JP6435927B2 - Superconducting bulk magnet and method of magnetizing superconducting bulk magnet - Google Patents

Superconducting bulk magnet and method of magnetizing superconducting bulk magnet Download PDF

Info

Publication number
JP6435927B2
JP6435927B2 JP2015042327A JP2015042327A JP6435927B2 JP 6435927 B2 JP6435927 B2 JP 6435927B2 JP 2015042327 A JP2015042327 A JP 2015042327A JP 2015042327 A JP2015042327 A JP 2015042327A JP 6435927 B2 JP6435927 B2 JP 6435927B2
Authority
JP
Japan
Prior art keywords
superconducting bulk
bulk body
magnetic field
surface portion
bulk magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015042327A
Other languages
Japanese (ja)
Other versions
JP2016162952A (en
Inventor
手嶋 英一
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015042327A priority Critical patent/JP6435927B2/en
Publication of JP2016162952A publication Critical patent/JP2016162952A/en
Application granted granted Critical
Publication of JP6435927B2 publication Critical patent/JP6435927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、酸化物超電導バルク体を利用した超電導バルク磁石及び超電導バルク磁石の着磁方法に関する。   The present invention relates to a superconducting bulk magnet using an oxide superconducting bulk body and a method for magnetizing the superconducting bulk magnet.

特許文献1では、RE(Yを含む希土類元素)、Ba、Cuの酸化物からなる酸化物超電導体において、前記RE、Ba、Cuの酸化物超電導体の組織REBaCu7−x相中に直径20μm以下のREBaCuOが分散した組織を有することを特徴とする酸化物超電導バルク材料が提案されている。このような単結晶状のREBaCu7−x(REはY又は希土類元素から選ばれる1種又は2種以上の元素。xは酸素欠損量で、0.2以下)中にREBaCuOが微細分散した超電導バルク体は、強いピン止め力を有しているので、従来の永久磁石に比べて非常に強力な磁場発生源になりうる。このような超電導バルク体を利用した磁場発生源を超電導バルク磁石と呼ぶ。 In Patent Document 1, in an oxide superconductor composed of oxides of RE (rare earth elements including Y), Ba, and Cu, the structure RE 1 Ba 2 Cu 3 O 7− of the oxide superconductor of RE, Ba, and Cu is used. An oxide superconducting bulk material characterized by having a structure in which RE 2 BaCuO 5 having a diameter of 20 μm or less is dispersed in the x phase has been proposed. In such single-crystal RE 1 Ba 2 Cu 3 O 7-x (RE is one or more elements selected from Y or rare earth elements, x is an oxygen deficiency, 0.2 or less) Since the superconducting bulk material in which RE 2 BaCuO 5 is finely dispersed has a strong pinning force, it can be a very strong magnetic field generation source compared to a conventional permanent magnet. A magnetic field generation source using such a superconducting bulk body is called a superconducting bulk magnet.

超電導体のピン止め力の原理を説明するビーンモデルによると、超電導バルク磁石における磁場ピーク値や磁気勾配は、超電導バルク体の臨界電流密度(J)という特性と試料サイズによって決まることが知られている。すなわち、磁気勾配は臨界電流密度Jに比例し、磁場ピーク値は臨界電流密度Jと試料サイズの積に比例する。そのため、磁場強度の強い超電導バルク磁石を開発するために、超電導バルク体の高臨界電流密度J化や大型化に関する研究開発が世界中で行われている。 According to the bean model that explains the principle of pinning force of superconductors, it is known that the magnetic field peak value and magnetic gradient in a superconducting bulk magnet are determined by the critical current density ( Jc ) characteristic of the superconducting bulk body and the sample size. ing. That is, the magnetic gradient is proportional to the critical current density Jc , and the magnetic field peak value is proportional to the product of the critical current density Jc and the sample size. For this reason, in order to develop a superconducting bulk magnet having a strong magnetic field strength, research and development relating to the formation of a high critical current density Jc and an increase in size of the superconducting bulk body are being carried out all over the world.

このように超電導バルク磁石には、コンパクトで強磁場、高い磁気勾配という優れた特長があるため、医療分野での磁気ターゲティングや磁気的薬剤搬送システム、環境分野での磁気分離を始め、船舶用モータや風力発電用発電機などの磁石を利用する応用において、これらの機器を大幅に小型軽量化するものとして期待されている。   Thus, superconducting bulk magnets have excellent features such as compact, strong magnetic field, and high magnetic gradient. Therefore, marine motors such as magnetic targeting and magnetic drug delivery systems in the medical field and magnetic separation in the environmental field are being used. In applications using magnets such as generators for wind turbines and wind power generators, these devices are expected to be significantly reduced in size and weight.

超電導バルク磁石に用いられる超電導バルク体の形状としては、特許文献2に開示されているように、円柱形状のものが一般的である。円柱形状の超電導バルク体の場合、円柱の平らな面(円形状の端面)が磁場発生面となるように着磁されている。さらに特許文献2では、電磁力による超電導体の破壊防止ために、外周部に金属リングの補強を設けている。   As the shape of the superconducting bulk body used for the superconducting bulk magnet, as disclosed in Patent Document 2, a cylindrical shape is generally used. In the case of a cylindrical superconducting bulk body, the cylindrical flat surface (circular end surface) is magnetized so as to be a magnetic field generating surface. Furthermore, in patent document 2, in order to prevent destruction of the superconductor due to electromagnetic force, metal ring reinforcement is provided on the outer peripheral portion.

また、特許文献3には、最高点の高さが0.5mm以上の凸部か、最深点の深さが0.5mm以上の凹部の少なくともいずれか一方が作用面(磁場発生面)に存在することを特徴とする超電導バルク体に磁場を捕捉することが開示されている。このような形状の超電導バルク体を用いることよって、磁場発生面から発生する磁場の均一性や指向性を簡便に制御することができるとされている。特許文献3には、磁場の指向性については、特定の狭い範囲の磁場を高めることとしているが、磁気勾配の分布については特に記載はない。   In Patent Document 3, at least one of a convex portion having a height of 0.5 mm or more at the highest point and a concave portion having a depth of 0.5 mm or more at the deepest point is present on the working surface (magnetic field generating surface). It is disclosed that a magnetic field is trapped in a superconducting bulk body characterized by: It is said that the uniformity and directivity of the magnetic field generated from the magnetic field generating surface can be easily controlled by using such a superconducting bulk body. In Patent Document 3, regarding the directivity of the magnetic field, the magnetic field in a specific narrow range is increased, but the distribution of the magnetic gradient is not particularly described.

特開平2−153803号公報Japanese Patent Laid-Open No. 2-153803 特開平11−335120号公報JP 11-335120 A 特開平2014−138039号公報Japanese Patent Laid-Open No. 2014-138039

超電導バルク体の応用分野の1つである医療分野での磁気ターゲティングや磁気的薬剤搬送システムでは、対象とする患部によっては、比較的狭い領域に強磁場かつ高い磁気勾配を有する磁場が求められる。そのような場合、超電導バルク磁石の磁場分布としては、磁気勾配が超電導バルク磁石中央部に向かって連続的に大きくなるような磁場分布が望ましい。すなわち、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなることが望ましい。   In magnetic targeting and magnetic drug delivery systems in the medical field, which is one of the application fields of superconducting bulk materials, a magnetic field having a strong magnetic field and a high magnetic gradient is required in a relatively narrow region depending on the affected area. In such a case, the magnetic field distribution of the superconducting bulk magnet is desirably a magnetic field distribution in which the magnetic gradient continuously increases toward the central portion of the superconducting bulk magnet. That is, it is desirable that the magnetic gradient simultaneously increase near the central portion of the superconducting bulk body having the highest magnetic field strength.

しかしながら、従来の超電導バルク磁石では、磁気勾配は材料特性(J)に比例するためほぼ一定である。磁気勾配が超電導バルク磁石中央部に向かって連続的に大きくなるような磁場分布を得るためには、超電導バルク体の材料組成や微細組織等を変化させるような手段にて、材料特性(J)を端部から中央部に向かって連続的に高特性化するように超電導バルク体を製作する必要がある。しかし、そのような超電導バルク体は製造が容易ではないという問題がある。 However, in a conventional superconducting bulk magnet, the magnetic gradient is proportional to the material property (J c ) and is therefore almost constant. For magnetic gradient obtained continuously larger such magnetic field distribution toward the superconducting bulk magnet central part, in such means as changing the material composition and microstructure such as the superconducting bulk material properties (J c It is necessary to manufacture a superconducting bulk body so as to continuously improve the characteristics from the end toward the center. However, there is a problem that such a superconducting bulk body is not easy to manufacture.

一方、特許文献3には、磁場の指向性を強め、特定の狭い範囲の磁場を高めることが示されているが、磁場の指向性を高めることと、磁気勾配を大きくすることは同じではない。特定の狭い範囲の磁場を高めても、その範囲の磁気勾配が必ずしも高くはならない。従って、単に磁場発生面に凸部を設けた超電導バルク体を用いただけでは、磁場強度が最も高い超電導バルク体中央部付近で磁気勾配も同時に高くなることにはならないし、磁気勾配が超電導バルク磁石中央部に向かって連続的に大きくなるような磁場分布にもならない。   On the other hand, Patent Document 3 shows that the directivity of a magnetic field is strengthened and the magnetic field in a specific narrow range is increased. However, increasing the directivity of a magnetic field is not the same as increasing the magnetic gradient. . Increasing the magnetic field in a specific narrow range does not necessarily increase the magnetic gradient in that range. Therefore, simply using a superconducting bulk body with a convex portion on the magnetic field generating surface does not increase the magnetic gradient at the same time near the center of the superconducting bulk body where the magnetic field strength is the highest. The magnetic field distribution does not continuously increase toward the center.

そこで、本発明では、上記の問題に鑑みてなされたものであり、本発明の目的とするところは、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a superconducting bulk magnet having a magnetic gradient that is also high near the center of the superconducting bulk body having the highest magnetic field strength. It is to provide.

本発明の超電導バルク体を利用した超電導バルク磁石は、以下のとおりである。   The superconducting bulk magnet using the superconducting bulk body of the present invention is as follows.

(1)
単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導バルク磁石であって、
前記酸化物超電導バルク体の形状が、平面部と部分球面部とからなる部分球状、又は、平面部と円錐面部とからなる円錐状であることを特徴とする、超電導バルク磁石。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
(2)
前記平面部を支持する支持板と、
前記部分球面部又は前記円錐面部を取り囲むように配置されると共に、前記支持板に接続されて、前記酸化物超電導バルク体を補強する補強体と、
を更に備えることを特徴とする、(1)に記載の超電導バルク磁石。
(3)
前記補強体は、前記酸化物超電導バルク体の部分球面部又は円錐面部と同形状にくり抜かれた金属製の補強体であることを特徴とする、(2)に記載の超電導バルク磁石。
(4)
前記補強体は、
前記支持板に接続された円柱状の補強リングと、
当該補強リングの内壁と前記部分球面部又は前記円錐面部との間の空間に存在する樹脂と、
からなることを特徴とする、(2)に記載の超電導バルク磁石。
(5)
前記円柱状の補強リングは、前記支持板と接続されている端部と反対側の端部において、内周面から内向きに突出する鍔部を有することを特徴とする、(4)に記載の超電導バルク磁石。
(6)
(1)〜(5)のいずれか1項に記載の超電導バルク磁石の着磁方法であって、
前記酸化物超電導バルク体の平面部に垂直な方向を、磁場方向に向けて磁場中冷却し、前記部分球面部、又は、前記円錐面部が磁場発生面になるように着磁することを特徴とする、超電導バルク磁石の着磁方法。
(7)
単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導バルク磁石であって、
前記酸化物超電導バルク体の形状は、円形の平面部と、前記平面部の中央部が最も厚く、前記平面部の外周部に向かって連続的に厚さが薄くなり、外周部でゼロとなる形状を有する立体部とからなる形状であることを特徴とする、超電導バルク磁石。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
(1)
A superconducting bulk magnet using an oxide superconducting bulk in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
The superconducting bulk magnet is characterized in that the shape of the oxide superconducting bulk body is a partial sphere composed of a flat surface portion and a partial spherical surface portion or a conical shape composed of a flat surface portion and a conical surface portion.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.
(2)
A support plate for supporting the planar portion;
A reinforcing body that is disposed so as to surround the partial spherical surface portion or the conical surface portion and is connected to the support plate to reinforce the oxide superconducting bulk body;
The superconducting bulk magnet according to (1), further comprising:
(3)
The superconducting bulk magnet according to (2), wherein the reinforcing body is a metallic reinforcing body cut out in the same shape as a partial spherical surface portion or a conical surface portion of the oxide superconducting bulk body.
(4)
The reinforcing body is
A cylindrical reinforcing ring connected to the support plate;
A resin present in the space between the inner wall of the reinforcing ring and the partial spherical surface portion or the conical surface portion;
The superconducting bulk magnet according to (2), characterized by comprising:
(5)
(4) The columnar reinforcing ring has a flange that protrudes inward from the inner peripheral surface at an end opposite to the end connected to the support plate. Superconducting bulk magnet.
(6)
(1) It is a magnetizing method of the superconducting bulk magnet described in any one of (5),
A direction perpendicular to the plane portion of the oxide superconducting bulk body is cooled in a magnetic field in the direction of the magnetic field, and magnetized so that the partial spherical surface portion or the conical surface portion becomes a magnetic field generating surface. To magnetize a superconducting bulk magnet.
(7)
A superconducting bulk magnet using an oxide superconducting bulk in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
The shape of the oxide superconducting bulk body is that the circular flat portion and the central portion of the flat portion are the thickest, the thickness continuously decreases toward the outer peripheral portion of the flat portion, and becomes zero at the outer peripheral portion. A superconducting bulk magnet characterized by having a shape comprising a three-dimensional part having a shape.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.

以上説明したように本発明によれば、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を提供することができる。   As described above, according to the present invention, it is possible to provide a superconducting bulk magnet in which the magnetic gradient is increased at the same time near the central portion of the superconducting bulk body having the highest magnetic field strength.

本発明の実施形態に係る超電導バルク磁石の一例を示す概念図である。It is a conceptual diagram which shows an example of the superconducting bulk magnet which concerns on embodiment of this invention. 本発明の実施形態に係る超電導バルク磁石と従来の超電導バルク磁石の磁場分布の比較図である。It is a comparison figure of the magnetic field distribution of the superconducting bulk magnet which concerns on embodiment of this invention, and the conventional superconducting bulk magnet. 本発明の実施形態に係る超電導バルク磁石の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on embodiment of this invention. 本発明の実施形態に係る超電導バルク磁石の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on embodiment of this invention. 本発明の実施形態に係る超電導バルク磁石の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the superconducting bulk magnet which concerns on embodiment of this invention. 実施例1での超電導バルク体の構成を比較する説明図である。It is explanatory drawing which compares the structure of the superconducting bulk body in Example 1. FIG. 実施例2での超電導バルク磁石の構成を比較する説明図である。It is explanatory drawing which compares the structure of the superconducting bulk magnet in Example 2. FIG. 実施例3での超電導バルク磁石の構成を比較する説明図である。It is explanatory drawing which compares the structure of the superconducting bulk magnet in Example 3. FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明の実施形態で用いる超電導バルク体は、単結晶状のREBaCu7−x相(123相)中に直径20μm以下のREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するものであればよく、特に、非超電導相が微細分散した組織を有するバルク材(所謂QMG(登録商標)材料)が望ましい。ここで、単結晶状というのは、完璧な単結晶でなく、小傾角粒界等の実用に差支えない欠陥を有するものも包含するという意味である。123相及び211相におけるREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素及びそれらの組み合わせで、La、Nd、Sm、Eu、Gdを含む123相は1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なっていることが知られている。 The superconducting bulk used in the embodiment of the present invention is typified by a RE 2 BaCuO 5 phase (211 phase) having a diameter of 20 μm or less in a single crystal RE 1 Ba 2 Cu 3 O 7-x phase (123 phase). In particular, a bulk material (so-called QMG (registered trademark) material) having a structure in which the non-superconducting phase is finely dispersed is desirable. Here, the term “single crystal” means that it is not a perfect single crystal, but also includes those having defects that may be practically used such as a low-angle grain boundary. RE in the 123 phase and the 211 phase is a rare earth element composed of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and combinations thereof, and La, Nd, Sm, Eu, The 123 phase containing Gd deviates from the 1: 2: 3 stoichiometric composition, and Ba may be partially substituted at the RE site. In the 211 phase which is a non-superconducting phase, La and Nd are somewhat different from Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the ratio of metal elements is non-stoichiometric. It is known that it has a theoretical composition or a different crystal structure.

前述のBa元素の置換は、臨界温度を低下させる傾向がある。また、より酸素分圧の小さい環境においては、Ba元素の置換が抑制される傾向にある。   Substitution of the Ba element described above tends to lower the critical temperature. Further, in an environment with a lower oxygen partial pressure, substitution of Ba element tends to be suppressed.

123相は、211相とBaとCuとの複合酸化物からなる液相との包晶反応、
211相+液相(BaとCuの複合酸化物) → 123相
によりできる。そして、この包晶反応により、123相ができる温度(Tf:123相生成温度)は、ほぼRE元素のイオン半径に関連し、イオン半径の減少に伴いTfも低くなる。また、低酸素雰囲気及びAg添加に伴い、Tfは低下する傾向にある。
The 123 phase is a peritectic reaction between the 211 phase and a liquid phase composed of a composite oxide of Ba and Cu.
211 phase + liquid phase (complex oxide of Ba and Cu) → 123 phase. The temperature at which the 123 phase is formed by this peritectic reaction (Tf: 123 phase formation temperature) is substantially related to the ionic radius of the RE element, and Tf also decreases as the ionic radius decreases. Further, Tf tends to decrease with the addition of a low oxygen atmosphere and Ag.

単結晶状の123相中に211相が微細分散した材料は、123相が結晶成長する際、未反応の211粒が123相中に取り残されるためにできる。即ち、上記バルク材は、
211相+液相(BaとCuの複合酸化物) → 123相+211相
で示される反応によりできる。
A material in which the 211 phase is finely dispersed in the single-crystal 123 phase can be formed because 211 unreacted grains are left in the 123 phase when the 123 phase is crystal-grown. That is, the bulk material is
211 phase + liquid phase (complex oxide of Ba and Cu) → It can be performed by the reaction shown by 123 phase + 211 phase.

バルク材中の211相の微細分散は、臨界電流密度(J)向上の観点から極めて重要である。Pt、Rh又はCeの少なくとも一つを微量添加することで、半溶融状態(211相と液相からなる状態)での211相の粒成長が抑制され、結果的に材料中の211相が約1μm程度に微細化される。添加量は、微細化効果が現れる量及び材料コストの観点から、Ptで0.2〜2.0質量%、Rhで0.01〜0.5質量%、Ceで0.5〜2.0質量%が望ましい。添加されたPt、Rh、Ceは123相中に一部固溶する。また、固溶できなかった元素は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。 The fine dispersion of the 211 phase in the bulk material is extremely important from the viewpoint of improving the critical current density (J c ). By adding a trace amount of at least one of Pt, Rh, or Ce, the grain growth of the 211 phase in the semi-molten state (a state composed of the 211 phase and the liquid phase) is suppressed, and as a result, the 211 phase in the material is reduced to about The size is reduced to about 1 μm. The addition amount is 0.2 to 2.0 mass% for Pt, 0.01 to 0.5 mass% for Rh, and 0.5 to 2.0 mass for Ce from the viewpoint of the amount of the effect of miniaturization and the material cost. The mass% is desirable. The added Pt, Rh, and Ce partially dissolve in the 123 phase. In addition, elements that could not be dissolved form a composite oxide with Ba and Cu and are scattered in the material.

また、超電導バルク磁石を構成する超電導バルク体は、磁場中においても高い臨界電流密度(J)を有する必要がある。この条件を満たすには、超電導的に弱結合となる大傾角粒界を含まない単結晶状の123相である必要がある。さらに高いJc特性を有するためには、磁束の動きを止めるためのピン止め点が必要となる。このピン止め点として機能するものが微細分散した211相であり、より細かく多数分散していることが望ましい。先に述べたように、Pt、RhやCeは、この211相の微細化を促進する働きがある。また、ピン止め点として、BaCeO、BaSiO、BaGeO、BaSnO等の可能性が知られている。また、211相等の非超電導相は、劈開し易い123相中に微細分散することによって、超電導バルク体を機械的に強化し、実用材料として成り立たす重要な働きをも担っている。 In addition, the superconducting bulk body constituting the superconducting bulk magnet needs to have a high critical current density ( Jc ) even in a magnetic field. In order to satisfy this condition, it is necessary that the phase is a single-crystal 123 phase that does not include large-angle grain boundaries that are superconductively weakly coupled. In order to have higher Jc characteristics, a pinning point for stopping the movement of magnetic flux is required. What functions as the pinning point is the finely dispersed 211 phase, and it is desirable that many finely dispersed. As described above, Pt, Rh, and Ce have a function of promoting the refinement of the 211 phase. Moreover, the possibility of BaCeO 3 , BaSiO 3 , BaGeO 3 , BaSnO 3, etc. is known as a pinning point. Further, the non-superconducting phase such as the 211 phase has an important function of mechanically strengthening the superconducting bulk body by being finely dispersed in the 123 phase that is easy to cleave, and as a practical material.

123相中の211相の割合は、J特性及び機械強度の観点から、5〜35体積%が望ましい。また、材料中には、50〜500μm程度のボイド(気泡)を5〜20体積%含むことが一般的であり、さらにAg添加した場合、添加量によって1〜500μm程度のAg又はAg化合物を0体積%超25体積%以下含む。 211 phase ratio of 123 phase, from the viewpoint of J c properties and mechanical strength, is desirably 5 to 35% by volume. Further, the material generally contains 5 to 20% by volume of voids (bubbles) of about 50 to 500 μm, and when Ag is added, 0 to about 1 to 500 μm of Ag or Ag compound is added depending on the addition amount. More than 25% by volume.

また、結晶成長後の超電導バルク体の酸素欠損量(x)は、0.5程度で半導体的な抵抗率の温度変化を示す。これを各RE系により350℃〜600℃で100時間程度、酸素雰囲気中においてアニールすることにより酸素が超電導バルク体中に取り込まれ、酸素欠損量(x)は0.2以下となり、良好な超電導特性を示す。この時、超電導相中には双晶構造ができる。しかしながら、この点を含めここでは単結晶状と呼ぶことにする。   In addition, the oxygen deficiency (x) of the superconducting bulk body after crystal growth is about 0.5, indicating a temperature change of the semiconductor resistivity. This is annealed in an oxygen atmosphere at 350 ° C. to 600 ° C. for about 100 hours by each RE system, so that oxygen is taken into the superconducting bulk body and the oxygen deficiency (x) is 0.2 or less, which is a good superconductivity. Show the characteristics. At this time, a twin structure is formed in the superconducting phase. However, including this point, it is referred to as a single crystal here.

以下に、本発明の一実施形態について、図に沿って説明する。図1は、本実施形態における超電導バルク磁石を構成する超電導バルク体110の一例を示す概念図である。図1において、超電導バルク体110は部分球状、又は、円錐状の形状である。ここで部分球とは、球の一部を平面で切り取った形状のことをいう。部分球状の超電導バルク体110は、平面部と立体部である部分球面部とからなり、円錐状の超電導バルク体110は、平面部と立体部である円錐面部とからなる。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing an example of a superconducting bulk body 110 constituting the superconducting bulk magnet in the present embodiment. In FIG. 1, the superconducting bulk body 110 has a partially spherical or conical shape. Here, the partial sphere means a shape obtained by cutting a part of the sphere with a plane. The partially spherical superconducting bulk body 110 includes a planar portion and a partially spherical portion that is a three-dimensional portion, and the conical superconducting bulk body 110 includes a planar portion and a conical surface portion that is a three-dimensional portion.

超電導バルク磁石中の超電導バルク体110は、磁場中冷却法やパルス着磁法で着磁される。磁場中冷却法とは、超電導バルク体110を臨界温度以上に保持した状態で外部磁場を印加し、磁場を印加した状態のまま所定の温度に冷却してから、外部磁場を減磁することで超電導バルク体110を着磁する方法である。パルス着磁法とは、超電導バルク体110を臨界温度以下の所定の温度に冷却した状態で、パルス的な外部磁場を印加することで超電導バルク体110を着磁する方法である。パルス着磁法の方が着磁設備は簡便であるが、超電導バルク体110の着磁能力を最大限に生かすためには磁場中冷却法の方が好ましい。   The superconducting bulk body 110 in the superconducting bulk magnet is magnetized by a magnetic field cooling method or a pulse magnetizing method. In the magnetic field cooling method, an external magnetic field is applied in a state where the superconducting bulk body 110 is maintained at a critical temperature or higher, and the external magnetic field is demagnetized after being cooled to a predetermined temperature while the magnetic field is applied. This is a method of magnetizing the superconducting bulk body 110. The pulse magnetization method is a method of magnetizing the superconducting bulk body 110 by applying a pulsed external magnetic field in a state where the superconducting bulk body 110 is cooled to a predetermined temperature that is lower than the critical temperature. The pulse magnetizing method is simpler in the magnetizing equipment, but in order to make the best use of the magnetizing ability of the superconducting bulk body 110, the in-magnetic field cooling method is preferred.

本実施形態のような形状の超電導バルク体110を、磁場中冷却法やパルス着磁法で着磁する場合には、部分球又は円錐状の超電導バルク体110の底面(平面部)に垂直な方向を、磁場方向に向けて磁場中冷却することによって、超電導バルク体110の部分球状面、又は、円錐面が磁場発生面112になるように着磁することができる。超電導バルク体110の部分球状面、又は、円錐面を磁場発生面112とすることで、磁場強度が最も高い超電導バルク体110の中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を構成することができる。超電導バルク体110の着磁方向の厚さは、部分球状、又は、円錐状の形状のどちらの場合も、超電導バルク体110の中央部が最も厚くなっている。更に、超電導バルク体110に厚さは、外周部に向かって連続的に薄くなっており、外周部では超電導バルク体110の厚さはゼロとなる。   When the superconducting bulk body 110 having the shape as in the present embodiment is magnetized by a magnetic field cooling method or a pulse magnetizing method, the superconducting bulk body 110 is perpendicular to the bottom surface (planar portion) of the partial sphere or conical superconducting bulk body 110. By cooling in the magnetic field in the direction of the magnetic field, the superconducting bulk body 110 can be magnetized so that the partial spherical surface or the conical surface becomes the magnetic field generating surface 112. By forming the partial spherical surface or the conical surface of the superconducting bulk body 110 as the magnetic field generating surface 112, a superconducting bulk magnet having a high magnetic gradient is formed near the center of the superconducting bulk body 110 having the highest magnetic field strength. be able to. Regarding the thickness of the superconducting bulk body 110 in the magnetization direction, the central portion of the superconducting bulk body 110 is the thickest in both cases of a partial spherical shape or a conical shape. Further, the thickness of the superconducting bulk body 110 is continuously reduced toward the outer peripheral portion, and the thickness of the superconducting bulk body 110 is zero at the outer peripheral portion.

このように、超電導バルク体110の形状は、円形の平面部と、中央部が最も厚く、外周部に向かって連続的に厚さが薄くなり、外周部でゼロとなる形状を有する立体部とからなる形状であれば、どのような形状でも本実施形態と同様の効果を有する。磁場分布の対象性が要求される場合や、製作の容易さを考慮すると、立体部の形状は、円形の平面部の中心点から立体部の中央部の最厚点へ伸ばした垂線を軸として、3次元軸対象であることが好ましい。また、製作の容易さを重視する場合には、超電導バルク体110の形状は、部分球状、又は、円錐状の形状が好ましい。上述したように、超電導バルク体110は単結晶状に結晶成長させたものであり、一般的には円柱形状の前駆体を用いて結晶成長させることが多い。そのような場合には、機械的加工によって、部分球状、又は、円錐状の形状の所定の形状の超電導バルク体110を形成することができる。   Thus, the shape of the superconducting bulk body 110 includes a circular flat surface portion, a solid portion having a shape in which the central portion is the thickest, the thickness continuously decreases toward the outer peripheral portion, and becomes zero at the outer peripheral portion. As long as the shape is made of any shape, the same effect as in the present embodiment is obtained. When the objectivity of the magnetic field distribution is required or considering the ease of manufacture, the shape of the solid part is centered on a perpendicular extending from the center point of the circular flat part to the thickest point of the central part of the solid part It is preferable that the target is a three-dimensional axis. When emphasis is placed on the ease of manufacture, the shape of the superconducting bulk body 110 is preferably a partially spherical shape or a conical shape. As described above, the superconducting bulk body 110 is crystal-grown in a single crystal form, and is generally often grown using a cylindrical precursor. In such a case, the superconducting bulk body 110 having a predetermined shape such as a partially spherical shape or a conical shape can be formed by mechanical processing.

図2は、本実施形態における超電導バルク磁石と従来の超電導バルク磁石との磁場分布の比較である。図2(a)は本実施形態における超電導バルク磁石の超電導バルク体の一例で、超電導バルク体110は半球形状をしている。一方、図2(b)は従来の超電導バルク磁石の超電導バルク体の一例で、超電導バルク体11は円柱形状をしている。図2(a)の半球形状の超電導バルク体110の直径と、図2(b)の円柱形状の超電導バルク体11の直径は同じである。   FIG. 2 is a comparison of the magnetic field distribution between the superconducting bulk magnet in the present embodiment and the conventional superconducting bulk magnet. FIG. 2A is an example of the superconducting bulk body of the superconducting bulk magnet in this embodiment, and the superconducting bulk body 110 has a hemispherical shape. On the other hand, FIG. 2B is an example of a superconducting bulk body of a conventional superconducting bulk magnet, and the superconducting bulk body 11 has a cylindrical shape. The diameter of the hemispherical superconducting bulk body 110 in FIG. 2 (a) is the same as the diameter of the cylindrical superconducting bulk body 11 in FIG. 2 (b).

それぞれの超電導バルク磁石は、図中の矢印の向きに着磁されている。すなわち、図2(a)の超電導バルク体110は部分球状面が磁場発生面であり、図2(b)の超電導バルク体11は円柱の平らな面が磁場発生面である。図2(b)に示す従来の超電導バルク体11では、磁気勾配はほぼ一定である。一方、図2(a)に示す本実施形態に係る超電導バルク体110の場合、磁気勾配が超電導バルク体110の中央部に向かって連続的に大きくなっている。すなわち、磁場強度が最も高い超電導バルク体110の中央部付近で、磁気勾配も同時に高くなっている。このような磁場分布を有するのは、本実施形態に係る超電導バルク体110の形状が中央部で最も厚く、外周部に向かって連続的に厚さが薄くなり、外周部でゼロになっているためである。   Each superconducting bulk magnet is magnetized in the direction of the arrow in the figure. That is, the superconducting bulk body 110 in FIG. 2A has a partially spherical surface as a magnetic field generating surface, and the superconducting bulk body 11 in FIG. 2B has a flat cylindrical surface as a magnetic field generating surface. In the conventional superconducting bulk body 11 shown in FIG. 2B, the magnetic gradient is substantially constant. On the other hand, in the case of the superconducting bulk body 110 according to the present embodiment shown in FIG. 2A, the magnetic gradient continuously increases toward the central portion of the superconducting bulk body 110. That is, the magnetic gradient is also increased near the central portion of the superconducting bulk body 110 having the highest magnetic field strength. The superconducting bulk body 110 according to the present embodiment has such a magnetic field distribution that the shape of the superconducting bulk body 110 is the thickest at the center, continuously decreases toward the outer periphery, and becomes zero at the outer periphery. Because.

超電導バルク体110の厚さを外周部に向かって連続的に薄くすることによって、磁気勾配の分布をある程度変化させることができ、外周部の厚さをゼロにすることによって、外周部の磁場強度を小さくできる。その結果、磁場強度が最も強い超電導バルク体110の中央部付近の磁気勾配を顕著に大きくすることが可能になる。従って、本実施形態に係る超電導バルク体110の構造とすることで、磁場強度が最も高い超電導バルク体110の中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を提供できる。なお、本実施形態に係る超電導バルク体110は外周部でその厚みがゼロとなっているが、加工時の面取り程度の厚さがあっても同様の効果を有する。   By continuously reducing the thickness of the superconducting bulk body 110 toward the outer peripheral portion, the magnetic gradient distribution can be changed to some extent, and by setting the outer peripheral thickness to zero, the magnetic field strength of the outer peripheral portion can be changed. Can be reduced. As a result, the magnetic gradient in the vicinity of the central portion of the superconducting bulk body 110 having the strongest magnetic field strength can be significantly increased. Therefore, by adopting the structure of the superconducting bulk body 110 according to the present embodiment, it is possible to provide a superconducting bulk magnet having a high magnetic gradient at the same time in the vicinity of the central portion of the superconducting bulk body 110 having the highest magnetic field strength. In addition, although the thickness of the superconducting bulk body 110 according to the present embodiment is zero at the outer peripheral portion, the same effect can be obtained even if the thickness is about the chamfered shape during processing.

ここで、超電導バルク磁石は、永久磁石では実現できない数T級の非常に強い磁場を発生することができるが、超電導バルク体110が磁化される際に超電導バルク体110内に強い電磁力が発生し、超電導バルク体110が破壊する可能性がある。超電導バルク体110の破壊を防止するために、超電導バルク体110を補強する補強体を設けた方が好ましい。また、超電導バルク磁石を冷却することで、超電導バルク体110と補強体との熱収縮率の違いによって超電導バルク体110内に圧縮応力が作用し、超電導バルク体110が磁化される際の電磁力を軽減することができる。補強体の材質としては、ステンレス鋼、銅合金、アルミ合金、チタンが好ましい。超電導バルク体110と補強体の間に樹脂の薄い層を設けることで、補強体による応力が超電導バルク体110により均一にかかるようになる。   Here, the superconducting bulk magnet can generate a very strong magnetic field of several T class that cannot be realized by a permanent magnet, but a strong electromagnetic force is generated in the superconducting bulk body 110 when the superconducting bulk body 110 is magnetized. In addition, the superconducting bulk body 110 may be destroyed. In order to prevent the superconducting bulk body 110 from being destroyed, it is preferable to provide a reinforcing body that reinforces the superconducting bulk body 110. In addition, by cooling the superconducting bulk magnet, a compressive stress acts on the superconducting bulk body 110 due to the difference in thermal shrinkage between the superconducting bulk body 110 and the reinforcing body, and electromagnetic force when the superconducting bulk body 110 is magnetized. Can be reduced. As the material of the reinforcing body, stainless steel, copper alloy, aluminum alloy, and titanium are preferable. By providing a thin resin layer between the superconducting bulk body 110 and the reinforcing body, the stress due to the reinforcing body is uniformly applied to the superconducting bulk body 110.

しかしながら、本実施形態に係る超電導バルク体110は外周部でその厚みがゼロとなっている。すなわち、外周部においてストレートな側面を有していないので、従来のストレートな内側面を有する円環状の金属製補強リングを補強体として用いるだけでは、超電導バルク体110を固定する効果が小さく、十分な補強効果を得ることができない。従来のストレートな内側面を有する円環状の金属製補強リングを用いた場合には、超電導バルク体110が円環状の金属製補強リングの中を簡単に上下に移動してしまう。   However, the thickness of the superconducting bulk body 110 according to this embodiment is zero at the outer periphery. That is, since the outer peripheral portion does not have a straight side surface, the effect of fixing the superconducting bulk body 110 is small and sufficient only by using a conventional annular metal reinforcing ring having a straight inner side surface as a reinforcing body. Can not get a strong reinforcing effect. When a conventional annular metal reinforcement ring having a straight inner surface is used, the superconducting bulk body 110 easily moves up and down in the annular metal reinforcement ring.

そこで、本実施形態に係る超電導バルク磁石100Aにおいて、一端部が支持板130に接続された超電導バルク体110を金属製補強リング122で補強する場合には、図3Aのように、金属製補強リング122と超電導バルク体110との間の大きな隙間に樹脂124を充填する。本実施形態では金属製補強リング122と充填された樹脂124とを併せて補強体120Aと呼ぶことにする。金属製補強リング122と樹脂124とで補強体120Aを形成することによって、超電導バルク体110を効果的に補強することができる。さらに、図3Bのように、金属製補強リング122の、支持板130に接続された端部と反対側の端部に、内周面から内向きに突出する鍔部126を設けることによって、隙間に充填された樹脂124や超電導バルク体110が上下方向にずれることを抑制できる。その結果、より強固に超電導バルク体110を固定できるので、補強体120Bによる補強の効果は一層増す。   Therefore, in the superconducting bulk magnet 100A according to the present embodiment, when the superconducting bulk body 110 having one end connected to the support plate 130 is reinforced with the metal reinforcing ring 122, as shown in FIG. Resin 124 is filled in a large gap between 122 and superconducting bulk body 110. In the present embodiment, the metal reinforcing ring 122 and the filled resin 124 are collectively referred to as a reinforcing body 120A. By forming the reinforcing body 120A with the metal reinforcing ring 122 and the resin 124, the superconducting bulk body 110 can be effectively reinforced. Further, as shown in FIG. 3B, a gap 126 is provided on the end of the metal reinforcing ring 122 opposite to the end connected to the support plate 130 by projecting inward from the inner peripheral surface. It is possible to suppress the resin 124 and the superconducting bulk body 110 filled in the vertical displacement. As a result, since the superconducting bulk body 110 can be fixed more firmly, the effect of reinforcement by the reinforcing body 120B is further increased.

あるいは、図4に示す超電導バルク磁石100Cのように、補強体120Cを、円柱形状のアルミ合金等から超電導バルク体110の外形(例えば、部分球面部又は円錐面部)と同形状にくり抜いて形成してもよい。これによって、金属製補強リングと超電導バルク体間の大きな隙間に樹脂を充填するという手間を省くことができるので、より好ましい。   Alternatively, like the superconducting bulk magnet 100C shown in FIG. 4, the reinforcing body 120C is formed by hollowing out a cylindrical aluminum alloy or the like into the same shape as the outer shape of the superconducting bulk body 110 (for example, a partial spherical surface portion or a conical surface portion). May be. Accordingly, it is possible to save the trouble of filling the resin into the large gap between the metal reinforcing ring and the superconducting bulk body, which is more preferable.

図3A、図3B又は図4のような補強体120A、120B、120Cを用いることによって、超電導バルク磁石100A、100B、100Cを冷却した際に、超電導バルク体110と補強体120A、120B、120Cとの熱収縮率の違いによって超電導バルク体110内に圧縮応力が作用し、超電導バルク体110が磁化される際の電磁力を軽減させることができる。しかしながら、本実施形態に係る超電導バルク磁石100A、100B、100Cの場合、補強体120A、120B、120Cから超電導バルク体110に圧縮応力が作用すると、超電導バルク体110が下側、すなわち平坦面を有する側に飛び出し、外れる恐れがある。   When the superconducting bulk magnets 100A, 100B, and 100C are cooled by using the reinforcing bodies 120A, 120B, and 120C as shown in FIGS. 3A, 3B, and 4, the superconducting bulk body 110 and the reinforcing bodies 120A, 120B, and 120C Compressive stress acts in the superconducting bulk body 110 due to the difference in thermal contraction rate, and the electromagnetic force when the superconducting bulk body 110 is magnetized can be reduced. However, in the case of the superconducting bulk magnets 100A, 100B, and 100C according to the present embodiment, when compressive stress acts on the superconducting bulk body 110 from the reinforcing bodies 120A, 120B, and 120C, the superconducting bulk body 110 has a lower side, that is, a flat surface. There is a risk of jumping to the side and coming off.

このような冷却時に超電導バルク体110が補強体120A、120B、120Cから外れることは、図3A、図3B又は図4のように、超電導バルク体110の平らな面側に、ボルト等で機械的に固定した支持板130を設けることで防止することができる。なお、超電導バルク磁石100A、100B、100Cを冷凍機で冷却する場合には、磁場発生面と反対側を冷凍機のコールドヘッドに取り付けることになるが、その場合には支持板130は省略してもよい。   When the superconducting bulk body 110 is disengaged from the reinforcing bodies 120A, 120B, 120C during such cooling, it is mechanically attached to the flat surface side of the superconducting bulk body 110 with a bolt or the like, as shown in FIG. 3A, FIG. 3B, or FIG. This can be prevented by providing the support plate 130 fixed to the base plate. When superconducting bulk magnets 100A, 100B, and 100C are cooled by a refrigerator, the side opposite to the magnetic field generating surface is attached to the cold head of the refrigerator, but in that case, the support plate 130 is omitted. Also good.

以上、本実施形態に係る超電導バルク磁石について説明した。本実施形態によれば、超電導バルク磁石を構成する超電導バルク体の形状を、中央部で最も厚く、外周部に向かって連続的に厚さが薄くなり、外周部でゼロになる形状とする。超電導バルク体の厚さを端部に向かって連続的に薄くすることで磁気勾配の分布をある程度変化させることができ、外周部の厚さをゼロにすることで外周部の磁場強度を小さくすることができる。その結果、磁場強度が最も強い超電導バルク体の中央部付近の磁気勾配を顕著に大きくすることが可能になる。   The superconducting bulk magnet according to the present embodiment has been described above. According to the present embodiment, the shape of the superconducting bulk body constituting the superconducting bulk magnet is the thickest at the center, continuously thins toward the outer periphery, and becomes zero at the outer periphery. The magnetic gradient distribution can be changed to some extent by continuously reducing the thickness of the superconducting bulk body toward the edge, and the magnetic field strength at the outer periphery can be reduced by reducing the thickness of the outer periphery to zero. be able to. As a result, it is possible to significantly increase the magnetic gradient near the center of the superconducting bulk body having the strongest magnetic field strength.

(実施例1)
Ptを0.5質量%およびAgを15質量%含み、かつGdBaCu中にGdBaCuOが微細分散した単結晶状の超電導バルク体に機械的加工を施して、図5のように、超電導バルク体10A、10B、10Cを製作した。本発明の構造を有する超電導バルク体10Aは、図5(a)のように直径30mmの半球形状とした(実施例A)。
Example 1
A single crystal superconducting bulk body containing 0.5% by mass of Pt and 15% by mass of Ag and having Gd 2 BaCuO 5 finely dispersed in Gd 1 Ba 2 Cu 3 O y is mechanically processed. As shown in FIG. 5, superconducting bulk bodies 10A, 10B, and 10C were manufactured. The superconducting bulk body 10A having the structure of the present invention was formed in a hemispherical shape with a diameter of 30 mm as shown in FIG. 5A (Example A).

比較例として、超電導バルク体10Bは、図5(b)のように直径30mm、高さ15mmの円柱とし(比較例B)、超電導バルク体10Cは、図5(c)のように円柱部12の上下に略部分球14a、14bを組み合わせた形状で、円柱部12の厚さは5mmとした(比較例C)。   As a comparative example, the superconducting bulk body 10B is a cylinder having a diameter of 30 mm and a height of 15 mm as shown in FIG. 5B (Comparative Example B), and the superconducting bulk body 10C is a cylindrical portion 12 as shown in FIG. The thickness of the cylindrical portion 12 was 5 mm (Comparative Example C).

これらの超電導バルク体10A、10B、10Cを2Tの磁場中において液体窒素中で冷却する磁場中冷却法にて着磁した。着磁後の超電導バルク体10A、10B、10Cの中心部の磁場強度は、それぞれ0.69T、0.83T、0.75Tであった。超電導バルク体10Bの磁気勾配は、0.055T/mm、0.057T/mmでほぼ一定であった。また、超電導バルク体10Cの磁気勾配は、端部で若干の磁気勾配の変化はあったものの、中央部付近の磁気勾配は0.057T/mmでほぼ一定であった。   These superconducting bulk bodies 10A, 10B, and 10C were magnetized by a magnetic field cooling method in which they were cooled in liquid nitrogen in a 2T magnetic field. The magnetic field strengths of the central portions of the superconducting bulk bodies 10A, 10B, and 10C after magnetization were 0.69T, 0.83T, and 0.75T, respectively. The magnetic gradient of the superconducting bulk body 10B was substantially constant at 0.055 T / mm and 0.057 T / mm. In addition, although the magnetic gradient of the superconducting bulk body 10C was slightly changed at the end portion, the magnetic gradient in the vicinity of the central portion was substantially constant at 0.057 T / mm.

これらの比較例に対して、超電導バルク体10Aでは、磁気勾配が超電導バルク体中央部に向かって連続的に大きくなっており、中心部付近の磁場勾配は0.065T/mm、であった。超電導バルク体10Aでは、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなっていた。超電導バルク体10A、10Bの中央部付近の磁気勾配を比較すると、超電導バルク体10Bと比較して超電導バルク体10Aの磁場勾配が18%程度向上した。   In contrast to these comparative examples, in the superconducting bulk body 10A, the magnetic gradient was continuously increased toward the central portion of the superconducting bulk body, and the magnetic field gradient in the vicinity of the central portion was 0.065 T / mm. In the superconducting bulk body 10A, the magnetic gradient was simultaneously high near the central portion of the superconducting bulk body having the highest magnetic field strength. Comparing the magnetic gradients near the central portions of the superconducting bulk bodies 10A and 10B, the magnetic field gradient of the superconducting bulk body 10A was improved by about 18% compared to the superconducting bulk body 10B.

本結果から、本発明の構成とすることによって、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を提供することができることが判った。   From these results, it was found that the superconducting bulk magnet having a magnetic gradient also increased at the same time in the vicinity of the central portion of the superconducting bulk body having the highest magnetic field strength by using the configuration of the present invention.

(実施例2)
CeOを1質量%およびAgを10質量%含み、かつYBaCu中にYBaCuOが微細分散した単結晶状の超電導バルク体機械的加工を施して、図6のように、超電導バルク体20D、20E、20Fを製作した。本発明の構造を有する超電導バルク体20Dは、図6(a)のように直径46mm、高さ15mmの円錐形状とした(実施例D)。補強体22Dとして、非磁性のステンレス鋼SUS316L製の円柱から円錐形状をくり抜き、エポキシ系樹脂で超電導バルク体20Dを補強体22Dに接着固定した後、非磁性のステンレス鋼SUS316L製の支持板24Dを超電導バルク体20Dの背面に設けてボルト固定した。
(Example 2)
A single-crystal superconducting bulk material containing 1 % by mass of CeO 2 and 10% by mass of Ag and finely dispersed Y 2 BaCuO 5 in Y 1 Ba 2 Cu 3 O y was subjected to mechanical processing shown in FIG. Thus, superconducting bulk bodies 20D, 20E, and 20F were manufactured. A superconducting bulk body 20D having the structure of the present invention has a conical shape with a diameter of 46 mm and a height of 15 mm as shown in FIG. 6A (Example D). As the reinforcing body 22D, a conical shape is cut out from a cylinder made of nonmagnetic stainless steel SUS316L, and the superconducting bulk body 20D is bonded and fixed to the reinforcing body 22D with an epoxy resin, and then a support plate 24D made of nonmagnetic stainless steel SUS316L is attached. It was provided on the back surface of the superconducting bulk body 20D and bolted.

比較例として、超電導バルク体20Eは、図6(b)のように直径46mm、高さ15mmの円柱とし、非磁性のステンレス鋼SUS316Lで製作した金属製補強リング22Eとエポキシ系樹脂で接着固定した(比較例E)。別の比較例として、超電導バルク体20Fは、図6(c)のように円柱部と円錐を組み合わせた形状で、円柱部の厚さは5mmとした。超電導バルク体20Fの場合、金属製補強リング22Faと超電導バルク体20Fとの間に大きな隙間が生じるが、その隙間を樹脂22Fbで充填した(比較例F)。   As a comparative example, the superconducting bulk body 20E is a cylinder having a diameter of 46 mm and a height of 15 mm as shown in FIG. 6B, and is bonded and fixed to a metal reinforcing ring 22E made of nonmagnetic stainless steel SUS316L with an epoxy resin. (Comparative Example E). As another comparative example, the superconducting bulk body 20F has a shape in which a cylindrical portion and a cone are combined as shown in FIG. 6C, and the thickness of the cylindrical portion is 5 mm. In the case of the superconducting bulk body 20F, a large gap is formed between the metal reinforcing ring 22Fa and the superconducting bulk body 20F, and the gap was filled with the resin 22Fb (Comparative Example F).

これらの超電導バルク体を3.5Tの磁場中において液体窒素中で冷却する磁場中冷却法にて着磁した。着磁後の超電導バルク体20D、20E、20Fの中心部の磁場強度は、それぞれ0.88T、1.1T、0.95Tであった。超電導バルク体20Eの磁気勾配は、0.048T/mmでほぼ一定であった。また、超電導バルク体20Fの磁気勾配は、端部で若干の磁気勾配の変化はあったものの、中央部付近の磁気勾配は0.05T/mmでほぼ一定であった。   These superconducting bulk bodies were magnetized by a magnetic field cooling method in which cooling was performed in liquid nitrogen in a magnetic field of 3.5T. The magnetic field strengths of the central portions of the superconducting bulk bodies 20D, 20E, and 20F after magnetization were 0.88T, 1.1T, and 0.95T, respectively. The magnetic gradient of the superconducting bulk body 20E was substantially constant at 0.048 T / mm. In addition, although the magnetic gradient of the superconducting bulk body 20F slightly changed at the end portion, the magnetic gradient in the vicinity of the center portion was almost constant at 0.05 T / mm.

これらの比較例に対して、超電導バルク体20Dでは、磁気勾配が超電導バルク体中央部に向かって連続的に大きくなっており、中心部付近の磁場勾配は0.059T/mm、であった。超電導バルク体20Dでは、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなっていた。超電導バルク体20D、20Eの中央部付近の磁気勾配を比較すると、超電導バルク体20Eと比較して超電導バルク体20Dの磁場勾配が23%程度向上した。   In contrast to these comparative examples, in the superconducting bulk body 20D, the magnetic gradient was continuously increased toward the central portion of the superconducting bulk body, and the magnetic field gradient in the vicinity of the central portion was 0.059 T / mm. In the superconducting bulk body 20D, the magnetic gradient was also increased at the same time near the central portion of the superconducting bulk body having the highest magnetic field strength. Comparing the magnetic gradient in the vicinity of the central portion of the superconducting bulk bodies 20D and 20E, the magnetic field gradient of the superconducting bulk body 20D was improved by about 23% compared to the superconducting bulk body 20E.

本結果から、本発明によって、磁場強度が最も高い超電導バルク体中央部付近で、磁気勾配も同時に高くなる超電導バルク磁石を提供することができることが判った。   From this result, it has been found that the present invention can provide a superconducting bulk magnet having a magnetic gradient that is also high near the central portion of the superconducting bulk body having the highest magnetic field strength.

(実施例3)
CeOを2質量%およびAgを10質量%含み、かつEuBaCu中にEuBaCuOが微細分散した単結晶状の超電導バルク体機械的加工を施して、図7のように、超電導バルク体30G、30H、30I、30Jを製作した。本発明の補強リング構造を有する超電導バルク体30Gは、図7(a)のように直径20mmの半球形状とした(実施例G)。補強体32Gとして、アルミ合金製の円柱から半球形状をくり抜き、エポキシ系樹脂で超電導バルク体30Gを補強体32Gに接着固定した後、アルミ合金製の支持板34Gを背面からボルト固定した。
Example 3
A single-crystal superconducting bulk material containing 2% by mass of CeO 2 and 10% by mass of Ag and Eu 2 BaCuO 5 finely dispersed in Eu 1 Ba 2 Cu 3 O y was subjected to mechanical processing shown in FIG. Thus, superconducting bulk bodies 30G, 30H, 30I, and 30J were manufactured. The superconducting bulk body 30G having the reinforcing ring structure of the present invention was formed in a hemispherical shape having a diameter of 20 mm as shown in FIG. 7A (Example G). As the reinforcing body 32G, a hemispherical shape was cut out from an aluminum alloy column, and the superconducting bulk body 30G was bonded and fixed to the reinforcing body 32G with an epoxy resin, and then an aluminum alloy support plate 34G was bolted from the back.

本発明の別の補強体構造を有する超電導バルク体30Hは、同様に直径20mmの半球形状であるが、金属製補強リング32Hとして、図7(b)のようにアルミ合金製であり、内周面から内向きに突出する鍔部36Hのある円環形状とし、円環形状の金属製補強リング32Hと超電導バルク体30Hとの間に生じる大きな隙間はエポキシ系の樹脂32Hbで充填した(実施例H)。また、超電導バルク体30Iは、実施例G、Hと同様に直径20mmの半球形状として、補強体32Iを、図7(c)のようにアルミ合金製の鍔部のない円環形状の金属製補強リング32Iaと、円環形状の金属製補強リング32Iaと超電導バルク体30Iとの間に生じる大きな隙間を充填したエポキシ系の樹脂32Ibにより構成した。   The superconducting bulk body 30H having another reinforcing body structure of the present invention is also in the shape of a hemisphere having a diameter of 20 mm, but is made of an aluminum alloy as shown in FIG. An annular shape with a flange 36H protruding inward from the surface is formed, and a large gap generated between the annular metal reinforcing ring 32H and the superconducting bulk body 30H is filled with an epoxy resin 32Hb (Example) H). Further, the superconducting bulk body 30I has a hemispherical shape with a diameter of 20 mm as in Examples G and H, and the reinforcing body 32I is made of a ring-shaped metal made of aluminum alloy without a flange as shown in FIG. The reinforcing ring 32Ia and an epoxy resin 32Ib filled with a large gap formed between the annular metal reinforcing ring 32Ia and the superconducting bulk body 30I were used.

比較例として、超電導バルク体30Jは、実施例G、H、Iと同様の直径20mmの半球形状であり、補強体32Jも超電導バルク体30Gの補強体32Gと同様であるが、図7(d)のように支持板を設けない超電導バルク磁石について検証した(比較例J)。   As a comparative example, the superconducting bulk body 30J has a hemispherical shape with a diameter of 20 mm as in Examples G, H, and I, and the reinforcing body 32J is similar to the reinforcing body 32G of the superconducting bulk body 30G. ), A superconducting bulk magnet without a support plate was verified (Comparative Example J).

これらの超電導バルク体を液体窒素への冷却を10回繰り返した後、2Tの磁場中において液体窒素中で冷却する磁場中冷却法にて着磁した。超電導バルク体を着磁および冷却した状態にて、補強体部を冶具で固定した後、しっかり固定された鉄製ブロックをゆっくりと超電導バルク体の磁場発生面に近づけ、距離1cmの点で保持するという実験を行った。   These superconducting bulk bodies were cooled to liquid nitrogen 10 times, and then magnetized by a magnetic field cooling method in which cooling was performed in liquid nitrogen in a 2T magnetic field. After the superconducting bulk body is magnetized and cooled, the reinforcing body is fixed with a jig, and then the firmly fixed iron block is slowly brought closer to the magnetic field generating surface of the superconducting bulk body and held at a distance of 1 cm. The experiment was conducted.

比較例である超電導バルク体30Jについては、支持板が設けられていないため、鉄製ブロックを近づけなくても、冷却を5回繰り返した時点で超電導バルク体30Jと補強体32Jとが外れた。一方、本発明の構成である超電導バルク体30G、30Hについては、超電導バルク体と鉄製ブロック間に強い吸引力が生じたものの、特に大きな変化はなかった。超電導バルク体30Iについても、冷却を繰り返しただけでは超電導バルク体30Iは支持板34Iから外れることはなかった。   The superconducting bulk body 30J, which is a comparative example, was not provided with a support plate, so that the superconducting bulk body 30J and the reinforcing body 32J were detached when the cooling was repeated five times without bringing the iron block closer. On the other hand, the superconducting bulk bodies 30G and 30H having the configuration of the present invention did not change significantly, although a strong suction force was generated between the superconducting bulk body and the iron block. Also for the superconducting bulk body 30I, the superconducting bulk body 30I was not detached from the support plate 34I only by repeated cooling.

ここで、超電導バルク体と金属とでは熱収縮率が異なる(金属の方が大きい)ため、冷却時に圧縮応力が作用する。一般的な円板形状の超電導バルク体と金属製補強リングとで構成される超電導バルク磁石では、圧縮応力は外周から均等に作用するので、超電導バルク磁石が外れることは考えにくいが、本発明の構造のように超電導バルク体の厚さが変化して端部で厚さがゼロになるような超電導バルク磁石では、圧縮応力の一部が超電導バルク体を金属製補強リングから外れるように作用することが懸念される。実施例Iの超電導バルク体30Iに鉄製ブロックを近づけたところ、超電導バルク体30Iが徐々に充填樹脂32Ibとともに金属製補強リング32Iaからずれ始め、最終的には金属製補強リング32Iaから外れ、鉄製ブロックに引き付けられた。   Here, the superconducting bulk material and the metal have different thermal shrinkage rates (the metal is larger), and therefore compressive stress acts during cooling. In a superconducting bulk magnet composed of a general disk-shaped superconducting bulk body and a metal reinforcing ring, the compressive stress acts evenly from the outer periphery, so it is unlikely that the superconducting bulk magnet will come off. In a superconducting bulk magnet in which the thickness of the superconducting bulk body changes and the thickness becomes zero at the end as in the structure, a part of the compressive stress acts to disengage the superconducting bulk body from the metal reinforcing ring. There is concern. When the iron block was brought close to the superconducting bulk body 30I of Example I, the superconducting bulk body 30I gradually started to deviate from the metal reinforcing ring 32Ia together with the filling resin 32Ib, and finally disengaged from the metal reinforcing ring 32Ia. Was attracted to.

本結果から、本発明の構造を有する超電導バルク磁石に対しては、補強体を効果的に作用させるためには支持板が必要であることが明らかになった。さらに補強体としては、実施例Gのように、アルミ合金等の金属製の円柱形状から超電導バルク体の形状をくり抜いて形成された補強体や、実施例Hのように、内向きに突出する鍔部のある円環形状のアルミ合金等の部材と充填樹脂とからなる補強体がより好ましいことが明らかになった。   From this result, it has been clarified that a support plate is necessary for the superconducting bulk magnet having the structure of the present invention to effectively operate the reinforcing body. Further, as the reinforcing body, as in Example G, a reinforcing body formed by hollowing out the shape of the superconducting bulk body from a metal columnar shape such as an aluminum alloy, or inwardly protruding as in Example H It has been found that a reinforcing body made of a ring-shaped aluminum alloy member with a flange and a filling resin is more preferable.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

10A、10B、10C、11、20D、20E、20F、30G、30H、30I、30J、110 超電導バルク体
22D、32G、32I、32Ib、32J、120A、120B、120C 補強体
22E、22Fa、32H、32Ia、122 金属製補強リング
22Fb、32Hb、124 樹脂
24D、34G、130 支持板
36H、126 鍔部
100A、100B、100C 超電導バルク磁石
112 磁場発生面
10A, 10B, 10C, 11, 20D, 20E, 20F, 30G, 30H, 30I, 30J, 110 Superconducting bulk body 22D, 32G, 32I, 32Ib, 32J, 120A, 120B, 120C Reinforcing body 22E, 22Fa, 32H, 32Ia , 122 Metal reinforcement ring 22Fb, 32Hb, 124 Resin 24D, 34G, 130 Support plate 36H, 126 Hook 100A, 100B, 100C Superconducting bulk magnet 112 Magnetic field generation surface

Claims (7)

単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導バルク磁石であって、
前記酸化物超電導バルク体の形状が、平面部と部分球面部とからなる部分球状、又は、平面部と円錐面部とからなる円錐状であることを特徴とする、超電導バルク磁石。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
A superconducting bulk magnet using an oxide superconducting bulk in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
The superconducting bulk magnet is characterized in that the shape of the oxide superconducting bulk body is a partial sphere composed of a flat surface portion and a partial spherical surface portion or a conical shape composed of a flat surface portion and a conical surface portion.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.
前記平面部を支持する支持板と、
前記部分球面部又は前記円錐面部を取り囲むように配置されると共に、前記支持板に接続されて、前記酸化物超電導バルク体を補強する補強体と、
を更に備えることを特徴とする、請求項1に記載の超電導バルク磁石。
A support plate for supporting the planar portion;
A reinforcing body that is disposed so as to surround the partial spherical surface portion or the conical surface portion and is connected to the support plate to reinforce the oxide superconducting bulk body;
The superconducting bulk magnet according to claim 1, further comprising:
前記補強体は、前記酸化物超電導バルク体の部分球面部又は円錐面部と同形状にくり抜かれた金属製の補強体であることを特徴とする、請求項2に記載の超電導バルク磁石。   3. The superconducting bulk magnet according to claim 2, wherein the reinforcing body is a metallic reinforcing body cut out in the same shape as the partial spherical surface portion or the conical surface portion of the oxide superconducting bulk body. 前記補強体は、
前記支持板に接続された円柱状の補強リングと、
当該補強リングの内壁と前記部分球面部又は前記円錐面部との間の空間に存在する樹脂と、
からなることを特徴とする、請求項2に記載の超電導バルク磁石。
The reinforcing body is
A cylindrical reinforcing ring connected to the support plate;
A resin present in the space between the inner wall of the reinforcing ring and the partial spherical surface portion or the conical surface portion;
The superconducting bulk magnet according to claim 2, comprising:
前記円柱状の補強リングは、前記支持板と接続されている端部と反対側の端部において、内周面から内向きに突出する鍔部を有することを特徴とする、請求項4に記載の超電導バルク磁石。   The columnar reinforcing ring has a flange portion protruding inward from an inner peripheral surface at an end portion opposite to an end portion connected to the support plate. Superconducting bulk magnet. 請求項1〜5のいずれか1項に記載の超電導バルク磁石の着磁方法であって、
前記酸化物超電導バルク体の平面部に垂直な方向を、磁場方向に向けて磁場中冷却し、前記部分球面部、又は、前記円錐面部が磁場発生面になるように着磁することを特徴とする、超電導バルク磁石の着磁方法。
A method for magnetizing a superconducting bulk magnet according to any one of claims 1 to 5,
A direction perpendicular to the plane portion of the oxide superconducting bulk body is cooled in a magnetic field in the direction of the magnetic field, and magnetized so that the partial spherical surface portion or the conical surface portion becomes a magnetic field generating surface. To magnetize a superconducting bulk magnet.
単結晶状のREBaCu7−x中にREBaCuOが分散された酸化物超電導バルク体を用いた超電導バルク磁石であって、
前記酸化物超電導バルク体の形状は、円形の平面部と、前記平面部の中央部が最も厚く、前記平面部の外周部に向かって連続的に厚さが薄くなり、外周部でゼロとなる形状を有する立体部とからなる形状であることを特徴とする、超電導バルク磁石。
但し、REは希土類元素から選ばれる1種又は2種以上の元素で、酸素欠損量(x)は0.2以下である。
A superconducting bulk magnet using an oxide superconducting bulk in which RE 2 BaCuO 5 is dispersed in single-crystal RE 1 Ba 2 Cu 3 O 7-x ,
The shape of the oxide superconducting bulk body is that the circular flat portion and the central portion of the flat portion are the thickest, the thickness continuously decreases toward the outer peripheral portion of the flat portion, and becomes zero at the outer peripheral portion. A superconducting bulk magnet characterized by having a shape comprising a three-dimensional part having a shape.
However, RE is one or more elements selected from rare earth elements, and the oxygen deficiency (x) is 0.2 or less.
JP2015042327A 2015-03-04 2015-03-04 Superconducting bulk magnet and method of magnetizing superconducting bulk magnet Active JP6435927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042327A JP6435927B2 (en) 2015-03-04 2015-03-04 Superconducting bulk magnet and method of magnetizing superconducting bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042327A JP6435927B2 (en) 2015-03-04 2015-03-04 Superconducting bulk magnet and method of magnetizing superconducting bulk magnet

Publications (2)

Publication Number Publication Date
JP2016162952A JP2016162952A (en) 2016-09-05
JP6435927B2 true JP6435927B2 (en) 2018-12-12

Family

ID=56847218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042327A Active JP6435927B2 (en) 2015-03-04 2015-03-04 Superconducting bulk magnet and method of magnetizing superconducting bulk magnet

Country Status (1)

Country Link
JP (1) JP6435927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955192B2 (en) * 2017-05-23 2021-10-27 株式会社アイシン Superconducting magnetic field generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648445Y2 (en) * 1990-06-30 1994-12-12 太陽誘電株式会社 Magnetic balance device
US5563564A (en) * 1993-04-22 1996-10-08 University Of Houston Strong high-temperature superconductor trapped field magnets
JP3646427B2 (en) * 1996-08-30 2005-05-11 アイシン精機株式会社 Magnetization method of superconductor and superconducting magnet device
JP2001270715A (en) * 2000-03-27 2001-10-02 Imura Zairyo Kaihatsu Kenkyusho:Kk Formed product for producing oxide superconductor, method for producing oxide superconductor, and oxide superconductor
JP3401487B2 (en) * 2000-08-23 2003-04-28 日本学術振興会 Separation method of plastic mixture by magnetic Archimedes effect
JP3872751B2 (en) * 2002-12-13 2007-01-24 新日本製鐵株式会社 Superconducting magnet and its manufacturing method and magnetizing method
JP4152898B2 (en) * 2003-01-09 2008-09-17 国立大学法人福井大学 Bulk superconductor magnetizing device, magnetizing method and superconducting synchronous machine
JP4366636B2 (en) * 2003-08-28 2009-11-18 アイシン精機株式会社 Superconducting magnetic field generator and sputtering film forming apparatus using the same
JP4865081B2 (en) * 2009-12-08 2012-02-01 新日本製鐵株式会社 Oxide superconducting bulk magnet member
JP2014138039A (en) * 2013-01-15 2014-07-28 Awaji Materia Co Ltd Superconducting bulk body and superconducting bulk magnet

Also Published As

Publication number Publication date
JP2016162952A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
CN102640234B (en) Oxide superconducting bulk magnet member
JP4653555B2 (en) Oxide superconducting magnet material and oxide superconducting magnet system
WO2018021507A1 (en) Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure
JP6119851B2 (en) Oxide superconducting bulk magnet
JP4012311B2 (en) Bulk superconducting member and magnet, and method of manufacturing the same
JP6422631B2 (en) Superconducting bulk magnet
JP4719308B1 (en) Oxide superconducting bulk magnet member
JP6435927B2 (en) Superconducting bulk magnet and method of magnetizing superconducting bulk magnet
JP5195961B2 (en) Oxide superconducting bulk magnet member
JP2006332577A (en) Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
JP3389094B2 (en) Superconducting magnetic field generator
JP2012214329A (en) Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet
JP6202190B2 (en) Oxide superconducting bulk magnet
JPH0782939B2 (en) Magnet using oxide superconductor and method for manufacturing the same
JP6493547B2 (en) Oxide superconducting bulk magnet
JP7205545B2 (en) Magnet unit for nuclear magnetic resonance and magnetic field generator for nuclear magnetic resonance using oxide superconducting bulk material
US20160351779A1 (en) Bulk oxide superconductor and method of production of bulk oxide superconductor
JP3332148B2 (en) Superconducting bulk material and superconducting bulk magnet
JPH0311604A (en) Superconductive magnet
JP2015207665A (en) superconducting bulk magnet
JP2001210519A (en) Method for magnetizing oxide superconducting material and magnetizing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6435927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350