JP2006228797A - Permanent current switch using magnesium diboride and its manufacturing method - Google Patents

Permanent current switch using magnesium diboride and its manufacturing method Download PDF

Info

Publication number
JP2006228797A
JP2006228797A JP2005037581A JP2005037581A JP2006228797A JP 2006228797 A JP2006228797 A JP 2006228797A JP 2005037581 A JP2005037581 A JP 2005037581A JP 2005037581 A JP2005037581 A JP 2005037581A JP 2006228797 A JP2006228797 A JP 2006228797A
Authority
JP
Japan
Prior art keywords
superconducting
wire
permanent current
current switch
magnesium diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037581A
Other languages
Japanese (ja)
Other versions
JP4728007B2 (en
Inventor
Kazuhide Tanaka
和英 田中
Michiya Okada
道哉 岡田
Hiroaki Kumakura
浩明 熊倉
Hitoshi Kitaguchi
仁 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute for Materials Science
Original Assignee
Hitachi Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute for Materials Science filed Critical Hitachi Ltd
Priority to JP2005037581A priority Critical patent/JP4728007B2/en
Publication of JP2006228797A publication Critical patent/JP2006228797A/en
Application granted granted Critical
Publication of JP4728007B2 publication Critical patent/JP4728007B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductivity laminate for a switch which is compact and excellent in thermal stability in a permanent current switch using a magnesium diboride and to provide a method of manufacturing it. <P>SOLUTION: The permanent current switch includes the superconductivity laminate including a magnesium diboride superconductor and a metal cover which covers it and laminated and integrated so that a plurality of layers of a flat angle or a tape shape superconductivity wire material in which the part of the superconductor is exposed are laminated in a circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、臨界温度以下の環境において、超電導性を発現する超電導体を用いることによって、高い超電導特性が得られる二硼化マグネシウム(MgB)を用いた永久電流スイッチ、超電導積層体とそれらの製造方法に関するものである。 The present invention relates to a permanent current switch, a superconducting laminate, and a superconducting laminate using magnesium diboride (MgB 2 ), which can obtain high superconducting characteristics by using a superconductor exhibiting superconductivity in an environment below a critical temperature. It relates to a manufacturing method.

具体的には、核磁気共鳴分析装置、医療用磁気共鳴診断装置、超電導電力貯蔵装置等の機器に適用されるものである。   Specifically, the present invention is applied to devices such as a nuclear magnetic resonance analyzer, a medical magnetic resonance diagnostic device, and a superconducting power storage device.

例えば、浮上式鉄道あるいは核磁気共鳴イメージング(MRI)等に用いられる超電導磁石は、長時間にわたり一定の電流を流し続ける永久電流モードで使用される。永久電流モードとは、超電導磁石の電気回路を閉ループにして電流を閉じ込めるようにした状態のことである。   For example, superconducting magnets used for levitation railway or nuclear magnetic resonance imaging (MRI) are used in a permanent current mode in which a constant current continues to flow for a long time. The permanent current mode is a state where the electric circuit of the superconducting magnet is closed and the current is confined.

永久電流スイッチ(以下、Persistent Current Switch を略して、適宜PCSと呼ぶ。)は、上記のように超電導磁石を永久電流モードにする、あるいは解除する開閉操作可能な機能を有する重要部品である。永久電流モードにすると、超電導磁石の閉ループ電気回路の電流は減衰せず半永久的に流れ続けるので、超電導磁石は一定の磁界を保持することができる状態になる。   The permanent current switch (hereinafter, “Persistent Current Switch” is abbreviated as “PCS” as appropriate) is an important component having a function capable of opening and closing the superconducting magnet to or from the permanent current mode as described above. In the permanent current mode, the current in the closed loop electric circuit of the superconducting magnet is not attenuated and continues to flow semipermanently, so that the superconducting magnet can maintain a constant magnetic field.

このようなPCSとしては、超電導線を内蔵ヒータの発熱により強制的に常電導化し、永久電流モードの電流を減衰させる形でスイッチの開閉操作を行う熱式のものが広く採用されている。   As such a PCS, a thermal type is widely adopted in which a superconducting wire is forced to be normally conducted by the heat generated by a built-in heater, and a switch is opened / closed so as to attenuate a current in a permanent current mode.

超電導マグネットを運転させる方法には、常にコイルに電源から電流を流す方法と、電源に対して並列に永久電流スイッチと超電導コイルを接続し、励磁した後はこの永久電流スイッチによりコイルを電源から切り離して永久電流モードに移行させる方法とがある。永久電流スイッチを用いた永久電流モードの一般的な運転法について、図6を用いて説明する。図6に示すように、超電導コイル1の端子間には短絡スイッチ2が設けられる。この短絡スイッチ2は永久電流スイッチと呼ばれ、短絡時の抵抗を低くするため、通常、超電導体が用いられる。超電導体を用いたスイッチにおいて、たとえばヒータ加熱によって超電導体の温度を臨界温度以上とすることにより抵抗が発生した状態で、電源3から定格電流値まで超電導コイル1に電流を流し、励磁を行う。   There are two ways to operate the superconducting magnet: a method in which a current is always supplied from the power source to the coil, and a permanent current switch and a superconducting coil are connected in parallel to the power source, and after excitation, the coil is disconnected from the power source by this permanent current switch. There is a method of shifting to the permanent current mode. A general operation method in the permanent current mode using the permanent current switch will be described with reference to FIG. As shown in FIG. 6, a short-circuit switch 2 is provided between the terminals of the superconducting coil 1. This short-circuit switch 2 is called a permanent current switch, and a superconductor is usually used in order to reduce the resistance at the time of a short circuit. In a switch using a superconductor, for example, in a state where resistance is generated by setting the temperature of the superconductor to a critical temperature or higher by heating with a heater, current is passed from the power source 3 to the rated current value to the superconducting coil 1 to perform excitation.

次いで、ヒータ加熱を停止し、スイッチ2を超電導状態に移した後、短絡を行えば、励磁電源を取り外しても一定電流の通電が継続されることになる。このようにして永久電流モードの運転が可能となる。   Next, if the heater heating is stopped and the switch 2 is moved to the superconducting state and then a short circuit is performed, even if the excitation power supply is removed, a constant current is continued. In this way, operation in the permanent current mode becomes possible.

永久電流スイッチには、概ね次のような特性が要求される。
(1)ON時の抵抗が0であるかまたは0に近い極めて小さい値であること。
(2)OFF時の抵抗が大きいこと。
(3)必要電流を安定に流すことができること。
(4)必要時以外に常電導転移しないこと。
The permanent current switch generally requires the following characteristics.
(1) The resistance when ON is 0 or very small value close to 0.
(2) The resistance at OFF is large.
(3) The necessary current can flow stably.
(4) Do not make a normal conducting transition except when necessary.

従来の合金系または化合物系超電導線材を用いた超電導マグネットに対しては、一般的にはNbTi線を使用した永久電流スイッチが用いられている。この場合、永久電流モードに移行させるための温度は、約9Kであり、それより高い温度で使用することはできない。臨界温度が低いということは永久電流スイッチにわずかな擾乱エネルギーが入った場合でも、超電導線が臨界温度以上に上昇してしまい、速やかな常電導転移、すなわちクエンチを引き起こす場合がある。クエンチした場合は、超電導コイルの電流も失われるため、一旦、マグネットとしての運転を停止せざるを得ないという課題がある。   For a superconducting magnet using a conventional alloy or compound superconducting wire, a permanent current switch using NbTi wire is generally used. In this case, the temperature for shifting to the permanent current mode is about 9 K, and it cannot be used at a higher temperature. The low critical temperature means that even if a small amount of disturbance energy enters the permanent current switch, the superconducting wire rises above the critical temperature, which may cause a rapid normal conduction transition, that is, quenching. When quenching, the current of the superconducting coil is lost, so there is a problem that the operation as a magnet has to be stopped once.

また、NbTi線は通常、銅被覆した線材が使用されるが、永久電流スイッチはOFF時の電気抵抗を大きくする必要があるため、安定化材として銅−ニッケル合金を使用している。しかし、銅−ニッケル合金自身の抵抗はさほど大きくないため、永久電流スイッチを作製するのにおよそ30〜60mの線材が使用され、かつ無誘導巻きされている。このように長い線材を巻くことによって抵抗を高くしているが、永久電流スイッチが大型化するという課題がある。   In addition, a copper-coated wire is usually used for the NbTi wire, but a copper-nickel alloy is used as a stabilizing material because the permanent current switch needs to increase the electrical resistance when OFF. However, since the resistance of the copper-nickel alloy itself is not so large, a wire rod of about 30 to 60 m is used to produce a permanent current switch and is wound without induction. Although the resistance is increased by winding such a long wire, there is a problem that the permanent current switch is enlarged.

21世紀に入ってまもなく、Nature410,63−64(2001)で報告されたように、MgBが超電導を示すことが発見された。MgBの代表的な材料特性を以下に記す。 Soon after entering the 21st century, it was discovered that MgB 2 exhibits superconductivity, as reported in Nature 410, 63-64 (2001). The typical material properties of MgB 2 are described below.

まず、臨界温度は39Kである。これは従来の金属系超電導材料の中で最高値である。したがって、この材料を用いて永久電流スイッチを構成した場合、39K以下ではONとすること、39K以上ではOFFとすることができる。他の金属系超電導材料と比較して臨界温度が高いことから安定性マージンが高くなるので、クエンチを発生しにくい信頼性の高い永久電流スイッチを実現できる。   First, the critical temperature is 39K. This is the highest value among conventional metallic superconducting materials. Therefore, when a permanent current switch is configured using this material, it can be turned on at 39K or lower and turned off at 39K or higher. Since the critical temperature is higher than other metal-based superconducting materials, the stability margin is increased, and therefore, a highly reliable permanent current switch that hardly causes quenching can be realized.

0Tにおける臨界磁場は約20Tである。これは従来の金属系超電導材料と比較すると高い部類に属する。従来の永久電流スイッチでは、その臨界磁場が低くなる場合があり、永久電流スイッチを超電導コイルから離して磁場の小さい場所に配置したり、永久電流スイッチの外側に磁気シールドを設置したりする制約があった。しかし、MgBを用いて永久電流スイッチを構成した場合、上記のような制約はなくなるため、永久電流スイッチの構成が自由となる。 The critical magnetic field at 0T is about 20T. This belongs to a higher class than conventional metal superconducting materials. In the conventional permanent current switch, the critical magnetic field may be low, and there is a restriction that the permanent current switch is placed away from the superconducting coil in a place with a small magnetic field, or a magnetic shield is installed outside the permanent current switch. there were. However, when a permanent current switch is configured using MgB 2 , the above-described restriction is eliminated, and the configuration of the permanent current switch is free.

MgBの線材化については、これまでに多くの研究がなされている。この中で、MgB線材は機械加工のみで実用的な臨界電流密度が得られることが分かってきた。熱処理をしないと超電導現象を発現しない従来の超電導線材とは全く異なる性質であり、この性質を利用することにより、(イ)製造工程が短縮可能、(ロ)金属被覆材の選択幅を拡大可能、(ハ)コイル巻線及び設計自由度の向上が実現できる。従って、大幅にコストを低減することができると考えられている。高性能化には超電導粉末の密度を高めることが極めて重要である。このため、被覆材には高硬度の金属が適用されている。 Many studies have been made on the production of MgB 2 as a wire. Among these, it has been found that the MgB 2 wire can obtain a practical critical current density only by machining. This property is completely different from conventional superconducting wires that do not exhibit superconducting phenomena without heat treatment. By using this property, (b) the manufacturing process can be shortened and (b) the range of metal coating materials can be expanded. (C) Improvement of coil winding and design flexibility can be realized. Therefore, it is considered that the cost can be greatly reduced. It is extremely important to increase the density of the superconducting powder for high performance. For this reason, a metal with high hardness is applied to the covering material.

また、工業化に最も適する「パウダー・イン・チューブ法」で線材を製造することも可能であるため、極めて魅力的な材料として位置付けられている。しかしながら、MgB線材の許容曲げ歪は約1.2%であり、NbTi線材よりも劣る。このため、MgB線材を用いて永久電流スイッチを作製する際、従来の巻線方法を適用すると、大型化してしまう課題がある。 Moreover, since it is also possible to manufacture a wire rod by the “powder in tube method” most suitable for industrialization, it is positioned as an extremely attractive material. However, the allowable bending strain of MgB 2 wire is about 1.2%, which is inferior to NbTi wire. Therefore, making the permanent current switch using MgB 2 wire material, applying the conventional winding method, there is a problem that increase in size.

特許文献1には、ビッカース硬さが80以上の金属管にMgB粉末を充填して線材加工することが記載されている。特許文献2においては、MgB粉末又はMgB圧粉体をCuNi合金間に詰めて減面加工した後、焼結熱処理をしてフィラメントを得ることが記載されている。更に、特許文献3においては、Cuなどの金属管に熱処理によって生成したMgBを封入した超電導体が記載されている。特許文献4には、MgB粉末を鉄パイプに充填し、粉末に熱処理及び引き抜き加工を施して減面加工することが記載されている。 Patent Document 1 describes that a metal tube having a Vickers hardness of 80 or more is filled with MgB 2 powder and processed into a wire. In Patent Document 2, it is described that MgB 2 powder or MgB 2 compact is packed between CuNi alloys, surface-reduced, and then subjected to sintering heat treatment to obtain a filament. Furthermore, Patent Document 3 describes a superconductor in which MgB 2 produced by heat treatment is enclosed in a metal tube such as Cu. Patent Document 4 describes that MgB 2 powder is filled in an iron pipe, and the powder is subjected to heat treatment and drawing to reduce the surface.

特開2003−31057号公報JP 2003-31057 A 特開2002−352648号公報JP 2002-352648 A 特開2003−89516号公報JP 2003-89516 A 特開2002−151387号公報JP 2002-151387 A

前記のような課題を解決し、高安定性、高信頼性を有する永久電流スイッチを実現すべく、NbTi及びMgBの高性能化、ならびにMgBの曲げ特性を向上させること等の検討が鋭意行われている。ところが、現状では、これらの技術課題をクリアできていない。 In order to solve the above-mentioned problems and realize a permanent current switch having high stability and high reliability, studies on improving the performance of NbTi and MgB 2 and improving the bending characteristics of MgB 2 are earnest. Has been done. However, at present, these technical problems cannot be cleared.

本発明の目的は、コンパクトかつ熱的な安定性に優れる永久電流スイッチ、超電導積層体及びそれらの製造法を提供することにある。   An object of the present invention is to provide a permanent current switch, a superconducting laminate, and a method for manufacturing them, which are compact and excellent in thermal stability.

本発明者らは、前記課題を達成するため、新規の永久電流スイッチとその製造方法を見出した。その手段を以下に述べる。   In order to achieve the above-mentioned problems, the present inventors have found a novel permanent current switch and a manufacturing method thereof. The means will be described below.

上記目的は、金属で被覆したMgB超電導線材を一方向に積み重ねて構成される永久電流スイッチにより達成できる。 The object can be achieved by a permanent current switch configured by stacking MgB 2 superconducting wires coated with metal in one direction.

また、前記MgB超電導線材の形状が平角またはテープ状である永久電流スイッチにより達成できる。また、前記MgB超電導線材の金属被覆材の室温でのビッカース硬さが50以上の線材を用いた永久電流スイッチにより達成できる。また、前記MgB超電導線材の長さが10m以下で構成した永久電流スイッチにより達成できる。 The MgB 2 superconducting wire can be achieved by a permanent current switch having a flat or tape shape. Further, it can be achieved by a permanent current switch using a wire having a Vickers hardness of 50 or more at room temperature of the metal coating material of the MgB 2 superconducting wire. Further, this can be achieved by a permanent current switch in which the length of the MgB 2 superconducting wire is 10 m or less.

更にまた、MgB超電導線材の金属被覆材端部を除去して超電導コア部を露出させる工程と、前記超電導線材の露出部分が互いに接触するように積み重ねる工程と、前記積み重ねた超電導線材の隙間にMgB超電導体を配置する工程を備えた永久電流スイッチの製造方法を適用することにより達成できる。 Furthermore, the step of removing the metal coating material end of the MgB 2 superconducting wire to expose the superconducting core, the step of stacking so that the exposed portions of the superconducting wire are in contact with each other, and the gap between the stacked superconducting wires This can be achieved by applying a method for manufacturing a permanent current switch including a step of arranging an MgB 2 superconductor.

MgBは他の金属系超電導材料と比較して臨界温度が高いことから安定性マージンが高くなるので、速やかな常電導転移、すなわちクエンチ現象が発生しにくい信頼性の高い永久電流スイッチを実現できる。 Since MgB 2 has a higher critical temperature than other metal-based superconducting materials, the stability margin is increased, so that it is possible to realize a reliable permanent current switch that is less likely to cause a rapid normal conduction transition, that is, a quench phenomenon. .

又、超電導線材を作製する製造工程中に超電導線材に対する加熱処理工程を一度も行わないようにすることで、製造コストが大幅に低減できると云う極めて大きな効果がある。   In addition, there is an extremely great effect that the manufacturing cost can be greatly reduced by not performing the heat treatment process for the superconducting wire during the manufacturing process for producing the superconducting wire.

更に、充填粉末中にMgBに対して、2〜30体積%の銅、インジウム、錫、鉛、鉄、アルミニウム、マグネシウム、チタン、酸化珪素、炭化珪素、窒化珪素を、単独あるいはそれらを混合して添加すると臨界電流密度が向上する。特に、ナノオーダーまで粒径を細かくすると一層効果的である。 Furthermore, 2 to 30% by volume of copper, indium, tin, lead, iron, aluminum, magnesium, titanium, silicon oxide, silicon carbide, and silicon nitride are mixed alone or in combination with MgB 2 in the filling powder. When added, the critical current density is improved. In particular, it is more effective to reduce the particle size to the nano order.

以下に本発明の代表的実施態様を整理して説明する。   Hereinafter, representative embodiments of the present invention will be described in an organized manner.

本発明の第1の実施態様は、二硼化マグネシウム超電導体とそれを被覆する金属被覆を含み、該超電導体の一部が露出した平角又はテープ状等の長尺の超電導線材を、複数個積層して、隣接する線材の露出した上記超電導体が接続されるように積層・一体化した超電導積層体を回路内に備えた永久電流スイッチである。永久電流スイッチとしては、上記超電導積層体に加えて、この積層体の超電導状態を転移させる、熱的あるいは磁気的な手段が必要である。   The first embodiment of the present invention includes a magnesium diboride superconductor and a metal coating covering the magnesium diboride, and a plurality of long superconducting wires such as a rectangular or tape shape in which a part of the superconductor is exposed. A permanent current switch having a superconducting laminate laminated and integrated in a circuit so that the superconductors exposed by adjacent wires are stacked and connected. As the permanent current switch, in addition to the superconducting laminate, a thermal or magnetic means for transferring the superconducting state of the laminate is required.

この永久電流スイッチにおいて、上記積層体の隣接する線材間の隙間に二硼化マグネシウム超電体を充填して、超電導体間の接続を確保することが望ましい。また、上記金属被覆材の室温でのビッカース硬さが50以上であるもの、例えばSUSなどを用いることが望ましい。   In this permanent current switch, it is desirable that a gap between adjacent wires of the laminate is filled with a magnesium diboride superconductor to ensure connection between the superconductors. In addition, it is desirable to use a metal coating material having a Vickers hardness of 50 or more at room temperature, such as SUS.

更に、前記二硼化マグネシウム超電導線材の積層体を加圧保持する手段を設けることが望ましい。この手段によって、上記露出した超電導体間の接続を確保し、かつ超電導線材間の整列・平行の維持に貢献することができる。又、前記二硼化マグネシウム超電導線材の長さが10m以下、特に3m以下、更には2m以下にすることにより、永久電流スイッチを小型化することができる。   Furthermore, it is desirable to provide means for pressurizing and holding the laminate of the magnesium diboride superconducting wire. By this means, the connection between the exposed superconductors can be secured, and the alignment and parallelism between the superconducting wires can be contributed. Further, the permanent current switch can be reduced in size by setting the length of the magnesium diboride superconducting wire to 10 m or less, particularly 3 m or less, and further 2 m or less.

本発明は、二硼化マグネシウム超電導体とそれを被覆する金属被覆を含み、該超電導体の一部が露出した平角状又はテープ状等の長尺の超電導線材を、複数個積層して、隣接する線材の露出した上記超電導体が接続されるように積層・一体化した超電導積層体を提供するものである。   The present invention includes a magnesium diboride superconductor and a metal coating covering the magnesium superboride, and a plurality of long superconducting wires such as a rectangular shape or a tape shape in which a part of the superconductor is exposed are stacked and adjacent to each other. The present invention provides a superconducting laminate that is laminated and integrated so that the superconductor with exposed wire is connected.

上記積層体の隣接する線材間の隙間に二硼化マグネシウム超電体を充填すること、前記二硼化マグネシウム超電導線材の金属被覆材の室温でのビッカース硬さが50以上である物を用いること、前記積層体を加圧保持する手段を設けること、前記二硼化マグネシウム超電導線材の長さが10m以下であることも上述のとおりである。   Filling the gap between adjacent wires of the laminate with a magnesium diboride superconductor, and using a metal coating material of the magnesium diboride superconducting wire having a Vickers hardness of 50 or more at room temperature. As described above, a means for holding the laminate under pressure is provided, and the length of the magnesium diboride superconducting wire is 10 m or less.

本発明は又、二硼化マグネシウム超電導体とそれを被覆する金属被覆材を含む超電導線材の該金属被覆材の一部を除去して超電導コア部を露出させる工程と、前記超電導線材の露出部分が互いに接触するように、複数の超電導線材を積層する工程とを備えた超電導積層体の製造方法を提供する。この方法において、前記重ねた超電導線材の隙間に二硼化マグネシウム超電導体を充填する工程を施し、超電導体同士の接続を確保することが望ましい。また、前記超電導積層体を加圧保持する手段により、上記超電導線材の超電導体間の接続、あるいは線材間の整列を維持することが望ましい。   The present invention also includes a step of removing a part of the metal coating material of the superconducting wire including the magnesium diboride superconductor and the metal coating material covering the superconductor core to expose the superconducting core, and an exposed portion of the superconducting wire. And a step of laminating a plurality of superconducting wires so that they are in contact with each other. In this method, it is desirable to perform a step of filling the gap between the superconducting wires stacked with the magnesium diboride superconductor to ensure the connection between the superconductors. Further, it is desirable to maintain the connection between the superconductors of the superconducting wire or the alignment between the wires by means of holding the superconducting laminate under pressure.

本発明による永久電流スイッチは、核磁気共鳴分析装置、医療用磁気共鳴診断装置、超電導電力貯蔵装置等の機器に適用すると効果的である。   The permanent current switch according to the present invention is effective when applied to devices such as a nuclear magnetic resonance analyzer, a medical magnetic resonance diagnostic device, and a superconducting power storage device.

上述したように、本発明によれば以下のような特性を備えた永久電流スイッチを提供することができる。   As described above, according to the present invention, a permanent current switch having the following characteristics can be provided.

本発明による超電導積層体を用いた絵に級電流スイッチの特徴を整理すると以下のとおりである。
(1)永久電流スイッチのON時において電気抵抗が顕著に小さい。
(2)永久電流スイッチのOFF時において電気抵抗は十分に大きい。
(3)永久電流スイッチに十分な電流を安定に流すことができる。
(4)永久電流スイッチにおいて必要時以外に常電導転移しない
The characteristics of the class current switch are summarized in the picture using the superconducting laminate according to the present invention as follows.
(1) The electrical resistance is remarkably small when the permanent current switch is ON.
(2) The electrical resistance is sufficiently large when the permanent current switch is OFF.
(3) A sufficient current can be stably supplied to the permanent current switch.
(4) In the permanent current switch, there is no normal conduction transition except when necessary.

本発明によれば、臨界温度,臨界磁場,臨界電流の高い二硼化マグネシウム超電導線を用いて永久電流スイッチを作製し、これと超電導コイルを短絡することにより、コンパクトな信頼性の高い永久電流スイッチが提供できる。   According to the present invention, a permanent current switch is manufactured using a magnesium diboride superconducting wire having a high critical temperature, a critical magnetic field, and a high critical current, and the superconducting coil is short-circuited with this, thereby providing a compact and highly reliable permanent current. A switch can be provided.

本発明では永久電流スイッチにMgB超電導線材を用いる。MgB超電導体は高い臨界温度,臨界磁場および臨界電流を有する線材を比較的容易に得ることができる。したがって、特に永久電流スイッチにMgB超電導線材を用いれば、必要な電流を安定に流すことができ、信頼性および操作性が高い永久電流スイッチを提供することができる。 In the present invention, MgB 2 superconducting wire is used for the permanent current switch. The MgB 2 superconductor can relatively easily obtain a wire having a high critical temperature, a critical magnetic field and a critical current. Therefore, in particular, if the MgB 2 superconducting wire is used for the permanent current switch, a necessary current can be flowed stably, and a permanent current switch with high reliability and operability can be provided.

MgB超電導線材を作製する際に充填される粉末は、超電導粉末、前駆体粉末などが挙げられる。また、上述のように、2〜30体積%の金属微細粉末に代表される第3元素を添加すると効果的である。 Examples of the powder filled when producing the MgB 2 superconducting wire include superconducting powder and precursor powder. Further, as described above, it is effective to add a third element typified by 2 to 30% by volume of metal fine powder.

本発明における超電導粉末合成の熱処理温度は、200〜1200℃の範囲内が用いられる。また、必要に応じて窒素ガス、アルゴンガス、水素ガス、酸素ガス等を単独或いは混合して熱処理を行う。さらに、必要に応じて、大気圧以上の圧力で加圧しながら熱処理を行う。   The heat treatment temperature for superconducting powder synthesis in the present invention is in the range of 200 to 1200 ° C. Further, if necessary, heat treatment is performed with nitrogen gas, argon gas, hydrogen gas, oxygen gas or the like alone or in combination. Further, if necessary, heat treatment is performed while pressurizing at a pressure higher than atmospheric pressure.

本発明において永久電流スイッチに用いたMgB超電導線には、安定化材からなるシース中にMgB超電導体の原料粉末を充填し、塑性加工を施す方法、いわゆるパウダー・イン・チューブ法によって作製されたものを用いることができる。このような方法において、金属被覆材としては室温におけるビッカース硬さが50以上の金属を用いることが効果的である。室温でのビッカース硬さが50以上の高強度金属の例としては、SUS304、SUS316、SUS310、SUS430、ハステロイB、ハステロイC、炭素鋼、インコネル、コバルト、タングステン、ニッケル、モリブデン、チタン、モネル、アルミ基合金、チタン基合金、ニッケル基合金、銅基合金、ニオブ基合金、マグネシウム基合金等がある。 The MgB 2 superconducting wire used for the permanent current switch in the present invention is manufactured by a method in which a raw material powder of MgB 2 superconductor is filled in a sheath made of a stabilizing material and plastic processing is performed, so-called powder-in-tube method. Can be used. In such a method, it is effective to use a metal having a Vickers hardness of 50 or more at room temperature as the metal coating material. Examples of high-strength metals having a Vickers hardness of 50 or more at room temperature include SUS304, SUS316, SUS310, SUS430, Hastelloy B, Hastelloy C, carbon steel, inconel, cobalt, tungsten, nickel, molybdenum, titanium, monel, aluminum There are base alloys, titanium base alloys, nickel base alloys, copper base alloys, niobium base alloys, magnesium base alloys and the like.

永久電流スイッチの作製に必要な線材長さは、(1)式で表される。   The wire length necessary for manufacturing the permanent current switch is expressed by the equation (1).

OFF時の抵抗×線材断面積/線材比抵抗−−−−−−−−−(1)
即ち、線材の比抵抗が高ければ、永久電流スイッチの線材長さを短くすることが可能で、抵抗が10倍になれば、線材長さも1/10にすることができる。一般に、金属の比電気抵抗とビッカース硬さとは比例関係にある。このため、上記したビッカース硬さが50以上の金属は、比電気抵抗も比較的高いといえる。
Resistance at OFF x Wire cross-sectional area / Wire specific resistance --------- (1)
That is, if the specific resistance of the wire is high, the wire length of the permanent current switch can be shortened, and if the resistance is increased 10 times, the wire length can be reduced to 1/10. In general, the specific electrical resistance of metal and the Vickers hardness are in a proportional relationship. For this reason, it can be said that the above-mentioned metal having a Vickers hardness of 50 or more has a relatively high specific electric resistance.

線材の製造方法において、塑性加工には、伸線加工,溝ロール加工、ローラーダイス加工、静水圧プレス加工,圧延加工等がある。特に、伸線加工または圧延加工との組合せにより、丸断面線材,角断面線材またはテープ線材等が精度良く得られる。しかしながら、これらの方法以外にも、例えば溶射法、ドクターブレード法、ディップコート法、スプレーパイロリシス法、或いは、ジェリーロール法等で作製した線材を用いても、同等の超電導特性を得ることが可能である。なお、用いられる超電導線は、単芯線および多芯線のいずれでもよい。   In the method of manufacturing a wire rod, plastic processing includes wire drawing, groove roll processing, roller die processing, isostatic pressing, rolling, and the like. In particular, a round cross-section wire, a square cross-section wire, a tape wire or the like can be obtained with high accuracy by a combination with wire drawing or rolling. However, in addition to these methods, it is possible to obtain equivalent superconducting characteristics even when using a wire produced by, for example, a thermal spraying method, a doctor blade method, a dip coating method, a spray pyrolysis method, or a jelly roll method. It is. The superconducting wire used may be either a single core wire or a multi-core wire.

上記の超電導線材は、超電導マグネットのほかに送電ケーブル、電流リード、MRI装置、NMR装置、SMES装置、超電導発電機、超電導モータ、磁気浮上列車、超電導電磁推進船、超電導変圧器、超電導限流器等に用いることができる。   In addition to superconducting magnets, the above superconducting wires include transmission cables, current leads, MRI equipment, NMR equipment, SMES equipment, superconducting generators, superconducting motors, magnetic levitation trains, superconducting magnetic propulsion ships, superconducting transformers, superconducting fault current limiters Etc. can be used.

永久電流スイッチとつなぐ超電導コイルに用いる超電導材は、どのようなものでも構わない。例えば、NbTi,NbSn,NbAlまたはVGa等の金属系超電導体、Bi−2212,Bi−2223,Y−123等の酸化物超電導体、またはMgBでも構わない。巻線方法としては、コイル自身の発生磁場をゼロにするために、無誘導巻きが適用される。 Any superconducting material may be used for the superconducting coil connected to the permanent current switch. For example, a metallic superconductor such as NbTi, Nb 3 Sn, Nb 3 Al, or V 3 Ga, an oxide superconductor such as Bi-2212, Bi-2223, or Y-123, or MgB 2 may be used. As a winding method, non-inductive winding is applied in order to make the generated magnetic field of the coil itself zero.

永久電流スイッチ機構には、熱式,磁気式等の機構を用いることができる。一般に、熱式のスイッチ機構がよく利用される。スイッチングに用いられる発熱体には、マンガニン線等の電気抵抗により発熱する材料を好ましく用いることができる。超電導スイッチの使用時には、発熱体は、電源回路と、発熱を制御する手段に接続される。発熱体は、超電導線に接触するように設けられてもよく、電気絶縁材料を介して超電導線上に設けられてもよい。   A mechanism such as a thermal type or a magnetic type can be used as the permanent current switch mechanism. In general, a thermal switch mechanism is often used. For the heating element used for switching, a material that generates heat by electrical resistance such as manganin wire can be preferably used. When the superconducting switch is used, the heating element is connected to a power supply circuit and a means for controlling heat generation. The heating element may be provided so as to be in contact with the superconducting wire, or may be provided on the superconducting wire via an electrically insulating material.

本発明における永久電流スイッチが液体ヘリウム,気体ヘリウム等の冷媒に接触させられる場合、発熱体は熱絶縁材によって覆われる。熱絶縁材は、冷却のための環境と、超電導線材および発熱体との間に適当な温度勾配を形成し、発熱体および線材が急激に冷却されないよう熱緩衝材としての役割を果たす。また熱絶縁材は、スイッチのOFF時に超電導線を十分加熱することができるように、発熱体を保護する。熱絶縁材には、たとえば、エポキシ樹脂等の樹脂材料,樹脂コンパウンド,シリコン系コンパウンド等を用いることができる。熱絶縁材には、使用する温度において好ましくは10−2W/cm・K〜10−6W/cm・Kの熱伝導率を有する材料を用いることができる。 When the permanent current switch in the present invention is brought into contact with a refrigerant such as liquid helium or gaseous helium, the heating element is covered with a heat insulating material. The thermal insulating material forms an appropriate temperature gradient between the environment for cooling, the superconducting wire and the heating element, and serves as a thermal buffer so that the heating element and the wire are not rapidly cooled. Further, the heat insulating material protects the heating element so that the superconducting wire can be sufficiently heated when the switch is turned off. For example, a resin material such as an epoxy resin, a resin compound, a silicon compound, or the like can be used as the heat insulating material. As the thermal insulating material, a material having a thermal conductivity of preferably 10 −2 W / cm · K to 10 −6 W / cm · K can be used at the temperature to be used.

以下、本発明を実施例に基づいて説明する。但し、本発明は、これらに限定されるものではない。   Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to these.

(実施例1)
出発原料として、マグネシウム粉末(Mg;純度99%)とアモルファス状ホウ素粉末(B;純度99%)を用いて、マグネシウムとホウ素が原子モル比で1:2になるように秤量し、10〜60分間にわたって混合する。次に、この混合体を700〜1000℃の温度で、2〜20時間にわたって熱処理し、MgB超電導体を作製する。このとき、大気圧以上の圧力を加えて熱処理することもある。得られた粉末のX線回折を行ったところ、強度比換算でMgB超電導体が95%以上含まれていることが分かった。MgB以外には、若干のMgO及びMgBも含まれていた。
Example 1
Using magnesium powder (Mg; purity 99%) and amorphous boron powder (B; purity 99%) as starting materials, the magnesium and boron were weighed so as to have an atomic molar ratio of 1: 2, and 10-60 Mix for minutes. Next, this mixture is heat-treated at a temperature of 700 to 1000 ° C. for 2 to 20 hours to produce a MgB 2 superconductor. At this time, it may heat-process by applying the pressure more than atmospheric pressure. When X-ray diffraction of the obtained powder was performed, it was found that 95% or more of MgB 2 superconductor was contained in terms of intensity ratio. Besides MgB 2 was also included some MgO and MgB 4.

得られた混合粉末を外径5mm、内径4mmの円形の断面形状を有するステンレス鋼パイプに充填する。この際、粉末状のまま充填すること以外に、プレス等によって作製した円柱状や角形状のロッドを充填しても構わない。これを、断面積の減少率3乃至20%で伸線加工し、所定形状まで縮径する。必要に応じて、線材の横断面形状を楕円形、六角形、平角状又は丸形状の横断面形状に減面加工する。   The obtained mixed powder is filled into a stainless steel pipe having an outer diameter of 5 mm and an inner diameter of 4 mm and a circular cross-sectional shape. At this time, in addition to filling in powder form, a cylindrical or square rod produced by pressing or the like may be filled. This is drawn at a cross-sectional area reduction rate of 3 to 20% and reduced in diameter to a predetermined shape. If necessary, the cross-sectional shape of the wire is reduced to an elliptical, hexagonal, flat or round cross-sectional shape.

本実施例では、厚さ0.2乃至0.5mm、幅2乃至5mmのテープ状線材になるまで縮径加工した。図1に作製したMgB超電導線材4の断面模式図の一例を示す。MgB超電導線材4は、金属被覆材5の中にMgB超電導体6が充填又は内包されている。本実施例で使用する線材サイズは、厚さ0.4mm、幅3.7mmである。なお、ここでは、線材加工時に熱処理や焼鈍等の加熱処理は全く行わなかった。なお、テープ状線材の厚さや幅、および厚みと幅の比率であるアスペクト比も限定されるものではなく、例えば丸形状あるいは丸に極めて近いものから、幅広の極薄テープまで様々な線材形状にしても差し支えない。しかし、平角状やテープ状のものは、線材の接触面積が大きく取れ、積層が容易であるので、好ましい形状である。 In this example, the diameter was reduced to a tape-shaped wire having a thickness of 0.2 to 0.5 mm and a width of 2 to 5 mm. FIG. 1 shows an example of a schematic cross-sectional view of the MgB 2 superconducting wire 4 produced. In the MgB 2 superconducting wire 4, an MgB 2 superconductor 6 is filled or included in a metal coating material 5. The wire size used in the present embodiment is 0.4 mm thick and 3.7 mm wide. Here, no heat treatment such as heat treatment or annealing was performed during wire processing. Note that the thickness and width of the tape-shaped wire and the aspect ratio that is the ratio of the thickness to the width are not limited. For example, the wire shape varies from a round shape or extremely close to a round shape to a wide ultra-thin tape. There is no problem. However, a rectangular shape or a tape shape is a preferable shape because the contact area of the wire can be increased and lamination is easy.

得られたMgB超電導線4を30mm長さに切断し、それらの端部を金属被覆材部分のみ除去した。図2(a)および(b)に金属被覆5の除去工程を示す。金属被覆5の除去は、線材の端部から長さ方向に4mm、幅方向に3mmとした。この際、片端は上面を、もう一方の端部は下面を除去した。図3において、黒い部分9が上面の金属被覆除去したことを示し、点線で示される部分10が下面除去を示している。このように、線材の端部の両面に金属被覆の除去部を形成し、超電導体を露出する。 The obtained MgB 2 superconducting wire 4 was cut to a length of 30 mm, and only the metal coating material portion was removed from the end portions. 2A and 2B show the removal process of the metal coating 5. Removal of the metal coating 5 was 4 mm in the length direction and 3 mm in the width direction from the end of the wire. At this time, the upper surface was removed at one end and the lower surface was removed at the other end. In FIG. 3, a black portion 9 indicates that the metal coating on the upper surface has been removed, and a portion 10 indicated by a dotted line indicates the lower surface removal. In this way, the metal coating removal portion is formed on both surfaces of the end portion of the wire to expose the superconductor.

これらを図4のように超電導体同志が接続されるように、規則的に線材を一方向に積層する。金属被覆材を除去した線材接触部は、図2(b)に示すように段差ができるので、積層体の端部に隙間11が生じるが、そこにはMgB粉末かMgB成形体を挿入する。挿入後、全体に一軸プレスで加圧することにより、線材を用いた永久電流スイッチ7が作製できる。また、積層体を上下から保持手段を用いて加圧・保持することができる。積層体の積層数は、5層以上、特に7層以上20層以下が好ましい。金属被覆の抵抗値が高いほど積層数を増やすことができる。 These wires are regularly laminated in one direction so that the superconductors are connected as shown in FIG. The wire contact portion from which the metal coating material has been removed has a step as shown in FIG. 2 (b), so that a gap 11 is formed at the end of the laminate, and an MgB 2 powder or MgB 2 compact is inserted there. To do. After insertion, the permanent current switch 7 using a wire can be produced by pressurizing the whole with a uniaxial press. Moreover, a laminated body can be pressurized and hold | maintained using a holding means from the upper and lower sides. The number of stacked layers is preferably 5 or more, particularly 7 or more and 20 or less. As the resistance value of the metal coating is higher, the number of layers can be increased.

次に、永久電流スイッチとしての特性評価を行った。図5に超電導装置の概念図を示す。図において、超電導コイルに用いた超電導線は超電導材としてNbTi、安定化材として銅を用いた直径1mmのNbTi超電導線8である。これをアルミニウム合金製ボビン9に巻き、内径50mmφ,外径76mmφ,高さ79.5mmのソレノイドコイルとした。巻線間の絶縁は、エナメル絶縁によって行った。ソレノイドコイルのターン数は800ターン,20Aの電流を流したときの中心磁場は0.1Tであった。   Next, characteristics evaluation as a permanent current switch was performed. FIG. 5 shows a conceptual diagram of the superconducting device. In the figure, the superconducting wire used for the superconducting coil is NbTi superconducting wire 8 having a diameter of 1 mm using NbTi as the superconducting material and copper as the stabilizing material. This was wound around an aluminum alloy bobbin 9 to obtain a solenoid coil having an inner diameter of 50 mmφ, an outer diameter of 76 mmφ, and a height of 79.5 mm. Insulation between the windings was performed by enamel insulation. The number of turns of the solenoid coil was 800 turns, and the central magnetic field when a current of 20 A was passed was 0.1 T.

永久電流スイッチ72は、上述のようにMgB線材を用いて作製した。30mm長さに切断した線材を100枚積層したので、線材全長は3mである。永久電流スイッチとしては極めて小型のサイズである。積層したMgB超電導線の上からエポキシ系樹脂を用いた絶縁材10を塗り、その上にマンガニン線11を巻回している。マンガニン線には銅線12,13を接続し、銅線には外部のヒータ電源を接続できる構造である。 The permanent current switch 72 was manufactured using the MgB 2 wire as described above. Since 100 wires cut to a length of 30 mm are stacked, the total length of the wire is 3 m. The permanent current switch has a very small size. An insulating material 10 using an epoxy resin is applied on the laminated MgB 2 superconducting wire, and a manganin wire 11 is wound thereon. Copper wires 12 and 13 are connected to the manganin wire, and an external heater power source can be connected to the copper wire.

MgB超電導線4,NbTi超電導線8,電流リード線14,15は超電導線接続部16,17において接続されている。また、電流リード線14,15の他端には励磁用電源を接続できる構造である。 The MgB 2 superconducting wire 4, the NbTi superconducting wire 8, and the current lead wires 14 and 15 are connected at the superconducting wire connecting portions 16 and 17. Further, an excitation power source can be connected to the other ends of the current lead wires 14 and 15.

以上のように構成された構造体を液体ヘリウムに浸漬し、銅線12,13を介してマンガニン線11に電流を流して加熱を行い、永久電流スイッチとして働く部分のMgB超電導線を常電導状態(40K以上の温度)に転移させた。その状態で電流リード線14,15を介してソレノイドコイルに電源より電流を流した。ソレノイドコイルが励磁されたら、マンガニン線11による加熱をやめ、スイッチの部分のMgB超電導線4を超電導状態に戻した。 The structure configured as described above is immersed in liquid helium, and a current is applied to the manganin wire 11 through the copper wires 12 and 13 to heat the same, so that the portion of the MgB 2 superconducting wire acting as a permanent current switch is normally conducted. Transition to a state (temperature of 40K or higher). In this state, a current was supplied from the power source to the solenoid coil via the current lead wires 14 and 15. When the solenoid coil was excited, heating by the manganin wire 11 was stopped, and the MgB 2 superconducting wire 4 in the switch portion was returned to the superconducting state.

この状態で励磁電源を取り外した結果、永久電流モードの状態が得られた。このときの接合部の電気抵抗は0.05nΩ以下であった。一方、超電導線接続部16,17において超電導コア同士の接続に鉛−錫ハンダを用いた場合、電気抵抗の測定値は約20nΩであった。このように本発明によれば、接合による電気抵抗を著しく低減することができた。   As a result of removing the excitation power source in this state, a state of the permanent current mode was obtained. The electrical resistance of the junction at this time was 0.05 nΩ or less. On the other hand, when lead-tin solder was used for connection between the superconducting cores in the superconducting wire connecting portions 16 and 17, the measured value of the electrical resistance was about 20 nΩ. As described above, according to the present invention, the electrical resistance due to bonding can be significantly reduced.

本実施例は、MgB超電導線4の被覆材として、ステンレス鋼を用いた検討結果であったが、例えばビッカース硬さが50以上の金属をシース材として使用した場合にも、上記と同様の結果が得られることを確認した。 This example was the result of study using stainless steel as the coating material for the MgB 2 superconducting wire 4. However, for example, when a metal having a Vickers hardness of 50 or more is used as the sheath material, It was confirmed that a result was obtained.

以上述べたように、金属で被覆したMgB超電導線4の端部を除去して超電導コアを露出させ、それらを一方向に積み重ねることにより、優れた特性を持つ永久電流スイッチが作製できた。 As described above, the end of the MgB 2 superconducting wire 4 coated with metal was removed to expose the superconducting core, and they were stacked in one direction, thereby producing a permanent current switch having excellent characteristics.

(実施例2)
実施例1で述べたMgB超電導線4の線材形状を変えて、同様の永久電流スイッチ7を作製し、永久電流スイッチとしての歩留まりを検討した。本実施例では、線材の形状を丸形状、平角状、テープ状の3種類とした。サイズは、丸形状線材が直径1mm、平角状線材が厚さ1.1mm、幅2.2mm、テープ状線材は厚さ0.45mm、幅3.6mmである。
(Example 2)
A similar permanent current switch 7 was produced by changing the wire shape of the MgB 2 superconducting wire 4 described in Example 1, and the yield as the permanent current switch was examined. In this embodiment, the wire has three shapes, round, flat, and tape. The round wire has a diameter of 1 mm, the flat wire has a thickness of 1.1 mm and a width of 2.2 mm, and the tape-like wire has a thickness of 0.45 mm and a width of 3.6 mm.

永久電流スイッチとしての歩留まり算出法は、図4と同様の永久電流スイッチを作製し、その後、図5に示す配線を行い、接合部の電気抵抗を測定した。この際、0.1nΩ以下の電気抵抗であれば、合格とした。図5において、1はNbTi超電導線、9はアルミニウム合金製ボビン、10は絶縁材、11はマンガニン線、12は銅線、13は銅線、14は電流リード線、15は電流リード線、16は超電導線接続部、17は超電導線接続部である。   For the yield calculation method as the permanent current switch, a permanent current switch similar to that shown in FIG. 4 was produced, and then the wiring shown in FIG. 5 was performed to measure the electrical resistance of the junction. At this time, an electrical resistance of 0.1 nΩ or less was accepted. In FIG. 5, 1 is an NbTi superconducting wire, 9 is an aluminum alloy bobbin, 10 is an insulating material, 11 is a manganin wire, 12 is a copper wire, 13 is a copper wire, 14 is a current lead wire, 15 is a current lead wire, 16 Is a superconducting wire connection part, and 17 is a superconducting wire connection part.

その結果、丸形状では歩留まりが75%であったのに対して、平角状では97%、テープ状では99%まで向上した。以上のように、MgB超電導線4の形状は、平角またはテープ状であることが効果的であることを明らかにした。 As a result, the yield was 75% for the round shape, but improved to 97% for the flat shape and 99% for the tape shape. As described above, it has been clarified that it is effective that the shape of the MgB 2 superconducting wire 4 is a flat or tape shape.

本発明の超電導線材の断面模式図。The cross-sectional schematic diagram of the superconducting wire of this invention. 本発明における超電導線材の金属被覆材の除去工程を説明する外観模式図。The external appearance schematic diagram explaining the removal process of the metal coating | covering material of the superconducting wire in this invention. 本発明における積層体の展開斜視図。The expansion | deployment perspective view of the laminated body in this invention. 本発明の永久電流スイッチ用超電導積層体を示す側面斜視図。The side perspective view which shows the superconducting laminated body for permanent current switches of this invention. 本発明の超電導積層体を用いた永久電流スイッチを備えた超電導装置の概念図。The conceptual diagram of the superconducting apparatus provided with the permanent current switch using the superconducting laminated body of this invention. 永久電流スイッチ付超電導コイルを説明する回路図。The circuit diagram explaining the superconducting coil with a permanent current switch.

符号の説明Explanation of symbols

1…超電導マグネット、2…永久電流スイッチ、3…電源、4…超電導線材、5…金属被覆材、6…MgB超電導体、8…NbTi超電導線、9…アルミニウム合金製ボビン、10…絶縁材、11…マンガニン線、12…銅線、13…銅線、14…電流リード線、15…電流リード線、16…超電導線接続部、17…超電導線接続部。 1 ... superconducting magnet, 2 ... permanent current switch, 3 ... Power, 4 ... superconducting wire, 5 ... metal covering material, 6 ... MgB 2 superconductors, 8 ... NbTi superconducting wire, 9 ... aluminum alloy bobbin, 10 ... insulating material , 11 ... Manganin wire, 12 ... Copper wire, 13 ... Copper wire, 14 ... Current lead wire, 15 ... Current lead wire, 16 ... Superconducting wire connecting portion, 17 ... Superconducting wire connecting portion.

Claims (13)

二硼化マグネシウム超電導線材とそれを被覆する金属被覆を含み、該超電導線材の一部が露出した長尺の超電導線材を、複数個積層して、隣接する線材の露出した上記超電導線材が接続されるように積層・一体化した超電導積層体を回路内に備えたことを特徴とする永久電流スイッチ。   A magnesium diboride superconducting wire and a metal coating covering the same are laminated, and a plurality of long superconducting wires exposed from a part of the superconducting wire are stacked, and the above-mentioned superconducting wires exposed from adjacent wires are connected. A permanent current switch comprising a superconducting laminate laminated and integrated in a circuit. 請求項1に記載の永久電流スイッチであって、上記積層体の隣接する線材間の隙間に二硼化マグネシウム超電体を充填したことを特徴とする永久電流スイッチ。   2. The permanent current switch according to claim 1, wherein a magnesium diboride superconductor is filled in a gap between adjacent wires of the laminate. 請求項1または2に記載の永久電流スイッチであって、前記二硼化マグネシウム超電導線材の金属被覆材の室温でのビッカース硬さが50以上であることを特徴とする永久電流スイッチ。   3. The permanent current switch according to claim 1, wherein the metal coating material of the magnesium diboride superconducting wire has a Vickers hardness of 50 or more at room temperature. 4. 請求項1または2に記載の永久電流スイッチであって、前記積層体を加圧保持する手段を設けたことを特徴とする永久電流スイッチ。   3. The permanent current switch according to claim 1, further comprising means for pressurizing and holding the laminate. 請求項1から3のいずれかに記載の永久電流スイッチであって、前記二硼化マグネシウム超電導線材の長さが10m以下であることを特徴とする永久電流スイッチ。   4. The permanent current switch according to claim 1, wherein the magnesium diboride superconducting wire has a length of 10 m or less. 二硼化マグネシウム超電導線材とそれを被覆する金属被覆を含み、該二硼化マグネシウム超電導線材の一部が露出した長尺の超電導線材を、複数個積層して、隣接する線材の露出した上記超電導線材が接続されるように積層・一体化した超電導積層体。   A magnesium diboride superconducting wire and a metal coating for covering the same, and a plurality of long superconducting wires with a part of the magnesium diboride superconducting wire exposed, are laminated, and the superconducting wire is exposed on an adjacent wire. Superconducting laminate that is laminated and integrated so that wires are connected. 請求項6に記載の超電導積層体であって、上記積層体の隣接する二硼化マグネシウム超電導線材間の隙間に二硼化マグネシウム超電体を充填したことを特徴とする超電導積層体。   7. The superconducting laminate according to claim 6, wherein a gap between adjacent magnesium diboride superconducting wires of the laminate is filled with a magnesium diboride superconductor. 請求項6または7に記載の超電導積層体であって、前記二硼化マグネシウム超電導線材の金属被覆材の室温でのビッカース硬さが50以上であることを特徴とする超電導積層体。   8. The superconducting laminate according to claim 6, wherein the metal coating material of the magnesium diboride superconducting wire has a Vickers hardness of 50 or more at room temperature. 請求項6ないし8のいずれかに記載の永久電流スイッチであって、前記積層体を加圧保持する手段を設けたことを特徴とする超電導積層体。   The superconducting laminate according to any one of claims 6 to 8, further comprising means for pressurizing and holding the laminate. 請求項6から9のいずれかに記載の超電導積層体であって、前記二硼化マグネシウム超電導線材の長さが10m以下であることを特徴とする超電導積層体。   The superconducting laminate according to any one of claims 6 to 9, wherein the magnesium diboride superconducting wire has a length of 10 m or less. 二硼化マグネシウム超電導線材の金属被覆材端部を除去して超電導コア部を露出させる工程と、前記超電導線材の露出部分が互いに接触するように積み重ねる工程と、前記積み重ねた超電導線材の隙間に二硼化マグネシウム超電導体を配置する工程を備えた永久電流スイッチの製造方法。   The step of removing the metal coating material end of the magnesium diboride superconducting wire to expose the superconducting core, the step of stacking so that the exposed portions of the superconducting wire are in contact with each other, and the gap between the stacked superconducting wires A method for manufacturing a permanent current switch comprising the step of arranging a magnesium boride superconductor. 二硼化マグネシウム超電導体とそれを被覆する金属被覆材を含む超電導線材の該金属被覆材の一部を除去して超電導コア部を露出させる工程と、前記超電導線材の露出部分が互いに接触するように、複数の超電導線材を積層する工程とを備えたことを特徴とする超電導積層体の製造方法。   A step of removing a part of the metal covering material of the superconducting wire including a magnesium diboride superconductor and a metal covering material covering the superconductor core to expose the superconducting core part, and an exposed part of the superconducting wire contacting each other And a step of laminating a plurality of superconducting wires. A method for producing a superconducting laminate, comprising: 更に、前記積層した超電導線材の隙間に二硼化マグネシウム超電導体を充填する工程を含むことを特徴とする請求項12に記載の超電導積層体の製造方法。   The method of manufacturing a superconducting laminate according to claim 12, further comprising a step of filling a gap between the laminated superconducting wires with a magnesium diboride superconductor.
JP2005037581A 2005-02-15 2005-02-15 Persistent current switch using magnesium diboride and method of manufacturing the same Expired - Fee Related JP4728007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037581A JP4728007B2 (en) 2005-02-15 2005-02-15 Persistent current switch using magnesium diboride and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037581A JP4728007B2 (en) 2005-02-15 2005-02-15 Persistent current switch using magnesium diboride and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006228797A true JP2006228797A (en) 2006-08-31
JP4728007B2 JP4728007B2 (en) 2011-07-20

Family

ID=36989928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037581A Expired - Fee Related JP4728007B2 (en) 2005-02-15 2005-02-15 Persistent current switch using magnesium diboride and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4728007B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147370A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Electromagnet device
JP2010535414A (en) * 2007-08-01 2010-11-18 ヨン ジン キム Superconductor having increased high magnetic field characteristics, method of manufacturing the same, and MRI apparatus including the same
JP2012172986A (en) * 2011-02-17 2012-09-10 Sumitomo Electric Ind Ltd Inspection method of superconductive wire
JP2013016664A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Superconduction switch, superconduction magnet, and mri
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
WO2014034295A1 (en) * 2012-08-29 2014-03-06 株式会社 日立製作所 Conduction cooling permanent current switch, mri device, nmr device
CN114365243A (en) * 2020-02-27 2022-04-15 株式会社日立制作所 Superconducting magnet, superconducting wire rod and production method of superconducting magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118418A (en) * 1997-06-18 1999-01-12 Tokin Corp Persistent current switch and superconducting electromagnet device
JPH11185847A (en) * 1997-12-18 1999-07-09 Fujikura Ltd Bonding structure of oxidic superconductive wire and its connection method
JP2003037303A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2003142744A (en) * 2001-11-07 2003-05-16 Central Japan Railway Co Persistent current switch and superconductive magnet employing the same
JP2003273415A (en) * 2002-01-15 2003-09-26 Siemens Ag Superconducting switching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118418A (en) * 1997-06-18 1999-01-12 Tokin Corp Persistent current switch and superconducting electromagnet device
JPH11185847A (en) * 1997-12-18 1999-07-09 Fujikura Ltd Bonding structure of oxidic superconductive wire and its connection method
JP2003037303A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2003142744A (en) * 2001-11-07 2003-05-16 Central Japan Railway Co Persistent current switch and superconductive magnet employing the same
JP2003273415A (en) * 2002-01-15 2003-09-26 Siemens Ag Superconducting switching device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010535414A (en) * 2007-08-01 2010-11-18 ヨン ジン キム Superconductor having increased high magnetic field characteristics, method of manufacturing the same, and MRI apparatus including the same
JP2010147370A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Electromagnet device
JP2012172986A (en) * 2011-02-17 2012-09-10 Sumitomo Electric Ind Ltd Inspection method of superconductive wire
JP2013016664A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Superconduction switch, superconduction magnet, and mri
US8855731B2 (en) 2011-07-05 2014-10-07 Hitachi, Ltd. Superconducting switch, superconducting magnet and MRI
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
WO2014034295A1 (en) * 2012-08-29 2014-03-06 株式会社 日立製作所 Conduction cooling permanent current switch, mri device, nmr device
JP2014045158A (en) * 2012-08-29 2014-03-13 Hitachi Ltd Conduction cooling permanent current switch, mri device, nmr device
US9887029B2 (en) 2012-08-29 2018-02-06 Hitachi, Ltd. Conductive cooling-type persistent current switch, MRI apparatus and NMR apparatus
CN114365243A (en) * 2020-02-27 2022-04-15 株式会社日立制作所 Superconducting magnet, superconducting wire rod and production method of superconducting magnet

Also Published As

Publication number Publication date
JP4728007B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
US5296456A (en) Ceramic superconductor wire and method of manufacturing the same
JP4728007B2 (en) Persistent current switch using magnesium diboride and method of manufacturing the same
JP2008270307A (en) Superconductive coil and superconductor used for the same
JP7377703B2 (en) Superconducting wire, superconducting wire manufacturing method, and MRI apparatus
US6194985B1 (en) Oxide-superconducting coil and a method for manufacturing the same
KR20150065694A (en) Superconductive coil device and production method
WO2002103716A1 (en) Superconducting wire material and method for preparation thereof, and superconducting magnet using the same
JP2013012645A (en) Oxide superconducting coil and superconducting apparatus
EP2806430B1 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
US20040121915A1 (en) Superconducting wire rod and method of producing the same
Sato Bismuth-based oxide (BSCCO) high-temperature superconducting wires for power grid applications: Properties and fabrication
JP2002525790A (en) Protected superconducting component and its manufacturing method
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
Sato et al. High field generation using silver-sheathed BSCCO conductor
JP2012074330A (en) Manufacturing method of superconducting wire material and the superconducting wire material
US8260387B2 (en) Superconducting articles and methods of fabrication thereof with reduced AC magnetic field losses
JP2014130788A (en) Connection structure of oxide superconductive wire material and superconductive appliance
JP2003037303A (en) Superconducting coil with permanent current switch using magnesium diboride superconducting wire material and its manufacturing method
JP2012064495A (en) Method of producing coated superconducting wire rod, electrodeposition method of superconducting wire rod, and coated superconducting wire rod
JP5604213B2 (en) Superconducting equipment
JP2011238455A (en) Superconducting wire rod, superconducting coil, and superconductivity protective device
JP2009230912A (en) Oxide superconductive current lead
Miao et al. Development of Bi‐2212 Conductors for Magnet Applications
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
Green et al. Things to think about when estimating the cost of magnets made with conductors other than Nb-Ti

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees