the temperature of the oxide superconducting bulk (below the superconducting transition temperature) as compared to the case without the resin.
[0007]
The present invention has been made based on the above circumstances, and it has been found that bulk superconductivity can reduce the time required for stabilizing the temperature of the oxide superconducting bulk, improve the cooling efficiency, and reduce the time required for the magnetization step. It is an object to provide a method of pulse magnetizing a body.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a flat annular or plate-shaped oxide superconducting bulk is placed on one side of a superconducting pseudo-single crystal in contact with a cold stage, and An electric current is applied to a magnetizing coil provided on the outer peripheral side of the conductive bulk to generate a pulsed magnetic field, and the oxide superconductive bulk is vertically attached to the surface in a refrigerant or at a low temperature obtained by a refrigerator. In the magnetized bulk superconductor pulse magnetizing method, prior to magnetizing the oxide superconducting bulk, the impregnating resin film on the surface portion of the oxide superconducting bulk is removed, and the periphery of the oxide superconducting bulk is removed. A metal ring is fitted to the ring.
[0009]
In this case, as an embodiment of the present invention, the metal ring is fitted and adhered to the oxide superconducting bulk via a resin mixed with a ceramic powder having a high thermal conductivity, and the resin is An epoxy resin mixed with ceramic powder such as silicon nitride, titanium nitride, silicon oxide, titanium oxide, or the metal ring is fitted to the oxide superconducting bulk by shrink fitting. ,It is valid.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. Here, a flat annular (or disk-shaped or column-shaped) oxide superconducting bulk 1 is placed with one surface of the superconducting pseudo single crystal in contact with a cold stage 2. An electric current is applied to the magnetizing coil 3 provided on the outer peripheral side of the oxide superconducting bulk 1 to generate a pulse magnetic field, and the bulk superconductor for magnetizing the oxide superconducting bulk 1 in a direction perpendicular to the surface is formed. In the pulse magnetization method, prior to the magnetization of the oxide superconducting bulk 1, the epoxy resin on the surface is removed, and a metal ring 5 having a high thermal conductivity is fitted around the surface (see FIG. 1 (c)). .
[0011]
The above-described oxide superconducting bulk 1 is, for example, REBa 2 Cu 3 O 7-y (where RE is selected from Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. One or two or more kinds of elements are used as a main component, and if necessary, a material in which RE 2 BaCuO 5 , RE 4 Ba 2 Cu 2 O 10, or the like is dispersed in this phase is used. Further, the cold stage 2 is connected to a heat transfer section of a refrigerator, and a sapphire plate 6 may be provided on an upper surface thereof, and the oxide superconductive bulk 1 may be placed on the sapphire plate 6.
In the embodiment, as shown in FIG. 2, the cold stage 2 may be connected to a refrigeration unit 10 of the refrigerator through a copper heat transfer rod 7 having a heat conduction disk 9.
[0012]
Such an oxide superconducting bulk 1 can obtain a magnetic flux density of about 1 T (tesla) by trapping a magnetic field at 77 K (boiling point of nitrogen), such as 63 K (melting point of nitrogen) and 51 K (melting point of oxygen). At a low temperature, a magnetic flux density several times higher than that is achieved. When the above-described oxide superconducting bulk 1 is used in the above-described manner of use as a magnet, there is a fear that the oxide superconducting bulk 1 may be broken by a strong electromagnetic force. Under such circumstances, a stainless steel ring is generally fitted. It is reinforced or impregnated with resin on the surface of the superconducting bulk.
[0013]
In the pulse magnetization method, the IMRA method (repetitive magnetization method) has been used, and a recording magnetic field of 3.8 T can be recorded at 30 K, but the capturing magnetic field is smaller than that of FC. This is due to the fact that the temperature rises due to the heat generated by the penetration of the magnetic flux. When the resin is impregnated as described above, there is a problem that it takes a long time to stabilize the temperature.
[0014]
The inventor of the present invention has found that the thermal conductivity k of the oxide superconducting bulk 1 is anisotropic in the direction along the ab plane of the superconducting pseudo single crystal and in the direction perpendicular to the ab plane. As shown by the experimental data, it is understood that the thermal conductivity in the direction along the ab plane is several times higher than the direction perpendicular to the ab plane. Therefore, in the present invention, as a method of magnetizing the oxide superconducting bulk 1, the ab surface of the superconducting bulk, which is not impregnated with the resin or from which the impregnated resin is removed, is directly placed on the cold stage 2, or The cooling time is reduced by cooling in the cooling section of the refrigerator through the copper heat transfer rod 7 as in the embodiment. In addition, in order to enhance heat radiation in the direction along the ab plane of the oxide superconducting bulk 1 having a high thermal conductivity, a metal ring 5 having a high thermal conductivity is fitted on the outer periphery of the oxide superconducting bulk 1. (See FIG. 1C).
[0015]
In particular, in order to remove the heat generated during the magnetization from the oxide superconducting bulk 1, the outer periphery of the metal superconducting bulk 1 and the metal ring are increased so as to increase the adhesion (thermal conductivity) of the metal ring 5 to the outer periphery. A resin adhesive having a high thermal conductivity (for example, an epoxy resin mixed with a powder of silicon nitride, titanium nitride, silicon oxide, titanium oxide, or the like) is used between them, or the metal ring 5 is shrink-fitted. . In the case of direct cooling with a refrigerant using liquid nitrogen, the entire bulk may be coated with metal.
[0016]
The cooling of the oxide superconducting bulk in the present invention is not limited to being performed by the cooling unit of the refrigerator as described above. That is, instead of using a refrigerator, the oxide superconducting bulk is cooled by using any one kind of refrigerant among liquid nitrogen, liquid neon, liquid helium, and liquid argon, and is used to be equivalent or similar. Can bring effect. The oxide superconducting bulk used in this way is generally cooled by being immersed in a cooling medium. The refrigerant is not limited to a liquid, but may be a gas. Further, the refrigerant can be used in a state of being cooled by a refrigerator, and is not necessarily limited to being used at its boiling point. That is, the oxide superconducting bulk can be cooled to a predetermined temperature by a liquid or gaseous refrigerant cooled using a refrigerator and used.
[0017]
【The invention's effect】
As described in detail above, prior to magnetizing the oxide superconducting bulk, the present invention does not impregnate the resin or removes the impregnated resin and fits a metal ring of high thermal conductivity around the resin ring. Thereby, the time required for stabilizing the temperature of the oxide superconducting bulk can be shortened, the cooling efficiency can be improved, and the time required for the magnetization step can be shortened.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a cross section of a superconducting bulk, where (a) is a cross section parallel to the surface of a superconducting bulk having an impregnated epoxy resin film formed on the surface, and (b) is perpendicular to the surface. (C) is a sectional view perpendicular to the surface of the superconducting bulk of the present invention.
FIG. 2 is a schematic diagram showing a specific configuration when a pulse magnetizing method of the present invention is performed.
FIG. 3 is an experimental graph disclosing anisotropy with respect to thermal conductivity.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 superconducting oxide bulk 2 cold stage 3 magnetized coil 5 metal ring 6 sapphire plate 7 heat transfer rod 8 vacuum vessel 9 disk 10 refrigerator cooling unit 11 epoxy resin film

Claims (4)

扁平な環状または板状の酸化物超伝導バルクを、その超伝導疑似単結晶の一面をコールド・ステージに接して載置すると共に、前記酸化物超伝導バルクの外周側に設けた着磁コイルに電流を流し、パルス磁場を発生させ、前記酸化物超伝導バルクを、冷媒中で或いは冷凍機によって得られる低温状態で前記面に鉛直な方向に着磁するバルク超伝導体のパルス着磁方法において、
前記酸化物超伝導バルクの着磁に先立って、酸化物超伝導バルクの表面部分にある含浸用樹脂皮膜を取り除き、酸化物超伝導バルクの周囲に金属環を嵌合させることを特徴とするバルク超伝導体のパルス着磁方法。
A flat annular or plate-shaped oxide superconducting bulk is placed with one surface of the superconducting pseudo single crystal in contact with a cold stage, and a magnetized coil provided on the outer peripheral side of the oxide superconducting bulk. A current is passed, a pulse magnetic field is generated, and the oxide superconducting bulk is magnetized in a refrigerant or in a low-temperature state obtained by a refrigerator. ,
Prior to the magnetization of the oxide superconducting bulk, the impregnating resin film on the surface portion of the oxide superconducting bulk is removed, and a metal ring is fitted around the oxide superconducting bulk. Pulse magnetization method for superconductors.
前記金属環は、セラミック粉末を混入した樹脂を介して前記酸化物超伝導バルクに嵌合し、密着することを特徴とする請求項1に記載のバルク超伝導体のパルス着磁方法。The pulse magnetizing method for a bulk superconductor according to claim 1, wherein the metal ring is fitted and adhered to the oxide superconducting bulk via a resin mixed with a ceramic powder. 前記セラミック粉末は、窒化硅素、窒化チタン、酸化硅素または酸化チタンのうち一種或いは複数種の混合物からなることを特徴とする請求項2に記載のバルク超伝導体のパルス着磁方法。3. The method of claim 2, wherein the ceramic powder comprises one or a mixture of silicon nitride, titanium nitride, silicon oxide, and titanium oxide. 前記金属環は、焼き嵌めによって、前記酸化物超伝導バルクに嵌合することを特徴とする請求項1に記載のバルク超伝導体のパルス着磁方法。The method according to claim 1, wherein the metal ring is fitted to the oxide superconducting bulk by shrink fitting.
JP2003112116A 2003-04-16 2003-04-16 Pulse magnetizing method of bulk superconductor Pending JP2004319797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112116A JP2004319797A (en) 2003-04-16 2003-04-16 Pulse magnetizing method of bulk superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112116A JP2004319797A (en) 2003-04-16 2003-04-16 Pulse magnetizing method of bulk superconductor

Publications (1)

Publication Number Publication Date
JP2004319797A true JP2004319797A (en) 2004-11-11

Family

ID=33472467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112116A Pending JP2004319797A (en) 2003-04-16 2003-04-16 Pulse magnetizing method of bulk superconductor

Country Status (1)

Country Link
JP (1) JP2004319797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014189043A1 (en) * 2013-05-22 2017-02-23 新日鐵住金株式会社 Oxide superconducting bulk magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2002008917A (en) * 2000-06-26 2002-01-11 Inst Of Physical & Chemical Res Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2002008917A (en) * 2000-06-26 2002-01-11 Inst Of Physical & Chemical Res Control method of superconductor magnetic field application apparatus, nuclear magnetic resonance apparatus using the same, and superconducting magnet apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014189043A1 (en) * 2013-05-22 2017-02-23 新日鐵住金株式会社 Oxide superconducting bulk magnet

Similar Documents

Publication Publication Date Title
US9741480B2 (en) Mechanical superconducting switch
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
JP2018512737A (en) Iron-based superconducting permanent magnet and method for manufacturing the same
Mochizuki et al. Trapped field characteristics and fracture behavior of REBaCuO bulk ring during pulsed field magnetization
JP2006319000A (en) Material and system for oxide super conductive magnet
JP3671726B2 (en) Magnetization method of superconductor and superconducting magnet device
JP2014075522A (en) Superconducting bulk body with cavity and superconducting bulk magnet mounting the same
JP2005294471A (en) Method for magnetizing bulk super-conductor
JP2004319797A (en) Pulse magnetizing method of bulk superconductor
JP2004319798A (en) Method for pulse magnetizing bulk superconductor
JP3646427B2 (en) Magnetization method of superconductor and superconducting magnet device
Oka et al. Performance of trapped magnetic field in superconducting bulk magnets activated by pulsed field magnetization
Ida et al. Materials preparation and magnetization of Gd-Ba-Cu-O bulk high-temperature superconductors
Fujishiro et al. Recent Progress of $\hbox {MgB} _ {2} $ Bulk Magnets Magnetized by Pulsed Field
Hirano et al. Feasibility study of high-efficiency cooling of high-temperature superconducting coils by magnetic refrigeration
JPH08203726A (en) Superconducting coil device
JP3646426B2 (en) Magnetization method of superconductor and superconducting magnet device
JP2004111581A (en) Superconducting magnet unit
Dai et al. Design study on a 9.2-T NbTi superconducting magnet with long-length uniform axial field
JPH10116721A (en) Superconducting bulk body magnet
Yang et al. Pulsed Field Magnetization of YBa 2 Cu 3 O 7-δ Bulk Assembly for Motor Application
Yokoyama et al. Enhancement of trapped magnetic field using a large-size REBCO bulk in a desktop type superconducting bulk magnet
Yan et al. Thermally actuated magnetization method in high temperature superconductor bulks
JP2006332499A (en) Method for pulse magnetizing bulk superconductor and super conducting magnet device
Yokoyama et al. Magnetizing performance evaluation of HTS bulk magnet using a 12 k refrigerator with high cooling capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414