JPH10116721A - Superconducting bulk body magnet - Google Patents

Superconducting bulk body magnet

Info

Publication number
JPH10116721A
JPH10116721A JP26961296A JP26961296A JPH10116721A JP H10116721 A JPH10116721 A JP H10116721A JP 26961296 A JP26961296 A JP 26961296A JP 26961296 A JP26961296 A JP 26961296A JP H10116721 A JPH10116721 A JP H10116721A
Authority
JP
Japan
Prior art keywords
bulk body
superconducting
superconducting bulk
coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26961296A
Other languages
Japanese (ja)
Other versions
JP3727122B2 (en
Inventor
Hirotaka Kamijiyou
弘貴 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP26961296A priority Critical patent/JP3727122B2/en
Publication of JPH10116721A publication Critical patent/JPH10116721A/en
Application granted granted Critical
Publication of JP3727122B2 publication Critical patent/JP3727122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease a magnetic field applied by each magnetizing coil, by a method wherein both magnetic coils disposed on inner and outer peripheral sides apply a magnetic field to a bulk body. SOLUTION: A superconducting bulk magnet comprises mainly a cylindrical superconducting bulk body 1, an inner peripheral side magnetic coil 3 disposed along an inner periphery of the bulk body 1, and an outer peripheral side magnetic coil 5 disposed along an outer periphery of the bulk body 1. The superconducting bulk body 1 is manufactured with a Y-Ba-Cu-O superconducting material and a columnar bulk body by a melting method, and the columnar bulk body is made cylindrical by opening a hole. The inner peripheral side magnetic coil 3 sounding a copper wire is inserted into the inside of the superconducting bulk body 1, and future the outer peripheral side magnetic coil 5 winding a copper wire to the same direction as the inner peripheral side magnetic coil is disposed outside the superconducting bulk body 1 to constitute a superconducting bulk magnetic. Each coil and the superconducting bulk body are disposed so as to share a central axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高温超電導体の
バルクを用いたマグネットに関する。
The present invention relates to a magnet using a bulk of a high-temperature superconductor.

【0002】[0002]

【従来の技術】高温超電導体の開発に伴い、これら超電
導体を利用した超電導磁石が開発されてきている。例え
ば、特開平3−289344号公報には、超電導コイル
を界磁側に用いて通電により磁場を発生させ、電機子に
回転力を与える超電導モーターが提案されている。
2. Description of the Related Art With the development of high-temperature superconductors, superconducting magnets utilizing these superconductors have been developed. For example, Japanese Unexamined Patent Publication No. Hei 3-289344 proposes a superconducting motor that uses a superconducting coil on the field side to generate a magnetic field when energized to apply a rotating force to an armature.

【0003】しかしながら、上記装置では超電導線材の
コイルに通電して磁場を発生させるため、超電導状態の
コイルにクエンチが発生する恐れがある。クエンチと
は、局所的に発生した常電導状態が雪崩的に拡大し、超
電導体全体が急激に常電導状態に転移することをいう。
クエンチが発生すると、超電導線材のコイルに所望の特
性が得られないばかりでなく、常電導状態で発生する大
きなジュール熱により装置に損傷が生じるおそれもある
ため、クエンチの発生は極力排除する必要がある。上記
クエンチは線材において特に発生しやすい。
However, in the above-described apparatus, since a magnetic field is generated by energizing a coil of a superconducting wire, a quench may occur in a coil in a superconducting state. The quench means that a locally generated normal conducting state expands like an avalanche, and the entire superconductor rapidly transitions to the normal conducting state.
When quench occurs, not only does the coil of the superconducting wire not obtain the desired characteristics, but also there is a risk of damage to the device due to the large Joule heat generated in the normal conducting state, so it is necessary to eliminate quench as much as possible. is there. The quench is particularly likely to occur in a wire.

【0004】クエンチの発生を防止して超電導磁石の安
定化を図る方法としては、超電導線材の表面を高純度銅
等でシールする冷却安定化法や、極細多芯化した超電導
線材を用いる断熱安定化法などがあるが、いずれも高コ
スト化や装置の大型化を免れることはできない。
[0004] As a method for preventing the occurrence of quench and stabilizing the superconducting magnet, there are a cooling stabilization method in which the surface of the superconducting wire is sealed with high-purity copper or the like, and an adiabatic stabilization method using a superconducting wire having an ultra-fine multicore. There are various methods, but none of these methods is unavoidable in terms of cost and equipment size.

【0005】一方、近年開発されたR(希土類)−Ba
−Cu−O系超電導体は第2種超電導体であって、溶融
法で作成したバルク体(固片)であってもピン止め制御
が可能であり、液体窒素温度でも高い臨界電流が達成さ
れている。従来の超電導バルク体は比熱が小さいため小
さな外乱で超電導が破れるという欠点があったが、上記
R(希土類)−Ba−Cu−O系超電導体のバルク体は
比熱が大きく、外乱に対する耐性が高い。
On the other hand, recently developed R (rare earth) -Ba
The -Cu-O-based superconductor is a second-class superconductor, and can be pinned even if it is a bulk body (solid piece) formed by a melting method, and can achieve a high critical current even at liquid nitrogen temperature. ing. The conventional superconducting bulk body has a drawback that superconductivity is broken by a small disturbance due to a small specific heat. However, the bulk body of the R (rare earth) -Ba-Cu-O-based superconductor has a large specific heat and a high resistance to disturbance. .

【0006】そこで、この特質を利用した特開平7−8
7724号公報や特開平7−111213号公報に記載
されているような、超電導体のバルク(固片)を利用し
た超電導磁石が提案されている。
Therefore, Japanese Patent Application Laid-Open No. 7-8 / 1995 utilizing this characteristic has been proposed.
There has been proposed a superconducting magnet using a bulk (solid piece) of a superconductor as described in JP 7724 and JP-A-7-111213.

【0007】特開平7−87724号公報に記載の超電
導モーターには、超電導バルク体の周囲に着磁用コイル
を巻回した構造の超電導磁石が使用されている。この超
電導磁石は、ピン止め効果の高い第2種超電導体を用い
ており、着磁用コイルにパルス電流を供給し、発生した
磁束を超電導バルク体のピン止め点に固定するものであ
る。着磁用コイルによる磁場の発生が終了しても、超電
導体はピン止め点に固定した磁束を保持しようとするた
め、超電導体内部にピン止め点を中心とした永久電流が
発生し、磁束は保存される。すなわち、超電導バルク体
自体が磁石となる。
The superconducting motor disclosed in Japanese Patent Application Laid-Open No. 7-87724 uses a superconducting magnet having a structure in which a magnetizing coil is wound around a superconducting bulk body. This superconducting magnet uses a second type superconductor having a high pinning effect, supplies a pulse current to a magnetizing coil, and fixes the generated magnetic flux to a pinning point of the superconducting bulk body. Even if the generation of the magnetic field by the magnetizing coil ends, the superconductor tries to hold the magnetic flux fixed at the pinning point, so that a permanent current is generated inside the superconductor around the pinning point, and the magnetic flux is Will be saved. That is, the superconducting bulk body itself becomes a magnet.

【0008】一方、特開平7−111213号公報にお
いて、超電導バルク体を芯として周囲をコイルで包囲
した構造の複合磁石、コイルを中心としてその周囲を
リング状の超電導バルク体で包囲した構造の複合磁石、
超電導バルク体を芯として周囲をコイルで包囲し、さ
らにその外側にリング状の超電導バルク体を配した構造
の複合磁石が提案されている。
On the other hand, in JP-A-7-111213, a composite magnet having a structure in which a superconducting bulk body is surrounded by a coil and a periphery of which is surrounded by a coil and a structure in which the periphery is surrounded by a ring-shaped superconducting bulk body around a coil is disclosed. magnet,
There has been proposed a composite magnet having a structure in which a superconducting bulk body is surrounded by a coil around a core and a ring-shaped superconducting bulk body is further arranged outside the coil.

【0009】上記の複合磁石は、コイルで付与する磁
場によってバルク超電導磁石の磁場強度を自由に変化で
きる。また、の複合磁石は、低温超電導体コイルを用
いた場合に磁場が外縁部で曲がることを妨げて発生磁場
を向上できる。そして、の複合磁石は、低温超電導体
コイルを用いた場合に発生磁場を向上するとともに、コ
イルがクエンチしてもバルクが超電導状態を保つので急
激な変化が緩和できるものである。
In the above composite magnet, the magnetic field strength of the bulk superconducting magnet can be freely changed by the magnetic field applied by the coil. Further, the composite magnet of the present invention can improve the generated magnetic field by preventing the magnetic field from bending at the outer edge when the low-temperature superconducting coil is used. The composite magnet improves the magnetic field generated when a low-temperature superconducting coil is used, and can suppress abrupt changes because the bulk maintains a superconducting state even when the coil is quenched.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記各公報に
記載の超電導磁石では、超電導バルク体の内側若しくは
外側の一方のみに着磁コイルを配置するため、バルクに
印加される磁場に偏りが生じる。例えば、超電導バルク
体の外側のみに着磁コイルを配置した場合には、バルク
の外側に印加される磁場はバルクの内側に印加される磁
場よりも大きくなる。また、超電導バルク体の内側のみ
に着磁コイルを配置した場合には、バルクの内側に印加
される磁場はバルクの外側に印加される磁場よりも大き
くなる。
However, in the superconducting magnets described in the above publications, since the magnetizing coil is disposed only on one of the inside and the outside of the superconducting bulk body, a bias occurs in the magnetic field applied to the bulk. . For example, when the magnetizing coil is arranged only outside the superconducting bulk body, the magnetic field applied outside the bulk is larger than the magnetic field applied inside the bulk. Also, when the magnetizing coil is arranged only inside the superconducting bulk body, the magnetic field applied inside the bulk becomes larger than the magnetic field applied outside the bulk.

【0011】したがって、上記超電導磁石では、超電導
バルク体全体に着磁しようとすると、着磁コイル付近の
超電導バルク体には必要以上の磁場を印加することにな
ってしまう。一般に超電導体の臨界電流密度は磁場依存
性を有しており、磁場が大きくなると臨界電流密度は低
下してしまうので、超電導バルク体に必要以上の磁場を
印加することは好ましくない。
Therefore, in the above-described superconducting magnet, if an attempt is made to magnetize the entire superconducting bulk, a magnetic field more than necessary is applied to the superconducting bulk near the magnetizing coil. Generally, the critical current density of a superconductor has a magnetic field dependence, and the critical current density decreases as the magnetic field increases. Therefore, it is not preferable to apply a magnetic field more than necessary to the superconducting bulk body.

【0012】また、上記超電導磁石の着磁コイルに超電
導線材のコイルを用いる場合には、超電導線材自体の臨
界電流密度の問題も生じる。すなわち、着磁コイルで発
生させる磁場が大きいほど、超電導線材自体の経験する
磁場も大きくなり臨界電流密度が低下するため、超電導
着磁コイルに大電流を流して大きな磁場を発生させるに
は超電導着磁コイルを大型化しなければならない。した
がって、磁石の小型化・軽量化の観点からは、同じだけ
の磁束を超電導バルクに捕捉させるために印加する磁場
は小さいほどよい。
When a coil made of a superconducting wire is used as the magnetizing coil of the superconducting magnet, a problem of the critical current density of the superconducting wire itself arises. In other words, the larger the magnetic field generated by the magnetized coil, the larger the magnetic field experienced by the superconducting wire itself and the lower the critical current density.Therefore, it is necessary to apply a large current to the superconducting magnetized coil to generate a large magnetic field. The size of the magnetic coil must be increased. Therefore, from the viewpoint of reducing the size and weight of the magnet, the smaller the magnetic field applied to capture the same magnetic flux in the superconducting bulk, the better.

【0013】本発明は、超電導バルク体と着磁コイルと
からなる超電導バルク体マグネットであって、超電導バ
ルク体に必要以上の磁場を印加することがなく、また各
着磁コイルで発生させる磁場が小さく、着磁コイルが超
電導バルク体を効率的に着磁させる構造の超電導バルク
体マグネットを提供することを目的とする。
The present invention relates to a superconducting bulk magnet comprising a superconducting bulk body and a magnetized coil, wherein a magnetic field generated by each magnetized coil is not applied to the superconducting bulk body without applying an excessive magnetic field. It is an object of the present invention to provide a superconducting bulk magnet having a small structure in which a magnetizing coil efficiently magnetizes the superconducting bulk.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、以下の構成を要旨とする。 (1)内周側着磁コイルを中心とし、その周りを筒状の
超電導バルク体で包囲し、さらに超電導バルク体の外側
を外周側着磁コイルで包囲した超電導バルク体マグネッ
ト。 (2)筒状の超電導バルク体に、互いに逆向きの電流を
通電する内周側着磁コイルと外周側着磁コイルとを配置
し、同じ向きの磁場を超電導バルク体に印加することを
特徴とする上記(1)記載の超電導バルク体マグネッ
ト。 (3)超電導バルク体の材質が微細な211相が分散し
た123相のRBaCuO系(Rは希土類元素を示す)
若しくはNd系の酸化物超電導体であることを特徴とす
る上記(1)又は(2)記載の超電導バルク体マグネッ
ト。 (4)内周側着磁コイルと外周側着磁コイルとが超電導
バルク体に印加する磁場が均一であることを特徴とする
上記(1)、(2)又は(3)記載の超電導体バルクマ
グネット。
In order to achieve the above object, the present invention has the following constitution. (1) A superconducting bulk magnet in which the inner peripheral side magnetized coil is centered, the periphery thereof is surrounded by a cylindrical superconducting bulk body, and the outer side of the superconducting bulk body is surrounded by the outer peripheral side magnetized coil. (2) An inner peripheral magnetized coil and an outer peripheral magnetized coil for supplying currents in opposite directions to each other are arranged in a cylindrical superconducting bulk body, and a magnetic field in the same direction is applied to the superconducting bulk body. The superconducting bulk magnet according to the above (1). (3) 123 phase RBaCuO-based material in which 211 phases in which the material of the superconducting bulk body is fine are dispersed (R represents a rare earth element)
Alternatively, the superconducting bulk magnet according to the above (1) or (2), which is an Nd-based oxide superconductor. (4) The superconductor bulk according to the above (1), (2) or (3), wherein the inner peripheral side magnetized coil and the outer peripheral side magnetized coil apply a uniform magnetic field to the superconducting bulk body. magnet.

【0015】[0015]

【発明の実施の形態】本発明において、超電導バルク体
の形状は中空筒型としたが、より具体的には、中空とし
た円筒状、穴開き直方体状、中空とした楕円円筒状等が
あげられる。超電導バルク体の材質としては、微細な2
11相が分散した123相のRBaCuO系(Rは希土
類元素を示す)若しくはNd(ネオジウム)系の酸化物
超電導体が好ましい。これらの超電導体は第2種超電導
体であって、高いピン止め効果を有し、高磁場中でも高
い臨界電流密度が得られる。これら超電導体の構成成分
の組成・製造方法等に関しては特に限定するものではな
く、ピン止め効果の高い第2種超電導体であればよい。
製造方法としては、例えば特公平7−51463号公報
に記載の溶融凝固法に粉砕工程を付加したMPMG法が
あげられる。また、超電導バルク体は、直接中空筒型に
製造してもよいし、一旦穴のない中実形状に製造した超
電導バルク体に機械加工等によって穴を開け筒状に成形
するようにしてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the shape of a superconducting bulk body is a hollow cylinder type, but more specifically, a hollow cylindrical shape, a rectangular parallelepiped, a hollow elliptical cylindrical shape, and the like are given. Can be The material of the superconducting bulk body is fine 2
A 123-phase RBaCuO-based (R represents a rare earth element) or Nd (neodymium) -based oxide superconductor in which 11 phases are dispersed is preferable. These superconductors are a type 2 superconductor, have a high pinning effect, and can obtain a high critical current density even in a high magnetic field. There is no particular limitation on the composition and manufacturing method of the constituent components of these superconductors, and any type of superconductor having a high pinning effect may be used.
As a production method, for example, an MPMG method in which a pulverizing step is added to the melt-solidification method described in Japanese Patent Publication No. 7-51463 is exemplified. Further, the superconducting bulk body may be directly manufactured into a hollow cylindrical shape, or a superconducting bulk body once manufactured in a solid shape without holes may be formed with a hole by machining or the like by machining. .

【0016】本発明の内周側着磁コイル及び外周側着磁
コイルは、例えば銅線やアルミ線などの常電導体の線
材、あるいは、例えばBi系銀シース線材などの超電導
体の線材よりなるコイルである。内周側着磁コイルの材
質と外周側着磁コイルの材質とは、別なものを用いても
よい。
The inner peripheral side magnetized coil and the outer peripheral side magnetized coil of the present invention are made of a wire of a normal conductor such as a copper wire or an aluminum wire, or a wire of a superconductor such as a Bi-based silver sheath wire. Coil. The material of the inner peripheral side magnetized coil and the material of the outer peripheral side magnetized coil may be different.

【0017】本発明は、上記した超電導バルク体の内外
周に、内周側着磁コイルと、外周側着磁コイルとを、そ
れぞれ中心軸を共有するように配置する。
According to the present invention, the inner peripheral side magnetized coil and the outer peripheral side magnetized coil are arranged on the inner and outer circumferences of the above-described superconducting bulk body so as to share the respective central axes.

【0018】ここで、内外両着磁コイルに互いに逆向き
の電流を通電すれば、図1に概略的に示すように、内側
着磁コイルが発生させる磁束と外側着磁コイルが発生
させる磁束とは、両コイルに挟まれた空間では同じ方
向となる。すなわち、内外両着磁コイルに互いに逆向き
の電流を通電すれば、内外両着磁コイルが超電導バルク
体に印加する磁場は同じ方向となり、超電導バルク体に
は内外両着磁コイルの発生する磁場が重ね合わさって印
加される。
When currents in opposite directions are applied to the inner and outer magnetized coils, the magnetic flux generated by the inner magnetized coil and the magnetic flux generated by the outer magnetized coil are reduced, as schematically shown in FIG. Are in the same direction in the space between both coils. That is, when currents in opposite directions are applied to the inner and outer magnetized coils, the magnetic field applied to the superconducting bulk body by the inner and outer magnetized coils is in the same direction, and the magnetic field generated by the inner and outer magnetized coils is applied to the superconducting bulk body. Are superimposed and applied.

【0019】したがって、従来の超電導バルク体と着磁
コイルを用いた超電導磁石よりも、各着磁コイルが発生
させる磁場は小さくてよい。このため着磁コイルに常電
導線材のコイルを用いる場合には、着磁コイルに通電す
る電流が小さくできるので、発熱を低減できる。また、
着磁コイルに超電導線材のコイルを用いる場合には、各
着磁コイルが経験する磁場を小さくできるので、超電導
線材の臨界電流密度の低下を抑制できる。このため超電
導着磁コイルの小型化・軽量化が可能となる。図2
(a)に半径a、内径bの筒状超電導バルク体の外周側
のみに着磁コイルを配置した場合に超電導バルク体に印
加される磁場分布を、図2(b)に外径a、内径bの筒
状超電導バルク体の内周側と外周側との両方に着磁コイ
ルを配置した場合の磁場分布をそれぞれ示す。
Therefore, the magnetic field generated by each magnetizing coil may be smaller than that of a conventional superconducting magnet using a superconducting bulk body and a magnetizing coil. For this reason, when a coil made of a normal conducting wire is used as the magnetized coil, the current flowing through the magnetized coil can be reduced, so that heat generation can be reduced. Also,
When a coil made of a superconducting wire is used as the magnetized coil, the magnetic field experienced by each magnetized coil can be reduced, so that a decrease in the critical current density of the superconducting wire can be suppressed. Therefore, the size and weight of the superconducting magnetized coil can be reduced. FIG.
FIG. 2A shows the distribution of the magnetic field applied to the superconducting bulk when the magnetizing coil is arranged only on the outer peripheral side of the cylindrical superconducting bulk having a radius a and an inner diameter b. The magnetic field distribution when the magnetizing coils are arranged on both the inner peripheral side and the outer peripheral side of the cylindrical superconducting bulk body b is shown.

【0020】図2(a)に示したように、片側のみに着
磁コイルを配置した場合には、着磁コイル側の印加磁場
が大きくなり臨界電流密度が低下してしまう。そして、
バルク全体に磁場を印加しようとすると、バルクに印加
される磁場の偏りはかなり大きくなる。
As shown in FIG. 2 (a), when the magnetizing coil is arranged only on one side, the applied magnetic field on the magnetizing coil side increases, and the critical current density decreases. And
If a magnetic field is to be applied to the entire bulk, the bias of the magnetic field applied to the bulk will be quite large.

【0021】これに対して、本発明のように筒状超電導
バルク体の両側に着磁コイルを配置すれば、両側の着磁
コイルから磁場を印加するため、図2(b)に示したよ
うにバルクに印加される磁場の最大値を低減することが
できる。
On the other hand, if the magnetizing coils are arranged on both sides of the cylindrical superconducting bulk body as in the present invention, a magnetic field is applied from the magnetizing coils on both sides, and therefore, as shown in FIG. The maximum value of the magnetic field applied to the bulk can be reduced.

【0022】さらに、内周側着磁コイルと外周側着磁コ
イルとが超電導バルク体に印加する磁場が均一になるよ
うにすれば、超電導バルク体の捕捉する磁束の密度が均
一となり、超電導体に必要以上に大きな磁場が印加され
ることがなくなるため、臨界電流密度の低下を防ぎ、捕
捉できる磁束の密度が大きくできる。
Further, if the magnetic field applied to the superconducting bulk body by the inner peripheral side magnetized coil and the outer peripheral side magnetized coil is made uniform, the density of the magnetic flux captured by the superconducting bulk body becomes uniform, As a result, it is possible to prevent a decrease in critical current density and increase the density of magnetic flux that can be captured.

【0023】超電導バルク体に印加する磁場を均一する
には、内周側着磁コイルと外周側着磁コイルの形状、巻
数および通電する電流の大きさを調整する。形状、巻数
および通電する電流の大きさを最適に組み合わせること
で均一度を向上できる。
In order to make the magnetic field applied to the superconducting bulk body uniform, the shapes and the number of turns of the inner and outer magnetized coils and the magnitude of the current to be supplied are adjusted. The degree of uniformity can be improved by optimally combining the shape, the number of turns, and the magnitude of the supplied current.

【0024】本発明の超電導バルク体マグネットは、予
め筒状超電導バルク体を臨界温度以下に冷却してから、
その内周側と外周側とに配置した着磁コイルにより超電
導体に磁場を印加する。あるいは、着磁コイルにより超
電導体に磁場を印加しながら超電導バルク体を臨界温度
以下に冷却する。
The superconducting bulk magnet of the present invention is obtained by cooling a cylindrical superconducting bulk in advance to a critical temperature or lower.
A magnetic field is applied to the superconductor by magnetizing coils arranged on the inner and outer peripheral sides. Alternatively, the superconducting bulk body is cooled to a critical temperature or lower while applying a magnetic field to the superconductor by the magnetizing coil.

【0025】超電導バルク体の冷却方法としては、浸漬
冷却と伝導冷却がある。浸漬冷却の場合には、冷媒とし
て液体ヘリウム、液体窒素、液体ネオン等を使用する。
伝導冷却の場合は、超電導バルク体を断熱部材で囲み、
熱伝導部材を冷凍機により冷却する。
As a method of cooling the superconducting bulk body, there are immersion cooling and conduction cooling. In the case of immersion cooling, liquid helium, liquid nitrogen, liquid neon, or the like is used as a refrigerant.
In the case of conduction cooling, surround the superconducting bulk body with a heat insulating member,
The heat conduction member is cooled by a refrigerator.

【0026】ここで、バルクに印加する外部磁場の強さ
が下部臨界磁界以上、かつ上部臨界磁界以下であれば、
バルクは混合状態となり局所的に外部磁場が侵入する。
侵入した磁束は超電導体のピン止め点に捕捉され、その
周囲に渦状の永久電流が発生し、バルクに印加する磁場
を無くしてもピン止め点に捕捉された磁束は保存され
る。従って、超電導バルク体自体が磁化された状態とな
る。
Here, if the intensity of the external magnetic field applied to the bulk is equal to or higher than the lower critical magnetic field and equal to or lower than the upper critical magnetic field,
The bulk becomes a mixed state, and an external magnetic field penetrates locally.
The penetrated magnetic flux is captured at the pinning point of the superconductor, and a vortex permanent current is generated around the pinned point. Even if the magnetic field applied to the bulk is eliminated, the magnetic flux captured at the pinning point is preserved. Accordingly, the superconducting bulk body itself is in a magnetized state.

【0027】超電導バルク体を臨界温度以下に冷却して
から、着磁コイルにより磁場を印加する場合には、着磁
コイルにはパルス電流を流すようにしてもよい。パルス
電流は反復して着磁コイルに流してもよい。
When a magnetic field is applied by a magnetizing coil after the superconducting bulk body is cooled below the critical temperature, a pulse current may be applied to the magnetizing coil. The pulse current may be repeatedly applied to the magnetized coil.

【0028】着磁コイルに超電導コイルを用いると、着
磁コイルからの発熱が抑えられるため超電導バルク体の
超電導状態を維持する上で有利である。ただし、この場
合は着磁コイル(超電導コイル)も臨界温度以下に冷却
する必要がある。冷却方法は、超電導バルク体の冷却方
法と同様である。
When a superconducting coil is used as the magnetizing coil, heat generation from the magnetizing coil is suppressed, which is advantageous in maintaining the superconducting state of the superconducting bulk body. However, in this case, the magnetizing coil (superconducting coil) also needs to be cooled below the critical temperature. The cooling method is the same as the cooling method of the superconducting bulk body.

【0029】[0029]

【実施例】以下、本発明の実施例を説明する。図3に、
本発明の一実施例である超電導バルクマグネットの概略
断面図を示す。この超電導バルクマグネットは、主とし
て円筒状の超電導バルク体1、該バルク体1の内周に沿
って配置される内周側着磁コイル3、同バルク体1の外
周に沿って配置される外周側着磁コイル5からなってい
る。
Embodiments of the present invention will be described below. In FIG.
1 is a schematic sectional view of a superconducting bulk magnet according to one embodiment of the present invention. The superconducting bulk magnet is mainly composed of a cylindrical superconducting bulk body 1, an inner peripheral side magnetized coil 3 arranged along the inner periphery of the bulk body 1, and an outer peripheral side arranged along the outer periphery of the bulk body 1. It consists of a magnetizing coil 5.

【0030】超電導バルク体1は、Y−Ba−Cu−O
超電導材料を外径46mm、高さ20mmの円柱状バルク体
に溶融法で作製し、この円柱状バルク体に径20mmの穴
を開けて円筒状とした。この超電導バルク体1の内側
に、外径20mm、内径16mm、高さ20mmで銅線を巻い
た内周側着磁コイル3を挿入し、さらに超電導バルク体
1の外側に外径50mm、内径46mm、高さ20mmで内周
側着磁コイルと同じ向きに銅線を巻いた外周側着磁コイ
ル5を配置して超電導バルクマグネットを構成した。各
コイルと超電導バルク体とは、中心軸を共有するように
配置した。また、超電導バルク体と着磁コイルとは、上
面が同じ高さになるようにした。
The superconducting bulk body 1 is made of Y-Ba-Cu-O
A superconducting material was produced in a cylindrical bulk body having an outer diameter of 46 mm and a height of 20 mm by a melting method, and a hole having a diameter of 20 mm was formed in the cylindrical bulk body to obtain a cylindrical shape. Inside the superconducting bulk body 1, an inner peripheral side magnetized coil 3 wound with a copper wire having an outer diameter of 20 mm, an inner diameter of 16 mm, and a height of 20 mm is inserted, and an outer diameter of 50 mm and an inner diameter of 46 mm are further outside the superconducting bulk body 1. A superconducting bulk magnet was constructed by arranging an outer peripheral magnetizing coil 5 having a height of 20 mm and a copper wire wound in the same direction as the inner peripheral magnetizing coil. Each coil and the superconducting bulk body were arranged so as to share a central axis. Also, the upper surfaces of the superconducting bulk body and the magnetized coil were made to have the same height.

【0031】この超電導マグネットの外周側着磁コイル
5にのみ5000A/cm2 の電流を流した場合の超電
導バルク体部分の磁場を図4に実線で示す。この場合に
は、超電導バルク体部分の磁場の最低値は内周側で53
mTであるのに対して、最大値は外周側で84mTに達
する。
FIG. 4 shows the magnetic field in the superconducting bulk body when a current of 5000 A / cm 2 is applied only to the magnetizing coil 5 on the outer peripheral side of the superconducting magnet. In this case, the minimum value of the magnetic field of the superconducting bulk body portion is 53
In contrast to mT, the maximum value reaches 84 mT on the outer peripheral side.

【0032】また、内周側着磁コイル3にのみ電流を流
して、超電導バルク体1に53mT以上の磁場を印加し
ようとすると、内周側着磁コイル3に73810A/c
2の電流を流す必要があり、超電導バルク体1に印加
される磁場の最大値は175mTにも達する。
When a current is applied only to the inner peripheral side magnetized coil 3 to apply a magnetic field of 53 mT or more to the superconducting bulk body 1, 73810 A / c is applied to the inner peripheral side magnetized coil 3.
It is necessary to supply a current of m 2 , and the maximum value of the magnetic field applied to the superconducting bulk body 1 reaches 175 mT.

【0033】一方、外周側着磁コイル5と内周側着磁コ
イル3の両方に電流を流した場合、磁場の最低値が53
mTであって、かつ超電導体バルク体1に印加される磁
場が最も均一になるのは、内周側着磁コイル3に679
5A/cm2 、外周側着磁コイル5には逆向きに330
0A/cm2 の電流を流したときであった。この時の超
電導バルク体部分の磁場を図4に点線で示す。図4に示
した通り、超電導バルク体1には53mT以上の磁場が
印加されていながら、磁場の最大値は60mTに抑えら
れている。
On the other hand, when a current is applied to both the outer magnetizing coil 5 and the inner magnetizing coil 3, the minimum value of the magnetic field is 53
mT and the most uniform magnetic field applied to the bulk superconductor 1 is 679
5A / cm 2 , 330 on the outer side magnetized coil 5
This was when a current of 0 A / cm 2 was passed. The magnetic field of the superconducting bulk body at this time is shown by a dotted line in FIG. As shown in FIG. 4, while a magnetic field of 53 mT or more is applied to the superconducting bulk body 1, the maximum value of the magnetic field is suppressed to 60 mT.

【0034】そして、この磁場を超電導バルク体1に印
加しながら超電導バルク体1を臨界温度以下に冷却した
後、内周側着磁コイル3と外周側着磁コイル5の電流を
同時に切断したところ、超電導バルク体1は磁束を保持
して磁石となった。
Then, after applying the magnetic field to the superconducting bulk body 1 and cooling the superconducting bulk body 1 to a temperature below the critical temperature, the currents of the inner and outer magnetized coils 3 and 5 are simultaneously cut off. The superconducting bulk body 1 became a magnet while retaining the magnetic flux.

【0035】[0035]

【発明の効果】この発明の超電導マグネットによれば、
内周側と外周側とに配置した両着磁コイルが超電導バル
ク体に磁場を印加するため、各着磁コイルが印加する磁
場は小さくて済む。そのため、常電導着磁コイルを用い
る場合には発生熱量が低減できるため超電導バルク体の
温度が上昇しにくく、超電導着磁コイルを用いる場合に
は臨界電流密度の磁場による劣化を抑えることができ
る。また、超電導バルク体に印加する磁場をほぼ均一に
できるため、超電導バルク体に磁束を捕捉させる上でも
有利である。
According to the superconducting magnet of the present invention,
Since both magnetized coils arranged on the inner and outer peripheral sides apply a magnetic field to the superconducting bulk body, the magnetic field applied by each magnetized coil can be small. Therefore, when a normal-conducting magnetized coil is used, the amount of generated heat can be reduced, so that the temperature of the superconducting bulk body does not easily rise. When a superconducting magnetized coil is used, deterioration of the critical current density due to a magnetic field can be suppressed. Further, since the magnetic field applied to the superconducting bulk body can be made substantially uniform, it is also advantageous in capturing magnetic flux in the superconducting bulk body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】内外両着磁コイルに互いに逆向きの電流を通電
した際に発生する磁場の模式図である。
FIG. 1 is a schematic diagram of a magnetic field generated when currents in opposite directions are applied to both inner and outer magnetized coils.

【図2】(a)外周側のみに着磁コイルを配置した場合
の磁場分布の概略図。 (b)内周側と外周側とに着磁コイルを配置した場合の
磁場分布の概略図。
FIG. 2A is a schematic diagram of a magnetic field distribution when a magnetizing coil is arranged only on the outer peripheral side. (B) Schematic diagram of the magnetic field distribution when magnetizing coils are arranged on the inner peripheral side and the outer peripheral side.

【図3】この発明の超電導マグネットの一実施例の概略
断面図。
FIG. 3 is a schematic sectional view of one embodiment of the superconducting magnet of the present invention.

【図4】この発明の超電導マグネットの一実施例におけ
る超電導体バルク体部分の磁場分布の概略図。
FIG. 4 is a schematic diagram of a magnetic field distribution in a bulk portion of a superconductor in one embodiment of the superconducting magnet of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導バルク体 3 内周側着磁コイル 5 外周側着磁コイル Reference Signs List 1 superconducting bulk body 3 inner peripheral side magnetized coil 5 outer peripheral side magnetized coil

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内周側着磁コイルを中心とし、その周り
を筒状の超電導バルク体で包囲し、さらに超電導バルク
体の外側を外周側着磁コイルで包囲した超電導バルク体
マグネット。
1. A superconducting bulk magnet in which an inner peripheral side magnetized coil is centered, a circumference thereof is surrounded by a cylindrical superconducting bulk body, and an outer side of the superconducting bulk body is surrounded by an outer peripheral side magnetized coil.
【請求項2】 筒状の超電導バルク体に、互いに逆向き
の電流を通電する内周側着磁コイルと外周側着磁コイル
とを配置し、同じ向きの磁場を超電導バルク体に印加す
ることを特徴とする請求項1記載の超電導バルク体マグ
ネット。
2. An inner peripheral magnetized coil and an outer peripheral magnetized coil for supplying currents in opposite directions to each other in a cylindrical superconducting bulk body, and a magnetic field in the same direction is applied to the superconducting bulk body. The superconducting bulk magnet according to claim 1, wherein:
【請求項3】 超電導バルク体の材質が微細な211相
が分散した123相のRBaCuO系(Rは希土類元素
を示す)若しくはNd系の酸化物超電導体であることを
特徴とする請求項1又は2記載の超電導バルク体マグネ
ット。
3. The superconducting bulk material is a 123-phase RBaCuO-based (R is a rare-earth element) or Nd-based oxide superconductor in which 211 fine phases are dispersed. 2. The superconducting bulk magnet according to 2.
【請求項4】 内周側着磁コイルと外周側着磁コイルと
が超電導バルク体に印加する磁場が均一であることを特
徴とする請求項1、2又は3記載の超電導バルク体マグ
ネット。
4. The superconducting bulk magnet according to claim 1, wherein the inner peripheral side magnetized coil and the outer peripheral side magnetized coil apply a uniform magnetic field to the superconducting bulk body.
JP26961296A 1996-10-11 1996-10-11 Superconducting bulk magnet Expired - Fee Related JP3727122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26961296A JP3727122B2 (en) 1996-10-11 1996-10-11 Superconducting bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26961296A JP3727122B2 (en) 1996-10-11 1996-10-11 Superconducting bulk magnet

Publications (2)

Publication Number Publication Date
JPH10116721A true JPH10116721A (en) 1998-05-06
JP3727122B2 JP3727122B2 (en) 2005-12-14

Family

ID=17474786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26961296A Expired - Fee Related JP3727122B2 (en) 1996-10-11 1996-10-11 Superconducting bulk magnet

Country Status (1)

Country Link
JP (1) JP3727122B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
WO2007148571A1 (en) * 2006-06-19 2007-12-27 Kyushu Institute Of Technology Pulse magnetization method of bulk superconductor
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus
JP2009156719A (en) * 2007-12-27 2009-07-16 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating device, magnetization method therefor, and nuclear magnetic resonance apparatus
US8512799B2 (en) * 2002-06-12 2013-08-20 International Superconductivity Technology Center, The Juridical Foundation Process of producing a superconducting magnet made of a high-temperature bulk superconductor
JP2016049015A (en) * 2014-02-20 2016-04-07 北田 保雄 Bulk magnetization method, bulk magnetization machine and electric rotary machine
CN115158029A (en) * 2022-08-03 2022-10-11 成都理工大学 Superconducting magnetic levitation train

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8512799B2 (en) * 2002-06-12 2013-08-20 International Superconductivity Technology Center, The Juridical Foundation Process of producing a superconducting magnet made of a high-temperature bulk superconductor
JP2006332577A (en) * 2005-04-28 2006-12-07 Nippon Steel Corp Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
WO2007148571A1 (en) * 2006-06-19 2007-12-27 Kyushu Institute Of Technology Pulse magnetization method of bulk superconductor
JPWO2007148571A1 (en) * 2006-06-19 2009-11-19 国立大学法人九州工業大学 Pulse magnetization of bulk superconductors
JP4769301B2 (en) * 2006-06-19 2011-09-07 国立大学法人九州工業大学 Pulse magnetization of bulk superconductors
JP2008034692A (en) * 2006-07-31 2008-02-14 Aisin Seiki Co Ltd Superconductor, superconductive magnetic field generating element, superconductive magnetic field generating apparatus, and nuclear magnetic resonance apparatus
JP2009156719A (en) * 2007-12-27 2009-07-16 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnetic field generating device, magnetization method therefor, and nuclear magnetic resonance apparatus
JP2016049015A (en) * 2014-02-20 2016-04-07 北田 保雄 Bulk magnetization method, bulk magnetization machine and electric rotary machine
CN115158029A (en) * 2022-08-03 2022-10-11 成都理工大学 Superconducting magnetic levitation train

Also Published As

Publication number Publication date
JP3727122B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US4176291A (en) Stored field superconducting electrical machine and method
US6603231B2 (en) Hybrid superconducting motor/generator
US8471660B2 (en) Assembly for magnetization of rare-earth permanent magnets
JPH0371518A (en) Superconductor
JP3727122B2 (en) Superconducting bulk magnet
US6621395B1 (en) Methods of charging superconducting materials
JPH10189328A (en) Superconducting magnet
US3200299A (en) Superconducting electromagnet
JPH10136609A (en) Motor and storage apparatus using the wire
US3102973A (en) Superconducting device
JP2011155096A (en) Superconducting electromagnet device
JP3660007B2 (en) Magnetizing method and apparatus for high temperature superconductor
JPH09102413A (en) Superconductive magnetic device
JP2011061994A (en) Superconducting rotating machine
JP2000150224A (en) Excitation control method of superconducting coil
JP3646426B2 (en) Magnetization method of superconductor and superconducting magnet device
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material
JPH05175034A (en) Superconductor magnet
JP4095742B2 (en) Conduction cooled superconducting magnet
JP4562947B2 (en) Superconducting magnet
JPH0620837A (en) Method of magnetizing superconductive bulk magnet
JPH0660107U (en) Electromagnet impregnation structure
JPH07201560A (en) Magnetic field generating method and device
JP3322981B2 (en) Permanent current switch
JPH11265816A (en) Superconducting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees