WO2007148571A1 - Pulse magnetization method of bulk superconductor - Google Patents

Pulse magnetization method of bulk superconductor Download PDF

Info

Publication number
WO2007148571A1
WO2007148571A1 PCT/JP2007/061859 JP2007061859W WO2007148571A1 WO 2007148571 A1 WO2007148571 A1 WO 2007148571A1 JP 2007061859 W JP2007061859 W JP 2007061859W WO 2007148571 A1 WO2007148571 A1 WO 2007148571A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconductor
balta
magnetic flux
pulse
copper material
Prior art date
Application number
PCT/JP2007/061859
Other languages
French (fr)
Japanese (ja)
Inventor
Teruo Matsushita
Edmund Soji Otabe
Original Assignee
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute Of Technology filed Critical Kyushu Institute Of Technology
Priority to JP2008522405A priority Critical patent/JP4769301B2/en
Publication of WO2007148571A1 publication Critical patent/WO2007148571A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/005Methods and means for increasing the stored energy in superconductive coils by increments (flux pumps)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens

Definitions

  • the present invention relates to a pulse magnetization method for a Balta superconductor to magnetize a Balta superconductor to make a permanent magnet.
  • Non-Patent Document 1 a high-temperature Balta superconductor has succeeded in generating a magnetic flux density of 17T at 29K.
  • This magnetic flux density is achieved by a method of cooling in a magnetic field.
  • the Balta superconductor is kept at a temperature higher than the critical temperature, and a high magnetic flux density is applied from the outside using a superconducting magnet.
  • the Balta superconductor is cooled (cooled in a magnetic field) to a superconducting state so that the magnetic flux density is maintained.
  • this method has a drawback that a large superconducting magnet is always required for magnetization. Therefore, a simpler magnetization method is desired.
  • Non-Patent Literature l M. Tomita and M. Murakami, Nature, vol. 421, pp. 517-520 (2003)
  • Pulse magnetization is attracting attention as a simple method of generating magnetic flux density in a Balta superconductor.
  • a pulse current is passed through a copper coil near the Balta superconductor to magnetize it.
  • the magnitude of the magnetic flux density to be magnetized is about several ⁇ , which is low compared to cooling in a magnetic field.
  • the reason for the small trapped magnetic flux density is that when the magnetic flux density is magnetized from the outside to the superconductor, it is pulsed, so the heat generated by the movement of the magnetic flux lines is high, and the superconductivity is high. This is because the body temperature rises for a moment, the force that supplements the magnetic flux weakens, and the magnetic flux that once enters the interior cannot be captured with the decrease of the pulse magnetic field and escapes to the outside. In other words, a husband who suppresses heat generation is necessary. Therefore, a device for efficiently removing the generated heat has been proposed (see Patent Documents 2 and 3). In this method, a thick disc-shaped bulk superconductor is sandwiched by ring-shaped copper to release heat, but the achieved magnetic flux density is still insufficient.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-154620
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-319797
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-294471
  • the present invention efficiently magnetizes a Balta superconductor by a simple pulse magnetizing method in order to use it as a permanent magnet having a very large magnetic force, rather than using a Balta superconductor as a conductor. It is intended to provide a method.
  • a copper material is placed on the upper part and Z or the lower part of the Balta superconductor when the Nore superconductor is magnetized by the pulse magnetizing method.
  • the upper or lower force of the Norec superconductor is often cooled, so the shape of the copper material used for the cooling Can be considered. If the side force is cooled, copper material may be placed on the top and Z or bottom of the Balta superconductor.
  • the invention described in claim 2 of the present invention controls the magnetization of the Balta superconductor according to claim 1, wherein the magnetization is controlled by changing the thickness of the copper material. It is.
  • the invention described in claim 3 is the pulse magnetization method of the Balta superconductor according to Claim 1 or 2, wherein the Balta superconductor is a disk type and the copper material is a disk shape. is there.
  • the invention described in claim 4 is the pulse of the Balta superconductor according to any one of Claims 1 to 3, wherein the Balta superconductor contains a powdered rare earth 123 oxide superconductor. It is a magnetizing method.
  • the invention described in claim 5 is the one described in any one of claims 1 to 4, wherein the invention is arranged in direct contact with or thermally connected to the Balta superconductor. Balta This is a pulse magnetization method for superconductors.
  • the shape of the copper material is different between the upper and lower surfaces of the Balta superconductor.
  • the invention described in claim 7 is the pulse magnetization method of the Balta superconductor according to any one of claims 1 to 6, wherein the copper material is a copper plate.
  • the coil for excitation is arranged around the Balta superconductor and the copper material.
  • the magnitude of the magnetic flux density magnetized on the Balta superconductor by the pulse magnetization method is increased.
  • the movement of the magnetic flux lines is controlled, the heat generated by the movement of the magnetic flux lines is suppressed, and the magnetization effect is improved. Further, in the present invention, by changing the thickness of the copper material, it is possible to control the movement of the magnetic flux lines and improve the magnetization effect.
  • FIG. 1 is a diagram showing a method of pulse magnetization.
  • FIG. 2 is a diagram showing a model in the finite element method.
  • FIG. 3 is a diagram showing a model for performing a numerical simulation by a finite element method and a calculation example.
  • FIG. 4 is a diagram showing a model for performing a numerical simulation by a finite element method and a calculation example.
  • FIG. 5 is a diagram showing the results of a simulation of time dependence of the penetration depth of magnetic flux.
  • FIG. 6 is a view showing a state in which copper plates having different thicknesses are arranged on the upper and lower surfaces of a Balta superconductor in the present invention.
  • the Balta superconductor is one of the utilization forms of the oxide superconductor, and means a lump (balta-like) superconductor.
  • the pulse magnetization method can be performed using a pulse coil using inexpensive copper wire.
  • the pulse magnetization method is a powerful magnet (4-5 Degree).
  • the present invention is devised to suppress the heat generation itself.
  • the present invention is characterized in that when the Balta superconductor is magnetized by the pulse magnetizing method, a copper material is disposed on the top and bottom or bottom of the Balta superconductor.
  • a copper material such as a copper plate is placed on the upper or lower part of the Balta superconductor or on both the upper and lower parts, and the pulse magnetization is performed, the movement of the magnetic flux lines is controlled and accompanied by the movement of the magnetic flux lines. Heat generation is suppressed and the effect of magnetization is improved.
  • the present invention by changing the thickness of the copper material, it is possible to control the movement of the magnetic flux lines in a fine manner and improve the magnetization effect.
  • a copper material for example, a copper plate
  • a shielding current to flow in the copper plate against a sudden change in the pulse magnetic field so as to prevent the magnetic flux density from increasing. Therefore, the movement of the magnetic flux lines becomes much slower, and heat is generated in the Balta superconductor. Can be suppressed.
  • copper plates can also be expected to release heat generated by Balta superconductors.
  • the moving speed of the magnetic flux lines can be controlled by changing the thickness of a copper material, for example, a copper plate.
  • a copper material for example, a copper plate.
  • the shielding effect is reduced by reducing the thickness of the copper plate in the vicinity, and as a result, the moving speed of the magnetic flux lines is increased.
  • you want to slow down the movement speed of the magnetic flux lines near the center of the butter increase the thickness of the copper plate near the center.
  • the shielding effect by the shielding current is increased, and the magnetic flux lines move slowly, which is disadvantageous for increasing the magnetic flux density but can suppress heat generation. Therefore, in the present invention, a method of controlling the magnetization by changing the thickness of the copper material is also preferable.
  • the Balta superconductor used in the present invention is as follows.
  • the raw materials are mixed, usually formed into a tablet shape, a seed crystal is placed in the center, and it is melted at a temperature in excess of 1000 degrees to cause crystal orientation.
  • Balta superconductors with a diameter of 10 cm and a height of 3 cm have been made.
  • Balta superconductors can have a larger cross-sectional area than thin film wires, so the critical current can be set to several thousand A.
  • the finite element method (FEM) used in the examples is a numerical solution. This method is widely known as one of prayer methods.
  • the analysis target area is divided into a number of sub-areas of relatively simple shape called ⁇ finite elements '', and the unknown variable that you want to find on each element Is approximated by a relatively simple function such as a linear function.
  • a relatively simple function such as a linear function.
  • the potential to be obtained is expanded by an approximate function, and the potential is obtained by using the variational principle so that the energy in the analysis object is minimized.
  • This finite element method is a technique often used in electromagnetic field structure analysis (see, for example, Nakata and Takahashi “Finite Element Method of Electrical Engineering” (Morikita Publishing 1982) and Kikuchi “Overview of Finite Element Method” (Science 1980). ).
  • FIG. 2 shows a model in the finite element method used in the above calculation example.
  • a 1-degree (°) part was cut out and used only as a model.
  • the same calculation result can be obtained as when all (360 °) are modeled.
  • Fig. 2 there is an air layer around the thin bulk superconductor disk, and the whole is surrounded by the air layer. In the case of such a highly symmetric shape, it is possible to greatly reduce the amount of calculation by creating a model by extracting only an angle of 1 degree and performing a simulation by the finite element method.
  • Figs. 3 and 4 show a model and a calculation example for performing a numerical simulation by the finite element method.
  • Figures 3 and 4 use a model cut out only once from Figure 2.
  • Overall 4 Divided into layers.
  • the model is based on the horizontal axis of the disk-shaped Balta superconductor, and the inner layer containing the Norc superconductor, It is divided into outer layers.
  • the inner layer is divided into three layers based on the vertical axis of Balta superconductor.
  • Fig. 3 is a side view of the model and calculation example with the upper and lower air layers.
  • the sandwiched layer is Balta superconductor.
  • the outer layer is an air layer.
  • FIG. 4 shows a side view of a model and calculation example using a disk-shaped copper plate.
  • the disk-shaped copper plate does not necessarily have to be electrically connected to the force calculated as being in contact with the disk-shaped Balta superconductor.
  • the direct contact or connection of the two is useful for quickly removing the heat generated in the superconductor from the superconductor to the copper plate and keeping the temperature of the superconductor at a low temperature. Therefore, in practice, the copper plate is preferably in direct contact with or connected to the Balta superconductor.
  • the Balta superconductor basically works to prevent magnetic flux from entering due to the pinning effect, and the magnetic flux density on the Balta superconductor surface increases due to the so-called shape effect.
  • a Lorentz force exceeding the pinning force is applied, the magnetic flux penetrates into the inside, and conversely, once entered, the magnetic flux does not go outside due to the pinning force and is captured.
  • the air layer it can be seen that the magnetic flux easily penetrates inside. In reality, heat is generated by the movement of the magnetic flux, and as the temperature rises, the pinning force decreases, so that the magnetic flux that has entered the corner cannot be captured with a decrease in the external magnetic field and comes out.
  • FIG. 3 and FIG. 4 the portion described as “air” is not a part of the model but an air layer, and the portion written as “superconductor” is the model. On the simulation screen, this is the display.
  • the upper and lower layers described as “copper” in FIG. 4 mean that the simulation is performed when the copper plate is arranged in the upper part and Z or the lower part. It can be considered that an exciting coil is arranged on the right side of the “air” portion.
  • FIG. 5 shows a simulation result of the time dependence of the penetration depth from the surface of the Balta superconductor at the front of the magnetic flux that penetrates. As shown in Fig.
  • FIG. 5 shows the result of calculation as 1 ⁇ 10 10 [1 / ⁇ ] with the conductivity increased 10 times. It can be seen that the penetration of magnetic flux is more gradual. In other words, the movement of the magnetic flux can be controlled by attaching a disk-shaped copper plate. Naturally, if the thickness of the disk-shaped copper plate is changed, the movement of the magnetic flux can be finely controlled. That is, if the thickness is reduced, the speed of the magnetic flux can be increased. The reverse is also possible.
  • the present invention utilizes a very basic effect of preventing a change in magnetic flux density due to the pulse magnetic field by a shielding current flowing through the copper material when a pulse magnetic field is applied to the copper material. Therefore, its realization is relatively easy.
  • the simulation results show that the effect of suppressing the movement of the magnetic flux lines is high by increasing the conductivity, which is because the shielding current is more likely to flow, and this is quantitatively determined. I can confirm it. Also, control of the movement of magnetic flux lines using copper material has been attempted in metallic superconductors. Therefore, this simulation result is also valid and accurately reflects actual experiments. It is thought to be.
  • FIG. 6 is a diagram showing an example of the arrangement of the Balta superconductor and the copper plate when the pulse magnetization method of the present invention is specifically implemented.
  • the figure shows a state in which copper plates 1 with different thicknesses are attached to the upper and lower surfaces of the disc-shaped Balta superconductor 2 at the peripheral and central portions.
  • the arrow indicates the direction of the magnetic field. Since the copper plate is thin in the periphery, the shielding effect against the movement of the magnetic flux lines is small and the speed of the magnetic flux lines is high. On the other hand, since it is thicker in the central part, the velocity of the magnetic flux lines is suppressed, and the magnetic flux lines are difficult to enter. Therefore, the influence of heat generation is reduced.
  • the magnetic flux lines tend to stay in the superconductor, and as a result, a high magnetic flux density can be maintained. In this way, it is possible to control the speed of the magnetic flux lines. It is possible to insert copper plates with different shapes on the top and bottom surfaces.
  • the present invention relates to pulse magnetization in which a Balta superconductor is used as a permanent magnet rather than as a conductor, and a permanent magnet having a very large magnetic force is provided.
  • the resulting Balta superconductor can be used as a powerful permanent magnet by cooling it to a temperature of about liquid hydrogen.
  • a Balta superconductor pulse magnetized magnet it can be very downsized and simplified, so we can expect alternative demand and new demand in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

A pulse magnetization method of a bulk superconductor characterized in that a copper material is arranged on upper and/or lower portion of the bulk superconductor when the bulk superconductor is magnetized by pulse magnetization. Magnetization can be controlled by varying the thickness of the copper material used in the method. For using the bulk superconductor not as an electric conductor but as a permanent magnet having a very large magnetic force, the bulk superconductor can be magnetized efficiently by a simple pulse magnetization method.

Description

明 細 書  Specification
バルタ超電導体のパルス着磁法  Pulse magnetization of Balta superconductors
技術分野  Technical field
[0001] 本発明は、バルタ超電導体に着磁を行って永久磁石にするための、バルタ超電導 体のパルス着磁法に関する。  [0001] The present invention relates to a pulse magnetization method for a Balta superconductor to magnetize a Balta superconductor to make a permanent magnet.
背景技術  Background
[0002] 高温超電導体が発見されて、バルタ (塊)超電導体と!/ヽぅ新 ヽ材料形態での応用 分野が開拓されてきた。これまでの金属超電導体では、絶対零度付近の極低温での 応用に限られていた。即ち、これまでの金属超電導体では、材料の比熱が低すぎて 、バルタでの応用はできず、線材か薄膜のような形態でのみ応用が実現されてきた。 それに対して、高温超電導体は、使用温度が液体窒素沸点程度と高ぐ比熱が格段 に高くなるので、超電導体の不安定性があまり生じず、超電導体をバルタで応用する ことができるようになった。そして、最も期待されているのは、着磁を行って、永久磁石 の代りに使う応用分野である。通常の永久磁石では、せいぜい数百 mT (テスラ)(数 千 G (ガウス) )の磁束密度し力発生できな 、が、ノ レク超電導体では 17Tと 、う高 、 磁束密度をも発生させることに成功して 、る。  [0002] The discovery of high-temperature superconductors has pioneered application fields in the form of Balta (bulk) superconductors! Conventional metal superconductors have been limited to applications at extremely low temperatures near absolute zero. In other words, conventional metal superconductors cannot be applied to Balta because the specific heat of the material is too low, and the application has been realized only in the form of wire or thin film. In contrast, high-temperature superconductors have a much higher specific heat than the liquid nitrogen boiling point, so the instability of the superconductor does not occur so much and the superconductor can be applied with Balta. It was. And the most promising is an application field where magnetizing is used instead of permanent magnets. A normal permanent magnet cannot generate a magnetic flux density of several hundreds mT (Tesla) (several thousand G (Gauss)) at most, but a Nore superconductor can generate a magnetic flux density as high as 17T. Successful.
[0003] 例えば、下記の非特許文献 1では、高温バルタ超電導体に、 29Kで 17Tの磁束密 度を発生させることに成功している。この磁束密度の達成は、磁場中冷却という手法 で行われている。つまり、バルタ超電導体を臨界温度よりも高い温度にしておき、外 部から超電導磁石を用いて高い磁束密度を与える。この状態で、バルタ超電導体を 冷却して (磁場中冷却)超電導状態にし、磁束密度を保つようにさせる。しかし、この 方法では、着磁の際にいつも大きな超電導磁石を必要とする欠点がある。従って、よ り簡便な着磁方法が望まれて 、る。  [0003] For example, in the following Non-Patent Document 1, a high-temperature Balta superconductor has succeeded in generating a magnetic flux density of 17T at 29K. This magnetic flux density is achieved by a method of cooling in a magnetic field. In other words, the Balta superconductor is kept at a temperature higher than the critical temperature, and a high magnetic flux density is applied from the outside using a superconducting magnet. In this state, the Balta superconductor is cooled (cooled in a magnetic field) to a superconducting state so that the magnetic flux density is maintained. However, this method has a drawback that a large superconducting magnet is always required for magnetization. Therefore, a simpler magnetization method is desired.
非特許文献 l :M.Tomita and M.Murakami, Nature, vol. 421, pp. 517 - 520 (2003) [0004] 簡便に磁束密度をバルタ超電導体に発生させる方法として、パルス着磁が注目さ れてきている(例えば、特許文献 1参照)。この方法は、バルタ超電導体付近の銅コィ ルに、パルス電流を流して着磁する方法である。この方法では、超電導磁石に比べ て簡便な装置で着磁できる利点があるものの、着磁される磁束密度の大きさは、数 τ 程度と磁場中冷却に比べて低いことが問題とされている。小さい捕捉磁束密度の原 因は、超電導体に磁束密度を外部から着磁させるときに、パルス状であるために磁 束線の動きが速ぐ磁束線の動きに伴う発熱が大きぐそのために超電導体の温度が 一瞬高くなり、磁束を補足する力が弱まり、一度内部に入った磁束が、パルス磁場の 減少と共に捕捉できずに外部に抜け出てしまうためである。つまり、発熱を抑えるェ 夫が必要である。そこで、発生した熱を効率的に取り除く工夫が提案されている (特 許文献 2と 3参照)。この方法では、リング状にした銅によって厚みのある円盤型のバ ルク超電導体を挟み熱を逃す工夫をしているが、しかし、達成される磁束密度が未だ 十分ではない。 Non-Patent Literature l: M. Tomita and M. Murakami, Nature, vol. 421, pp. 517-520 (2003) [0004] Pulse magnetization is attracting attention as a simple method of generating magnetic flux density in a Balta superconductor. (For example, see Patent Document 1). In this method, a pulse current is passed through a copper coil near the Balta superconductor to magnetize it. In this method, compared to superconducting magnets Although there is an advantage that it can be magnetized by a simple and simple device, the magnitude of the magnetic flux density to be magnetized is about several τ, which is low compared to cooling in a magnetic field. The reason for the small trapped magnetic flux density is that when the magnetic flux density is magnetized from the outside to the superconductor, it is pulsed, so the heat generated by the movement of the magnetic flux lines is high, and the superconductivity is high. This is because the body temperature rises for a moment, the force that supplements the magnetic flux weakens, and the magnetic flux that once enters the interior cannot be captured with the decrease of the pulse magnetic field and escapes to the outside. In other words, a husband who suppresses heat generation is necessary. Therefore, a device for efficiently removing the generated heat has been proposed (see Patent Documents 2 and 3). In this method, a thick disc-shaped bulk superconductor is sandwiched by ring-shaped copper to release heat, but the achieved magnetic flux density is still insufficient.
特許文献 1 :特開平 10— 154620号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-154620
特許文献 2:特開 2004— 319797号公報  Patent Document 2: Japanese Unexamined Patent Application Publication No. 2004-319797
特許文献 3:特開 2005— 294471号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-294471
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、バルタ超電導体を電導体として使用するのではなぐ非常に大きな磁力 を持つ永久磁石として使用するために、簡便なパルス着磁法により、バルタ超電導体 を効率良く着磁する方法を提供することを目的とするものである。 [0005] The present invention efficiently magnetizes a Balta superconductor by a simple pulse magnetizing method in order to use it as a permanent magnet having a very large magnetic force, rather than using a Balta superconductor as a conductor. It is intended to provide a method.
課題を解決するための手段  Means for solving the problem
[0006] 本発明のうち出願当初の請求項 1 (以下「請求項 1」等という。)に記載された発明は[0006] Of the present invention, the invention described in claim 1 (hereinafter referred to as "claim 1" etc.)
、 ノ レク超電導体をパルス着磁法によって着磁させるに際し、バルタ超電導体の上 部及び Z又は下部に銅材を配置することを特徴とするバルタ超電導体のパルス着磁 法である。例えば、バルタ超電導体の冷却に冷凍機による直接冷却を行っている場 合には、ノ レク超電導体の上部又は下部力 冷却している場合が多いので、その冷 却に使用する銅材の形状を変えることが考えられる。また側面力 冷却している場合 には、バルタ超電導体の上面及び Z又は下面に銅材を配置すれば良い。 This is a pulse magnetizing method for a Balta superconductor, characterized in that a copper material is placed on the upper part and Z or the lower part of the Balta superconductor when the Nore superconductor is magnetized by the pulse magnetizing method. For example, when direct cooling by a refrigerator is used to cool a Balta superconductor, the upper or lower force of the Norec superconductor is often cooled, so the shape of the copper material used for the cooling Can be considered. If the side force is cooled, copper material may be placed on the top and Z or bottom of the Balta superconductor.
[0007] 本発明のうち請求項 2に記載された発明は、銅材の厚みを変化させて、着磁を制御 することを特徴とする請求項 1に記載のバルタ超電導体のパルス着磁法である。 [0008] 本発明のうち請求項 3に記載された発明は、バルタ超電導体が円盤型であり、銅材 が円盤状である請求項 1又は 2に記載のバルタ超電導体のパルス着磁法である。 [0007] The invention described in claim 2 of the present invention controls the magnetization of the Balta superconductor according to claim 1, wherein the magnetization is controlled by changing the thickness of the copper material. It is. [0008] Of the present invention, the invention described in claim 3 is the pulse magnetization method of the Balta superconductor according to Claim 1 or 2, wherein the Balta superconductor is a disk type and the copper material is a disk shape. is there.
[0009] 本発明のうち請求項 4に記載された発明は、バルタ超電導体が粉末の希土類 123 酸化物超電導体を含有する請求項 1〜3いずれか 1つに記載のバルタ超電導体のパ ルス着磁法である。  [0009] Of the present invention, the invention described in claim 4 is the pulse of the Balta superconductor according to any one of Claims 1 to 3, wherein the Balta superconductor contains a powdered rare earth 123 oxide superconductor. It is a magnetizing method.
[0010] 本発明のうち請求項 5に記載された発明は、バルタ超電導体に直接接触している か又は熱的に接続されて配置されている請求項 1〜4いずれか 1つに記載のバルタ 超電導体のパルス着磁法である。  [0010] Among the present inventions, the invention described in claim 5 is the one described in any one of claims 1 to 4, wherein the invention is arranged in direct contact with or thermally connected to the Balta superconductor. Balta This is a pulse magnetization method for superconductors.
[0011] 本発明のうち請求項 6に記載された発明は、銅材の形状がバルタ超電導体の上下 面で異なることを特徴とする請求項 1〜5いずれ力 1つに記載のバルタ超電導体のパ ルス着磁法である。 [0011] In the invention described in claim 6 of the present invention, the shape of the copper material is different between the upper and lower surfaces of the Balta superconductor. The Balta superconductor according to any one of Claims 1 to 5, This is the pulse magnetization method.
[0012] 本発明のうち請求項 7に記載された発明は、銅材が銅板である請求項 1〜6いずれ 力 1つに記載のバルタ超電導体のパルス着磁法である。  [0012] Of the present invention, the invention described in claim 7 is the pulse magnetization method of the Balta superconductor according to any one of claims 1 to 6, wherein the copper material is a copper plate.
[0013] 本発明のうち請求項 8に記載された発明は、バルタ超電導体及び銅材の周囲に励 磁用のコイルを配置する請求項 1〜7いずれ力 1つに記載のバルタ超電導体のパル ス着磁法である。 [0013] In the invention described in claim 8 of the present invention, the coil for excitation is arranged around the Balta superconductor and the copper material. The force of the Balta superconductor according to any one of Claims 1-7. This is a pulse magnetization method.
発明の効果  The invention's effect
[0014] 本発明によると、パルス着磁法でバルタ超電導体に着磁する磁束密度の大きさを 大さくでさる。  [0014] According to the present invention, the magnitude of the magnetic flux density magnetized on the Balta superconductor by the pulse magnetization method is increased.
本発明の方法によるパルス着磁法では、磁束線の運動が制御され、磁束線の運動 に伴う発熱が抑えられ、着磁の効果が向上する。また、本発明においては、銅材の厚 みを変化させることによって、磁束線の運動を細力べ制御し、着磁の効果を向上させ ることがでさる。  In the pulse magnetization method according to the method of the present invention, the movement of the magnetic flux lines is controlled, the heat generated by the movement of the magnetic flux lines is suppressed, and the magnetization effect is improved. Further, in the present invention, by changing the thickness of the copper material, it is possible to control the movement of the magnetic flux lines and improve the magnetization effect.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]パルス着磁の方法を示す図である。 FIG. 1 is a diagram showing a method of pulse magnetization.
[図 2]有限要素法におけるモデルを示す図である。  FIG. 2 is a diagram showing a model in the finite element method.
[図 3]有限要素法で数値シミュレーションを行うモデル及び計算例を示す図である。  FIG. 3 is a diagram showing a model for performing a numerical simulation by a finite element method and a calculation example.
[図 4]有限要素法で数値シミュレーションを行うモデル及び計算例を示す図である。 [図 5]磁束の侵入深さの時間依存性のシミュレーションの結果を示す図である。 FIG. 4 is a diagram showing a model for performing a numerical simulation by a finite element method and a calculation example. FIG. 5 is a diagram showing the results of a simulation of time dependence of the penetration depth of magnetic flux.
[図 6]本発明において、バルタ超電導体の上面と下面に、厚さの異なる銅板を配置し た状態を示す図である。  FIG. 6 is a view showing a state in which copper plates having different thicknesses are arranged on the upper and lower surfaces of a Balta superconductor in the present invention.
符号の説明  Explanation of symbols
[0016] 1 周辺部と中央部で厚さの異なる銅板 [0016] 1 Copper plates with different thicknesses at the periphery and center
2 バルタ超電導体  2 Balta superconductor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] バルタ超電導体とは、酸化物超電導体の利用形態の一つであり、一塊 (バルタ状) の超電導体を意味する。一般にバルタ超電導体を磁化する(磁石にする)場合には、 強 ヽ磁力を出す超電導コイルの中で冷却し着磁を行うが、高価な超電導コイルを必 要とする。これは、前述のように磁場中冷却という。これに対し、パルス着磁法は、安 価な銅線を使ったパルスコイルを用いて行うことができる。例えば、パルス着磁法は、 バルタ超電導体を氷点下 230〜250度前後に冷やし、約 10ミリ秒の強いパルス磁場 を当てることで、バルタ超電導体に磁束密度を捕捉させ強力な磁石 (4〜5T程度)に することができる。強いパルス磁場を与えると瞬間的に強い磁束密度が侵入するもの の、バルタが急激に発熱する。温度上昇によりバルタ超電導体の超電導特性が悪く なるため、磁束密度が逃げ、最終的に捕捉される磁束密度も小さくなる。  [0017] The Balta superconductor is one of the utilization forms of the oxide superconductor, and means a lump (balta-like) superconductor. In general, when magnetizing a Balta superconductor (making it a magnet), it is cooled and magnetized in a superconducting coil that produces a strong magnetic force, but an expensive superconducting coil is required. This is called cooling in a magnetic field as described above. On the other hand, the pulse magnetization method can be performed using a pulse coil using inexpensive copper wire. For example, the pulse magnetization method is a powerful magnet (4-5 Degree). When a strong pulsed magnetic field is applied, a strong magnetic flux density momentarily invades, but Balta generates heat rapidly. As the temperature rises, the superconducting properties of Balta superconductors deteriorate, so the magnetic flux density escapes and the final trapped magnetic flux density also decreases.
[0018] このように、ノ ルス着磁法による磁束密度が低い原因が発熱であるため、本発明で は発熱そのものを抑える工夫を行う。そしてこのために、本発明は、バルタ超電導体 をパルス着磁法によって着磁させるに際し、バルタ超電導体の上部及び Ζ又は下部 に銅材を配置することを特徴とするものである。バルタ超電導体の上部又は下部、あ るいは上部と下部の両方に、例えば、銅板等の銅材を配置してパルス着磁を行うと、 磁束線の運動が制御され、磁束線の運動に伴う発熱が抑えられ、着磁の効果が向 上するものである。本発明においては、銅材の厚みを変化させることによって、磁束 線の運動を細力べ制御し、着磁の効果を向上させることができる。  [0018] As described above, since the cause of the low magnetic flux density by the Norse magnetization method is heat generation, the present invention is devised to suppress the heat generation itself. For this purpose, the present invention is characterized in that when the Balta superconductor is magnetized by the pulse magnetizing method, a copper material is disposed on the top and bottom or bottom of the Balta superconductor. For example, if a copper material such as a copper plate is placed on the upper or lower part of the Balta superconductor or on both the upper and lower parts, and the pulse magnetization is performed, the movement of the magnetic flux lines is controlled and accompanied by the movement of the magnetic flux lines. Heat generation is suppressed and the effect of magnetization is improved. In the present invention, by changing the thickness of the copper material, it is possible to control the movement of the magnetic flux lines in a fine manner and improve the magnetization effect.
[0019] バルタ超電導体のパルス着磁にお 、ては、磁束線の動きが速すぎるために発熱す るのであるから、磁束線の動きをゆっくりとさせる必要があると考えられる。磁束線の 変化を遅くするには、大きなコイルと大きなコンデンサーバンクを準備すれば良いが 、それでは着磁装置が大掛力りになり過ぎて、簡便に着磁するという目的を達成する ことができない。そこで、本発明では、バルタ超電導体の上部又は下部、あるいは上 下部両方に銅材、例えば銅板を配置する。この銅板があることにより、パルス磁場の 急激な変化に対して、銅板にその磁束密度の増加を妨げるように遮蔽電流が流れ、 従って磁束線の運動が格段にゆっくりとなり、バルタ超電導体での発熱を抑えること ができる。なお銅板では、バルタ超電導体で発生した熱を逃すという効果ももちろん 期待できる。 [0019] In pulse magnetization of a Balta superconductor, it is thought that it is necessary to slowly move the magnetic flux lines because the magnetic flux lines move too fast and generate heat. To slow down the flux line changes, you can prepare a large coil and a large capacitor bank. In that case, the magnetizing device becomes too much force, and the purpose of easily magnetizing cannot be achieved. Therefore, in the present invention, a copper material, for example, a copper plate, is disposed on the upper or lower part of the Balta superconductor, or on both the upper and lower parts. The presence of this copper plate causes a shielding current to flow in the copper plate against a sudden change in the pulse magnetic field so as to prevent the magnetic flux density from increasing. Therefore, the movement of the magnetic flux lines becomes much slower, and heat is generated in the Balta superconductor. Can be suppressed. Of course, copper plates can also be expected to release heat generated by Balta superconductors.
[0020] 磁束線の移動速度は、銅材、例えば銅板の厚さを変えることによって制御が可能で ある。例えば、表面付近は磁束線の移動速度を速くしたいのであれば、その付近の 銅板の厚さを薄くすることにより、遮蔽効果が小さくなり、結果として磁束線の移動速 度は速くなる。更にバルタの中心付近では磁束線の移動速度を遅くしたいのであれ ば、中心付近では銅板の厚さを厚くしておく。これにより遮蔽電流による遮蔽効果が 大きくなり、磁束線はゆっくりと移動することになるので、磁束密度を上げるのには不 利ではあるが、発熱を抑えることができる。従って、本発明では、銅材の厚みを変化さ せて、着磁を制御する方法も好ましい。  [0020] The moving speed of the magnetic flux lines can be controlled by changing the thickness of a copper material, for example, a copper plate. For example, if it is desired to increase the moving speed of the magnetic flux lines near the surface, the shielding effect is reduced by reducing the thickness of the copper plate in the vicinity, and as a result, the moving speed of the magnetic flux lines is increased. Furthermore, if you want to slow down the movement speed of the magnetic flux lines near the center of the butter, increase the thickness of the copper plate near the center. As a result, the shielding effect by the shielding current is increased, and the magnetic flux lines move slowly, which is disadvantageous for increasing the magnetic flux density but can suppress heat generation. Therefore, in the present invention, a method of controlling the magnetization by changing the thickness of the copper material is also preferable.
[0021] 実際の着磁に際しては、何回力パルス磁場を印加することにより、徐々にバルタ超 電導体に磁束線を侵入させる方法が取られている。その際に、本発明の方法によつ て発熱が少ないと、捕捉することのできる磁束密度が十分に高くなり、効率的に着磁 ができるものと考えられる。  [0021] In actual magnetization, a method of gradually injecting magnetic flux lines into the Balta superconductor by applying a force magnetic field several times is adopted. At that time, if there is little heat generation according to the method of the present invention, it is considered that the magnetic flux density that can be captured is sufficiently high and magnetization can be performed efficiently.
[0022] 本発明において用いられるバルタ超電導体は、次の様なものである。即ち、溶融法 で作られた Y— 123 (イットリウム 123)に代表される RE— 123 (RE =希土類)を材料 として、バルタ (塊)状の超電導体を作製するものである。具体的には、原材料を混ぜ て、通常は錠剤型に成形し、中心に種結晶を置き、 1000度を超える温度で溶融し、 結晶配向をさせる。現在では、直径 10cm、高さ 3cmほどのほぼ単結晶のバルタ超 電導体が作られている。バルタ超電導体は、薄膜ゃ線材に比べて断面積を大きく取 ることができることから、臨界電流を数 1000Aに設定することができる。 The Balta superconductor used in the present invention is as follows. In other words, a bulk superconductor made of RE-123 (RE = rare earth) typified by Y-123 (yttrium 123) produced by the melting method is produced. Specifically, the raw materials are mixed, usually formed into a tablet shape, a seed crystal is placed in the center, and it is melted at a temperature in excess of 1000 degrees to cause crystal orientation. At present, almost single-crystal Balta superconductors with a diameter of 10 cm and a height of 3 cm have been made. Balta superconductors can have a larger cross-sectional area than thin film wires, so the critical current can be set to several thousand A.
実施例  Example
[0023] なお、実施例にお!、て用いた有限要素法(Fine Element Method, FEM)は数値解 祈の手法の一つとして広く知られている方法であり、解析対象領域を「有限要素」と 呼ばれる比較的単純な形状の多数の副領域に空間分割し、各要素上で、求めたい 未知変数を比較的簡単な関数、例えば一次関数で近似する方法である。そして、各 要素上で、求めたいポテンシャルを近似関数で展開し、変分原理を用いて解析対象 内のエネルギ—が最小となるようにポテンシャルを求める方法である。この有限要素 法は、電磁場構造解析においても良く用いられる手法である(例えば、中田、高橋「 電気工学の有限要素法」(森北出版 1982)や菊地「有限要素法概説」(サイエンス 社 1980)参照)。 [0023] Note that the finite element method (FEM) used in the examples is a numerical solution. This method is widely known as one of prayer methods. The analysis target area is divided into a number of sub-areas of relatively simple shape called `` finite elements '', and the unknown variable that you want to find on each element Is approximated by a relatively simple function such as a linear function. Then, on each element, the potential to be obtained is expanded by an approximate function, and the potential is obtained by using the variational principle so that the energy in the analysis object is minimized. This finite element method is a technique often used in electromagnetic field structure analysis (see, for example, Nakata and Takahashi “Finite Element Method of Electrical Engineering” (Morikita Publishing 1982) and Kikuchi “Overview of Finite Element Method” (Science 1980). ).
[0024] 粉末の Y— 123 (イットリウム 123)酸ィ匕物超電導体を原料として、従来公知の溶融 法で作製される単結晶状のバルタ超電導体につ!ヽて本発明方法を検証する。検証 のために、上記有限要素法を用いた数値計算シミュレーションを行った。直径が 100 mm、厚みが 10mmの円盤型の超電導体に、外部カゝら磁束密度を 1秒で 2Tほど増 カロさせるパルス磁場を印加する。この様子を図 1に示した。図 1に示したように、超電 導体に、パルスマグネットを用いて、矢印の方向にパルス磁場を印加する。  [0024] Using a powdered Y-123 (yttrium 123) oxide superconductor as a raw material, a single crystal Balta superconductor manufactured by a conventionally known melting method! The method of the present invention is verified at once. For verification, we performed a numerical simulation using the finite element method. A pulsed magnetic field that increases the magnetic flux density by about 2T in 1 second is applied to a disc-shaped superconductor with a diameter of 100 mm and a thickness of 10 mm from the outside. This is shown in Figure 1. As shown in Fig. 1, a pulse magnetic field is applied to the superconductor in the direction of the arrow using a pulse magnet.
[0025] この時の外部と内部の磁束密度を、有限要素法を用いて計算した。今回は計算が 複雑になるために、磁束の運動による発熱の効果は無視している。パルス磁場は、 約 100ミリ秒間のパルス磁場を印加し、時間間隔を設けて、複数回同様にパルス磁 場を印加する。多少の発熱は、時間間隔を設けているので、温度上昇の累積は無視 できる。着磁は飽和するまで順次累積されると共に、より内部へと侵入する。  [0025] The external and internal magnetic flux densities at this time were calculated using the finite element method. Since the calculation is complicated this time, the effect of heat generated by the movement of magnetic flux is ignored. For the pulsed magnetic field, a pulsed magnetic field of about 100 milliseconds is applied, a time interval is provided, and the pulsed magnetic field is applied multiple times in the same manner. Some heat generation has a time interval, so the cumulative temperature rise is negligible. Magnetization is sequentially accumulated until saturation and further penetrates into the interior.
[0026] 図 2に、上記計算例で用いた有限要素法におけるモデルを示した。円盤型の超電 導体について対称性から、また、シミュレーションの数値計算時間を短縮する目的で 、 1度 (° )のものを切り出し、これのみをモデルとして使用した。当然、全部(360° ) をモデルィ匕した場合と同じ計算結果を得ることができる。図 2に示したように、薄いバ ルク超電導体円盤の周りに空気層があり、全体が空気層で囲まれている形状となる。 このように対称性の高 、形状の場合には、角度 1度分だけを取り出してモデルを作り 、有限要素法によりシミュレーションをすると、計算量を大幅に削減することができる。  FIG. 2 shows a model in the finite element method used in the above calculation example. For the purpose of shortening the numerical calculation time of the simulation for the disc-type superconductor, a 1-degree (°) part was cut out and used only as a model. Naturally, the same calculation result can be obtained as when all (360 °) are modeled. As shown in Fig. 2, there is an air layer around the thin bulk superconductor disk, and the whole is surrounded by the air layer. In the case of such a highly symmetric shape, it is possible to greatly reduce the amount of calculation by creating a model by extracting only an angle of 1 degree and performing a simulation by the finite element method.
[0027] 図 3及び図 4に、有限要素法で数値シミュレーションを行うモデル及び計算例を示 した。図 3及び図 4は、図 2から 1度分のみ切り出したモデルを用いている。全体は 4 層に分かれている。モデルは、円盤型のバルタ超電導体の水平軸を基準として、ノ ルク超電導体を含む内側の層と、
Figure imgf000008_0001
、外側の層に分かれて 、 る。内側の層は、バルタ超電導体の垂直軸を基準として 3層に分かれている。図 3は 、上下は空気層としたモデル及び計算例の側面図である。挟まれている層がバルタ 超電導体である。また外側の層は、 1層あり、空気層としている。外部磁束密度を 2T まで増磁したときに、内部に磁束が侵入している様子が分かる。つまり超電導体表面 に矢印で示す磁束線は、内側層と外側層の境界に集中し、内部にまで侵入している 。しかし、磁束線は、バルタ超電導体の水平軸方向の中心近くまで侵入していない。 矢印の向きは磁束線の方向である。ここで、上下の空気層を円盤状の銅板にするこ とにより、磁束の運動をゆっくりとすることができる。円盤状の銅板としたモデル及び 計算例の側面図を図 4に示す。
[0027] Figs. 3 and 4 show a model and a calculation example for performing a numerical simulation by the finite element method. Figures 3 and 4 use a model cut out only once from Figure 2. Overall 4 Divided into layers. The model is based on the horizontal axis of the disk-shaped Balta superconductor, and the inner layer containing the Norc superconductor,
Figure imgf000008_0001
It is divided into outer layers. The inner layer is divided into three layers based on the vertical axis of Balta superconductor. Fig. 3 is a side view of the model and calculation example with the upper and lower air layers. The sandwiched layer is Balta superconductor. The outer layer is an air layer. It can be seen that when the external magnetic flux density is increased to 2T, the magnetic flux penetrates inside. In other words, the magnetic flux lines indicated by arrows on the surface of the superconductor are concentrated at the boundary between the inner layer and the outer layer and penetrate into the inside. However, the magnetic flux lines do not penetrate to near the center in the horizontal axis direction of the Balta superconductor. The direction of the arrow is the direction of the magnetic flux lines. Here, by making the upper and lower air layers into disk-shaped copper plates, the movement of the magnetic flux can be made slow. Figure 4 shows a side view of a model and calculation example using a disk-shaped copper plate.
[0028] モデルでは、円盤状の銅板は、円盤型のバルタ超電導体と接しているとして計算し た力 電気的には必ずしも接続されている必要はない。但し、熱的には、両者が直接 接触又は接続して 、る方が、超電導体で発生する熱を速やかに超電導体から銅板 に取り除き、超電導体の温度を低温度に保つことに役立つ。従って、実際には、銅板 はバルタ超電導体と直接接触又は接続されて 、るほうが好まし 、。  [0028] In the model, the disk-shaped copper plate does not necessarily have to be electrically connected to the force calculated as being in contact with the disk-shaped Balta superconductor. However, in terms of heat, the direct contact or connection of the two is useful for quickly removing the heat generated in the superconductor from the superconductor to the copper plate and keeping the temperature of the superconductor at a low temperature. Therefore, in practice, the copper plate is preferably in direct contact with or connected to the Balta superconductor.
[0029] バルタ超電導体は、基本的にピン止め効果により磁束を内部に入れないように働き 、いわゆる形状効果のためにバルタ超電導体表面の磁束密度が高くなる。一方で、 ピン止め力を越えるローレンツ力がかかれば、磁束は内部に侵入していき、逆に一 度侵入した磁束は、やはりピン止め力により外部には出ていかず、捕捉される。空気 層の場合には、磁束は内部に簡単に侵入する様子が分かる。現実には磁束の運動 により発熱し、温度が上がるとピン止め力が低下するので、折角侵入した磁束が、外 部磁界の減少とともに捕捉することができずに出ていってしまう。  The Balta superconductor basically works to prevent magnetic flux from entering due to the pinning effect, and the magnetic flux density on the Balta superconductor surface increases due to the so-called shape effect. On the other hand, if a Lorentz force exceeding the pinning force is applied, the magnetic flux penetrates into the inside, and conversely, once entered, the magnetic flux does not go outside due to the pinning force and is captured. In the case of the air layer, it can be seen that the magnetic flux easily penetrates inside. In reality, heat is generated by the movement of the magnetic flux, and as the temperature rises, the pinning force decreases, so that the magnetic flux that has entered the corner cannot be captured with a decrease in the external magnetic field and comes out.
[0030] 図 3及び図 4において「空気」と記載されている部分は、モデルの一部ではなく空気 層であり、「超電導体」と書かれている部分がモデルある。シミュレーション画面では、 こうした表示になる。図 4において「銅」と記載されている上下の層は、銅板を上部及 び Z又は下部に配置する場合でシミュレーションすることを意味しているものである。 「空気」の部分の右側には励磁用のコイルが配置されていると考えて良い。 [0031] 図 5は、侵入していく磁束のフロントの、バルタ超電導体表面からの侵入深さの時間 依存性のシミュレーション結果を示している。図 5に示したように、磁束のフロントの、 バルタ超電導体表面からの侵入深さを、時間と共にプロットすると、銅材がない場合 には、時間の経過と共に、磁束は速やかに超電導体内部に侵入していることが分か る。つまり、磁束の運動が速い状態であり、このままでは磁束の運動による発熱が避 けられない。 In FIG. 3 and FIG. 4, the portion described as “air” is not a part of the model but an air layer, and the portion written as “superconductor” is the model. On the simulation screen, this is the display. The upper and lower layers described as “copper” in FIG. 4 mean that the simulation is performed when the copper plate is arranged in the upper part and Z or the lower part. It can be considered that an exciting coil is arranged on the right side of the “air” portion. [0031] FIG. 5 shows a simulation result of the time dependence of the penetration depth from the surface of the Balta superconductor at the front of the magnetic flux that penetrates. As shown in Fig. 5, when the penetration depth of the front of the magnetic flux from the Balta superconductor surface is plotted with time, when there is no copper material, the magnetic flux quickly enters the superconductor as time passes. You can see that it is invading. In other words, the movement of the magnetic flux is fast, and heat generation due to the movement of the magnetic flux cannot be avoided in this state.
[0032] そこで、バルタ超電導体の上下に導電率 1 X 109[ΐΖΩπι]の円盤状の銅板を付け て、同じように外部磁界を変化させたときの、侵入していく磁束のフロントの、バルタ超 電導体表面からの侵入深さを調べた。その結果も図 5に示した。円盤状の銅板を付 けることにより、磁束線の運動が抑制されることが分かる。 [0032] Therefore, when a disk-shaped copper plate with a conductivity of 1 X 10 9 [ΐΖΩπι] is attached above and below the Balta superconductor, and the external magnetic field is changed in the same way, The penetration depth from the surface of the Balta superconductor was investigated. The results are also shown in FIG. It can be seen that the movement of the magnetic flux lines is suppressed by attaching a disk-shaped copper plate.
[0033] 図 5から分力るように、磁束の侵入は、円盤状の銅板を付けると、付けていない時に 比べて緩やかになり、磁束の速度は小さくなつていることが分かる。なお、磁束の速 度はプロットの傾き力も求めることができる。更に、導電率を 10倍にして 1 X 1010[1/ Ωπι]として計算した結果も図 5に示した。磁束の侵入はより緩やかになっていること が分かる。つまり、磁束の運動を、円盤状の銅板を付けることにより、制御することが できることが分かる。当然、円盤状の銅板の厚みを変えれば、細かく磁束の運動を制 御することができる。つまり薄くすれば、磁束の速度は上げることができる。またその 逆も可能である。 [0033] As shown in FIG. 5, it can be seen that the penetration of the magnetic flux becomes gentler when the disc-shaped copper plate is attached, and the velocity of the magnetic flux is smaller than when the disc is not attached. Note that the velocity of the magnetic flux can be obtained from the tilt force of the plot. Further, FIG. 5 also shows the result of calculation as 1 × 10 10 [1 / Ωπι] with the conductivity increased 10 times. It can be seen that the penetration of magnetic flux is more gradual. In other words, the movement of the magnetic flux can be controlled by attaching a disk-shaped copper plate. Naturally, if the thickness of the disk-shaped copper plate is changed, the movement of the magnetic flux can be finely controlled. That is, if the thickness is reduced, the speed of the magnetic flux can be increased. The reverse is also possible.
[0034] ここでは有限要素法によるシミュレーション結果を示した力 実際の実験においても 同様な効果は現れると言うことができる。それは、これまで、超電導現象の多くを、有 限要素法という手法により解明することができている力 である。実際に、本発明では 、銅材にパルス磁場が印加された際に銅材に遮蔽電流が流れることにより、このパル ス磁場による磁束密度の変化を妨げるという、非常に基本的な効果を利用しているの で、その実現は比較的簡単である。シミュレーション結果では、導電率を上げることに より磁束線の運動の抑制効果が高 、ことを示して 、るが、これは遮蔽電流がより流れ やすくなつているためであり、定量的にこのことを確かめることができている。また、銅 材を用いた磁束線の運動の制御は、金属超電導体において試みられたことがある。 従って、今回のシミュレーション結果も妥当なものであり、実際の実験を正確に反映 するものであると考えられる。 Here, it can be said that the same effect appears in the actual experiment, which shows the simulation result by the finite element method. It is the power that has so far been able to elucidate many of the superconducting phenomena using a technique called the finite element method. Actually, the present invention utilizes a very basic effect of preventing a change in magnetic flux density due to the pulse magnetic field by a shielding current flowing through the copper material when a pulse magnetic field is applied to the copper material. Therefore, its realization is relatively easy. The simulation results show that the effect of suppressing the movement of the magnetic flux lines is high by increasing the conductivity, which is because the shielding current is more likely to flow, and this is quantitatively determined. I can confirm it. Also, control of the movement of magnetic flux lines using copper material has been attempted in metallic superconductors. Therefore, this simulation result is also valid and accurately reflects actual experiments. It is thought to be.
[0035] 図 6は本発明のパルス着磁法を具体的に実施する場合の、バルタ超電導体と銅板 の配置の一例を示す図である。円盤型のバルタ超電導体 2の上下面に、周辺部と中 央部で厚さの異なる銅板 1を付けた状態を示している。矢印は磁場の方向を示す。 銅板は周辺部分では薄いので、磁束線の運動に対する遮蔽効果は小さく磁束線の 速度は大きい。逆に中央部分では厚くなつているので、磁束線の速度は抑えられ、 磁束線は入りにくい。従って、発熱の影響は小さくなる。発熱が小さくなれば磁束線 が超電導体内にとどまりやすくなり、結果的に高い磁束密度を保持することができる ようになる。このようにして磁束線の速度を制御することが可能である。上下面で違う 形状の銅板を入れるということも考えられる。  FIG. 6 is a diagram showing an example of the arrangement of the Balta superconductor and the copper plate when the pulse magnetization method of the present invention is specifically implemented. The figure shows a state in which copper plates 1 with different thicknesses are attached to the upper and lower surfaces of the disc-shaped Balta superconductor 2 at the peripheral and central portions. The arrow indicates the direction of the magnetic field. Since the copper plate is thin in the periphery, the shielding effect against the movement of the magnetic flux lines is small and the speed of the magnetic flux lines is high. On the other hand, since it is thicker in the central part, the velocity of the magnetic flux lines is suppressed, and the magnetic flux lines are difficult to enter. Therefore, the influence of heat generation is reduced. If the heat generation is reduced, the magnetic flux lines tend to stay in the superconductor, and as a result, a high magnetic flux density can be maintained. In this way, it is possible to control the speed of the magnetic flux lines. It is possible to insert copper plates with different shapes on the top and bottom surfaces.
産業上の利用可能性  Industrial applicability
[0036] 本発明は、バルタ超電導体を電導体として使用するのではなく永久磁石として使用 するパルス着磁に係るもので、非常に大きな磁力を持つ永久磁石が提供される。得 られるバルタ超電導体は、液体水素程度の温度に冷却しておくことによって、強力な 永久磁石として利用できる。バルタ超電導体パルス着磁磁石として、非常に小型化' 簡素化ができるので、各方面での代替需要及び新規の需要が期待できる。 [0036] The present invention relates to pulse magnetization in which a Balta superconductor is used as a permanent magnet rather than as a conductor, and a permanent magnet having a very large magnetic force is provided. The resulting Balta superconductor can be used as a powerful permanent magnet by cooling it to a temperature of about liquid hydrogen. As a Balta superconductor pulse magnetized magnet, it can be very downsized and simplified, so we can expect alternative demand and new demand in various fields.

Claims

請求の範囲 The scope of the claims
[1] バルタ超電導体を準備する工程、該バルタ超電導体の上部及び Z又は下部に銅 材を配置する工程、及び、該バルタ超電導体にパルス着磁する工程を含むことを特 徴とするバルタ超電導体のパルス着磁法。  [1] A Balta characterized by comprising a step of preparing a Balta superconductor, a step of placing a copper material on the top and Z or the bottom of the Balta superconductor, and a step of pulse magnetizing the Balta superconductor. Pulsed magnetization of superconductors.
[2] 該銅材の厚みを変化させて、着磁を制御する請求項 1に記載のバルタ超電導体の パルス着磁法。  [2] The pulse magnetization method of a Balta superconductor according to claim 1, wherein the magnetization is controlled by changing the thickness of the copper material.
[3] 該バルタ超電導体が円盤型であり、該銅材が円盤状である請求項 1又は 2に記載 のバルタ超電導体のパルス着磁法。  [3] The pulse magnetization method of the Balta superconductor according to [1] or [2], wherein the Balta superconductor is a disc type and the copper material is a disc shape.
[4] 該バルタ超電導体が粉末の希土類 123酸化物超電導体を含有する請求項 1〜34. The Balta superconductor contains a powdered rare earth 123 oxide superconductor.
V、ずれか 1つに記載のバルタ超電導体のパルス着磁法。 Pulsed magnetization method for Balta superconductors as described in V, Deviation.
[5] 該銅材が該バルタ超電導体に直接接触しているか又は熱的に接続されて配置され ている請求項 1〜4いずれ力 1つに記載のバルタ超電導体のパルス着磁法。  5. The pulse magnetization method for a Balta superconductor according to any one of claims 1 to 4, wherein the copper material is disposed in direct contact with or thermally connected to the Balta superconductor.
[6] 前記銅材の形状力バルタ超電導体の上下面で異なることを特徴とする請求項 1〜56. The shape force of the copper material is different between the upper and lower surfaces of the Balta superconductor.
V、ずれか 1つに記載のバルタ超電導体のパルス着磁法。 Pulsed magnetization method for Balta superconductors as described in V, Deviation.
[7] 前記銅材が銅板である請求項 1〜6 、ずれか 1つに記載のバルタ超電導体のパル ス着磁法。  7. The pulse magnetization method for a Balta superconductor according to any one of claims 1 to 6, wherein the copper material is a copper plate.
[8] 前記バルタ超電導体及び銅材の周囲に励磁用のコイルを配置する請求項 1〜7い ずれか 1つに記載のバルタ超電導体のパルス着磁法。  8. The pulse magnetization method for a Balta superconductor according to any one of Claims 1 to 7, wherein an exciting coil is arranged around the Balta superconductor and the copper material.
PCT/JP2007/061859 2006-06-19 2007-06-13 Pulse magnetization method of bulk superconductor WO2007148571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522405A JP4769301B2 (en) 2006-06-19 2007-06-13 Pulse magnetization of bulk superconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006168650 2006-06-19
JP2006-168650 2006-06-19

Publications (1)

Publication Number Publication Date
WO2007148571A1 true WO2007148571A1 (en) 2007-12-27

Family

ID=38833313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061859 WO2007148571A1 (en) 2006-06-19 2007-06-13 Pulse magnetization method of bulk superconductor

Country Status (2)

Country Link
JP (1) JP4769301B2 (en)
WO (1) WO2007148571A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170565A (en) * 2008-01-15 2009-07-30 Hitachi Ltd Magnet magnetizing system and superconducting magnet to be magnetized

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255333A (en) * 1996-03-22 1997-09-30 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconducting combined body and its production
JPH1012429A (en) * 1996-06-19 1998-01-16 Aisin Seiki Co Ltd Superconductive magnet device and method for magnetizing it
JPH1074622A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnet device
JPH1074621A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnetic device
JPH10116721A (en) * 1996-10-11 1998-05-06 Railway Technical Res Inst Superconducting bulk body magnet
JPH11283822A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnet
JP2002270421A (en) * 2001-03-14 2002-09-20 Aisin Seiki Co Ltd Magnetic field device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255333A (en) * 1996-03-22 1997-09-30 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Oxide superconducting combined body and its production
JPH1012429A (en) * 1996-06-19 1998-01-16 Aisin Seiki Co Ltd Superconductive magnet device and method for magnetizing it
JPH1074622A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnet device
JPH1074621A (en) * 1996-08-30 1998-03-17 Aisin Seiki Co Ltd Magnetizing method for superconductor and superconducting magnetic device
JPH10116721A (en) * 1996-10-11 1998-05-06 Railway Technical Res Inst Superconducting bulk body magnet
JPH11283822A (en) * 1998-03-27 1999-10-15 Imura Zairyo Kaihatsu Kenkyusho:Kk Superconducting magnet
JP2002270421A (en) * 2001-03-14 2002-09-20 Aisin Seiki Co Ltd Magnetic field device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170565A (en) * 2008-01-15 2009-07-30 Hitachi Ltd Magnet magnetizing system and superconducting magnet to be magnetized

Also Published As

Publication number Publication date
JP4769301B2 (en) 2011-09-07
JPWO2007148571A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
Li et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products
Guillon et al. Manipulation of matter by electric and magnetic fields: Toward novel synthesis and processing routes of inorganic materials
Ainslie et al. Enhanced trapped field performance of bulk high-temperature superconductors using split coil, pulsed field magnetization with an iron yoke
Takahashi et al. Fracture behavior analysis of EuBaCuO superconducting ring bulk reinforced by a stainless steel ring during field-cooled magnetization
Lin et al. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field
Patel et al. Enhanced trapped field achieved in a superconducting bulk using high thermal conductivity structures following simulated pulsed field magnetization
Zou et al. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique
Patel et al. Magnetic levitation between a slab of soldered HTS tape and a cylindrical permanent magnet
JP6422631B2 (en) Superconducting bulk magnet
WO2007148571A1 (en) Pulse magnetization method of bulk superconductor
Ida et al. Materials preparation and magnetization of Gd-Ba-Cu-O bulk high-temperature superconductors
Hirano et al. Feasibility study of high-efficiency cooling of high-temperature superconducting coils by magnetic refrigeration
Mochizuki et al. Trapped field properties of a concentric-circled MgB2 bulk composite magnetized by pulsed field and field cooling
US20200194152A1 (en) Magnetization stabilizing treatment method for permanently magnetizable material
Koshkid’ko et al. Magnetocaloric effect of RCo5 single crystals in the region of spin-reorientation transitions
JP6435927B2 (en) Superconducting bulk magnet and method of magnetizing superconducting bulk magnet
JP6318811B2 (en) Superconducting bulk magnet
Hirano et al. Simulation of mechanical stresses in reinforced REBaCuO ring bulks during pulsed-field magnetization
Moritz et al. Hybrid Ni–Co–Ni structures prepared by magnetophoresis as efficient permanent magnets for integration into microelectromechanical systems
Yu et al. A Giant Magneto‐Superelasticity of 5% Enabled by Introducing Ordered Dislocations in Ni34Co8Cu8Mn36Ga14 Single Crystal
Nagata et al. Magnetism and transport properties of Nd6Fe13− xAl1+ x crystals
Xie et al. Transformation behaviors, structural and magnetic characteristics of Ni—Mn—Ga films on MgO (001)
Yang et al. Comparative calculations of trapped field and trapped magnetic flux with different multi-pulse magnetization methods for a bulk high-temperature superconductor
Ziółkowski et al. Magnetization processes of hard magnetic composites-Monte Carlo studies
JP6734578B2 (en) Hard magnetic material

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522405

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745142

Country of ref document: EP

Kind code of ref document: A1