JP2012214329A - Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet - Google Patents

Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet Download PDF

Info

Publication number
JP2012214329A
JP2012214329A JP2011080348A JP2011080348A JP2012214329A JP 2012214329 A JP2012214329 A JP 2012214329A JP 2011080348 A JP2011080348 A JP 2011080348A JP 2011080348 A JP2011080348 A JP 2011080348A JP 2012214329 A JP2012214329 A JP 2012214329A
Authority
JP
Japan
Prior art keywords
crystal
columnar
superconducting bulk
cylindrical
bulk body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080348A
Other languages
Japanese (ja)
Other versions
JP5736216B2 (en
Inventor
Masahito Murakami
雅人 村上
Naoki Koshizuka
直己 腰塚
Chiaki Nakayama
千秋 中山
Hironori Seki
宏範 関
Tadakatsu Maruyama
忠克 丸山
Takashi Kurita
孝 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWAJI MATERIA CO Ltd
Shibaura Institute of Technology
Original Assignee
AWAJI MATERIA CO Ltd
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AWAJI MATERIA CO Ltd, Shibaura Institute of Technology filed Critical AWAJI MATERIA CO Ltd
Priority to JP2011080348A priority Critical patent/JP5736216B2/en
Publication of JP2012214329A publication Critical patent/JP2012214329A/en
Application granted granted Critical
Publication of JP5736216B2 publication Critical patent/JP5736216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive bulk magnet high in magnetic field intensity.SOLUTION: The superconductive bulk magnet is provided by making a superconductive bulk body including a central part (14) of a cylindrical synthetic crystal obtained by removing an upper part (12) and a lower part (13) of a cylindrical synthetic crystal (11) synthesized by a seed crystal fusion method, and making the superconductive bulk body capture the magnetic field.

Description

本発明は、磁場捕捉能が高い超伝導バルク体とその製造方法、および磁場強度が高い超伝導バルク磁石に関する。   The present invention relates to a superconducting bulk body having a high magnetic field capturing ability, a method for producing the same, and a superconducting bulk magnet having a high magnetic field strength.

永久磁石よりも、はるかに高い磁場を発生する超伝導磁石が開発され、医療用磁気断層撮影装置(MRI)や磁気浮上列車などに応用されている。超伝導磁石としては、超伝導線をコイル状に巻いた電磁石型の超伝導コイル磁石が一般的であるが、最近、高温超伝導体であるRE−Ba−Cu−O系バルク体(REは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Luからなる群より選択される1種類または2種類以上の元素を表す。)に磁場を捕捉させて、磁石として機能させる超伝導バルク磁石の開発も進んでいる。超伝導バルク磁石は、超伝導コイル磁石よりもはるかにコンパクトであり、比較的小さな空間に大きな磁場を発生する用途に適している。また、本質的に永久電流モードで運転されるため、いったん励磁すれば、冷却している限り磁場を発生し続けるというメリットもある。   Superconducting magnets that generate a much higher magnetic field than permanent magnets have been developed and applied to medical magnetic tomography (MRI) and magnetic levitation trains. As a superconducting magnet, an electromagnet type superconducting coil magnet in which a superconducting wire is wound in a coil shape is generally used. Recently, a RE-Ba-Cu-O bulk body (RE is a high-temperature superconductor). , Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu represents one or more elements selected from the group consisting of, and a magnetic field is captured as a magnet. Development of superconducting bulk magnets to function is also progressing. Superconducting bulk magnets are much more compact than superconducting coil magnets and are suitable for applications that generate a large magnetic field in a relatively small space. Further, since it is essentially operated in the permanent current mode, there is an advantage that once it is excited, a magnetic field is continuously generated as long as it is cooled.

高性能な磁石を得るには捕捉磁場を大きくすればよいが、捕捉磁場の大きさは、臨界電流とともに電流ループの大きさにも比例する。よって、超伝導バルク磁石の高性能化には、組織制御による臨界電流の向上と、試料の大型化が必要となる。ただし、試料の大型化は単にサイズを大型化すれば足りるものではなく、大傾角粒界やクラック等の弱結合のない組織で大型化を実現する必要がある。   In order to obtain a high-performance magnet, the trapping magnetic field may be increased, but the magnitude of the trapping magnetic field is proportional to the size of the current loop as well as the critical current. Therefore, to improve the performance of the superconducting bulk magnet, it is necessary to improve the critical current by controlling the structure and increase the size of the sample. However, it is not sufficient to simply increase the size of the sample, and it is necessary to realize an increase in size with a structure having no weak bond such as a large-angle grain boundary or a crack.

このため、種結晶溶融法により試料全体に亘ってc軸配向した結晶を成長させることにより、大傾角粒界やクラック等のない組織で大型化することが行われている(非特許文献1参照)。種結晶溶融法は、例えばRE−Ba−Cu−O系バルク体を得たい場合には、RE−Ba−Cu−O系円柱状ペレットの上面に種結晶を載せて結晶成長させるものであり、種結晶としてはNdBa2Cu37などの融点が高い結晶が用いられる。種結晶を用いると、種結晶の方位を受け継いだ結晶が成長するため配向制御が可能になり、c軸配向した結晶を得ることができる。 For this reason, by growing a crystal having a c-axis orientation over the entire sample by a seed crystal melting method, the size is increased with a structure having no large-angle grain boundaries or cracks (see Non-Patent Document 1). ). In the seed crystal melting method, for example, when it is desired to obtain a RE-Ba-Cu-O-based bulk body, a seed crystal is placed on the upper surface of the RE-Ba-Cu-O-based cylindrical pellet to grow a crystal. As the seed crystal, a crystal having a high melting point such as NdBa 2 Cu 3 O 7 is used. When a seed crystal is used, a crystal that inherits the orientation of the seed crystal grows, so that the orientation can be controlled and a c-axis oriented crystal can be obtained.

超伝導Web21, 2002(8), 16-18Superconducting Web21, 2002 (8), 16-18

しかしながら、このようにして種結晶溶融法により得られた超伝導バルク体に強磁場を捕捉させて超伝導磁石を作製しようとしても、磁石としての特性が顕著に向上した超伝導バルク磁石を得ることはできなかった。また、超伝導バルク磁石の面内に特性ムラがあり、均一で信頼性のある超伝導バルク磁石を得ることもできなかった。
そこで本発明者らは、このような従来技術の課題を解決して、磁場捕捉能が高い超伝導バルク体を提供し、それを利用して磁場強度が高い超伝導バルク磁石を提供することを目的として検討を進めた。また本発明者らは、超伝導バルク磁石の面内に特性ムラを抑えて、均一で信頼性のある超伝導バルク磁石を提供できるようにすることも目的として検討を進めた。さらに本発明者らは、そのような超伝導バルク磁石を製造する際に用いる超伝導バルク体の簡便な製造方法を提供することも目的として検討を進めた。
However, a superconducting bulk magnet with significantly improved properties as a magnet can be obtained even if a superconducting bulk body obtained by the seed crystal melting method in this way captures a strong magnetic field to produce a superconducting magnet. I couldn't. In addition, the superconducting bulk magnet has characteristic unevenness in the surface, and a uniform and reliable superconducting bulk magnet could not be obtained.
Therefore, the present inventors have solved such a problem of the prior art, provided a superconducting bulk body having a high magnetic field capturing ability, and provided a superconducting bulk magnet having a high magnetic field strength using the superconducting bulk body. The study was advanced as a purpose. In addition, the inventors of the present invention have also studied for the purpose of providing a uniform and reliable superconducting bulk magnet by suppressing characteristic unevenness in the surface of the superconducting bulk magnet. Furthermore, the present inventors have also studied for the purpose of providing a simple method for producing a superconducting bulk body used when producing such a superconducting bulk magnet.

上記の従来技術の課題を解決するために鋭意検討を行なった結果、本発明者らは、種結晶溶融法により得られた円柱状合成結晶の上部と下部を除去して円柱状合成結晶中央部を取り出し、中心軸方向に積み重ねることによって、磁場捕捉能が高い超伝導バルク体を作製しうることを見出した。また、このようにして作製した超伝導バルク体を用いれば、磁場強度が高い超伝導バルク磁石を作製しうることも見出した。これらの知見に基づいて、従来技術の課題を解決する手段として、以下の本発明を提供するに至った。   As a result of diligent studies to solve the above-described problems of the prior art, the present inventors have removed the upper and lower portions of the cylindrical synthetic crystal obtained by the seed crystal melting method to remove the central portion of the cylindrical synthetic crystal. It was found that a superconducting bulk body having a high magnetic field capturing ability can be produced by taking out and stacking in the direction of the central axis. It was also found that a superconducting bulk magnet having a high magnetic field strength can be produced by using the superconducting bulk material thus produced. Based on these findings, the following present invention has been provided as means for solving the problems of the prior art.

[1] RE−Ba−Cu−O系円柱状結晶片を含む超伝導バルク体であって、
前記REは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表し、
前記RE−Ba−Cu−O系円柱状結晶片の上面と下面が下記の式(1)および式(2)を満たす、超伝導バルク体。
式(1): 0.93 ≦ X ≦ 1.07
(上式においてXは、超伝導相の組成式RExBa2Cu3y(yは6.8〜7.0)におけるX値を表す。)
式(2): θc ≦ 6°
(上式において、θcは上面または下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を表し、前記領域に結晶の主軸が観測されない場合は式(2)を満たさないものとする。)
[2] 前記RE−Ba−Cu−O系円柱状結晶片が、種結晶溶融法で合成した円柱状合成結晶の上部と下部を除去した円柱状合成結晶中央部であるか、または当該円柱状合成結晶中央部を中心軸に垂直な方向に切断した円柱状合成結晶切断片である、[1]に記載の超伝導バルク体。
[3] [1]または[2]に記載のRE−Ba−Cu−O系円柱状結晶片の少なくとも2以上を中心軸方向に積み重ねた積重体を含む超伝導バルク体。
[4] 前記積重体は、前記RE−Ba−Cu−O系円柱状結晶片が中心軸に垂直な面内の結晶方位を相互にずらすように積み重ねられている、[3]に記載の超伝導バルク体。
[5] 前記円柱状結晶片に孔が形成されており、当該孔に熱伝導性部材が挿入されている、[1]〜[4]のいずれか一項に記載の超伝導バルク体。
[6] 前記孔の内壁と前記熱伝導性部材の外表面の間に樹脂または金属が含浸している、[5]に記載の超伝導バルク体。
[7] 前記円柱状結晶片の外表面に樹脂または金属が含浸している、[1]〜[6]のいずれか一項に記載の超伝導バルク体。
[8] 前記円柱状結晶片の外側から前記円柱状結晶片を圧縮する締付具をさらに有する、[1]〜[7]のいずれか一項に記載の超伝導バルク体。
[9] 前記締付具が形状記憶合金製である、[8]に記載の超伝導バルク体。
[10] [1]〜[9]のいずれか一項に記載の超伝導バルク体を用いた超伝導バルク磁石。
[1] A superconducting bulk body including a RE-Ba-Cu-O-based columnar crystal piece,
RE represents one or more elements selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu;
A superconducting bulk body in which the upper and lower surfaces of the RE-Ba-Cu-O-based columnar crystal piece satisfy the following formulas (1) and (2).
Formula (1): 0.93 ≦ X ≦ 1.07
(In the above formula, X represents the X value in the superconducting phase composition formula RE x Ba 2 Cu 3 O y (y is 6.8 to 7.0).)
Formula (2): θc ≦ 6 °
(In the above equation, θc represents the angle formed by the c-axis closest to the c-axis among the main axes of the crystal observed on the upper surface or the lower surface, and when the main axis of the crystal is not observed in the region, the equation (2) Is not satisfied.)
[2] The RE-Ba-Cu-O-based columnar crystal piece is a columnar synthetic crystal central portion obtained by removing the upper and lower portions of the columnar synthetic crystal synthesized by the seed crystal melting method, or the columnar shape. The superconducting bulk material according to [1], which is a cylindrical synthetic crystal cut piece obtained by cutting the central portion of the synthetic crystal in a direction perpendicular to the central axis.
[3] A superconducting bulk body including a stack in which at least two or more RE-Ba-Cu-O columnar crystal pieces according to [1] or [2] are stacked in the central axis direction.
[4] The superposition according to [3], wherein the stack is stacked such that the RE-Ba-Cu-O-based columnar crystal pieces are displaced in a crystal orientation in a plane perpendicular to a central axis. Conductive bulk body.
[5] The superconducting bulk body according to any one of [1] to [4], wherein a hole is formed in the columnar crystal piece, and a heat conductive member is inserted into the hole.
[6] The superconducting bulk material according to [5], wherein a resin or a metal is impregnated between the inner wall of the hole and the outer surface of the thermally conductive member.
[7] The superconducting bulk body according to any one of [1] to [6], wherein an outer surface of the columnar crystal piece is impregnated with a resin or a metal.
[8] The superconducting bulk body according to any one of [1] to [7], further including a fastener that compresses the cylindrical crystal piece from the outside of the cylindrical crystal piece.
[9] The superconducting bulk body according to [8], wherein the fastener is made of a shape memory alloy.
[10] A superconducting bulk magnet using the superconducting bulk body according to any one of [1] to [9].

[11] 下記の工程1含む、円柱状結晶片を含む超伝導バルク体の製造方法。
<工程1>
種結晶溶融法で合成した円柱状合成結晶の上部と下部を除去して円柱状合成結晶中央部を取得するか、さらに当該円柱状合成結晶中央部を中心軸に垂直な方向に切断して円柱状合成結晶切断片を取得する工程。
[12] 前記工程1の後に下記の工程2を含む、[11]に記載の超伝導バルク体の製造方法。
<工程2>
前記工程1で取得した前記円柱状合成結晶中央部および前記円柱状合成結晶切断片のいずれか2以上を中心軸方向に積み重ねて積重体を形成する工程。
[13] 前記円柱状合成結晶がRE−Ba−Cu−O系円柱状合成結晶であり、前記円柱状結晶片がRE−Ba−Cu−O系円柱状結晶片である、[11]または[12]に記載の超伝導バルク体の製造方法(前記REは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表す)。
[14] 前記工程1において、前記円柱状合成結晶から除去する上部と下部の厚さがそれぞれ0.1mm以上である、[11]〜[13]のいずれか一項に記載の超伝導バルク体の製造方法。
[15] 前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の上部の除去を上部除去後の円柱状合成結晶中央部の上面における組成が下記の式(1)を満たすように行う、[11]〜[14]のいずれか一項に記載の超伝導バルク体の製造方法。
式(1): 0.93 ≦ X ≦ 1.07%
(上式においてXは、超伝導相の組成式RExBa2Cu3y(yは6.8〜7.0)におけるX値を表す。)
[16] 前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の上部の除去を上部除去後の円柱状合成結晶中央部の上面における元素含有率が下記の式(3)を満たすように行う、[13]〜[15]のいずれか一項に記載の超伝導バルク体の製造方法。
式(3): |MRES(中央部上面)−MRES(ペレット)| ≦ 7原子%
(上式において、MRES(中央部上面)は前記円柱状合成結晶中央部の上面におけるRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、MRES(ペレット)は前記円柱状ペレットのRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、RES元素は前記種結晶に含まれるY,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表し、iはRES元素の種類を表す。)
[17] 前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の下部の除去を下部除去後の表面から0.1mm厚の領域が下記の式(2)を満たすように行う、[10]〜[16]のいずれか一項に記載の超伝導バルク体の製造方法。
式(2): θc ≦ 6°
(上式において、θcは前記上面または前記下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を表し、前記領域に結晶の主軸が観測されない場合は式(2)を満たさないものとする。)
[18] 前記円柱状合成結晶から除去する上部の厚さが1〜5mmである、[10]〜[17]のいずれか一項に記載の超伝導バルク体の製造方法。
[19] 前記円柱状合成結晶から除去する下部の厚さが1〜15mmである、[10]〜[18]のいずれか一項に記載の超伝導バルク体の製造方法。
[20] [10]〜[19]のいずれか一項に記載の製造方法により製造された超伝導バルク体。
[11] A method for producing a superconducting bulk material including a columnar crystal piece, comprising the following step 1.
<Step 1>
The upper and lower parts of the cylindrical synthetic crystal synthesized by the seed crystal melting method are removed to obtain the central part of the cylindrical synthetic crystal, or the central part of the cylindrical synthetic crystal is cut in a direction perpendicular to the central axis to obtain a circle. A step of obtaining a columnar synthetic crystal cut piece.
[12] The method for producing a superconducting bulk material according to [11], which includes the following step 2 after the step 1.
<Process 2>
A step of stacking any two or more of the columnar synthetic crystal central portion and the columnar synthetic crystal cut pieces obtained in step 1 in a central axis direction to form a stack.
[13] The columnar synthetic crystal is a RE-Ba-Cu-O-based columnar synthetic crystal, and the columnar crystal piece is a RE-Ba-Cu-O-based columnar crystal piece, [11] or [ 12] (the RE is one or two selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu) Represents more than one kind of element).
[14] The superconducting bulk material according to any one of [11] to [13], wherein in the step 1, the thickness of the upper part and the lower part removed from the cylindrical synthetic crystal is 0.1 mm or more, respectively. Manufacturing method.
[15] In the step 1, the cylindrical synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a cylindrical pellet, and removing the upper part of the cylindrical synthetic crystal after removing the upper part thereof. The method for producing a superconducting bulk body according to any one of [11] to [14], wherein the composition on the upper surface of the center of the crystal satisfies the following formula (1).
Formula (1): 0.93 <= X <= 1.07%
(In the above formula, X represents the X value in the superconducting phase composition formula RE x Ba 2 Cu 3 O y (y is 6.8 to 7.0).)
[16] In the step 1, the cylindrical synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a cylindrical pellet, and removing the upper part of the cylindrical synthetic crystal after removing the upper part thereof. The method for producing a superconducting bulk material according to any one of [13] to [15], wherein the element content in the upper surface of the crystal central part satisfies the following formula (3).
Formula (3): | M RES (center upper surface) −M RES (pellet) | ≦ 7 atomic%
(In the above formula, M RES (center top surface) is the content of RE S i element in the top surface of the cylindrical synthetic crystal center (the number of RE S i elements relative to the total number of RE elements). M RES (pellet) is the content of RE S i element in the cylindrical pellet (the number of atoms of RE S i element relative to the number of atoms of all RE elements, and the unit is atomic%) The RE S element is one or two selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu contained in the seed crystal. It represents or more elements, i is representative of the type of RE S element.)
[17] In the step 1, the columnar synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a columnar pellet, and removing the lower portion of the columnar synthetic crystal from the surface after the lower portion is removed. The method for producing a superconducting bulk body according to any one of [10] to [16], wherein a region having a thickness of 1 mm satisfies the following formula (2).
Formula (2): θc ≦ 6 °
(In the above equation, θc represents the angle formed by the c-axis and the principal axis of the crystal that is observed on the upper surface or the lower surface, and when the main axis of the crystal is not observed in the region, the equation ( 2) shall not be satisfied.)
[18] The method for producing a superconducting bulk body according to any one of [10] to [17], wherein the thickness of the upper portion removed from the cylindrical synthetic crystal is 1 to 5 mm.
[19] The method for producing a superconducting bulk body according to any one of [10] to [18], wherein a thickness of a lower portion to be removed from the cylindrical synthetic crystal is 1 to 15 mm.
[20] A superconducting bulk body produced by the production method according to any one of [10] to [19].

本発明の超伝導バルク体は、磁場捕捉能が高くて、超伝導バルク磁石の作製に有用であるという有利な効果を有する。また、本発明の超伝導バルク磁石は、磁場強度が高いという有利な効果を有するうえ、磁石面内の特性ムラを抑えて均一で信頼性のある磁石とすることが可能であるという特徴も有する。さらに、本発明の製造方法によれば、上記の超伝導バルク体を簡便に製造することができるという有利な効果を有する。   The superconducting bulk material of the present invention has an advantageous effect that it has a high magnetic field capturing ability and is useful for producing a superconducting bulk magnet. In addition, the superconducting bulk magnet of the present invention has an advantageous effect that the magnetic field strength is high, and also has a feature that it is possible to obtain a uniform and reliable magnet by suppressing characteristic unevenness in the magnet surface. . Furthermore, according to the manufacturing method of the present invention, there is an advantageous effect that the above superconducting bulk body can be easily manufactured.

円柱状合成結晶中央部の作製と切断を示す斜視図である。It is a perspective view which shows preparation and cutting | disconnection of a column-shaped synthetic crystal center part. 円柱状結晶片を積み重ねる方向を示す斜視図である。It is a perspective view which shows the direction which stacks a columnar crystal piece. 円柱状結晶片の積み重ね方を示す斜視図である。It is a perspective view which shows how to stack a cylindrical crystal piece. 熱伝導性部材による積重体の補強態様を示す斜視図である。It is a perspective view which shows the reinforcement aspect of the stacked body by a heat conductive member. 熱伝導性部材による積重体の別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stacked body by a heat conductive member. 熱伝導性部材による積重体のさらに別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stack by a heat conductive member. 熱伝導性部材による積重体のさらにまた別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stack by a heat conductive member. 締付具による積重体の補強態様を示す斜視図である。It is a perspective view which shows the reinforcement aspect of the stacked body by a fastener. 締付具による積重体の別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stacked body by a fastener. 締付具による積重体のさらに別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stacked body by a fastener. 締付具による積重体のさらにまた別の補強態様を示す斜視図である。It is a perspective view which shows another reinforcement aspect of the stacked body by a fastener. 締付具による積重体のさらになお別の補強態様を示す断面図である。It is sectional drawing which shows another reinforcement aspect of the stacked body by a fastener. x値と臨界電流密度Jcの関係を示すグラフである。It is a graph which shows the relationship between x value and critical current density Jc. x値と臨界電流密度Jcの関係を示すグラフである。It is a graph which shows the relationship between x value and critical current density Jc. c軸とのなす角度θと臨界電流密度Jcの関係を示すグラフである。It is a graph which shows the relationship between the angle (theta) which c-axis makes, and critical current density Jc.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。   Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments and specific examples of the present invention, but the present invention is not limited to such embodiments and specific examples. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

[超伝導バルク体]
(基本構造)
本発明の超伝導バルク体は、RE−Ba−Cu−O系円柱状結晶片を含む超伝導バルク体である。
RE−Ba−Cu−O系円柱状結晶片は、RE、Ba、Cu、Oの各元素から少なくとも構成される。ここでいうREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表し、超伝導性を示すように選択される。1種類の元素であるとき、例えばY,Gd,Dy,Hoを好ましい例として挙げることができる。REが2種類以上の元素であるとき、例えばNd,Eu,Gdの組み合わせを好ましい例として挙げることができ、Nd,Eu,Gdの組み合わせ、Sm,Eu,Gdの組み合わせをより好ましい例として挙げることができる。典型的な円柱状結晶片は、REBa2Cu3y(yは通常6.8〜7.0で、例えば6.95をとりうる)の超伝導相の内部に、RE2BaCuO5の非超伝導相が微細分散した複合構造を有する。微細なRE2BaCuO5相がピニングセンターとして作用し、超伝導バルク体の臨界電流密度を高めている。円柱状結晶片には、RE、Ba、Cu、O以外の元素が本発明の目的に反しない程度で含まれていても構わないが、そのような元素は含まれていないことが好ましい。積み重ねる各円柱状結晶片の元素組成は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。
[Superconducting bulk material]
(Basic structure)
The superconducting bulk body of the present invention is a superconducting bulk body including RE-Ba-Cu-O-based columnar crystal pieces.
The RE-Ba-Cu-O-based columnar crystal piece is composed of at least each element of RE, Ba, Cu, and O. Here, RE represents one or more elements selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, and has superconductivity. Selected as shown. When it is one kind of element, for example, Y, Gd, Dy, and Ho can be given as preferable examples. When RE is two or more kinds of elements, for example, a combination of Nd, Eu, and Gd can be cited as a preferred example, and a combination of Nd, Eu, and Gd, and a combination of Sm, Eu, and Gd are cited as more preferable examples. Can do. A typical columnar crystal piece is formed inside the superconducting phase of REBa 2 Cu 3 O y (y is usually 6.8 to 7.0, for example, 6.95), and the non-reactive layer of RE 2 BaCuO 5 . It has a composite structure in which the superconducting phase is finely dispersed. The fine RE 2 BaCuO 5 phase acts as a pinning center, increasing the critical current density of the superconducting bulk material. The columnar crystal piece may contain elements other than RE, Ba, Cu, and O to the extent that they do not contradict the purpose of the present invention, but it is preferable that such elements are not contained. The elemental compositions of the stacked cylindrical crystal pieces may be the same or different from each other, but are preferably the same.

(式(1)の説明)
本発明の超伝導バルク体を構成する各RE−Ba−Cu−O系円柱状結晶片は、その上面と下面が下記の式(1)の関係を満たす。
式(1): 0.93 ≦ X ≦ 1.07
上式においてXは、超伝導相の組成式RExBa2Cu3y(yは6.8〜7.0)におけるX値を表す。
(Explanation of Formula (1))
Each RE-Ba-Cu-O-based columnar crystal piece constituting the superconducting bulk material of the present invention satisfies the relationship of the following formula (1) on the upper surface and the lower surface.
Formula (1): 0.93 ≦ X ≦ 1.07
In the above formula, X represents the X value in the superconducting phase composition formula RE x Ba 2 Cu 3 O y (y is 6.8 to 7.0).

前記上面と下面は、それぞれ下記の式(1−1)を満たすことがより好ましく、
式(1−1): 0.95 ≦ X ≦ 1.05
下記の式(1−2)を満たすことがさらに好ましく、
式(1−2): 0.98 ≦ X ≦ 1.02
下記の式(1−3)を満たすことがさらにより好ましい。
式(1−3): 0.99 ≦ X ≦ 1.01
式(1)を満たす円柱状結晶片を用いて超伝導バルク体を作製することにより、磁場捕捉能が高い超伝導バルク体とすることができ、さらに磁場強度が高い超伝導バルク磁石を作製することができる。
It is more preferable that the upper surface and the lower surface satisfy the following formula (1-1),
Formula (1-1): 0.95 ≦ X ≦ 1.05
More preferably, the following formula (1-2) is satisfied,
Formula (1-2): 0.98 ≦ X ≦ 1.02
It is even more preferable that the following formula (1-3) is satisfied.
Formula (1-3): 0.99 ≦ X ≦ 1.01
By producing a superconducting bulk body using cylindrical crystal pieces that satisfy the formula (1), a superconducting bulk body having a high magnetic field capturing ability can be obtained, and a superconducting bulk magnet having a high magnetic field strength can be produced. be able to.

式(1)におけるX値は、それぞれ電子線プローブマイクロアナライザーなどを用いて元素分析することにより測定することができる。   The X value in Formula (1) can be measured by elemental analysis using an electron beam probe microanalyzer or the like.

(式(2)の説明)
本発明の超伝導バルク体を構成する各RE−Ba−Cu−O系円柱状結晶片は、その上面と下面がそれぞれ下記の式(2)を満たす。
式(2): θc ≦ 6°
上式において、θcは上面または下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を表し、前記領域に結晶の主軸が観測されない場合は式(2)を満たさないものとする。θcは5°以下であることがより好ましく、2°以下であることがさらに好ましく、1°以下であることがさらにより好ましい。式(2)を満たす円柱状結晶片を用いて超伝導バルク体を作製することにより、磁場捕捉能が高い超伝導バルク体とすることができ、さらに磁場強度が高い超伝導バルク磁石を作製することができる。
(Explanation of Formula (2))
Each RE-Ba-Cu-O-based columnar crystal piece constituting the superconducting bulk body of the present invention satisfies the following formula (2) on its upper and lower surfaces.
Formula (2): θc ≦ 6 °
In the above equation, θc represents an angle formed by the c-axis closest to the c-axis among the main axes of the crystal observed on the upper surface or the lower surface, and when the main axis of the crystal is not observed in the region, the equation (2) is expressed. It shall not be satisfied. θc is more preferably 5 ° or less, further preferably 2 ° or less, and still more preferably 1 ° or less. By producing a superconducting bulk body using columnar crystal pieces satisfying the formula (2), a superconducting bulk body having a high magnetic field capturing ability can be obtained, and a superconducting bulk magnet having a high magnetic field strength can be produced. be able to.

[超伝導バルク体の製造方法]
(基本工程)
次に、本発明の超伝導バルク体を製造する方法について説明する。以下に説明する本発明の製造方法は、本発明の超伝導バルク体を製造するための好ましい製造方法であり、本発明の超伝導バルク体は本発明の製造方法により製造されるものに限定されるものではない。また、本発明の製造方法は、本発明のRE−Ba−Cu−O系超伝導バルク体以外の超伝導バルク体の製造にも適用することができるものである。
[Manufacturing method of superconducting bulk material]
(Basic process)
Next, a method for producing the superconducting bulk material of the present invention will be described. The manufacturing method of the present invention described below is a preferable manufacturing method for manufacturing the superconducting bulk body of the present invention, and the superconducting bulk body of the present invention is limited to that manufactured by the manufacturing method of the present invention. It is not something. Moreover, the manufacturing method of this invention can be applied also to manufacture of superconducting bulk bodies other than the RE-Ba-Cu-O type | system | group superconducting bulk body of this invention.

本発明の製造方法は、以下の2つの工程を少なくとも含むものである。
<工程1>
種結晶溶融法で合成した円柱状合成結晶の上部と下部を除去して円柱状合成結晶中央部を取得するか、さらに当該円柱状合成結晶中央部を中心軸に垂直な方向に切断して円柱状合成結晶切断片を取得する工程。
<工程2>
前記工程1で取得した前記円柱状合成結晶中央部および前記円柱状合成結晶切断片のいずれか2以上を中心軸方向に積み重ねて積重体を形成する工程。
The production method of the present invention includes at least the following two steps.
<Step 1>
The upper and lower parts of the cylindrical synthetic crystal synthesized by the seed crystal melting method are removed to obtain the central part of the cylindrical synthetic crystal, or the central part of the cylindrical synthetic crystal is cut in a direction perpendicular to the central axis to obtain a circle. A step of obtaining a columnar synthetic crystal cut piece.
<Process 2>
A step of stacking any two or more of the columnar synthetic crystal central portion and the columnar synthetic crystal cut pieces obtained in step 1 in a central axis direction to form a stack.

工程1では円柱状合成結晶中央部だけを複数個取得して、工程2においてそれらを中心軸方向に積み重ねて積層体としてもよい。また、工程1では円柱状合成結晶切断片だけを複数個取得して、工程2においてそれらを中心軸方向に積み重ねて積層体としてもよい。さらに、工程1では1個以上の円柱状合成結晶中央部と1個以上の円柱状合成結晶切断片を取得して、工程2においてそれらを中心軸方向に積み重ねて積層体としてもよい。本発明の製造方法は、これらの態様をすべて包含するものである。   In step 1, only a central part of the columnar synthetic crystal may be obtained, and in step 2, they may be stacked in the central axis direction to form a laminate. Further, in step 1, only a plurality of cylindrical synthetic crystal cut pieces may be obtained, and in step 2, they may be stacked in the central axis direction to form a laminate. Further, in step 1, one or more columnar synthetic crystal central portions and one or more columnar synthetic crystal cut pieces may be obtained, and in step 2, they may be stacked in the central axis direction to form a laminate. The production method of the present invention includes all these aspects.

(種結晶溶融法)
種結晶溶融法は、通常は支持基板上に円柱状ペレットを中心軸が鉛直方向を向くように設置し、その円柱状ペレットの上面中央に種結晶を設置して実施する。支持基板は、円柱状ペレットを安定に設置することができる大きさとし、Al23製板などを用いることができる。支持基板と円柱状ペレットの間には、成長させようとしている結晶の種類等に応じて、適切な元素組成を有する粉末などを存在させておくことができる。例えば、YBa2Cu37を結晶成長させようとしているときには、Y23粉末やBaCuO2粉末などを存在させておいてもよい。
(Seed crystal melting method)
The seed crystal melting method is usually carried out by placing a cylindrical pellet on a support substrate so that the central axis is in the vertical direction, and placing the seed crystal in the center of the upper surface of the cylindrical pellet. The supporting substrate has a size capable of stably installing cylindrical pellets, and an Al 2 O 3 plate or the like can be used. A powder having an appropriate elemental composition can be present between the support substrate and the columnar pellet according to the type of crystal to be grown. For example, when YBa 2 Cu 3 O 7 is to be crystal-grown, Y 2 O 3 powder or BaCuO 2 powder may be present.

(円柱状ペレット)
本発明で用いる円柱状ペレットは、REP、Ba、Cu、Oの各元素から構成されるREP−Ba−Cu−O系円柱状ペレットであることが好ましい。ここでいうREPは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表す。ここで選択するREPの元素組成は、本発明で取得しようとしているRE−Ba−Cu−O系円柱状結晶片のPEの元素組成と一致させることが好ましい。
(Cylindrical pellet)
The cylindrical pellet used in the present invention is preferably a RE P —Ba—Cu—O-based cylindrical pellet composed of each element of RE P , Ba, Cu, and O. RE P here represents Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and one or more kinds of element selected from the group consisting of Lu. Elemental composition of RE P selected here, it is preferable to match the elemental composition of the PE of RE-Ba-Cu-O-based columnar crystal plates trying to obtain in the present invention.

本発明で用いる円柱状ペレットは、その上面に種結晶を直接設置することができる程度のサイズを有していることが必要である。このため、上面および下面の直径は、5mm以上であることが好ましく、10mm以上であることがより好ましい。高さは、5mm以上であることが好ましく、10mm以上であることがより好ましく、また、25mm以下であることが好ましく、20mm以下であることがさらに好ましい。   The cylindrical pellet used in the present invention needs to have a size that allows a seed crystal to be directly placed on the upper surface thereof. For this reason, it is preferable that the diameter of an upper surface and a lower surface is 5 mm or more, and it is more preferable that it is 10 mm or more. The height is preferably 5 mm or more, more preferably 10 mm or more, more preferably 25 mm or less, and even more preferably 20 mm or less.

円柱状ペレットは、例えば原材料となる粉末を加圧して成形することにより製造することができる。このとき、元素組成が異なる粉末を複数種混合してから加圧成形してもよい。また、Ptなどを添加、混合してから加圧成形してもよい。これらを添加する場合の添加量は、0.1重量%以下とすることが好ましく、1.5重量%以下とすることがより好ましい。加圧は、例えば静水圧などを利用して行うことができる。加圧成形した後の成形体は、その後、仮焼結してから種結晶溶融法に用いることが好ましい。   The columnar pellet can be manufactured by, for example, pressing and molding a raw material powder. At this time, pressure molding may be performed after mixing plural kinds of powders having different elemental compositions. Further, Pt or the like may be added and mixed before pressure molding. When these are added, the addition amount is preferably 0.1% by weight or less, and more preferably 1.5% by weight or less. The pressurization can be performed using, for example, a hydrostatic pressure. It is preferable that the molded body after the pressure molding is used for the seed crystal melting method after preliminary sintering.

(種結晶)
本発明の超伝導バルク体の製造に用いる種結晶は、RES、Ba、Cu、Oの各元素から構成されるRES−Ba−Cu−O系種結晶であることが好ましい。ここでRESは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素である。好ましくは、Nd,Sm,Gdである。種結晶としては、結晶成長させようとしている結晶と同じ結晶構造を有していて、なおかつ融点が高いものであることが好ましい。例えば、YBa2Cu37を結晶成長させようとしているときには、種結晶としてNdBa2Cu37やSmBa2Cu37を用いることが好ましい。
(Seed crystal)
The seed crystal used for the production of the superconducting bulk material of the present invention is preferably a RE S —Ba—Cu—O based seed crystal composed of each element of RE S , Ba, Cu, and O. Here, RE S is one or more elements selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Nd, Sm, and Gd are preferable. The seed crystal preferably has the same crystal structure as the crystal to be grown and has a high melting point. For example, when you are trying to crystal growth the YBa 2 Cu 3 O 7, it is preferable to use the NdBa 2 Cu 3 O 7 and SmBa 2 Cu 3 O 7 as a seed crystal.

本発明の超伝導バルク体の製造に用いる種結晶のサイズは、円柱状ペレットの上面に直接設置することができるサイズであればよい。ペレットの上面に接触する種結晶の下面のサイズは、1mm四方以上であることが好ましく、2mm四方以上であることがより好ましく、また、10mm四方以下であることが好ましく、5mm四方以下であることがより好ましい。厚さは特に制限されないが、通常は2〜5mmの範囲内で選択する。   The size of the seed crystal used for manufacturing the superconducting bulk material of the present invention may be any size that can be directly installed on the upper surface of the cylindrical pellet. The size of the lower surface of the seed crystal contacting the upper surface of the pellet is preferably 1 mm square or more, more preferably 2 mm square or more, and preferably 10 mm square or less, preferably 5 mm square or less. Is more preferable. The thickness is not particularly limited, but is usually selected within a range of 2 to 5 mm.

(結晶の成長)
結晶の成長は、支持基板上に円柱状ペレットを中心軸が鉛直方向を向くように設置し、その円柱状ペレットの上面中央に種結晶を設置して高温に加熱することにより行う。高温に加熱することにより、種結晶の結晶方位を受け継ぐように配向制御した結晶が、種結晶との接触面を中心に成長して行く。結晶の成長時の温度は、例えば900〜1100℃に設定することができ、950〜1050℃に設定することが好ましい。結晶成長後は、必要に応じて酸素アニール処理等を行うことができる。いこの結晶の成長は、通常は大気中で行うことができる。
以上の種結晶溶融法に用いる材料と工程については、公知の材料や工程へ置換してもよい。また、公知の材料や工程をさらに必要に応じて付加してもよい。
(Crystal growth)
Crystal growth is performed by placing a cylindrical pellet on a support substrate so that the central axis is in the vertical direction, placing a seed crystal in the center of the upper surface of the cylindrical pellet, and heating it to a high temperature. By heating to a high temperature, a crystal whose orientation is controlled so as to inherit the crystal orientation of the seed crystal grows around the contact surface with the seed crystal. The temperature at the time of crystal growth can be set to 900 to 1100 ° C., for example, and is preferably set to 950 to 1050 ° C. After crystal growth, oxygen annealing treatment or the like can be performed as necessary. The growth of this crystal can usually be performed in the atmosphere.
About the material and process used for the above seed crystal melting method, you may substitute to a well-known material and process. Moreover, you may add a well-known material and process further as needed.

(上部と下部の除去)
図1に示すように、種結晶溶融法で得られた円柱状合成結晶11は、次にその上部12と下部13を除去して円柱状合成結晶中央部14とする。上部と下部の除去は同時に行ってもよいし、いずれかを先として逐次に行ってもよい。本発明における上部と下部の除去は、除去後に円柱状の合成結晶中央部が得られるように行う。通常は、円柱状合成結晶の上部と下部をそれぞれ均等な厚さで除去する。上部と下部において除去する厚さは同じであっても異なっていてもよい。通常は、下部をやや厚めに除去することが好ましい場合が多いが、逆であっても構わない。
(Removal of upper and lower parts)
As shown in FIG. 1, the cylindrical synthetic crystal 11 obtained by the seed crystal melting method then removes the upper portion 12 and the lower portion 13 to form a cylindrical synthetic crystal central portion 14. The removal of the upper part and the lower part may be performed at the same time, or one of them may be sequentially performed first. In the present invention, the upper portion and the lower portion are removed so that a cylindrical synthetic crystal central portion is obtained after the removal. Usually, the upper part and the lower part of the cylindrical synthetic crystal are each removed with an equal thickness. The thickness removed at the top and bottom may be the same or different. Usually, it is often preferable to remove the lower part slightly thicker, but the reverse may be possible.

除去の具体的な方法は、特に制限されない。スライスカッターやダイヤモンドカッターなどを用いて、スライスあるいは放電加工することにより除去するものであってもよいし、研磨剤や研磨シートなどを組み合わせて用いることにより除去するものであってもよい。   The specific method of removal is not particularly limited. It may be removed by slicing or electric discharge machining using a slice cutter, diamond cutter, or the like, or may be removed by using a combination of an abrasive or a polishing sheet.

円柱状合成結晶の上部の除去は、除去後に得られる円柱状合成結晶中央部の上面における組成が上記の式(1)を満たすように行うことが好ましい。このとき、円柱状合成結晶の上面のX値を測定し、その測定結果に基づいて式(1)を満たすように円柱状合成結晶の上部の除去厚さを決定することが好ましい。例えば、種結晶溶融法により結晶成長を行った後に、円柱状合成結晶の上面から種結晶を除去し、上面を軽く研磨したりして洗浄した後にX値を測定し、その測定結果に基づいて上部の除去厚さを決定して除去することができる。あるいは、式(1)を満足するまで除去と測定を繰り返してもよい。通常は、材料と製造装置と製造条件をある程度統一しておくことにより、1回の測定により上部で除去すべき厚さをある程度正確に決定することができるようになる。このような測定と除去は、コンピューター制御により自動化することもできる。下面においても、上面と同様に除去厚さを決定して除去することができる。通常は、下面については後述する式(2)を満たすように除去することにより、式(1)も満たす下面が得られる。   The upper part of the cylindrical synthetic crystal is preferably removed so that the composition at the upper surface of the central part of the cylindrical synthetic crystal obtained after the removal satisfies the above formula (1). At this time, it is preferable to measure the X value of the upper surface of the cylindrical synthetic crystal and determine the removal thickness of the upper portion of the cylindrical synthetic crystal so as to satisfy the formula (1) based on the measurement result. For example, after crystal growth by the seed crystal melting method, the seed crystal is removed from the upper surface of the cylindrical synthetic crystal, the upper surface is lightly polished or washed, and then the X value is measured. Based on the measurement result The top removal thickness can be determined and removed. Alternatively, removal and measurement may be repeated until expression (1) is satisfied. Usually, by unifying the material, the manufacturing apparatus, and the manufacturing conditions to some extent, the thickness to be removed at the top can be determined to some extent accurately by one measurement. Such measurement and removal can also be automated by computer control. Also on the lower surface, the removal thickness can be determined and removed in the same manner as the upper surface. Usually, by removing the lower surface so as to satisfy Equation (2) described later, a lower surface that also satisfies Equation (1) is obtained.

式(1)とは別の観点で上部の除去を行う場合には、除去後に得られる円柱状合成結晶中央部の上面における元素含有率が以下の式(3)を満たすように上部を除去することが好ましい。
式(3): |MRES(中央部上面)−MRES(ペレット)| ≦ 7原子%
上式において、MRES(中央部上面)は円柱状合成結晶中央部の上面におけるRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、MRES(ペレット)は円柱状ペレットのRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、iはRES元素の種類を表す。
When removing the upper part from a viewpoint different from the formula (1), the upper part is removed so that the element content in the upper surface of the central portion of the cylindrical synthetic crystal obtained after the removal satisfies the following formula (3). It is preferable.
Formula (3): | M RES (center upper surface) −M RES (pellet) | ≦ 7 atomic%
In the above formula, M RES (center upper surface) is the content of RE S i element on the upper surface of the central portion of the cylindrical synthetic crystal (the number of atoms of RE S i element relative to the number of atoms of all RE elements, and the unit is atomic% M RES (pellet) is the content of the RE S i element in the cylindrical pellet (the number of atoms of the RE S i element relative to the total number of atoms of the RE element, and the unit is atomic%). I represents the type of the RE S element.

式(3)は、円柱状合成結晶中央部の上面と円柱状ペレットのRE元素組成がほぼ同じであることを示すものである。|MRES(中央部上面)−MRES(ペレット)|の値は5原子%以下であることがより好ましく、2原子%以下であることがさらに好ましく、1原子%以下であることがさらにより好ましい。式(3)を満たす円柱状結晶片を用いて超伝導バルク体を作製すれば、磁場捕捉能が高い超伝導バルク体とすることができ、さらに磁場強度が高い超伝導バルク磁石を作製することができる。MRES(ペレット)の値は、ペレットを作製するときに配合する粉末の元素組成から計算して求めることもできる。 Formula (3) indicates that the RE element composition of the upper surface of the central portion of the cylindrical synthetic crystal and the cylindrical pellet are substantially the same. The value of | M RES (center upper surface) −M RES (pellet) | is more preferably 5 atomic% or less, further preferably 2 atomic% or less, and even more preferably 1 atomic% or less. preferable. If a superconducting bulk body is produced using a columnar crystal piece satisfying the formula (3), a superconducting bulk body having a high magnetic field capturing ability can be obtained, and further a superconducting bulk magnet having a high magnetic field strength can be produced. Can do. The value of M RES (pellet) can also be obtained by calculating from the elemental composition of the powder blended when producing the pellet.

式(3)を満たすように上部を除去する場合にも、円柱状合成結晶の上面のRES元素含有率を測定し、その測定結果に基づいて式(3)を満たすように円柱状合成結晶の上部の除去厚さを決定することが好ましい。例えば、種結晶溶融法により結晶成長を行った後に円柱状合成結晶の上面から種結晶を除去し、上面を軽く研磨したりして洗浄した後にRES元素濃度を測定し、その測定結果に基づいて上部の除去厚さを決定して除去することができる。あるいは、式(3)を満足するまで除去と測定を繰り返してもよい。通常は、材料と製造装置と製造条件をある程度一致させておくことにより、1回の測定で除去すべき厚さをある程度正確に決定することができるようになる。このような測定と除去も、コンピューター制御により自動化することができる。下面においても、上面と同様に除去厚さを決定して除去することができる。通常は、下面については後述する式(2)を満たすように除去することにより、式(3)も満たす下面が得られる。 Equation (3) even if the removal of the upper so as to satisfy the measures the RE S elemental content of the upper surface of the columnar synthetic crystalline, columnar synthetic crystalline to satisfy equation (3) based on the measurement result It is preferred to determine the removal thickness of the top of the. For example, to remove the seed crystal from the upper surface of the columnar synthetic crystals after crystal growth by the seed crystal melting method, measures the RE S element concentration after washing or polishing lightly top, based on the measurement result The upper removal thickness can be determined and removed. Alternatively, removal and measurement may be repeated until expression (3) is satisfied. Usually, the thickness to be removed in one measurement can be determined to some extent accurately by matching the material, the manufacturing apparatus, and the manufacturing conditions to some extent. Such measurement and removal can also be automated by computer control. Also on the lower surface, the removal thickness can be determined and removed in the same manner as the upper surface. Usually, the lower surface satisfying the formula (3) is obtained by removing the lower surface so as to satisfy the later-described formula (2).

円柱状合成結晶の下部の除去は、除去後に得られる円柱状合成結晶中央部が上記の式(2)を満たすように行うことが好ましい。
本発明では、円柱状合成結晶の下面の結晶軸を観測して、その観測結果に基づいて式(2)を満たすように円柱状合成結晶の下部の除去厚さを決定することが好ましい。例えば、種結晶溶融法により結晶成長を行った後に、バルク結晶の下面を軽く研磨したりして洗浄した後に結晶軸を観測し、その観測結果に基づいて下部の除去厚さを決定して除去することができる。あるいは、式(2)を満足するまで除去と測定を繰り返してもよい。通常は、材料と製造装置と製造条件をある程度一致させておくことにより、1回の測定で除去すべき厚さをある程度正確に決定することができるようになる。このような測定と除去も、コンピューター制御により自動化することができる。上面においても、下面と同様に除去厚さを決定して除去することができる。通常は、上面については上記の式(1)を満たすように除去することにより、式(2)も満たす上面が得られる。
The lower part of the cylindrical synthetic crystal is preferably removed so that the central part of the cylindrical synthetic crystal obtained after the removal satisfies the above formula (2).
In the present invention, it is preferable to observe the crystal axis of the lower surface of the cylindrical synthetic crystal and determine the removal thickness of the lower portion of the cylindrical synthetic crystal so as to satisfy the formula (2) based on the observation result. For example, after crystal growth by the seed crystal melting method, the bottom surface of the bulk crystal is lightly polished and washed, then the crystal axis is observed, and the removal thickness at the bottom is determined based on the observation results. can do. Alternatively, removal and measurement may be repeated until expression (2) is satisfied. Usually, the thickness to be removed in one measurement can be determined to some extent accurately by matching the material, the manufacturing apparatus, and the manufacturing conditions to some extent. Such measurement and removal can also be automated by computer control. Also on the upper surface, the removal thickness can be determined and removed similarly to the lower surface. Usually, by removing the upper surface so as to satisfy the above equation (1), an upper surface that also satisfies the equation (2) can be obtained.

バルク結晶上部の除去厚さは、通常は0.1mm以上であり、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましい。また、バルク結晶上部の除去厚さは、通常は
10mm以下であり、5mm以下であることが好ましい。
バルク結晶下部の除去厚さは、通常は1mm以上であり、2mm以上であることが好ましく、5mm以上であることがより好ましい。また、バルク結晶下部の除去厚さは、通常は20mm以下であり、15mm以下であることが好ましく、10mm以下であることがより好ましい。
The removal thickness of the upper part of the bulk crystal is usually 0.1 mm or more, preferably 0.2 mm or more, and more preferably 0.5 mm or more. Further, the removal thickness of the upper part of the bulk crystal is usually 10 mm or less, and preferably 5 mm or less.
The removal thickness of the bulk crystal lower part is usually 1 mm or more, preferably 2 mm or more, and more preferably 5 mm or more. Moreover, the removal thickness of the bulk crystal lower part is usually 20 mm or less, preferably 15 mm or less, and more preferably 10 mm or less.

(切断)
図1に示すように、上部と下部の除去を除去することにより得られた円柱状合成結晶中央部14は、さらに中心軸に垂直な方向に切断することによって円柱状合成結晶切断片15,16としてもよい。このステップは、後の積重体を作製する際に円柱状合成結晶切断片を使用したい場合にのみ行う。切断は、種結晶溶融法で得られた円柱状合成結晶を切断する際に通常用いられる手段により切断することができる。例えば、ダイヤモンドカッターや放電加工などにより切断することができる。切断後に得られる円柱状合成結晶切断片の厚さは特に制限されないが、後述する積重体作製時に用いる円柱状結晶片の好ましい厚さの範囲内におさまるようにすることが好ましい。
(Cut)
As shown in FIG. 1, the cylindrical synthetic crystal central portion 14 obtained by removing the upper and lower portions is further cut in a direction perpendicular to the central axis to cut cylindrical synthetic crystal pieces 15 and 16. It is good. This step is performed only when it is desired to use a cylindrical synthetic crystal cut piece when a subsequent stack is produced. The cutting can be performed by means usually used when cutting a cylindrical synthetic crystal obtained by a seed crystal melting method. For example, it can be cut by a diamond cutter or electric discharge machining. The thickness of the cylindrical synthetic crystal cut piece obtained after cutting is not particularly limited, but it is preferable that the thickness be within the range of the preferable thickness of the cylindrical crystal piece used for stacking as described later.

(積重体の作製)
積重体は、複数の円柱状合成結晶中央部および複数の円柱状合成結晶切断片からなる群より選択される2個以上の円柱状結晶片を中心軸方向に積み重ねることにより作製する。ここでいう中心軸とは、図2に示す円柱状結晶片の中心軸21を意味し、中心軸方向に積み重ねるとは1つの円柱状結晶片22の上面に別の円柱状結晶片23の下面が接するように重ねることを意味する。積み重ねるときには、図2に示すように各円柱状結晶片の中心軸が同一線上に位置するように積み重ねることが好ましい。積み重ねる円柱状結晶片の数は2つ以上であればよく、上限値には特に制限されない。また、積み重ねる各円柱状結晶片の形状は、互いに同一であってもよいし、異なっていてもよい。好ましいのは、積み重ねる各円柱状結晶片の径がすべて同一である場合であり、円柱状で扱いやすい超伝導バルク体とすることができる。
積み重ねる円柱状合成結晶中央部や円柱状合成結晶切断片(以下において総称して円柱状結晶片という)の厚さは、1mm以上であることが好ましく、2mm以上であることがより好ましく、5mm以上であることがさらに好ましい。また、積み重ねる円柱状結晶片の厚さは、20mm以下であることが好ましく、15mm以下であることがより好ましく、10mm以下であることがさらに好ましい。積み重ねる各円柱状結晶片の厚さは同じであっても異なっていてもよい。
(Production of stacks)
The stack is produced by stacking two or more columnar crystal pieces selected from the group consisting of a plurality of columnar synthetic crystal central portions and a plurality of columnar synthetic crystal cut pieces in the central axis direction. The central axis here means the central axis 21 of the cylindrical crystal piece shown in FIG. 2, and stacking in the direction of the central axis means that the upper surface of one cylindrical crystal piece 22 is the lower surface of another cylindrical crystal piece 23. It means to overlap so that. When stacking, as shown in FIG. 2, it is preferable to stack so that the central axis of each columnar crystal piece is located on the same line. The number of columnar crystal pieces to be stacked is not particularly limited as long as it is two or more. Moreover, the shape of each columnar crystal piece to be stacked may be the same or different. Preferred is a case where the diameters of the stacked columnar crystal pieces are all the same, and a superconducting bulk body that is columnar and easy to handle can be obtained.
The thickness of the center of the cylindrical synthetic crystal or the cylindrical synthetic crystal cut pieces (hereinafter collectively referred to as cylindrical crystal pieces) to be stacked is preferably 1 mm or more, more preferably 2 mm or more, and more preferably 5 mm or more. More preferably. Further, the thickness of the stacked columnar crystal pieces is preferably 20 mm or less, more preferably 15 mm or less, and further preferably 10 mm or less. The thickness of each columnar crystal piece to be stacked may be the same or different.

積重体を作製する際には、円柱状結晶片の中心軸に垂直な面内の結晶方位を相互にずらすように積み重ねることが好ましい。具体的には、積重体を構成する円柱状結晶片の少なくとも2つが、中心軸に垂直な面内の結晶方位が互いにずれるように積み重ねることが好ましく、積重体を構成するなるべく多くの円柱状結晶片の結晶方位が互いにずれるように積み重ねることがより好ましい。結晶方位がずれているか否かは、円柱状結晶片の上面のセクターバウンダリーを観測することにより容易に判定することができる。すなわち、種結晶溶融法で合成した結晶に由来する円柱状結晶片には、種結晶の形状に応じたセクターバウンダリーが観測される。ここでいうセクターバウンダリーには、ファセットラインと呼ばれる結晶成長にともなうサブバウンダリーも含まれる。例えば、種結晶としてNdBa2Cu3y単結晶を用いて合成した場合は、図3に示すように円柱状結晶片の上面を4等分するようにセクターバウンダリー31が観測される。このセクターバウンダリーの位置が円柱形状の積重体の中心軸方向から見たときに重ならないように積み重ねることが好ましい。そのためには、円柱状結晶片の中心軸を中心にして回転させながら積み重ねて行く方法を採用することができる。例えば、同じ種類のn個の円柱状結晶片を積み重ねるときには、(90°/n)°ずつ回転させながら積み重ねて行けば、セクターバウンダリーは重ならないうえ、中心軸方向から見たときにセクターバウンダリーが周方向に均等に配分されることになる。例えば、3個の円柱状結晶片を積み重ねるときには、30°ずつ回転させながら積み重ねて行くことが好ましく、4個の円柱状結晶片を積み重ねるときには、22.5°ずつ回転させながら積み重ねて行くことが好ましい。このとき、n個の円柱状結晶片は順に右周りまたは左周りとなるように積み重ねてもよいし、ランダムに積み重ねてもよい。図3では、3個の円柱状結晶片32,33,34を30°ずつ左回転させながら積み重ねた態様を例示している。このように、中心軸方向から見たときにセクターバウンダリーが偏在せず、周方向に均等に配分されるようにすることにより、最終的に超伝導バルク磁石を作製したときに、磁石面内の磁気特性ムラを抑えて、均一で信頼性のある磁石を提供することができる。 When producing a stack, it is preferable to stack so that crystal orientations in a plane perpendicular to the central axis of the columnar crystal pieces are shifted from each other. Specifically, it is preferable that at least two of the columnar crystal pieces constituting the stack are stacked such that crystal orientations in a plane perpendicular to the central axis are shifted from each other, and as many columnar crystals as possible constitute the stack. It is more preferable to stack the pieces so that the crystal orientations of the pieces are shifted from each other. Whether or not the crystal orientation is deviated can be easily determined by observing the sector boundary on the upper surface of the columnar crystal piece. That is, a sector boundary corresponding to the shape of the seed crystal is observed in the columnar crystal piece derived from the crystal synthesized by the seed crystal melting method. The sector boundary here includes a sub boundary associated with crystal growth called a facet line. For example, when synthesized using a NdBa 2 Cu 3 O y single crystal as a seed crystal, the sector boundary 31 is observed so that the upper surface of the columnar crystal piece is divided into four equal parts as shown in FIG. The sector boundaries are preferably stacked so that they do not overlap when viewed from the central axis direction of the cylindrical stack. For that purpose, a method of stacking while rotating around the central axis of the columnar crystal piece can be employed. For example, when stacking n columnar crystal pieces of the same type, if they are stacked while being rotated by (90 ° / n) °, the sector boundary will not overlap, and the sector boundary will appear when viewed from the central axis direction. Dally will be evenly distributed in the circumferential direction. For example, when stacking three cylindrical crystal pieces, it is preferable to stack while rotating by 30 °, and when stacking four cylindrical crystal pieces, it is preferable to stack while rotating by 22.5 °. preferable. At this time, n columnar crystal pieces may be stacked so as to be clockwise or counterclockwise in order, or may be stacked randomly. FIG. 3 illustrates an example in which three columnar crystal pieces 32, 33, and 34 are stacked while being rotated counterclockwise by 30 degrees. In this way, when viewed from the central axis direction, sector boundaries are not unevenly distributed and evenly distributed in the circumferential direction. Thus, a uniform and reliable magnet can be provided.

このようにして作製された積重体からなる超伝導バルク体に磁場を捕捉する際には、液体窒素などで冷却する必要があり、また超伝導状態で磁場が加えられると強いローレンツ力が外周方向へ働く。このため超伝導バルク体を構成する積重体は、温度変化やローレンツ力などに耐えうるものであることが必要とされる。そこで、本発明では、以下に記載するような補強を行うことが好ましい。   When trapping a magnetic field in a superconducting bulk body made of stacks as described above, it is necessary to cool with liquid nitrogen or the like, and when a magnetic field is applied in a superconducting state, a strong Lorentz force is generated in the outer circumferential direction. To work. Therefore, the stack constituting the superconducting bulk body needs to be able to withstand temperature change, Lorentz force and the like. Therefore, in the present invention, it is preferable to perform reinforcement as described below.

(熱伝導性部材による補強)
本発明では、円柱状結晶片に孔を形成して、その孔に熱伝導性部材を挿入して固定することにより補強することができる。
RE−Ba−Cu−O系超伝導バルク体の臨界電流密度は、温度低下とともに飛躍的に向上する。このため、より低温で作動するほうが磁石応用には有利である。しかしながら、温度低下とともに比熱が低下するため、超伝導としての熱的安定性は低下し、わずかな熱発生で超伝導体の温度が上昇しやすい。このため、小さな外部擾乱によって超伝導が突然壊れるクエンチ現象が発生してしまうことがある。また、磁化過程において、磁束が超伝導体内で再配列するのにともなって磁束の運動が生じ、その際発生した熱によって温度が急激に上昇してクエンチ現象が発生してしまうこともある。このような急激な温度変動による問題に対処するために、円柱状結晶片内に形成した孔に熱伝導性部材を挿入し、円柱状結晶片内で発生した熱を熱伝導性部材を介して円柱状結晶片外に放出することにより、円柱状結晶片の耐熱変動性を補強する。
(Reinforcement with heat conductive material)
In the present invention, the hole can be reinforced by forming a hole in the columnar crystal piece and inserting and fixing the heat conductive member into the hole.
The critical current density of the RE-Ba-Cu-O-based superconducting bulk material is dramatically improved as the temperature decreases. For this reason, operating at lower temperatures is advantageous for magnet applications. However, since the specific heat decreases as the temperature decreases, the thermal stability as superconductivity decreases, and the temperature of the superconductor tends to increase with a slight heat generation. For this reason, a quench phenomenon in which superconductivity is suddenly broken by a small external disturbance may occur. In addition, in the magnetization process, the magnetic flux moves as the magnetic flux is rearranged in the superconductor, and the quenching phenomenon may occur due to the rapid increase in temperature caused by the generated heat. In order to deal with the problem due to such a rapid temperature fluctuation, a heat conductive member is inserted into the hole formed in the cylindrical crystal piece, and the heat generated in the cylindrical crystal piece is passed through the heat conductive member. The heat-resistant variability of the columnar crystal piece is reinforced by releasing it outside the columnar crystal piece.

熱伝導性部材は、円柱状結晶片を構成するRE−Ba−Cu−O系結晶よりも熱伝導性が高い材料であって、円柱状結晶片内で途切れることなく連続して円柱状結晶片外に通じている構造を有していることが好ましい。熱伝導性部材は金属から構成されているものであることが好ましい。金属としては、アルミニウム、銅、銀、金などを挙げることができ、アルミニウムや銅を用いることが好ましい。円柱状結晶片を構成するRE−Ba−Cu−O系結晶よりも強度が高い材料を選択すれば、円柱状結晶片の構造を補強して、各円柱状結晶片間のズレ等を抑えることもできるため好ましい。   The heat conductive member is a material having higher heat conductivity than the RE-Ba-Cu-O-based crystal constituting the columnar crystal piece, and the columnar crystal piece continuously without interruption in the columnar crystal piece. It is preferable to have a structure that communicates with the outside. The heat conductive member is preferably made of metal. Examples of the metal include aluminum, copper, silver, and gold, and aluminum or copper is preferably used. If a material having a higher strength than the RE-Ba-Cu-O-based crystal constituting the columnar crystal piece is selected, the structure of the columnar crystal piece is reinforced to suppress the deviation between the columnar crystal pieces. It is also preferable because it can be used.

円柱状結晶片に形成される孔と熱伝導性部材の形状は対応していることが好ましい。例えば、図4に示すように、円柱状の円柱状結晶片41の中心軸に平行に設けられた貫通孔42に熱伝導性部材43を挿入した態様を挙げることができる。また、図5に示すように、円柱状の円柱状結晶片51の中心軸に対して斜め方向に伸長するように設けられた貫通孔52に熱伝導性部材53を挿入した態様を挙げることができる。図4や図5に示す態様では、貫通孔と熱伝導性部材の数がそれぞれ2本である例を挙げているが、本数は3本以上であってもよい。セクターバウンダリーにより円柱状結晶片の中心軸に垂直な平面が4等分されていることを考慮して、4本、8本といった4の倍数となる本数を採用することも好ましい。さらに別の態様として、図6に示すように、円柱状結晶片61の中心軸の周りにらせん状に伸長するように設けられた孔62に熱伝導性部材63を挿入した態様を挙げることもできる。このとき、らせんの段数はあまり多くしない方がバルク体内で発生した局所熱を外部へ放出するための熱伝導経路が短くなるため好ましい。また、段数をあまり多くしない方がバルク体の強度低下を抑える点でも好ましい。具体的には段数を3段以下にすることが好ましく、2段以下にすることがより好ましい。図4〜図6などのいずれの態様においても、複数の孔と熱伝導性部材は、円柱状の円柱状結晶片の中心軸に対して対称な位置に設けられていることが好ましい。   It is preferable that the hole formed in the columnar crystal piece corresponds to the shape of the heat conductive member. For example, as shown in FIG. 4, the aspect which inserted the heat conductive member 43 in the through-hole 42 provided in parallel with the central axis of the column-shaped columnar crystal piece 41 can be mentioned. Moreover, as shown in FIG. 5, the aspect which inserted the heat conductive member 53 in the through-hole 52 provided so that it might extend in the diagonal direction with respect to the central axis of the column-shaped columnar crystal piece 51 may be mentioned. it can. In the embodiment shown in FIGS. 4 and 5, an example is given in which the number of through holes and the number of thermally conductive members is two, but the number may be three or more. In consideration of the fact that the plane perpendicular to the central axis of the columnar crystal piece is divided into four by the sector boundary, it is also preferable to employ a number that is a multiple of four, such as four or eight. As another embodiment, as shown in FIG. 6, there may be mentioned an embodiment in which a heat conductive member 63 is inserted into a hole 62 provided so as to extend spirally around the central axis of the columnar crystal piece 61. it can. At this time, it is preferable not to increase the number of spiral stages because the heat conduction path for releasing the local heat generated in the bulk body to the outside is shortened. In addition, it is preferable that the number of steps is not so large from the viewpoint of suppressing the strength reduction of the bulk body. Specifically, the number of stages is preferably 3 or less, more preferably 2 or less. In any of the embodiments such as FIGS. 4 to 6, the plurality of holes and the heat conductive member are preferably provided at positions symmetrical with respect to the central axis of the cylindrical columnar crystal piece.

円柱状結晶片に形成される孔が貫通孔である場合は、図4〜6に示すように円柱状結晶片の上面から下面に通じる貫通孔とすることが好ましい。円柱状結晶片に形成される孔は必ずしも貫通孔である必要はなく、例えば上面のみに通じる孔や下面のみに通じる孔であってもよい。図7は、円柱状結晶片71の下面のみに通じるように設けられた孔72に熱伝導性部材73を挿入した態様を示している。ここでは、熱伝導性部材73が円柱状結晶片71の下面に設置された熱伝導性が高い放熱板74内にまでに伸長していて熱を一段と放出しやすくなっている。放熱板は積極的に温度を下げる機能を備えた冷却機構に置き換えることもできる。このように、円柱状結晶片内で発生する熱が一定の方向に伝導するような構成も好ましい態様として挙げることができる。   When the hole formed in the columnar crystal piece is a through hole, it is preferable that the hole be formed as a through hole leading from the upper surface to the lower surface of the columnar crystal piece as shown in FIGS. The hole formed in the columnar crystal piece is not necessarily a through hole, and may be, for example, a hole communicating only with the upper surface or a hole communicating only with the lower surface. FIG. 7 shows a mode in which a heat conductive member 73 is inserted into a hole 72 provided so as to communicate only with the lower surface of the columnar crystal piece 71. Here, the heat conductive member 73 extends to the inside of the heat radiating plate 74 that is installed on the lower surface of the columnar crystal piece 71 and has high heat conductivity, so that the heat is more easily released. The heat sink can be replaced with a cooling mechanism having a function of actively lowering the temperature. Thus, the structure which the heat | fever generate | occur | produced in a cylindrical crystal piece conducts to a fixed direction can also be mentioned as a preferable aspect.

円柱状結晶片に形成される孔の内径や熱伝導性部材の断面直径は、0.01mm以上にすることが好ましく、0.5mm以上にすることがより好ましく、また、5mm以下にすることが好ましく、2mm以下にすることがより好ましい。孔はドリルなどの公知の手段を用いて形成することができる。
円柱状結晶片に設けられた孔に熱伝導性部材を挿入する際には、特許第3858221号公報などに記載される公知の技術を適宜選択し、必要な改変を加えて本発明に適用することができる。
The inner diameter of the hole formed in the columnar crystal piece and the cross-sectional diameter of the heat conductive member are preferably 0.01 mm or more, more preferably 0.5 mm or more, and 5 mm or less. Preferably, it is more preferably 2 mm or less. The hole can be formed using a known means such as a drill.
When inserting a thermally conductive member into a hole provided in a columnar crystal piece, a known technique described in Japanese Patent No. 3858221 is appropriately selected and applied to the present invention with necessary modifications. be able to.

(含浸処理による補強)
円柱状結晶片に対する別の補強法として、樹脂または金属を含浸させる方法も挙げることができる。
円柱状結晶片を構成するRE−Ba−Cu−O系円柱状結晶片の外表面には、クラックや細かい傷が存在していることがある。このようなクラックや傷を放置しておくと、冷却時の熱膨張やローレンツ力などの外力により亀裂が拡大して超伝導バルク体や超伝導バルク磁石の機能や機械特性を損ねることがある。また、RE−Ba−Cu−O系の結晶は空気中の水分と反応して劣化しやすい性質を有している。そこで、円柱状結晶片の外表面に樹脂または金属を含浸させておくことにより、機械特性の悪化を防ぎ、水分との反応による劣化を抑制することができる。円柱状結晶片に形成された孔に熱伝導性部材を挿入した場合には、孔の内壁と熱伝導性部材の外表面の間に樹脂または金属を含浸させることも極めて好ましい。このような含浸処理を行っておけば、円柱状結晶片内に発生した局部熱を含浸部を通して熱伝導性部材へ速やかに伝導することができる。
(Reinforcement by impregnation treatment)
As another reinforcing method for the columnar crystal piece, a method of impregnating with resin or metal can also be mentioned.
Cracks and fine scratches may be present on the outer surface of the RE-Ba-Cu-O-based columnar crystal piece constituting the columnar crystal piece. If such cracks and scratches are left untreated, cracks may expand due to external forces such as thermal expansion and Lorentz force during cooling, and the functions and mechanical properties of the superconducting bulk material and superconducting bulk magnet may be impaired. In addition, RE-Ba-Cu-O-based crystals have a property of being easily deteriorated by reacting with moisture in the air. Therefore, by impregnating the outer surface of the columnar crystal piece with resin or metal, deterioration of mechanical properties can be prevented and deterioration due to reaction with moisture can be suppressed. When a heat conductive member is inserted into the hole formed in the columnar crystal piece, it is extremely preferable to impregnate a resin or metal between the inner wall of the hole and the outer surface of the heat conductive member. By performing such an impregnation treatment, local heat generated in the columnar crystal piece can be quickly conducted to the heat conductive member through the impregnation portion.

含浸処理に用いる樹脂としては、熱硬化性樹脂を挙げることができる。例えば、比較的低い温度(例えば50℃以上)に加熱することにより熱硬化するエポキシ系樹脂、フェノール系樹脂、ポリイミド系樹脂、ポリイミドアミド系樹脂、ポリエーテルスルホン系樹脂などを挙げることができる。これらの樹脂は加熱して円柱状結晶片に適用することにより、容易に含浸処理することができる。樹脂を2種類以上用いて、第1の樹脂を含浸させた後にそれを外側から覆うように第2の樹脂を適用してもよい。第1の樹脂としては上で例示した熱硬化性樹脂を挙げることができ、第2の樹脂としては例えばこれらの熱硬化性樹脂とフッ素系樹脂との混合物を挙げることができる。   An example of the resin used for the impregnation treatment is a thermosetting resin. For example, an epoxy resin, a phenol resin, a polyimide resin, a polyimide amide resin, a polyethersulfone resin, and the like that are thermally cured by heating to a relatively low temperature (for example, 50 ° C. or more) can be given. These resins can be easily impregnated by heating and applying them to columnar crystal pieces. Two or more kinds of resins may be used, and the second resin may be applied so as to cover the first resin after impregnation. Examples of the first resin include the thermosetting resins exemplified above, and examples of the second resin include a mixture of these thermosetting resins and fluororesins.

含浸処理に用いる金属は、金属単体または合金である。円柱状結晶片を構成するRE−Ba−Cu−O系円柱状結晶片はある温度以上に加熱すると結合酸素が逸散して超伝導特性を示さなくなるため、当該温度以下で溶融する金属単体や合金を採用する。例えば、Bi−Pb−Sn−Cd−In合金、Bi−Pb−Sn−In合金、Bi−Pb−Sn−Cd合金、Bi−Pb−Sn−Sb合金、Bi−Sn−In合金、Bi−Pb−Cd合金、Bi−Pb−Sn合金、Bi−Sn−Cd合金、Bi−Pb合金、Bi−Sn合金、Bi、In、Snなどを挙げることができる。含浸処理は、例えば減圧雰囲気下に保持した円柱状結晶片と溶融させた金属単体または合金を接触させる方法や、加圧しながら含浸させる方法などにより行うことができる。   The metal used for the impregnation treatment is a single metal or an alloy. When the RE-Ba-Cu-O-based columnar crystal piece constituting the columnar crystal piece is heated above a certain temperature, the bonded oxygen is dissipated and does not exhibit superconducting properties. Adopt alloy. For example, Bi-Pb-Sn-Cd-In alloy, Bi-Pb-Sn-In alloy, Bi-Pb-Sn-Cd alloy, Bi-Pb-Sn-Sb alloy, Bi-Sn-In alloy, Bi-Pb -Cd alloy, Bi-Pb-Sn alloy, Bi-Sn-Cd alloy, Bi-Pb alloy, Bi-Sn alloy, Bi, In, Sn, etc. can be mentioned. The impregnation treatment can be performed by, for example, a method of bringing a columnar crystal piece held in a reduced-pressure atmosphere into contact with a molten metal simple substance or alloy, a method of impregnation while applying pressure, or the like.

含浸処理による補強に際しては、特開2008−177245号公報、特開2006−321668号公報、特許第3090658号公報などに記載される公知の技術を適宜選択し、必要な改変を加えて本発明に適用することができる。   For reinforcement by impregnation treatment, known techniques described in Japanese Patent Application Laid-Open Nos. 2008-177245, 2006-321668, and 3090658 are appropriately selected, and necessary modifications are made to the present invention. Can be applied.

(締付具による補強)
円柱状結晶片に対するさらに別の補強法として、円柱状結晶片を外側から圧縮する締付具を円柱状結晶片に取り付ける方法を挙げることができる。
締付具は、円柱状結晶片の外周方向に働くローレンツ力に対して円柱状結晶片を保護するように圧縮応力を加えたり、円柱状結晶片を構成する複数の円柱状結晶片の相対的位置関係が変化しないように圧縮応力を加えたりするものであることが好ましい。具体的には、円柱状の円柱状結晶片の中心軸に向かって円柱状結晶片の側周面から圧縮応力を加えるものであったり、円柱状結晶片の上面と下面から複数の円柱状結晶片を挟み込むように圧縮応力を加えたりするものであることが好ましい。締付具を用いることによって、磁場捕捉能がより高い超伝導バルク体を作製することができる。
(Reinforcement with fasteners)
As another reinforcing method for the columnar crystal piece, a method of attaching a fastener for compressing the columnar crystal piece from the outside to the columnar crystal piece can be mentioned.
The fastener applies a compressive stress to protect the columnar crystal piece against the Lorentz force acting in the outer circumferential direction of the columnar crystal piece, or relative to the plurality of columnar crystal pieces constituting the columnar crystal piece. It is preferable to apply a compressive stress so that the positional relationship does not change. Specifically, compressive stress is applied from the peripheral surface of the cylindrical crystal piece toward the central axis of the cylindrical crystal piece, or a plurality of cylindrical crystals are formed from the upper and lower surfaces of the cylindrical crystal piece. It is preferable to apply a compressive stress so as to sandwich the piece. By using a fastener, a superconducting bulk body with a higher magnetic field capturing ability can be produced.

好ましい態様として、例えば図8に斜視図を示すように円柱状結晶片81の側周面から中心軸へ向けた圧縮応力を加える囲繞ベルト82を設置した態様を挙げることができる。また、図9に斜視図を示すように、円柱状結晶片91の側周面から中心軸へ向けた圧縮応力を加える囲繞ベルト92,93を複数個設置した態様も挙げることができる。さらに、図10に斜視図を示すように、円柱状結晶片101の側周面から中心軸へ向けた圧縮応力を加える囲繞ワイヤー102を複数本設置した態様も挙げることができる。さらに、図11に斜視図を示すように、円柱状結晶片111の側周面から中心軸へ向けた圧縮応力を加える1本の囲繞ワイヤー112をらせん状に設置した態様も挙げることができる。さらに、図12に断面図を示すように、円柱状結晶片121の側周面から中心軸へ向けた圧縮応力Aを加える囲繞ベルト122の上側に円柱状結晶片121の上面の一部を周縁部から覆う上側伸長部123と円柱状結晶片121の下面の一部を周縁部から覆う下側伸長部124を伸長させて中心軸方向の圧縮応力Bを加えるようにした態様も挙げることができる。   As a preferable mode, for example, as shown in a perspective view in FIG. 8, a mode in which an encircling belt 82 for applying a compressive stress from the side peripheral surface of the cylindrical crystal piece 81 toward the central axis can be provided. In addition, as shown in a perspective view in FIG. 9, an embodiment in which a plurality of surrounding belts 92 and 93 that apply compressive stress from the side peripheral surface of the columnar crystal piece 91 toward the central axis can be cited. Furthermore, as shown in a perspective view in FIG. 10, an embodiment in which a plurality of surrounding wires 102 for applying compressive stress from the side peripheral surface of the columnar crystal piece 101 toward the central axis can be cited. Furthermore, as shown in a perspective view in FIG. 11, an embodiment in which one surrounding wire 112 that applies a compressive stress from the side peripheral surface of the columnar crystal piece 111 toward the central axis is installed in a spiral shape can be cited. Further, as shown in a cross-sectional view in FIG. 12, a part of the upper surface of the cylindrical crystal piece 121 is arranged on the upper side of the surrounding belt 122 for applying a compressive stress A from the side peripheral surface of the cylindrical crystal piece 121 to the central axis. An aspect in which the upper extension 123 and the lower extension 124 covering a part of the lower surface of the columnar crystal piece 121 from the peripheral portion are extended to apply the compressive stress B in the central axis direction can also be mentioned. .

締付具は、形状記憶合金からなるものであることが特に好ましい。本発明で用いる形状記憶合金は、形状記憶のための熱処理をしておけば、円柱状結晶片に設置するために変形しても、特定の温度以上に加熱することによって変形前の形状を不可逆的に回復する性質を有する合金である。形状記憶合金からなる囲繞ベルトや囲繞ワイヤーを円柱状結晶片に設置した後に特定の温度以上に加熱すれば、変形前の形状に回復するとともに円柱状結晶片に圧縮応力を加えることができる。本発明では、例えば、Ag−Cd合金、Au−Cd合金、Cu−Al−Ni合金、Cu−Sn合金、Cu−Zn合金、Fe−Pt合金、Mn−Cu合金、Fe−Mn−Si合金、Pt合金、Co−Ni−Al合金、Co−Ni−Ga合金、Ni−Fe−Ga合金、Ti−Pd合金、Ni−Ti合金などを好ましい形状記憶合金として用いることができる。なかでもFe系の形状記憶合金を用いることが好ましい。   The fastener is particularly preferably made of a shape memory alloy. If the shape memory alloy used in the present invention is heat-treated for shape memory, the shape before deformation is irreversible by heating above a specific temperature even if it is deformed to be installed on a cylindrical crystal piece. This alloy has the property of recovering automatically. If a go-belt or go-go wire made of a shape memory alloy is placed on the columnar crystal piece and then heated to a specific temperature or higher, the shape before deformation can be restored and a compressive stress can be applied to the columnar crystal piece. In the present invention, for example, Ag-Cd alloy, Au-Cd alloy, Cu-Al-Ni alloy, Cu-Sn alloy, Cu-Zn alloy, Fe-Pt alloy, Mn-Cu alloy, Fe-Mn-Si alloy, Pt alloy, Co—Ni—Al alloy, Co—Ni—Ga alloy, Ni—Fe—Ga alloy, Ti—Pd alloy, Ni—Ti alloy and the like can be used as preferable shape memory alloys. Among these, it is preferable to use an Fe-based shape memory alloy.

本発明では、形状記憶合金からなる締付具と円柱状結晶片の間に挟み込むように金属製の円環などを設置してもよい。金属製の円環を設置しておけば、締付具からの圧縮応力を円環を介して円柱状結晶片に負荷することになるため、円柱状結晶片に圧縮応力をより均一に負荷することができる。
このような締付具による補強は、複数の円柱状結晶片を積み重ねた積重体に対して適用することが特に好ましい。積重体に対して締付具による補強を行えば、軸方向に積み重ねられた各円柱状結晶片の相対的な位置関係がずれるのを効果的に防ぐことができ、それによって高い磁場捕捉能を維持することができる。このような効果は、上記の熱伝導性部材による補強や含浸処理による補強と組み合わせて行うことにより、さらに高めることができる。
In the present invention, a metal ring or the like may be installed so as to be sandwiched between a clamp made of a shape memory alloy and a columnar crystal piece. If a metal ring is installed, the compressive stress from the fastener will be applied to the cylindrical crystal piece via the ring, so the compressive stress is applied more uniformly to the cylindrical crystal piece. be able to.
It is particularly preferable to apply such reinforcement by a fastener to a stacked body in which a plurality of columnar crystal pieces are stacked. If the stack is reinforced with fasteners, it is possible to effectively prevent the relative positional relationship between the cylindrical crystal pieces stacked in the axial direction from being shifted, thereby increasing the magnetic field capturing ability. Can be maintained. Such an effect can be further enhanced by combining with the above-described reinforcement by the heat conductive member and the reinforcement by the impregnation treatment.

[超伝導バルク磁石]
本発明の超伝導バルク体を用いることによって、磁場強度が高い超伝導バルク磁石を作製することができる。超電導バルク体に磁場を捕捉させるには、まず超伝導バルク体に磁場を加え、液体窒素などで冷却する。その後、超電導バルク体が十分冷えた後に、外部の磁場を取り除いて超電導バルク体に磁場を捕捉する。超伝導バルク体から超伝導バルク磁石を作製する方法の詳細については、既知の方法を適宜選択して用いることができ、具体的には後述の実施例を参考にすることができる。
[Superconducting bulk magnet]
By using the superconducting bulk material of the present invention, a superconducting bulk magnet having a high magnetic field strength can be produced. In order to capture the magnetic field in the superconducting bulk body, first, a magnetic field is applied to the superconducting bulk body and cooled with liquid nitrogen or the like. Thereafter, after the superconducting bulk body is sufficiently cooled, the external magnetic field is removed to capture the magnetic field in the superconducting bulk body. As for the details of the method for producing a superconducting bulk magnet from a superconducting bulk body, a known method can be appropriately selected and used. Specifically, examples described later can be referred to.

本発明の超伝導バルク磁石は、磁場強度が高いという特徴を有する。このため、本発明の超伝導バルク磁石を用いれば、ピンポイントで強磁場を実現することができるため、指向性の高い磁場制御が可能になる。また、本発明の超伝導バルク磁石は、上記のように磁石面内の磁気特性ムラを抑えて、均一で信頼性の高い磁石とすることができる。また、熱伝導性が良好で、局部熱の発生に対する耐性にも優れた磁石とすることができる。さらに、機械的特性が高くて、堅牢な磁石とすることもできる。   The superconducting bulk magnet of the present invention is characterized by high magnetic field strength. For this reason, if the superconducting bulk magnet of the present invention is used, a strong magnetic field can be realized at a pinpoint, and magnetic field control with high directivity becomes possible. In addition, the superconducting bulk magnet of the present invention can be a uniform and highly reliable magnet while suppressing uneven magnetic characteristics in the magnet surface as described above. Moreover, it can be set as the magnet which was excellent in heat conductivity and was excellent also in the tolerance with respect to generation | occurrence | production of local heat. Furthermore, it is possible to obtain a strong magnet having high mechanical characteristics.

このような特徴を有することから、本発明の超伝導バルク磁石は、様々な用途に効果的に応用されうる。例えば、磁気誘導型のドラッグデリバリーシステム、NRI、NMRなどの診断・医療分野に応用することが可能であり、マグネトロンスパッタ装置などのエレクトロニクス分野にも応用することが可能である。さらに、水質浄化などを目的とした磁気分離装置などの環境分野にも応用することが可能であり、超伝導モータ、発電機、フライホイールシステムなどの電気分野にも応用することが可能である。その他にも、幅広い技術分野での応用が期待される。   Since it has such characteristics, the superconducting bulk magnet of the present invention can be effectively applied to various uses. For example, it can be applied to diagnostic / medical fields such as a magnetic induction type drug delivery system, NRI, and NMR, and can also be applied to the electronics field such as a magnetron sputtering apparatus. Furthermore, the present invention can be applied to the environmental field such as a magnetic separation device for the purpose of water purification, and can also be applied to the electric field such as a superconducting motor, a generator, and a flywheel system. In addition, application in a wide range of technical fields is expected.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

(実施例1)
YBa2Cu3yおよびY2BaCuO5の粉末を用意し、これら化合物の重量比が10:4になるように秤量し、0.5重量%のPtを添加したのち、よく混合した。その後、2000MPaの静水圧下で直径45mm、厚さ20mmのペレットに成型した。このペレットを、900℃で1時間空気中で加熱し、仮焼結した。
つぎに、直径50mm、厚さ2mmのAl23製板に、まずY23粉を直径45mm、厚さ2mmのペレット状に成型したものを載せたうえに、さらにBaCuO2粉を直径45mm、厚さ10mmのペレット状に成型したものを載せた。そのうえに、仮焼したY−Ba−Cu−O焼結体を設置した。
その後、大気中において電気炉にAl23製板上の前駆体一式を設置し、Y−Ba−Cu−O焼結体の中央に2mm角で厚さが1mmのNdBa2Cu3y単結晶を種として設置した。その後、50℃/hの速度で電気炉を1100℃まで加熱し1時間保持後、1050℃まで1時間で冷却し、その後は、0.2℃/hの速度で950℃まで徐冷して後炉冷を行った。炉から取り出した試料の大きさは直径が30mm、高さが15mmであった。最後に、100%酸素気流中において、400℃で100時間の酸素アニール処理を行って円柱状合成結晶を得た。この状態で、超伝導臨界温度を測定したところ90Kという値が得られた。さらに、表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、ピーク磁場として0.21Tという値が得られた。
つぎに、同様の手法で、Y−Ba−Cu−O系円柱状合成結晶を2個作製し、表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、それぞれ0.20Tと0.19Tの捕捉磁場が得られた。これら2個の円柱状合成結晶から、種を設置した上部を2.5mmと下部5mmを切り離し、厚さが7.5mmの円柱状合成結晶中央部を2個用意し、2個の円柱状合成結晶中央部の間にグリセリンを塗ってから重ね合わせて、高さが15mmの積重体からなる超伝導バルク体を作製した。表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、0.32Tの値が得られた。また、2個用意した厚さが7.5mmの円柱状合成結晶中央部のうちの1個についても同様にして捕捉磁場特性を測定したところ、0.21Tの値が得られた。
Example 1
YBa 2 Cu 3 O y and Y 2 BaCuO 5 powders were prepared, weighed so that the weight ratio of these compounds was 10: 4, 0.5 wt% Pt was added, and then mixed well. Thereafter, it was molded into a pellet having a diameter of 45 mm and a thickness of 20 mm under a hydrostatic pressure of 2000 MPa. The pellet was heated in air at 900 ° C. for 1 hour and pre-sintered.
Next, on the Al 2 O 3 plate having a diameter of 50 mm and a thickness of 2 mm, a Y 2 O 3 powder formed into a pellet shape having a diameter of 45 mm and a thickness of 2 mm is first placed, and then the BaCuO 2 powder is further reduced in diameter. What was molded into a pellet shape of 45 mm and a thickness of 10 mm was placed. On top of that, a calcined Y-Ba-Cu-O sintered body was installed.
Thereafter, a set of precursors on an Al 2 O 3 plate is installed in an electric furnace in the atmosphere, and NdBa 2 Cu 3 O y is 2 mm square and 1 mm thick at the center of the Y-Ba-Cu-O sintered body. A single crystal was placed as a seed. Thereafter, the electric furnace was heated to 1100 ° C. at a rate of 50 ° C./h, held for 1 hour, cooled to 1050 ° C. for 1 hour, and then gradually cooled to 950 ° C. at a rate of 0.2 ° C./h. After furnace cooling was performed. The sample taken out from the furnace had a diameter of 30 mm and a height of 15 mm. Finally, an oxygen annealing treatment was performed at 400 ° C. for 100 hours in a 100% oxygen stream to obtain a cylindrical synthetic crystal. In this state, the superconducting critical temperature was measured, and a value of 90K was obtained. Furthermore, when the trapping magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.21 T was obtained as the peak magnetic field.
Next, two Y-Ba-Cu-O columnar synthetic crystals are produced in the same manner, and are cooled with liquid nitrogen (77K) using an Fe-Nd-B magnet having a surface magnetic field of 0.4T. When the trapping magnetic field characteristics were measured with a Hall element, trapping magnetic fields of 0.20 T and 0.19 T were obtained, respectively. From these two cylindrical synthetic crystals, the upper part where the seeds were placed was separated into 2.5 mm and the lower part 5 mm, and two cylindrical synthetic crystal central parts with a thickness of 7.5 mm were prepared, and two cylindrical synthetic crystals were prepared. A superconducting bulk body made of a stack having a height of 15 mm was produced by applying glycerin between the central portions of the crystals and then superposing them. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.32 T was obtained. Further, when the trapped magnetic field characteristics were measured in the same manner for one of the two cylindrical synthetic crystals having a thickness of 7.5 mm, a value of 0.21 T was obtained.

(実施例2)
実施例1と同様の手法で、直径が30mm、高さが15mmのY−Ba−Cu−O系円柱状合成結晶を3個合成した。表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、ピーク磁場として0.20T, 0.21T, 0.19Tという値が得られた。これら3個の円柱状合成結晶から、種を設置した上部3mmと下部7mmを切り離し、厚さが5mmの円柱状合成結晶中央部を3個用意し、円柱状合成結晶中央部の間にグリセリンを塗り、3個を重ね合わせて高さが15mmの積重体からなる超伝導バルク体を作製した。表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、0.34Tの値が得られた。また、3個用意した厚さが5mmの円柱状合成結晶中央部のうちの1個についても同様にして捕捉磁場特性を測定したところ、0.18Tの値が得られた。
(Example 2)
In the same manner as in Example 1, three Y-Ba-Cu-O-based cylindrical synthetic crystals having a diameter of 30 mm and a height of 15 mm were synthesized. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77K) using a Fe-Nd-B magnet having a surface magnetic field of 0.4T, the peak magnetic fields were 0.20T, 0.21T, and 0.19T. A value was obtained. From these three cylindrical synthetic crystals, the upper 3 mm and the lower 7 mm where the seeds are placed are separated, and three central cylindrical synthetic crystals with a thickness of 5 mm are prepared. Glycerin is placed between the central cylindrical synthetic crystals. A superconducting bulk body consisting of a stack of 15 mm in height was produced by superimposing three coatings. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.34 T was obtained. Further, when the trapped magnetic field characteristics were measured in the same manner for one of the three prepared cylindrical synthetic crystals having a thickness of 5 mm, a value of 0.18 T was obtained.

(実施例3)
実施例1と同様の手法で、直径が30mm、高さが15mmのY−Ba−Cu−O系円柱状合成結晶を3個合成した。表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、ピーク磁場として0.18T, 0.21T,0.19Tという値が得られた。これら3個の円柱状合成結晶から、種を設置した上部2.5mmと下部5mmを切り離し、厚さが7.5mmの円柱状合成結晶中央部を3個用意し、円柱状合成結晶中央部の間にグリセリンを塗り、3個を重ね合わせて高さが22.5mmの積重体からなる超伝導バルク体を作製した。表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、0.38Tの値が得られた。
(Example 3)
In the same manner as in Example 1, three Y-Ba-Cu-O-based cylindrical synthetic crystals having a diameter of 30 mm and a height of 15 mm were synthesized. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77K) using a Fe-Nd-B magnet having a surface magnetic field of 0.4T, the peak magnetic fields were 0.18T, 0.21T, and 0.19T. A value was obtained. From these three cylindrical synthetic crystals, the upper 2.5 mm and the lower 5 mm where the seeds were placed were separated, and three central cylindrical synthetic crystals with a thickness of 7.5 mm were prepared. Glycerin was applied in between, and three were superposed to produce a superconducting bulk body consisting of a stack of 22.5 mm in height. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.38 T was obtained.

(実施例4)
NdとEuとGdの混合比が1:1:1の(Nd,Eu,Gd)Ba2Cu3yおよび(Nd,Eu,Gd)2BaCuO5の粉末を用意し、これら化合物の重量比が4:1になるように秤量し、0.5重量%のPtを添加したのち、よく混合した。その後、2000MPaの静水圧下で直径50mm、厚さ20mmのペレットに成型した。ペレットを、900℃で1時間空気中で加熱し、仮焼結した。
つぎに、直径50mm、厚さ2mmのAl23製板上に、まずNd23粉を直径45mm、厚さ2mmのペレット状に成型したものを載せたうえに、さらにBaCuO2粉を直径45mm、厚さ10mmのペレット状に成型したものを載せた。そのうえに、用意した(Nd,Eu,Gd)−Ba−Cu−O焼結体を設置した。
その後、1%O2+99%Arの雰囲気に調整された電気炉にAl23製板ごと上記前駆体構造を設置し、(Nd,Eu,Gd)−Ba−Cu−O焼結体の中央に2mm角で厚さが1mmのNdBa2Cu3y単結晶を種として設置した。電気炉に設置後、50℃/hの速度で電気炉を1100℃まで加熱し1時間保持後、1050℃まで1時間で冷却し、その後は、0.2℃/hの速度で950℃まで徐冷し、続けて炉冷を行った。炉から取り出した試料の大きさは直径が30mm、高さが15mmであった。最後に、100%酸素気流中において、300℃で200時間の酸素アニール処理を行って円柱状合成結晶を得た。この状態で、超伝導臨界温度を測定したところ95Kという値が得られた。表面磁場が0.5TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、ピーク磁場として0.31Tという値が得られた。
つぎに、同様の手法で、(Nd,Eu,Gd)−Ba−Cu−O系円柱状合成結晶を2個作製し、表面磁場が0.5TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、それぞれ0.29Tと0.30Tの捕捉磁場が得られた。これら2個の円柱状合成結晶から、種を設置した上部2.5mmと下部5mmを切り離し、厚さが7.5mmの円柱状合成結晶中央部を2個用意し、円柱状合成結晶中央部の間にグリセリンを塗り、2個を重ね合わせて高さが15mmの超伝導バルク体を作製した。表面磁場が0.5TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、0.40Tの値が得られた。また、2個用意した厚さが7.5mmの円柱状合成結晶中央部のうちの1個についても同様にして捕捉磁場特性を測定したところ、0.31Tの値が得られた。
Example 4
(Nd, Eu, Gd) Ba 2 Cu 3 O y and (Nd, Eu, Gd) 2 BaCuO 5 powders having a mixing ratio of Nd, Eu and Gd of 1: 1: 1 were prepared, and the weight ratio of these compounds Was weighed so as to be 4: 1, 0.5 wt% Pt was added, and then mixed well. Thereafter, it was molded into pellets having a diameter of 50 mm and a thickness of 20 mm under a hydrostatic pressure of 2000 MPa. The pellet was heated in air at 900 ° C. for 1 hour and pre-sintered.
Next, on an Al 2 O 3 plate having a diameter of 50 mm and a thickness of 2 mm, first, Nd 2 O 3 powder formed into a pellet shape having a diameter of 45 mm and a thickness of 2 mm is placed, and further BaCuO 2 powder is added. The one formed into a pellet shape having a diameter of 45 mm and a thickness of 10 mm was placed. In addition, the prepared (Nd, Eu, Gd) -Ba-Cu-O sintered body was installed.
Thereafter, the above precursor structure is installed together with the Al 2 O 3 plate in an electric furnace adjusted to an atmosphere of 1% O 2 + 99% Ar, and the (Nd, Eu, Gd) -Ba-Cu-O sintered body is An NdBa 2 Cu 3 O y single crystal having a diameter of 2 mm and a thickness of 1 mm was placed in the center as a seed. After being installed in the electric furnace, the electric furnace is heated to 1100 ° C. at a rate of 50 ° C./h, held for 1 hour, cooled to 1050 ° C. for 1 hour, and then to 950 ° C. at a rate of 0.2 ° C./h. Slow cooling followed by furnace cooling. The sample taken out from the furnace had a diameter of 30 mm and a height of 15 mm. Finally, an oxygen annealing treatment was performed at 300 ° C. for 200 hours in a 100% oxygen stream to obtain a cylindrical synthetic crystal. In this state, the superconducting critical temperature was measured, and a value of 95K was obtained. When the trapped magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.5 T, a value of 0.31 T was obtained as the peak magnetic field.
Next, in the same manner, two (Nd, Eu, Gd) -Ba-Cu-O-based cylindrical synthetic crystals are produced, and liquid nitrogen is used using a Fe-Nd-B magnet having a surface magnetic field of 0.5 T. When the trapped magnetic field characteristics were measured with a Hall element under cooling (77 K), trapped magnetic fields of 0.29 T and 0.30 T were obtained, respectively. From these two cylindrical synthetic crystals, the upper 2.5 mm and the lower 5 mm where the seeds are placed are separated, and two central cylindrical synthetic crystals having a thickness of 7.5 mm are prepared. Glycerin was applied in between, and two were superposed to produce a superconducting bulk body having a height of 15 mm. When the trapping magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.5 T, a value of 0.40 T was obtained. Further, when the captured magnetic field characteristics were measured in the same manner for one of the two cylindrical synthetic crystals having a thickness of 7.5 mm, the value of 0.31 T was obtained.

(実施例5)
実施例1と同様の手法で、直径が30mm、高さが15mmのY−Ba−Cu−O系円柱状合成結晶を3個合成した。
円柱状合成結晶を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させ、中心磁場が5Tでボア径が50mmの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加したのち、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした状態で、ホール素子により捕捉磁場特性を測定したところ、ピーク磁場として2.5T, 2.4T, 2.6Tという値が得られた。
これら3個の円柱状合成結晶から、種を設置した上部を3mmと下部7mmを切り離し、厚さが5mmの円柱状合成結晶中央部を3個用意し、円柱状合成結晶中央部の間にグリセリンを塗り、3個を重ね合わせて高さが15mmの超伝導バルク体を作製した。この際、重ね合わせるバルク体のファセットラインと呼ばれる結晶成長にともなうサブバウンダリーが重なるようにセットした。
以上のようにして構成した3個の円柱状合成結晶中央部からなる超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させ、中心磁場が5Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加した状態で、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした状態で、ホール素子により捕捉磁場特性を測定した。その結果、ピーク磁場として3.84Tという値が得られた。
つぎに、まったく同じ厚さが5mmの円柱状合成結晶中央部を3個を、円柱状合成結晶中央部のファセットラインと呼ばれる結晶成長にともなうサブバウンダリーが互いに30°ずつ傾くように、円柱状合成結晶中央部の間にグリセリンを塗り、3個を重ね合わせて高さが15mmの積重体からなる超伝導バルク体を作製した。以上のようにして構成した3個の円柱状合成結晶中央部からなる超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させ、中心磁場が5Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加した状態で、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした状態で、ホール素子により捕捉磁場特性を測定した。その結果、ピーク磁場として4.12Tという値が得られた。
(Example 5)
In the same manner as in Example 1, three Y-Ba-Cu-O-based cylindrical synthetic crystals having a diameter of 30 mm and a height of 15 mm were synthesized.
The cylindrical synthetic crystal was attached to the tip of the cold head of the refrigerator with vacuum grease, and was placed in a superconducting coil having a central magnetic field of 5 T and a bore diameter of 50 mm, and was placed without applying a magnetic field. Then, after applying a magnetic field of 5T, cooling to 50K by cooling with a refrigerator and measuring the captured magnetic field characteristics with a Hall element in a state where the external magnetic field was zero, the peak magnetic field was 2.5T, 2.4T, A value of 2.6T was obtained.
From these three columnar synthetic crystals, the upper part where the seeds are placed is separated into 3 mm and the lower part 7 mm, and three cylindrical synthetic crystal central parts having a thickness of 5 mm are prepared, and glycerin is provided between the cylindrical synthetic crystal central parts. A superconducting bulk body having a height of 15 mm was produced by superimposing three pieces. At this time, it was set so that the subboundaries accompanying crystal growth called the facets of the bulk body to be overlapped overlap.
The superconducting bulk body composed of the three central parts of the synthetic crystal constructed as described above is attached to the tip of the cold head of the refrigerator by vacuum grease and installed in a superconducting coil having a central magnetic field of 5T. And installed without applying a magnetic field. Thereafter, in a state where a magnetic field of 5T was applied, cooling to 50K was performed by cooling the refrigerator, and the captured magnetic field characteristics were measured with a Hall element in a state where the external magnetic field was zero. As a result, a value of 3.84 T was obtained as the peak magnetic field.
Next, three cylindrical synthetic crystals with exactly the same thickness of 5 mm are formed in a cylindrical shape so that the subboundaries associated with crystal growth called facet lines in the central portion of the cylindrical synthetic crystals are inclined by 30 ° from each other. Glycerin was applied between the central portions of the synthetic crystals, and a superconducting bulk body consisting of a stack having a height of 15 mm was prepared by superimposing three pieces. The superconducting bulk body composed of the three central parts of the synthetic crystal constructed as described above is attached to the tip of the cold head of the refrigerator by vacuum grease and installed in a superconducting coil having a central magnetic field of 5T. And installed without applying a magnetic field. Thereafter, in a state where a magnetic field of 5T was applied, cooling to 50K was performed by cooling the refrigerator, and the captured magnetic field characteristics were measured with a Hall element in a state where the external magnetic field was zero. As a result, a value of 4.12 T was obtained as the peak magnetic field.

(実施例6)
YBa2Cu3yおよびY2BaCuO5の粉末を用意し、これら化合物の重量比が10:4になるように秤量し、0.5重量%のPtを添加したのち、よく混合した。その後、2000MPaの静水圧下で直径45mm、厚さ20mmのペレットに成型した。ペレットを、900℃で1時間空気中で加熱し、仮焼結した。つぎに焼結体の中心から20mmの円周に沿って等間隔で、直径2mmの人工孔を6個、中心軸方向に超硬ドリルにより形成した。
直径50mm、厚さ2mmのAl23製板に、まずY23粉を直径45mm、厚さ2mmのペレット状に成型したものを載せたうえに、さらにBaCuO2粉を直径45mm、厚さ10mmのペレット状に成型したものを載せた。そのうえに、仮焼して6個の人工孔を設けたY−Ba−Cu−O焼結体を設置した。
その後、大気中において電気炉にAl23製板上の前駆体一式を設置し、Y−Ba−Cu−O焼結体の中央に2mm角で厚さが1mmのNdBa2Cu3y単結晶を種として設置した。その後、50℃/hの速度で電気炉を1100℃まで加熱し1時間保持後、1050℃まで1時間で冷却し、その後は、0.2℃/hの速度で950℃まで徐冷した後炉冷を行った。炉から取り出した試料の大きさは直径が30mm、高さが15mmであった。また、人工孔は直径が1.5mm程度となったが、直径が約15mmの同心円上に等間隔で分布していることを確認した。最後に、100%酸素気流中において、400℃で100時間の酸素アニール処理を行って円柱状合成結晶を得た。この状態で、超伝導臨界温度を測定したところ90Kという値が得られた。さらに、表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、ピーク磁場として0.21Tという値が得られた。
つぎに、同様の手法で、最終径が1.5mmの人工孔を6個設けたバルクY−Ba−Cu−O系円柱状合成結晶を2個作製し、表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、それぞれ0.20Tと0.19Tの捕捉磁場が得られた。これら2個の円柱状合成結晶から、種を設置した上部2.5mmと下部5mmを切り離し、厚さが7.5mmの円柱状合成結晶中央部を2個用意した。つぎに、人工孔に直径が1.4mm、長さが15mmのアルミニウム棒を6本挿入し、2個の円柱状合成結晶中央部を貫通するように、上下で結合した状態にした。そのうえで、Pb−Bi−Sn合金を200℃に加熱後、真空ポンプで脱気することで円柱状合成結晶中央部に真空含浸を行った。同合金は、この処理によりアルミニウムと円柱状合成結晶中央部の人工孔との間の空隙を埋め、2個の円柱状合成結晶中央部は強固に結合されていることを確認した。つぎに、表面磁場が0.4TのFe−Nd−B磁石を用いて液体窒素冷却下(77K)でホール素子により捕捉磁場特性を測定したところ、0.34Tの値が得られた。
(Example 6)
YBa 2 Cu 3 O y and Y 2 BaCuO 5 powders were prepared, weighed so that the weight ratio of these compounds was 10: 4, 0.5 wt% Pt was added, and then mixed well. Thereafter, it was molded into a pellet having a diameter of 45 mm and a thickness of 20 mm under a hydrostatic pressure of 2000 MPa. The pellet was heated in air at 900 ° C. for 1 hour and pre-sintered. Next, six artificial holes having a diameter of 2 mm were formed at equal intervals along a circumference of 20 mm from the center of the sintered body by a carbide drill in the central axis direction.
First, Y 2 O 3 powder formed into a 45 mm diameter and 2 mm thick pellet is placed on an Al 2 O 3 plate having a diameter of 50 mm and a thickness of 2 mm, and then BaCuO 2 powder is further added to a 45 mm diameter and thickness. A 10-mm pellet was molded. On top of that, a Y-Ba-Cu-O sintered body that was calcined and provided with six artificial holes was installed.
Thereafter, a set of precursors on an Al 2 O 3 plate is installed in an electric furnace in the atmosphere, and NdBa 2 Cu 3 O y is 2 mm square and 1 mm thick at the center of the Y-Ba-Cu-O sintered body. A single crystal was placed as a seed. Thereafter, the electric furnace was heated to 1100 ° C. at a rate of 50 ° C./h, held for 1 hour, cooled to 1050 ° C. for 1 hour, and then gradually cooled to 950 ° C. at a rate of 0.2 ° C./h. Furnace cooling was performed. The sample taken out from the furnace had a diameter of 30 mm and a height of 15 mm. Further, although the artificial holes had a diameter of about 1.5 mm, it was confirmed that they were distributed at equal intervals on a concentric circle having a diameter of about 15 mm. Finally, an oxygen annealing treatment was performed at 400 ° C. for 100 hours in a 100% oxygen stream to obtain a cylindrical synthetic crystal. In this state, the superconducting critical temperature was measured, and a value of 90K was obtained. Furthermore, when the trapping magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.21 T was obtained as the peak magnetic field.
Next, two bulk Y-Ba-Cu-O columnar synthetic crystals having six artificial holes having a final diameter of 1.5 mm were prepared by the same method, and the surface magnetic field was 0.4 T Fe--. When the trapping magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using an Nd-B magnet, trapping magnetic fields of 0.20 T and 0.19 T were obtained, respectively. From these two cylindrical synthetic crystals, the upper 2.5 mm and the lower 5 mm where the seeds were placed were cut off, and two cylindrical synthetic crystal central parts having a thickness of 7.5 mm were prepared. Next, six aluminum rods having a diameter of 1.4 mm and a length of 15 mm were inserted into the artificial hole, and the two holes were combined vertically so as to penetrate the central part of the two cylindrical synthetic crystals. After that, the Pb—Bi—Sn alloy was heated to 200 ° C. and then deaerated with a vacuum pump, thereby vacuum impregnating the central portion of the cylindrical synthetic crystal. This alloy filled the void between the aluminum and the artificial hole in the central portion of the cylindrical synthetic crystal by this treatment, and confirmed that the two central portions of the cylindrical synthetic crystal were firmly bonded. Next, when the captured magnetic field characteristics were measured with a Hall element under liquid nitrogen cooling (77 K) using a Fe—Nd—B magnet having a surface magnetic field of 0.4 T, a value of 0.34 T was obtained.

(実施例7)
実施例1で用いた厚さが7.5mmの円柱状合成結晶中央部2個の間にグリセリンを塗り、2個を重ね合わせて構成した高さが15mmの積重体からなる超伝導バルク体に、以下の励磁処理を施した。
該超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させた。この際、中心軸が印加磁場の中心軸から傾くように、3mmのテーパーを設けたアルミニウム製円盤(直径が30mmで、両端の厚さが4mmから1mmに変化するように加工したもの)を最初に設置し、その上に超伝導バルク体を付着させた。
その後、中心磁場が5Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加した状態で、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした。この際、2個の円柱状合成結晶中央部が上下でずれた状態となった。これは、2個の円柱状合成結晶中央部の結合が不十分であるため、励磁の際に働く電磁力によって、円柱状合成結晶中央部の位置がずれたためと考えられる。この状態で、ホール素子により捕捉磁場特性を測定した。その結果、ピーク磁場として2.84Tという値が得られた。
つぎに実施例6で合成した人工孔を6個設けたうえで、アルミニウム棒とPb−Bi−Sn合金による真空含浸により強固に結合させた2個の円柱状合成結晶中央部で構成した超伝導バルク体にも、同様の励磁処理を行った。その結果、円柱状合成結晶中央部にずれはまったく生じず、捕捉磁場も3.9Tという高い値が得られた。
(Example 7)
A superconducting bulk body composed of a stack of 15 mm in height, in which glycerin is applied between two central synthetic crystal cylinders having a thickness of 7.5 mm used in Example 1 and two are stacked. The following excitation process was performed.
The superconducting bulk was attached to the tip of the cold head of the refrigerator by vacuum grease. At this time, an aluminum disk (having a diameter of 30 mm and the thickness of both ends changed from 4 mm to 1 mm) with a taper of 3 mm so that the central axis is inclined from the central axis of the applied magnetic field is first And a superconducting bulk material was deposited thereon.
Then, it installed in the state which applied the magnetic field in the superconducting coil whose central magnetic field is 5T. Thereafter, in a state where a magnetic field of 5T was applied, the external magnetic field was set to zero by cooling to 50K by cooling with a refrigerator. At this time, the center portion of the two cylindrical synthetic crystals was shifted up and down. This is thought to be because the position of the central portion of the cylindrical synthetic crystal is shifted due to the electromagnetic force acting during excitation because the coupling between the central portions of the two cylindrical synthetic crystals is insufficient. In this state, the captured magnetic field characteristics were measured with a Hall element. As a result, a value of 2.84 T was obtained as the peak magnetic field.
Next, after providing the six artificial holes synthesized in Example 6, the superconductivity composed of two cylindrical synthetic crystal central portions firmly bonded by vacuum impregnation with an aluminum rod and a Pb—Bi—Sn alloy. The same excitation treatment was performed on the bulk body. As a result, no deviation occurred at the center of the cylindrical synthetic crystal, and a high value of 3.9 T was obtained for the trapping magnetic field.

(実施例8)
実施例6で合成した人工孔を6個設けたうえで、アルミニウム棒とPb−Bi−Sn合金による真空含浸により強固に結合させた2個の円柱状合成結晶中央部で構成した積重体からなる超伝導バルク体に以下の励磁処理を施した。
該超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させた。この際、中心軸が印加磁場の中心軸から傾くように、3mmのテーパーを設けたアルミニウム製円盤(直径が30mmで、両端の厚さが4mmから1mmに変化するように加工したもの)を最初に設置し、その上に超伝導バルク体を付着させた。
その後、中心磁場が10Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、10Tの磁場を印加した状態で、冷凍機冷却により30Kまで冷却し、外部磁場をゼロとした。
この際、2個の円柱状合成結晶中央部が上下でずれた状態となった。これは、2個の円柱状合成結晶中央部の結合が不十分であるため、励磁の際に働く電磁力によって、円柱状合成結晶中央部の位置がずれたためと考えられる。この状態で、ホール素子により捕捉磁場特性を測定した。その結果、ピーク磁場として4.4Tという値が得られた。
つぎに、実施例6と同様の手法で、人工孔を6個設けたうえで、アルミニウム棒とPb−Bi−Sn合金による真空含浸により強固に結合させた2個の円柱状合成結晶中央部で構成した積重体からなる超伝導バルク体を用意した。
つぎに、内径が29mmで厚さが3mmの鉄系形状記憶合金の一種であるFe−28Mn−6Si−5Cr合金からなるリングを内径が30.5mmになるように室温で拡径したのち、該超伝導バルク体の側周に配し、200℃に加熱した。この処理により、合金の形状記憶効果によってリングが収縮し、超伝導バルク磁石を強固に締結した。
鉄系形状記憶合金により締結強化した超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させた。この際、中心軸が印加磁場の中心軸から傾くように、3mmのテーパーを設けたアルミニウム製円盤(直径が30mmで、両端の厚さが4mmから1mmに変化するように加工したもの)を最初に設置し、その上に超伝導バルク磁石を付着させた。
その後、中心磁場が10Tの超伝導コイル内に鉄系形状記憶合金で強化した超伝導バルク体を、磁場を印加しない状態で設置した。その後、10Tの磁場を印加した状態で、冷凍機冷却により30Kまで冷却し、外部磁場をゼロとした。
この際、励磁の際に働く電磁力によって、円柱状合成結晶中央部の位置はまったくずれず、設置したままの状態が保持された。さらに、この状態で、ホール素子により捕捉磁場特性を測定した結果、ピーク磁場として9.44Tという値が得られた。
(Example 8)
After the six artificial holes synthesized in Example 6 were provided, it was composed of a stack composed of two cylindrical synthetic crystal central parts firmly bonded by vacuum impregnation with an aluminum rod and a Pb—Bi—Sn alloy. The following excitation treatment was applied to the superconducting bulk material.
The superconducting bulk was attached to the tip of the cold head of the refrigerator by vacuum grease. At this time, an aluminum disk (having a diameter of 30 mm and the thickness of both ends changed from 4 mm to 1 mm) with a taper of 3 mm so that the central axis is inclined from the central axis of the applied magnetic field is first And a superconducting bulk material was deposited thereon.
Then, it installed in the state which applied the magnetic field in the superconducting coil whose central magnetic field is 10T. Thereafter, in a state where a magnetic field of 10T was applied, the external magnetic field was set to zero by cooling to 30 K by cooling with a refrigerator.
At this time, the center portion of the two cylindrical synthetic crystals was shifted up and down. This is thought to be because the position of the central portion of the cylindrical synthetic crystal is shifted due to the electromagnetic force acting during excitation because the coupling between the central portions of the two cylindrical synthetic crystals is insufficient. In this state, the captured magnetic field characteristics were measured with a Hall element. As a result, a value of 4.4 T was obtained as the peak magnetic field.
Next, in the same manner as in Example 6, after six artificial holes were provided, the central part of two cylindrical synthetic crystals firmly bonded by vacuum impregnation with an aluminum rod and a Pb—Bi—Sn alloy were used. A superconducting bulk body composed of the stacks was prepared.
Next, after expanding the ring made of Fe-28Mn-6Si-5Cr alloy, which is a kind of iron-based shape memory alloy having an inner diameter of 29 mm and a thickness of 3 mm, at room temperature so that the inner diameter becomes 30.5 mm, It arranged on the side periphery of the superconducting bulk body, and it heated at 200 degreeC. By this treatment, the ring contracted due to the shape memory effect of the alloy, and the superconducting bulk magnet was firmly fastened.
A superconducting bulk body tightened and strengthened with an iron-based shape memory alloy was attached to the tip of the cold head of the refrigerator with vacuum grease. At this time, an aluminum disk (having a diameter of 30 mm and the thickness of both ends changed from 4 mm to 1 mm) with a taper of 3 mm so that the central axis is inclined from the central axis of the applied magnetic field is first And a superconducting bulk magnet was attached on the substrate.
Thereafter, a superconducting bulk body reinforced with an iron-based shape memory alloy was placed in a superconducting coil having a central magnetic field of 10 T without applying a magnetic field. Thereafter, in a state where a magnetic field of 10T was applied, the external magnetic field was set to zero by cooling to 30 K by cooling with a refrigerator.
At this time, the position of the central portion of the cylindrical synthetic crystal was not displaced at all by the electromagnetic force that was applied during excitation, and the state of being installed was maintained. Furthermore, as a result of measuring the trapping magnetic field characteristics with the Hall element in this state, a value of 9.44 T was obtained as the peak magnetic field.

(実施例9)
実施例1で用いた厚さが7.5mmの円柱状合成結晶中央部2個の間にグリセリンを塗り、2個を重ね合わせて構成した高さが15mmの積重体からなる超伝導バルク体に、以下の励磁処理を施した。
該超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させた。この際、中心軸が印加磁場の中心軸から傾くように、3mmのテーパーを設けたアルミニウム製円盤(直径が30mmで、両端の厚さが4mmから1mmに変化するように加工したもの)を最初に設置し、その上に超伝導バルク体を付着させた。
その後、中心磁場が5Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加した状態で、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした。
この際、2個の円柱状合成結晶中央部が上下でずれた状態となった。これは、2個の円柱状合成結晶中央部の結合が不十分であるため、励磁の際に働く電磁力によって、円柱状合成結晶中央部の位置がずれたためと考えられる。この状態で、ホール素子により捕捉磁場特性を測定した。その結果、ピーク磁場として2.84Tという値が得られた。
つぎに実施例1と同様の手法で作製した2個の円柱状合成結晶中央部を重ね合わせて高さが15mmの積重体からなる超伝導バルク体を用意した。
つぎに、内径が29mmで厚さが3mmの鉄系形状記憶合金の一種であるFe−28Mn−6Si−5Cr合金からなるリングを内径が30.5mmになるように室温で拡径したのち、該超伝導バルク体の側周に配し、300℃に加熱した。この処理により、合金の形状記憶効果によってリングが収縮し、超伝導バルク体を強固に締結した。
鉄系形状記憶合金リングにより締結した超伝導バルク体を、冷凍機のコールドヘッドの先端に、真空グリースにより付着させた。この際、中心軸が印加磁場の中心軸から傾くように、3mmのテーパーを設けたアルミニウム製円盤(直径が30mmで、両端の厚さが4mmから1mmに変化するように加工したもの)を最初に設置し、その上に超伝導バルク体を付着させた。その後、中心磁場が5Tの超伝導コイル内に設置し、磁場を印加しない状態で設置した。その後、5Tの磁場を印加した状態で、冷凍機冷却により50Kまで冷却し、外部磁場をゼロとした。
この際、励磁の際に働く電磁力によって、円柱状合成結晶中央部の位置はまったくずれず、設置したままの状態が保持された。さらに、この状態で、ホール素子により捕捉磁場特性を測定した結果、ピーク磁場として3.7Tという値が得られた。
Example 9
A superconducting bulk body composed of a stack of 15 mm in height, in which glycerin is applied between two central synthetic crystal cylinders having a thickness of 7.5 mm used in Example 1 and two are stacked. The following excitation process was performed.
The superconducting bulk was attached to the tip of the cold head of the refrigerator by vacuum grease. At this time, an aluminum disk (having a diameter of 30 mm and the thickness of both ends changed from 4 mm to 1 mm) with a taper of 3 mm so that the central axis is inclined from the central axis of the applied magnetic field is first And a superconducting bulk material was deposited thereon.
Then, it installed in the state which applied the magnetic field in the superconducting coil whose central magnetic field is 5T. Thereafter, in a state where a magnetic field of 5T was applied, the external magnetic field was set to zero by cooling to 50K by cooling with a refrigerator.
At this time, the center portion of the two cylindrical synthetic crystals was shifted up and down. This is thought to be because the position of the central portion of the cylindrical synthetic crystal is shifted due to the electromagnetic force acting during excitation because the coupling between the central portions of the two cylindrical synthetic crystals is insufficient. In this state, the captured magnetic field characteristics were measured with a Hall element. As a result, a value of 2.84 T was obtained as the peak magnetic field.
Next, a superconducting bulk body made of a stack having a height of 15 mm was prepared by superimposing two cylindrical synthetic crystal central portions produced by the same method as in Example 1.
Next, after expanding the ring made of Fe-28Mn-6Si-5Cr alloy, which is a kind of iron-based shape memory alloy having an inner diameter of 29 mm and a thickness of 3 mm, at room temperature so that the inner diameter becomes 30.5 mm, It arranged on the side periphery of the superconducting bulk body, and it heated at 300 degreeC. By this treatment, the ring contracted due to the shape memory effect of the alloy, and the superconducting bulk body was firmly fastened.
A superconducting bulk body fastened by an iron-based shape memory alloy ring was attached to the tip of the cold head of the refrigerator by vacuum grease. At this time, an aluminum disk (having a diameter of 30 mm and the thickness of both ends changed from 4 mm to 1 mm) with a taper of 3 mm so that the central axis is inclined from the central axis of the applied magnetic field is first And a superconducting bulk material was deposited thereon. Then, it installed in the state which applied the magnetic field in the superconducting coil whose central magnetic field is 5T. Thereafter, in a state where a magnetic field of 5T was applied, the external magnetic field was set to zero by cooling to 50K by cooling with a refrigerator.
At this time, the position of the central portion of the cylindrical synthetic crystal was not displaced at all by the electromagnetic force that was applied during excitation, and the state of being installed was maintained. Furthermore, as a result of measuring the captured magnetic field characteristics with the Hall element in this state, a value of 3.7 T was obtained as the peak magnetic field.

以上のすべての実施例で作製した超伝導バルク体の積重体を構成する各円形状合成結晶中間体は、いずれも式(1)および式(2)を満たすものである。   Each of the circular synthetic crystal intermediates constituting the stack of superconducting bulk materials produced in all the examples described above satisfies the expressions (1) and (2).

(試験例1)
実施例1の製造条件を調整することにより、上面の超伝導相の組成を変えた超伝導バルク体を製造して、その特性を調べて比較した。具体的には、超伝導バルク体下面の超伝導相がYBa2Cu3yであり、上面の超伝導相がYxBa2Cu3yであって、当該YxBa2Cu3yのx値が0.9、0.95、1.0、1.05、1.10、1.20であるサンプルを製造して、臨界温度(Tc)と臨界電流密度(Jc)を測定した。x値と臨界温度(Tc)の関係を表1に示し、x値と臨界電流密度(Jc)の関係を図13に示す。
(Test Example 1)
By adjusting the manufacturing conditions of Example 1, a superconducting bulk body in which the composition of the superconducting phase on the upper surface was changed was manufactured, and the characteristics were examined and compared. Specifically, superconducting bulk body lower surface of the superconducting phase is YBa 2 Cu 3 O y, superconducting phases of the upper surface is a Y x Ba 2 Cu 3 O y , the Y x Ba 2 Cu 3 O and x values of y will produce a sample that is 0.9,0.95,1.0,1.05,1.10,1.20, measuring the critical current density (Jc) and critical temperature (Tc) did. The relationship between x value and critical temperature (Tc) is shown in Table 1, and the relationship between x value and critical current density (Jc) is shown in FIG.

Figure 2012214329
Figure 2012214329

(試験例2)
試験例1と同様の試験をYBa2Cu3yの代わりにNdBa2Cu3yを用いて行った。すなわち、超伝導バルク体下面の超伝導相がNdBa2Cu3yであり、上面の超伝導相がNdxBa2Cu3yであって、当該NdxBa2Cu3yのx値が0.9、0.95、1.0、1.05、1.10、1.20であるサンプルを製造して、臨界温度(Tc)と臨界電流密度(Jc)を測定した。x値と臨界温度(Tc)の関係を表2に示し、x値と臨界電流密度(Jc)の関係を図14に示す。
(Test Example 2)
A test similar to Test Example 1 was performed using NdBa 2 Cu 3 O y instead of YBa 2 Cu 3 O y . That is, the superconducting phase on the lower surface of the superconducting bulk body is NdBa 2 Cu 3 O y , the superconducting phase on the upper surface is Nd x Ba 2 Cu 3 O y , and x of the Nd x Ba 2 Cu 3 O y Samples having values of 0.9, 0.95, 1.0, 1.05, 1.10, and 1.20 were manufactured, and critical temperature (Tc) and critical current density (Jc) were measured. The relationship between the x value and the critical temperature (Tc) is shown in Table 2, and the relationship between the x value and the critical current density (Jc) is shown in FIG.

Figure 2012214329
Figure 2012214329

(試験例3)
実施例1において使用した材料と製造条件を調整することにより、下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を変えた超伝導バルク体を製造して、その特性を調べて比較した。具体的には、超伝導バルク体の下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を0°、2°、5°、8°、10°であるサンプルを製造して、臨界電流密度(Jc)を測定した。c軸とのなす角度θと臨界電流密度(Jc)の関係を図15に示す。
(Test Example 3)
By adjusting the materials used in Example 1 and the manufacturing conditions, a superconducting bulk body in which the angle between the c-axis closest to the c-axis among the main axes of the crystal observed on the lower surface was changed was manufactured. The characteristics were investigated and compared. Specifically, the angles formed between the c-axis and the principal axis of the crystal observed on the lower surface of the superconducting bulk body are 0 °, 2 °, 5 °, 8 °, and 10 °. Samples were manufactured and the critical current density (Jc) was measured. FIG. 15 shows the relationship between the angle θ formed with the c-axis and the critical current density (Jc).

試験例1および試験例2の結果は、上面の超伝導相RExBa2Cu3yのX値が0.93〜1.07である超伝導バルク体が高い臨界電流密度を達成していることを示している。また、試験例3の結果は、下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度が6°以下である超伝導バルク体が高い臨界電流密度を達成していることを示している。 The results of Test Example 1 and Test Example 2 show that a superconducting bulk body having an X value of the superconducting phase RE x Ba 2 Cu 3 O y on the upper surface of 0.93 to 1.07 achieved a high critical current density. It shows that. The result of Test Example 3 shows that the superconducting bulk material in which the angle between the c-axis closest to the c-axis and the c-axis of the main axis of the crystal observed on the lower surface achieves a high critical current density. It shows that.

本発明の超伝導バルク体を用いて作製される超伝導バルク磁石は磁場強度が高いため、この磁石を用いれば指向性の高い磁場制御が可能である。また、本発明の超伝導バルク磁石は、磁石面内の磁気特性ムラを抑えて、均一で信頼性の高い磁石とすることができ、さらに、熱伝導性が良好で機械的特性が高く、堅牢な磁石とすることもできる。このため本発明の超伝導バルク磁石は、診断・医療分野、エレクトロニクス分野、環境分野、電気分野を始めとする広範な産業に幅広く利用されうるものである。   Since the superconducting bulk magnet produced using the superconducting bulk material of the present invention has high magnetic field strength, magnetic field control with high directivity can be performed by using this magnet. In addition, the superconducting bulk magnet of the present invention can be made uniform and highly reliable by suppressing uneven magnetic characteristics in the magnet surface, and also has good thermal conductivity, high mechanical characteristics, and robustness. It can also be a simple magnet. Therefore, the superconducting bulk magnet of the present invention can be widely used in a wide range of industries including the diagnostic / medical field, the electronics field, the environmental field, and the electrical field.

11 円柱状合成結晶
12 上部
13 下部
14 円柱状合成結晶中央部
15,16 円柱状合成結晶切断片
21 中心軸
22,23 円柱状結晶片
31 セクターバウンダリー
32,33,34 円柱状結晶片
41,51,61,71 円柱状結晶片
42,52,62,72 貫通孔
43,53,63,73 熱伝導性部材
74 放熱板
81,91,101,111,121 円柱状結晶片
82,92,122 囲繞ベルト
102,112 囲繞ワイヤー
123 上側伸長部
124 下側伸長部
125 中心線
DESCRIPTION OF SYMBOLS 11 Cylindrical synthetic crystal 12 Upper part 13 Lower 14 Cylindrical synthetic crystal center part 15, 16 Cylindrical synthetic crystal cut piece 21 Center axis 22, 23 Cylindrical crystal piece 31 Sector boundary 32, 33, 34 Cylindrical crystal piece 41, 51, 61, 71 Cylindrical crystal pieces 42, 52, 62, 72 Through holes 43, 53, 63, 73 Thermally conductive members 74 Heat sinks 81, 91, 101, 111, 121 Cylindrical crystal pieces 82, 92, 122 Go belt 102, 112 Go wire 123 Upper extension 124 Lower extension 125 Center line

Claims (20)

RE−Ba−Cu−O系円柱状結晶片を含む超伝導バルク体であって、
前記REは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表し、
前記RE−Ba−Cu−O系円柱状結晶片の上面と下面が下記の式(1)および式(2)を満たす、超伝導バルク体。
式(1): 0.93 ≦ X ≦ 1.07
(上式においてXは、超伝導相の組成式RExBa2Cu3y(yは6.8〜7.0)におけるX値を表す。)
式(2): θc ≦ 6°
(上式において、θcは上面または下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を表し、前記領域に結晶の主軸が観測されない場合は式(2)を満たさないものとする。)
A superconducting bulk body including RE-Ba-Cu-O columnar crystal pieces,
RE represents one or more elements selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu;
A superconducting bulk body in which the upper and lower surfaces of the RE-Ba-Cu-O-based columnar crystal piece satisfy the following formulas (1) and (2).
Formula (1): 0.93 ≦ X ≦ 1.07
(In the above formula, X represents the X value in the superconducting phase composition formula RE x Ba 2 Cu 3 O y (y is 6.8 to 7.0).)
Formula (2): θc ≦ 6 °
(In the above equation, θc represents the angle formed by the c-axis closest to the c-axis among the main axes of the crystal observed on the upper surface or the lower surface, and when the main axis of the crystal is not observed in the region, the equation (2) Is not satisfied.)
前記RE−Ba−Cu−O系円柱状結晶片が、種結晶溶融法で合成した円柱状合成結晶の上部と下部を除去した円柱状合成結晶中央部であるか、または当該円柱状合成結晶中央部を中心軸に垂直な方向に切断した円柱状合成結晶切断片である、請求項1に記載の超伝導バルク体。   The RE-Ba-Cu-O-based columnar crystal piece is a columnar synthetic crystal central portion obtained by removing an upper portion and a lower portion of a columnar synthetic crystal synthesized by a seed crystal melting method, or the columnar synthetic crystal center The superconducting bulk material according to claim 1, which is a cylindrical synthetic crystal cut piece obtained by cutting the portion in a direction perpendicular to the central axis. 請求項1または請求項2に記載のRE−Ba−Cu−O系円柱状結晶片の少なくとも2以上を中心軸方向に積み重ねた積重体を含む超伝導バルク体。   A superconducting bulk body comprising a stack in which at least two of the RE-Ba-Cu-O columnar crystal pieces according to claim 1 or 2 are stacked in a central axis direction. 前記積重体は、前記RE−Ba−Cu−O系円柱状結晶片が中心軸に垂直な面内の結晶方位を相互にずらすように積み重ねられている、請求項3に記載の超伝導バルク体。   4. The superconducting bulk body according to claim 3, wherein the stack is stacked so that the RE-Ba-Cu—O-based columnar crystal pieces are shifted in crystal orientation in a plane perpendicular to a central axis. 5. . 前記円柱状結晶片に孔が形成されており、当該孔に熱伝導性部材が挿入されている、請求項1〜4のいずれか一項に記載の超伝導バルク体。   The superconducting bulk body according to any one of claims 1 to 4, wherein a hole is formed in the columnar crystal piece, and a heat conductive member is inserted into the hole. 前記孔の内壁と前記熱伝導性部材の外表面の間に樹脂または金属が含浸している、請求項5に記載の超伝導バルク体。   The superconducting bulk material according to claim 5, wherein a resin or a metal is impregnated between an inner wall of the hole and an outer surface of the thermally conductive member. 前記円柱状結晶片の外表面に樹脂または金属が含浸している、請求項1〜6のいずれか一項に記載の超伝導バルク体。   The superconducting bulk body according to any one of claims 1 to 6, wherein an outer surface of the columnar crystal piece is impregnated with a resin or a metal. 前記円柱状結晶片の外側から前記円柱状結晶片を圧縮する締付具をさらに有する、請求項1〜7のいずれか一項に記載の超伝導バルク体。   The superconducting bulk body according to any one of claims 1 to 7, further comprising a fastener that compresses the cylindrical crystal piece from the outside of the cylindrical crystal piece. 前記締付具が形状記憶合金製である、請求項8に記載の超伝導バルク体。   The superconducting bulk body according to claim 8, wherein the fastener is made of a shape memory alloy. 請求項1〜9のいずれか一項に記載の超伝導バルク体を用いた超伝導バルク磁石。   The superconducting bulk magnet using the superconducting bulk body as described in any one of Claims 1-9. 下記の工程1含む、円柱状結晶片を含む超伝導バルク体の製造方法。
<工程1>
種結晶溶融法で合成した円柱状合成結晶の上部と下部を除去して円柱状合成結晶中央部を取得するか、さらに当該円柱状合成結晶中央部を中心軸に垂直な方向に切断して円柱状合成結晶切断片を取得する工程。
A method for producing a superconducting bulk material including cylindrical crystal pieces, comprising the following step 1.
<Step 1>
The upper and lower parts of the cylindrical synthetic crystal synthesized by the seed crystal melting method are removed to obtain the central part of the cylindrical synthetic crystal, or the central part of the cylindrical synthetic crystal is cut in a direction perpendicular to the central axis to obtain a circle. A step of obtaining a columnar synthetic crystal cut piece.
前記工程1の後に下記の工程2を含む、請求項11に記載の超伝導バルク体の製造方法。
<工程2>
前記工程1で取得した前記円柱状合成結晶中央部および前記円柱状合成結晶切断片のいずれか2以上を中心軸方向に積み重ねて積重体を形成する工程。
The method for producing a superconducting bulk material according to claim 11, comprising the following step 2 after the step 1.
<Process 2>
A step of stacking any two or more of the columnar synthetic crystal central portion and the columnar synthetic crystal cut pieces obtained in step 1 in a central axis direction to form a stack.
前記円柱状合成結晶がRE−Ba−Cu−O系円柱状合成結晶であり、前記円柱状結晶片がRE−Ba−Cu−O系円柱状結晶片である、請求項11または12に記載の超伝導バルク体の製造方法(前記REは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表す)。   The columnar synthetic crystal is a RE-Ba-Cu-O-based columnar synthetic crystal, and the columnar crystal piece is a RE-Ba-Cu-O-based columnar crystal piece. A method for producing a superconducting bulk material (RE is one or more elements selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. To express). 前記工程1において、前記円柱状合成結晶から除去する上部と下部の厚さがそれぞれ0.1mm以上である、請求項11〜13のいずれか一項に記載の超伝導バルク体の製造方法。   The method for producing a superconducting bulk body according to any one of claims 11 to 13, wherein in the step 1, the thicknesses of the upper part and the lower part removed from the cylindrical synthetic crystal are each 0.1 mm or more. 前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の上部の除去を上部除去後の円柱状合成結晶中央部の上面における組成が下記の式(1)を満たすように行う、請求項11〜14のいずれか一項に記載の超伝導バルク体の製造方法。
式(1): 0.93 ≦ X ≦ 1.07%
(上式においてXは、超伝導相の組成式RExBa2Cu3y(yは6.8〜7.0)におけるX値を表す。)
In the step 1, the columnar synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a columnar pellet, and removing the upper part of the columnar synthetic crystal after removing the upper part thereof. The manufacturing method of the superconductor bulk body as described in any one of Claims 11-14 performed so that the composition in the upper surface of may satisfy | fill following formula (1).
Formula (1): 0.93 <= X <= 1.07%
(In the above formula, X represents the X value in the superconducting phase composition formula RE x Ba 2 Cu 3 O y (y is 6.8 to 7.0).)
前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の上部の除去を上部除去後の円柱状合成結晶中央部の上面における元素含有率が下記の式(3)を満たすように行う、請求項13〜15のいずれか一項に記載の超伝導バルク体の製造方法。
式(3): |MRES(中央部上面)−MRES(ペレット)| ≦ 7原子%
(上式において、MRES(中央部上面)は前記円柱状合成結晶中央部の上面におけるRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、MRES(ペレット)は前記円柱状ペレットのRES i元素の含有率(全RE元素の原子数に対するRES i元素の原子数であり、単位は原子%である。)を表し、RES元素は前記種結晶に含まれるY,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,およびLuからなる群より選択される1種類または2種類以上の元素を表し、iはRES元素の種類を表す。)
In the step 1, the columnar synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a columnar pellet, and removing the upper part of the columnar synthetic crystal after removing the upper part thereof. The manufacturing method of the superconductor bulk body as described in any one of Claims 13-15 performed so that the element content rate in the upper surface of may satisfy | fill following formula (3).
Formula (3): | M RES (center upper surface) −M RES (pellet) | ≦ 7 atomic%
(In the above formula, M RES (center top surface) is the content of RE S i element in the top surface of the cylindrical synthetic crystal center (the number of RE S i elements relative to the total number of RE elements). M RES (pellet) is the content of RE S i element in the cylindrical pellet (the number of atoms of RE S i element relative to the number of atoms of all RE elements, and the unit is atomic%) The RE S element is one or two selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu contained in the seed crystal. It represents or more elements, i is representative of the type of RE S element.)
前記工程1において、前記円柱状合成結晶が円柱状ペレットの上面に種結晶を載せて結晶成長させたものであり、前記円柱状合成結晶の下部の除去を下部除去後の表面から0.1mm厚の領域が下記の式(2)を満たすように行う、請求項10〜16のいずれか一項に記載の超伝導バルク体の製造方法。
式(2): θc ≦ 6°
(上式において、θcは前記上面または前記下面で観測される結晶の主軸のうちc軸に最も近いものとc軸とのなす角度を表し、前記領域に結晶の主軸が観測されない場合は式(2)を満たさないものとする。)
In the step 1, the cylindrical synthetic crystal is obtained by growing a crystal by placing a seed crystal on the upper surface of a cylindrical pellet, and removing the lower portion of the cylindrical synthetic crystal from the surface after removing the lower portion to a thickness of 0.1 mm The method for producing a superconducting bulk body according to any one of claims 10 to 16, which is performed so that the region of the above satisfies the following formula (2).
Formula (2): θc ≦ 6 °
(In the above equation, θc represents the angle formed by the c-axis and the principal axis of the crystal that is observed on the upper surface or the lower surface, and when the main axis of the crystal is not observed in the region, the equation ( 2) shall not be satisfied.)
前記円柱状合成結晶から除去する上部の厚さが1〜5mmである、請求項10〜17のいずれか一項に記載の超伝導バルク体の製造方法。   The manufacturing method of the superconductor bulk body as described in any one of Claims 10-17 whose upper part thickness removed from the said cylindrical synthetic crystal is 1-5 mm. 前記円柱状合成結晶から除去する下部の厚さが1〜15mmである、請求項10〜18のいずれか一項に記載の超伝導バルク体の製造方法。   The method for producing a superconducting bulk body according to any one of claims 10 to 18, wherein a thickness of a lower portion to be removed from the cylindrical synthetic crystal is 1 to 15 mm. 請求項10〜19のいずれか一項に記載の製造方法により製造された超伝導バルク体。   The superconducting bulk body manufactured by the manufacturing method as described in any one of Claims 10-19.
JP2011080348A 2011-03-31 2011-03-31 Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet Expired - Fee Related JP5736216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080348A JP5736216B2 (en) 2011-03-31 2011-03-31 Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080348A JP5736216B2 (en) 2011-03-31 2011-03-31 Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet

Publications (2)

Publication Number Publication Date
JP2012214329A true JP2012214329A (en) 2012-11-08
JP5736216B2 JP5736216B2 (en) 2015-06-17

Family

ID=47267555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080348A Expired - Fee Related JP5736216B2 (en) 2011-03-31 2011-03-31 Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet

Country Status (1)

Country Link
JP (1) JP5736216B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146760A (en) * 2013-01-30 2014-08-14 Nippon Steel & Sumitomo Metal Superconducting bulk magnet
WO2016117658A1 (en) * 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet
JP2018512737A (en) * 2015-04-01 2018-05-17 ザ フロリダ ステイト ユニバーシティー リサーチ ファウンデーション, インコーポレイテッドThe Florida State University Research Foundation, Incorporated Iron-based superconducting permanent magnet and method for manufacturing the same
JP2018198245A (en) * 2017-05-23 2018-12-13 アイシン精機株式会社 Superconducting magnetic field generating element

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251891A (en) * 1991-10-15 1993-09-28 Nippon Steel Corp Magnetic shielding material of superconductor
JPH05279028A (en) * 1992-03-31 1993-10-26 Ngk Insulators Ltd Rare-earth superconducting composition and its production
JPH10310497A (en) * 1997-05-02 1998-11-24 Nippon Steel Corp Oxide superconducting bulky material and its production
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2001010879A (en) * 1999-06-22 2001-01-16 Internatl Superconductivity Technology Center Oxide superconductor with excellent property- maintaining performance and its production
JP2001064016A (en) * 1999-08-25 2001-03-13 Internatl Superconductivity Technology Center Oxide superconductor excellent in cracking resistance and its production
JP2004022576A (en) * 2002-06-12 2004-01-22 Internatl Superconductivity Technology Center Super-conductive magnet made of high-temperature superconductive bulk material, and its manufacturing method
JP2004235585A (en) * 2003-01-31 2004-08-19 Railway Technical Res Inst Method for controlling captured magnetic field of superconductor
JP2006319000A (en) * 2005-05-10 2006-11-24 Nippon Steel Corp Material and system for oxide super conductive magnet
JP2006321668A (en) * 2005-05-17 2006-11-30 Nippon Steel Corp Oxide superconductive bulk body and method of manufacturing the same
JP2008177245A (en) * 2007-01-16 2008-07-31 Nippon Steel Corp Oxide superconductor conducting element and manufacturing method therefor
JP2010100496A (en) * 2008-10-24 2010-05-06 Railway Technical Res Inst Method of manufacturing oxide superconductive bulk body and the oxide superconductive bulk body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251891A (en) * 1991-10-15 1993-09-28 Nippon Steel Corp Magnetic shielding material of superconductor
JPH05279028A (en) * 1992-03-31 1993-10-26 Ngk Insulators Ltd Rare-earth superconducting composition and its production
JPH10310497A (en) * 1997-05-02 1998-11-24 Nippon Steel Corp Oxide superconducting bulky material and its production
JPH11335120A (en) * 1998-05-26 1999-12-07 Nippon Steel Corp Bulk superconducting material, magnet and their production
JP2001010879A (en) * 1999-06-22 2001-01-16 Internatl Superconductivity Technology Center Oxide superconductor with excellent property- maintaining performance and its production
JP2001064016A (en) * 1999-08-25 2001-03-13 Internatl Superconductivity Technology Center Oxide superconductor excellent in cracking resistance and its production
JP2004022576A (en) * 2002-06-12 2004-01-22 Internatl Superconductivity Technology Center Super-conductive magnet made of high-temperature superconductive bulk material, and its manufacturing method
JP2004235585A (en) * 2003-01-31 2004-08-19 Railway Technical Res Inst Method for controlling captured magnetic field of superconductor
JP2006319000A (en) * 2005-05-10 2006-11-24 Nippon Steel Corp Material and system for oxide super conductive magnet
JP2006321668A (en) * 2005-05-17 2006-11-30 Nippon Steel Corp Oxide superconductive bulk body and method of manufacturing the same
JP2008177245A (en) * 2007-01-16 2008-07-31 Nippon Steel Corp Oxide superconductor conducting element and manufacturing method therefor
JP2010100496A (en) * 2008-10-24 2010-05-06 Railway Technical Res Inst Method of manufacturing oxide superconductive bulk body and the oxide superconductive bulk body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
辻典親 他: ""Ba-Cu-O系酸化物を利用したY系バルク超電導体の均質化に関する研究"", 第75回2006年度秋季低温工学・超電導学会講演概要集, JPN6014048791, 20 November 2006 (2006-11-20), pages 120, ISSN: 0002942548 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146760A (en) * 2013-01-30 2014-08-14 Nippon Steel & Sumitomo Metal Superconducting bulk magnet
WO2016117658A1 (en) * 2015-01-21 2016-07-28 新日鐵住金株式会社 Oxide superconducting bulk magnet
CN107112108A (en) * 2015-01-21 2017-08-29 新日铁住金株式会社 Oxide superconducting bulk magnet
JPWO2016117658A1 (en) * 2015-01-21 2017-11-09 新日鐵住金株式会社 Oxide superconducting bulk magnet
US20180012690A1 (en) * 2015-01-21 2018-01-11 Nippon Steel & Sumitomo Metal Corporation Oxide superconducting bulk magnet
CN107112108B (en) * 2015-01-21 2020-01-21 日本制铁株式会社 Oxide superconducting block magnet
US10643772B2 (en) 2015-01-21 2020-05-05 Nippon Steel Corporation Oxide superconducting bulk magnet
JP2018512737A (en) * 2015-04-01 2018-05-17 ザ フロリダ ステイト ユニバーシティー リサーチ ファウンデーション, インコーポレイテッドThe Florida State University Research Foundation, Incorporated Iron-based superconducting permanent magnet and method for manufacturing the same
JP2018198245A (en) * 2017-05-23 2018-12-13 アイシン精機株式会社 Superconducting magnetic field generating element

Also Published As

Publication number Publication date
JP5736216B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP2016522530A (en) Reinforced superconducting wire and method for manufacturing the same
JP5736216B2 (en) Superconducting bulk body, manufacturing method thereof, and superconducting bulk magnet
JP6119851B2 (en) Oxide superconducting bulk magnet
Nariki et al. Performance and applications of quench melt-growth bulk magnets
JP4055375B2 (en) Superconducting wire, manufacturing method thereof and superconducting magnet using the same
JP4653555B2 (en) Oxide superconducting magnet material and oxide superconducting magnet system
JP5771751B2 (en) High temperature superconducting coil and superconducting equipment
JP2013152784A (en) PRECURSOR OF MgB2 SUPERCONDUCTING WIRE ROD, AND METHOD OF MANUFACTURING THE SAME
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JP4719308B1 (en) Oxide superconducting bulk magnet member
JP2006228797A (en) Permanent current switch using magnesium diboride and its manufacturing method
JP4865081B2 (en) Oxide superconducting bulk magnet member
Morita et al. Development of oxide superconductors
Zhang et al. High Critical Current Density in Cu-Sheathed SmFeAsO 1-x F x Superconducting Tapes by Low-Temperature Hot-Pressing
JP4101903B2 (en) Oxide superconducting bulk material and manufacturing method thereof
JP4903729B2 (en) Oxide superconducting magnet, manufacturing method thereof, and cooling method
JP6202190B2 (en) Oxide superconducting bulk magnet
JP2015053314A (en) Permanent current switch, manufacturing method therefor and superconducting magnet product, and connection component and mold
US10748691B2 (en) Oxide superconducting bulk magnet
JP7205545B2 (en) Magnet unit for nuclear magnetic resonance and magnetic field generator for nuclear magnetic resonance using oxide superconducting bulk material
JP2011076821A (en) Magnesium diboride wire, and manufacturing method thereof
Dadiel et al. Field-Trapping Performance of Drilled MgB 2 Bulk Superconductor Embedded With Bi-In-Sn Alloy and Al-Rod Using Pulse-Field Magnetization Processes
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
Soltanian Development of superconducting magnesium diboride conductors
Suhui et al. High Tc superconductors research in China

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5736216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees