JP2003142744A - Persistent current switch and superconductive magnet employing the same - Google Patents

Persistent current switch and superconductive magnet employing the same

Info

Publication number
JP2003142744A
JP2003142744A JP2001341967A JP2001341967A JP2003142744A JP 2003142744 A JP2003142744 A JP 2003142744A JP 2001341967 A JP2001341967 A JP 2001341967A JP 2001341967 A JP2001341967 A JP 2001341967A JP 2003142744 A JP2003142744 A JP 2003142744A
Authority
JP
Japan
Prior art keywords
current switch
permanent current
superconducting
persistent current
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001341967A
Other languages
Japanese (ja)
Other versions
JP4261097B2 (en
Inventor
Motohito Igarashi
基仁 五十嵐
Katsuyuki Kuwano
勝之 桑野
Taizo Tosaka
泰造 戸坂
Masahiko Takahashi
政彦 高橋
Toru Kuriyama
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Japan Railway Co
Original Assignee
Toshiba Corp
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Japan Railway Co filed Critical Toshiba Corp
Priority to JP2001341967A priority Critical patent/JP4261097B2/en
Publication of JP2003142744A publication Critical patent/JP2003142744A/en
Application granted granted Critical
Publication of JP4261097B2 publication Critical patent/JP4261097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature superconductive persistent current switch, not giving damage to a superconductive film, high in stability and small in a thermal capacity. SOLUTION: The persistent current switch 1 is manufactured by a method wherein a high-temperature superconductive film 2 on an insulator substrate 3 is employed and a cooling plate 4 is arranged at the side of the insulator substrate 3 as the cooling means of the high-temperature superconductive film. Further, a heater 5 is integrated thermally. According to such a constitution, the high-temperature superconductive film 2 will not be deteriorated by a cooling stress whereby the persistent current switch, high in performance, can be provided. On the other hand, the persistent current switch 1 is often subjected to a thermal stress, vibration or the like in the using atmosphere of the same and the insulator substrate is often very brittle mechanically whereby the substrate necessitates reinforcement. However, the persistent current switch 1 is impregnated with an epoxy resin 9 or the like and the insulator substrate is received in a case 8 made of an FRP or the like whereby the strength of the whole of the same is increased. As a result, the persistent current switch 1, strong against the thermal stress or the vibration, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導機器に使用
される高温超電導永久電流スイッチおよびそれを利用し
た超電導マグネットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature superconducting permanent current switch used in superconducting equipment and a superconducting magnet using the same.

【0002】[0002]

【従来の技術】超電導線は電気抵抗が無いため、閉回路
を形成し、永久電流により磁場を発生することが可能で
ある。永久電流運転を行なうには、永久電流スイッチを
用いる方法が一般的に用いられる。永久電流スイッチは
超電導線と、超電導線の超電導状態と常電導状態を切り
替えるための手段から構成される。永久電流スイッチ
は、超電導コイルが閉回路になるように接続される。永
久電流スイッチがオフ状態すなわち超電導線が常電導状
態なると電気抵抗が発生し、永久電流スイッチと並列に
接続された励磁電源により超電導コイルを励磁する。励
磁中には、永久電流スイッチの両端に電圧が発生する
が、常電導状態の超電導線には有限の抵抗があるために
分流し、永久電流スイッチは発熱することになる。永久
電流スイッチは、常電導状態での電気抵抗すなわちオフ
抵抗が大きいほど発熱が少なくなり、励磁速度を速くす
ることができる。そこで、永久電流スイッチの電気抵抗
を大きくするために、絶縁物基板上に超電導膜を形成
し、さらに高温超電導膜の安定性を保持するために、超
電導膜側に絶縁物を介して冷却板を配設した構造が考案
されている。
2. Description of the Related Art Since a superconducting wire has no electric resistance, it is possible to form a closed circuit and generate a magnetic field by a permanent current. A method using a permanent current switch is generally used to perform the persistent current operation. The persistent current switch is composed of a superconducting wire and means for switching the superconducting wire between the superconducting state and the normal conducting state. The persistent current switch is connected so that the superconducting coil is a closed circuit. When the permanent current switch is in the OFF state, that is, when the superconducting wire is in the normal conducting state, an electric resistance is generated and the superconducting coil is excited by the exciting power source connected in parallel with the permanent current switch. During excitation, a voltage is generated across the permanent current switch, but since the superconducting wire in the normal conducting state has a finite resistance, it is shunted and the permanent current switch heats up. The permanent current switch generates less heat as the electric resistance in the normal conduction state, that is, the off resistance, increases, and the excitation speed can be increased. Therefore, in order to increase the electric resistance of the persistent current switch, a superconducting film is formed on the insulator substrate, and in order to maintain the stability of the high temperature superconducting film, a cooling plate is placed on the superconducting film side via an insulator. Arranged structures have been devised.

【0003】図11は、従来の永久電流スイッチ1であ
る。高温超電導膜2側に絶縁物7を介在させて冷却板4
を配設してある。この構造では、高温超電導膜2を効率
良く冷却することが可能であるが、高温超電導膜2に直
接絶縁物7と冷却板4を接着させるため、高温超電導膜
2にダメージを与える可能性がある。
FIG. 11 shows a conventional permanent current switch 1. A cooling plate 4 with an insulator 7 interposed on the high temperature superconducting film 2 side.
Is provided. With this structure, the high temperature superconducting film 2 can be efficiently cooled, but since the insulator 7 and the cooling plate 4 are directly bonded to the high temperature superconducting film 2, the high temperature superconducting film 2 may be damaged. .

【0004】また、冷凍機による伝導で超電導コイル、
永久電流スイッチを冷却する場合、永久電流スイッチの
オン/オフの時聞は、冷凍機および永久電流スイッチの
間に熱スイッチを設置することで大きく改善するが、従
来の熱スイッチは制御が複雑で、設置に関しても空間
的、重量的に難しい場合が多い。
Further, a superconducting coil is formed by conduction by a refrigerator.
When cooling the permanent current switch, the time of turning on / off the permanent current switch can be greatly improved by installing a thermal switch between the refrigerator and the permanent current switch. However, conventional thermal switches have complicated control. Also, installation is often difficult due to space and weight.

【0005】また、永久電流回路を形成するために、永
久電流スイッチと超電導コイルは、高温超電導線等で接
続するが、この接続部の抵抗は、永久電流減衰の原因と
なるので、できるだけ接続抵抗を減らす構成が必要とな
る。
Further, in order to form a permanent current circuit, the permanent current switch and the superconducting coil are connected by a high temperature superconducting wire or the like. The resistance of this connection portion causes attenuation of the permanent current. A configuration that reduces

【0006】[0006]

【発明が解決しようとする課題】従来の技術では、高温
超電導膜の安定性を保持するために、超電導膜側に冷却
板を配設していたため、冷却時の熱収縮率差により超電
導膜が劣化する場合があった。
In the prior art, in order to maintain the stability of the high temperature superconducting film, the cooling plate is arranged on the side of the superconducting film. It may have deteriorated.

【0007】そこで本発明の目的は、超電導膜にダメー
ジを与えず、安定性が高く、熱容量の小さな高温超電導
永久電流スイッチを提供し、永久電流運転が容易な高温
超電導マグネットを提供することである。
Therefore, an object of the present invention is to provide a high temperature superconducting permanent current switch which does not damage the superconducting film, has high stability and a small heat capacity, and provides a high temperature superconducting magnet which can be easily operated in a persistent current. .

【0008】また、伝導冷却超電導マグネットにおい
て、制御が簡単で小さく、軽量な熱スイッチを提供する
ことである。また、永久電流スイッチに偏流が起こりに
くい高温超電導マグネットを提供することである。
Another object of the present invention is to provide a heat switch which is simple, small, and lightweight in a conduction cooling superconducting magnet. Another object of the present invention is to provide a high-temperature superconducting magnet in which a non-uniform current does not easily occur in the permanent current switch.

【0009】[0009]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1の発明の永久電流スイッチは、絶縁物
基板上に形成した高温超電導膜を用い、高温超電導膜の
冷却手段として、絶緑物基板側に冷却板を配設し、さら
にヒータを熱的に一体化させて永久電流スイッチとした
ものである。このような構成により、冷却歪みにより高
温超電導膜を劣化させることがないので、性能の高い永
久電流スイッチを提供することができる。
In order to solve the above-mentioned problems, the persistent current switch according to the invention of claim 1 uses a high temperature superconducting film formed on an insulating substrate, and as a cooling means for the high temperature superconducting film, A cooling plate is disposed on the side of the insulating material, and a heater is thermally integrated into a permanent current switch. With such a configuration, the high temperature superconducting film is not deteriorated by the cooling distortion, so that it is possible to provide a persistent current switch with high performance.

【0010】請求項2の発明の永久電流スイッチは、請
求項1の永久電流スイッチにおいて、高温超電導膜とし
て、YBCOを用いたものである。YBCOを用いれ
ば、絶縁物母材上に臨界電流密度の高い膜を形成するこ
とが容易である。このような構成の超電導膜を用いるこ
とにより、オフ抵抗が大きく、熱容量が小さい永久電流
スイッチを容易に提供することができる。
According to a second aspect of the present invention, the persistent current switch of the first aspect uses YBCO as the high temperature superconducting film. If YBCO is used, it is easy to form a film having a high critical current density on the insulating base material. By using the superconducting film having such a structure, it is possible to easily provide a permanent current switch having a large off resistance and a small heat capacity.

【0011】請求項3の発明の永久電流スイッチは、請
求項1又は2の永久電流スイッチにおいて、絶縁物母材
の材質として、サファイアもしくはYSZを用いたもの
である。サファイアおよびYSZは、熱伝導率が非常に
高く、超電導膜を効率良く冷却することが可能である。
このような構成により、安定性の高い永久電流スイッチ
を容易に提供することができる。
According to a third aspect of the present invention, the permanent current switch according to the first or second aspect uses sapphire or YSZ as the material of the insulating base material. Sapphire and YSZ have very high thermal conductivity and can efficiently cool the superconducting film.
With such a configuration, a highly stable persistent current switch can be easily provided.

【0012】請求項4の発明の永久電流スイッチは、請
求項1乃至3の永久電流スイッチを、エポキシレジンな
どで含浸したものである。永久電流スイッチの使用環境
としは、熱歪み、振動などにさらされる場合があるが、
絶縁物基板は機械的に非常にもろい材質が多く、補強す
る必要がある。絶縁物基板をFRP等で製作されたケー
スに収納してエポキシ含浸することで、全体の強度が高
くなり、熱歪みや振動に強い永久電流スイッチを提供で
きる。
According to a fourth aspect of the present invention, the permanent current switch according to the first to third aspects is impregnated with epoxy resin or the like. The environment in which the permanent current switch is used may be exposed to thermal strain, vibration, etc.
Insulator substrates are often mechanically brittle and need to be reinforced. By housing the insulating substrate in a case made of FRP or the like and impregnating it with epoxy, the overall strength is increased, and a permanent current switch that is resistant to thermal distortion and vibration can be provided.

【0013】請求項5の発明の永久電流スイッチは、請
求項4の永久電流スイッチにおいて、エポキシレジンで
含浸する際、YBCO等で形成されている高温超電導膜
の面を離形処理したものである。この離形処理により冷
却歪みにより高温超電導膜を劣化させることがないの
で、性能の高い永久電流スイッチを提供することができ
る。
According to a fifth aspect of the present invention, in the permanent current switch according to the fourth aspect, the surface of the high temperature superconducting film made of YBCO or the like is subjected to demolding treatment when impregnated with epoxy resin. . This releasing treatment does not deteriorate the high temperature superconducting film due to cooling distortion, so that a high performance persistent current switch can be provided.

【0014】請求項6の発明の超電導マグネットは、請
求項1乃至5の永久電流スイッチと高温超電導コイル
と、それらと熱的に接続した冷凍機とを真空容器に収容
したものである。このような構成により、永久電流運転
が容易な高温超電導マグネットを提供できる。
According to a sixth aspect of the present invention, there is provided a superconducting magnet in which a permanent current switch, a high temperature superconducting coil according to any one of the first to fifth aspects, and a refrigerator thermally connected to them are housed in a vacuum container. With such a configuration, it is possible to provide a high temperature superconducting magnet that can be easily operated with a permanent current.

【0015】請求項7の発明の超電導マグネットは、請
求項6の超電導マグネットにおいて、伝熱板をアルミ、
銅、もしくは銀、もしくはそれらの少なくとも1つを含
む合金としたものである。これらの材質は可撓性に富
み、また10K〜150Kにおける熱伝導率の変化が大
きく、熱スイッチとしての機能を持たせることが可能で
ある。このため永久電流スイッチのオフ/オンを効率良
く行うことが可能となり、永久電流運転が容易な高温超
電導マグネットを提供できる。
A superconducting magnet according to a seventh aspect of the present invention is the superconducting magnet according to the sixth aspect, in which the heat transfer plate is aluminum.
Copper or silver, or an alloy containing at least one of them. These materials are highly flexible and have a large change in thermal conductivity at 10K to 150K, and thus can have a function as a thermal switch. Therefore, it is possible to efficiently turn on / off the permanent current switch, and it is possible to provide a high-temperature superconducting magnet that can be easily operated with a persistent current.

【0016】請求項8の発明の超電導マグネットは、請
求項7の高温超電導マグネットにおいて、伝熱板の断面
積/長さの比と、体積を適切な値にすることによって、
熱スイッチとしての機能を引き出し、オン/オフが容易
な高温超電導マグネットを提供できる。
A superconducting magnet according to an eighth aspect of the present invention is the high temperature superconducting magnet according to the seventh aspect, wherein the cross-sectional area / length ratio and the volume of the heat transfer plate are set to appropriate values.
It is possible to provide a high temperature superconducting magnet that can be easily turned on and off by taking out the function of a thermal switch.

【0017】請求項9の発明の超電導マグネットでは、
請求項6乃至8の超電導マグネットにおいて、永久電流
スイッチの枚数、もしくは高温超電導コイルと永久電流
スイッチを電気的に接続する高温超電導線材の本数、も
しくは両者共に、超電導コイルに巻線されている線材の
並列数と同じ、その整数倍もしくは整数分の1にしたも
のである。これによって永久電流スイッチと超電導コイ
ルとの接続が等しくなり、永久電流スイッチの偏流が少
ない高温超電導マグネットを提供できる。
In the superconducting magnet according to the invention of claim 9,
9. The superconducting magnet according to claim 6, wherein the number of permanent current switches, the number of high-temperature superconducting wires for electrically connecting the high-temperature superconducting coil and the persistent current switch, or both of them are It is the same as the parallel number, or an integer multiple or an integer fraction thereof. As a result, the connection between the permanent current switch and the superconducting coil becomes equal, and a high-temperature superconducting magnet with less drift of the permanent current switch can be provided.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。なお、本発明は下記の実施の形態に
限定されるものではなく、その要旨を変更しない範囲内
で適宜変形して実施し得るものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, but can be implemented by being modified appropriately within the scope of the invention.

【0019】(第1の実施の形態)図1は、本発明の第
1の実施の形態を示す永久電流スイッチ1の断面図を示
したものである。高温超電導膜2は、絶緑物基板3の上
に形成されている。この絶縁物基板3には、高温超電導
膜の結晶成長を促進させる中間層がその表面に配設され
る場合がある。高温超電導膜2は、絶縁物基板3側に配
設した冷却板4により冷却される。さらに、ヒータ5が
具備されており、永久電流スイッチ1は、ヒータ5を加
熱することでオフ状態になる。電流は、端子6を介して
高温超電導膜2に通電される。
(First Embodiment) FIG. 1 is a sectional view of a permanent current switch 1 showing a first embodiment of the present invention. The high temperature superconducting film 2 is formed on the absolutely insulative substrate 3. An intermediate layer that promotes crystal growth of the high temperature superconducting film may be provided on the surface of the insulator substrate 3. The high temperature superconducting film 2 is cooled by a cooling plate 4 arranged on the side of the insulating substrate 3. Further, the heater 5 is provided, and the permanent current switch 1 is turned off by heating the heater 5. An electric current is applied to the high temperature superconducting film 2 via the terminal 6.

【0020】本実施の形態の永久電流スイッチ1は、図
2に示すように、ヒータ5と冷却板4の位置を変えても
よい。また、高温超電導膜2は、図3に示すように絶縁
物基板3の表面に回路状に電流経路として形成してもよ
い。
In the permanent current switch 1 of this embodiment, the positions of the heater 5 and the cooling plate 4 may be changed as shown in FIG. Further, the high temperature superconducting film 2 may be formed as a circuit-shaped current path on the surface of the insulating substrate 3 as shown in FIG.

【0021】図4は本実施の形態の永久電流スイッチ1
の外観を示す図である。図3に示す絶緑物基板3の裏面
側に冷却板4とヒータ5とを配設し、超電導コイルと接
続するための端子6を具備している。
FIG. 4 shows a persistent current switch 1 according to this embodiment.
It is a figure which shows the external appearance. A cooling plate 4 and a heater 5 are arranged on the back surface side of the absolutely insulative substrate 3 shown in FIG. 3, and a terminal 6 for connecting to the superconducting coil is provided.

【0022】本実施の形態の永久電流スイッチ1におい
て、高温超電導膜2の材料としては、Bi2212,B
i2223,MgO,YBCOが適している。YBCO
は、臨界電流密度が高く、抵抗率を高く設計することが
可能であるので、特に適している。また、これらの高温
超電導膜2を成膜する母材としては熱伝導率が高く、ま
た強度が強いサファイアもしくはYSZが適している。
In the persistent current switch 1 of the present embodiment, the materials for the high temperature superconducting film 2 are Bi2212, B.
i2223, MgO and YBCO are suitable. YBCO
Is particularly suitable because it has a high critical current density and can be designed with a high resistivity. Further, sapphire or YSZ having high thermal conductivity and high strength is suitable as a base material for forming the high temperature superconducting film 2.

【0023】本実施の形態によれば、高温超電導膜2を
劣化させることなく、速やかに熱を分散する冷却板5を
配設しているため、オフ抵抗が大きく、熱容量が小さ
く、かつ安定牲の高い永久電流スイッチを提供できる。
According to the present embodiment, since the cooling plate 5 which disperses heat quickly without degrading the high temperature superconducting film 2 is provided, the off resistance is large, the heat capacity is small, and the stability is high. It is possible to provide a high-current persistent current switch.

【0024】(第2の実施の形態)図5は、本発明の第
2の実施の形態の永久電流スイッチ1の断面図である。
性能が高い高温超電導膜2を形成する目的で、絶縁物基
板3には一般的に単結晶が用いられるため、強度的に弱
い。そこで本実施の形態では、図4に示した構造の第1
の実施の形態の永久電流スイッチを含浸ケース8の中に
収納し、エポキシ樹脂9で含浸することによって剛性を
強化した構造にしている。ここで、エポキシ樹脂9は、
ガラスやセラミックス等のフィラー入りでも良い。含浸
ケース8には、強度部材としての役割も持たせることが
できる。
(Second Embodiment) FIG. 5 is a sectional view of a persistent current switch 1 according to a second embodiment of the present invention.
For the purpose of forming the high-temperature superconducting film 2 having high performance, a single crystal is generally used for the insulator substrate 3, so that the strength is weak. Therefore, in the present embodiment, the first structure of the structure shown in FIG.
The permanent current switch of the above embodiment is housed in the impregnation case 8 and impregnated with the epoxy resin 9 to have a structure in which rigidity is enhanced. Here, the epoxy resin 9 is
It may be filled with filler such as glass or ceramics. The impregnation case 8 can also serve as a strength member.

【0025】高温超電導膜2は、他の部材と接着する
と、冷却時の熱歪みでダメージを受ける可能性があるの
で、エポキシ樹脂9を含浸する際に高温超電導膜2の面
が接着されないように、離形処理するとなお良い。図6
は離形処理した場合の永久電流スイッチ1の構成であ
り、符号10が離形部位である。
If the high temperature superconducting film 2 is adhered to another member, it may be damaged by thermal strain during cooling, so that the surface of the high temperature superconducting film 2 is not adhered when the epoxy resin 9 is impregnated. It is even better to perform release processing. Figure 6
Is the configuration of the permanent current switch 1 when the release treatment is performed, and the reference numeral 10 is the release portion.

【0026】なお、含浸ケース8は、含浸後に取り外す
ことも可能である。図7は、エポキシ樹脂を含浸した後
に含浸ケース8を除去した構成の永久電流スイッチ1の
断面を示している。
The impregnation case 8 can be removed after impregnation. FIG. 7 shows a cross section of the persistent current switch 1 having a structure in which the impregnation case 8 is removed after impregnation with the epoxy resin.

【0027】また、電流容量を増やすために、複数の高
温超電導膜2を含浸ケース8に収納し、含浸しても良
い。図8はその場合の永久電流スイッチ1の構成を示し
ている。
In order to increase the current capacity, a plurality of high temperature superconducting films 2 may be housed in the impregnation case 8 and impregnated. FIG. 8 shows the configuration of the persistent current switch 1 in that case.

【0028】本実施の形態によれば、強度的に弱い絶縁
物基板3をエポキシ樹脂9で含浸しているので、剛性が
強化され、振動などに強い永久電流スイッチ1が提供で
きる。
According to the present embodiment, since the insulating substrate 3 which is weak in strength is impregnated with the epoxy resin 9, it is possible to provide the permanent current switch 1 which is reinforced in rigidity and resistant to vibration and the like.

【0029】(第3の実施の形態)図9は、本発明の第
3の実施の形態の超電導マグネットの構成を示してい
る。本実施の形態の超電導マグネットは、前述した図1
乃至図8のいずれかの構造の永久電流スイッチ1と、高
温超電導コイル11およびそれらを冷却する冷凍機1
2、さらにそれら全体を包囲する輻射シールド13と真
空容器14から構成される。図9は、永久電流スイッチ
1の例として、図4に示す永久電流スイッチ1を搭載し
た場合の構成を示している。
(Third Embodiment) FIG. 9 shows the structure of a superconducting magnet according to a third embodiment of the present invention. The superconducting magnet according to the present embodiment is similar to that shown in FIG.
To the high-temperature superconducting coil 11 and the refrigerator 1 for cooling them.
2. Further, it is composed of a radiation shield 13 and a vacuum container 14 which surround them as a whole. FIG. 9 shows a configuration in which the permanent current switch 1 shown in FIG. 4 is mounted as an example of the permanent current switch 1.

【0030】高温超電導コイル11は、伝熱板15を介
して冷凍機12によって冷却される。永久電流スイッチ
1は、熱スイッチ伝熱板16を介して冷凍機12によっ
て冷却される。永久電流スイッチ1と高温超電導コイル
11とが永久電流回路を構成するために、永久電流スイ
ッチ1の端子6に、高温超電導線17が接続されてい
る。この永久電流回路と並列に励磁電源18が接統され
ており、永久電流スイッチ1と共に永久電流運転を行
う。
The high temperature superconducting coil 11 is cooled by the refrigerator 12 via the heat transfer plate 15. The permanent current switch 1 is cooled by the refrigerator 12 via the heat switch heat transfer plate 16. Since the permanent current switch 1 and the high temperature superconducting coil 11 form a permanent current circuit, the high temperature superconducting wire 17 is connected to the terminal 6 of the permanent current switch 1. An exciting power source 18 is connected in parallel with the permanent current circuit, and performs a permanent current operation together with the permanent current switch 1.

【0031】永久電流スイッチ1をオン状態、すなわち
超電導状態に保つ場合には超電導転移温度以下、かつ、
コイル運転温度とほぼ同じ温度、例えば20K程度にな
るように冷却する必要がある。一方、永久電流スイッチ
1をオフ状態、すなわち常電導状態に保つ場合には超電
導転移温度以上、例えば100K程度に維持する必要が
ある。
When the persistent current switch 1 is kept in the ON state, that is, in the superconducting state, it is below the superconducting transition temperature, and
It is necessary to cool the coil to approximately the same temperature as the coil operating temperature, for example, about 20K. On the other hand, in order to keep the persistent current switch 1 in the off state, that is, in the normal conducting state, it is necessary to maintain the superconducting transition temperature or higher, for example, about 100K.

【0032】熱スイッチ伝熱板16として、20Kで熱
伝導率が大きく、100Kで熱伝導率が小さな材質のも
のを用いると、当該熱スイッチ伝熱板16に熱スイッチ
の機能を持たせることができ、なおかつ、熱スイッチと
しての動作を確実に行わせることができる。熱スイッチ
伝熱板16の材質としては、アルミ、銅、銀もしくはそ
れらの少なくとも1つを含んだ合金が適している。
When the heat switch heat transfer plate 16 is made of a material having a high heat conductivity at 20K and a low heat conductivity at 100K, the heat switch heat transfer plate 16 can have a function of a heat switch. In addition, the operation as a thermal switch can be surely performed. As a material of the heat switch heat transfer plate 16, aluminum, copper, silver or an alloy containing at least one of them is suitable.

【0033】永久電流スイッチ1のオフ状態とオン状態
を切り替える時間、すなわち、永久電流スイッチ1の約
100Kの状態と約20Kの状態を切り替える時間は、
熱スイッチ伝熱板16の断面積と長さに影響される。断
面積÷長さの値が大きければl00Kから20Kへの冷
却特性は向上し、逆に20Kから100Kへの加熱には
時間がかかる。断面積÷長さの値が小さい場合には、1
00Kから20Kへの冷却時間は長くなるが、20Kか
ら100Kへの加熱は容易になる。一方、熱スイッチ伝
熱板16の材質として20Kで熱伝導率が大きく、10
0Kで熱伝導率が小さな材質を用いると、永久電流スイ
ッチ1をオフ状態からオン状態に切り替える時間は、そ
れらの条件とともに、熱スイッチ伝熱板16の熱容量が
大きく影響する。これは、熱スイッチ伝熱板16自体の
温度が下がらないと熱伝導率が大きくならないためであ
る。
The time for switching the off state and the on state of the persistent current switch 1, that is, the time for switching the state of the persistent current switch 1 between about 100K and about 20K is
It is affected by the cross-sectional area and length of the heat switch heat transfer plate 16. If the value of cross-sectional area / length is large, the cooling characteristic from 100K to 20K is improved, and conversely, it takes time to heat from 20K to 100K. 1 if the value of cross-sectional area ÷ length is small
The cooling time from 00K to 20K becomes longer, but heating from 20K to 100K becomes easier. On the other hand, as the material of the heat switch heat transfer plate 16, the thermal conductivity is high at 20K and the heat conductivity is high.
When a material having a low thermal conductivity of 0K is used, the heat capacity of the heat switch heat transfer plate 16 greatly affects the time for switching the permanent current switch 1 from the OFF state to the ON state together with those conditions. This is because the thermal conductivity does not increase unless the temperature of the heat switch heat transfer plate 16 itself decreases.

【0034】これを考慮し、熱スイッチ伝熱板16を設
計し、実験により検証したところ、断面積÷長さの値を
0.005mm以上、かつ体積を10cm3 以下の条件
とした場合に切替時間が数秒〜数分となり、熱スイッチ
伝熱板16として適していることが分かった。
In consideration of this, the heat switch heat transfer plate 16 was designed and verified by experiments. As a result, switching was performed under the conditions of the cross-sectional area / length value of 0.005 mm or more and the volume of 10 cm 3 or less. It took several seconds to several minutes, and it was found that the heat switch heat transfer plate 16 was suitable.

【0035】本実施の形態によれば、安定性の高い永久
電流スイッチ1および熱スイッチの機能を有する伝熱板
16を用いているので、永久電流運転が容易な超電導マ
グネットを提供できる。
According to the present embodiment, since the heat transfer plate 16 having the functions of the permanent current switch 1 and the thermal switch having high stability is used, it is possible to provide the superconducting magnet which can be easily operated in the permanent current.

【0036】(第4の実施の形態)図10は、本発明の
第4の実施の形態の永久電流回路の接続図である。高温
超電導コイル11は、電流容量に合わせてテープ線材を
複数本束ねて巻かれることがある。同様に永久電流スイ
ッチ1も、電流容量に合わせて並列化する必要がある場
合がある。永久電流回路において、回路が並列化された
場合、僅かな抵抗の差で偏流する。偏流は、永久電流ス
イッチ1の容量を低下させ、クエンチしやすくする。
(Fourth Embodiment) FIG. 10 is a connection diagram of a permanent current circuit according to a fourth embodiment of the present invention. The high-temperature superconducting coil 11 may be wound by bundling a plurality of tape wires according to the current capacity. Similarly, the permanent current switch 1 may also need to be paralleled according to the current capacity. In the persistent current circuit, when the circuits are connected in parallel, the current drifts due to a slight resistance difference. The unbalanced current reduces the capacity of the persistent current switch 1 and facilitates quenching.

【0037】図10の超電導マグネットでは、高温超電
導コイル11の線材並列数と永久電流スイッチ1の並列
数を一致させており、それぞれを高温超電導線17で接
続した構成にしている。この接続方式であれば、接続数
および接続条件を並列回路のそれぞれの回路同士で同じ
にすることができるので、偏流が起こりにくくなる。
In the superconducting magnet of FIG. 10, the parallel number of the wire rods of the high temperature superconducting coil 11 and the parallel number of the permanent current switch 1 are made equal to each other, and they are connected by the high temperature superconducting wire 17. With this connection method, the number of connections and the connection conditions can be made the same in each of the parallel circuits, so that drift is less likely to occur.

【0038】なお、高温超電導コイル11の線材並列
数、永久電流スイッチ1の並列数、そしてそれらを結ぶ
高温超電導線17の数は全く同数である必要はなく、整
数倍もしくは整数分の1であっても良い。
The number of parallel wires of the high-temperature superconducting coil 11, the number of parallel permanent current switches 1 and the number of high-temperature superconducting wires 17 connecting them do not have to be exactly the same, but they are integer multiples or fractions. May be.

【0039】本実施の形態によれば、接続構成を並列回
路同士で均一にすることが可能で、永久電流スイッチ1
の偏流が少なく、安定牲の高い超電導マグネットを提供
できる。
According to the present embodiment, the connection configuration can be made uniform in the parallel circuits, and the permanent current switch 1
It is possible to provide a superconducting magnet with less uneven flow and high stability.

【0040】[0040]

【発明の効果】以上説明したように、本発明の永久電流
スイッチによれば、オフ抵抗が大きく、熱容量が小さ
く、応答牲が良く、かつ安定性の高いものを提供でき
る。
As described above, according to the persistent current switch of the present invention, it is possible to provide a switch having a large off resistance, a small heat capacity, a good responsiveness and a high stability.

【0041】また、本発明の超電導マグネットによれ
ば、永久電流運転が容易である。
Further, according to the superconducting magnet of the present invention, permanent current operation is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の永久電流スイッチ
の断面図。
FIG. 1 is a sectional view of a persistent current switch according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の永久電流スイッチ
の変形例の断面図。
FIG. 2 is a cross-sectional view of a modification of the persistent current switch according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態における高温超電導
膜の形状を示す説明図。
FIG. 3 is an explanatory view showing the shape of a high temperature superconducting film according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態の永久電流スイッチ
の斜視図。
FIG. 4 is a perspective view of the permanent current switch according to the first embodiment of the present invention.

【図5】本発明の第2の実施の形態の永久電流スイッチ
の断面図。
FIG. 5 is a sectional view of a persistent current switch according to a second embodiment of the present invention.

【図6】本発明の第2の実施の形態の永久電流スイッチ
の変形例の断面図。
FIG. 6 is a cross-sectional view of a modification of the persistent current switch according to the second embodiment of the present invention.

【図7】本発明の第2の実施の形態の永久電流スイッチ
の別の変形例の断面図。
FIG. 7 is a sectional view of another modification of the persistent current switch according to the second embodiment of the invention.

【図8】本発明の第2の実施の形態の永久電流スイッチ
のさらに別の変形例の断面図。
FIG. 8 is a cross-sectional view of still another modification example of the persistent current switch according to the second embodiment of the present invention.

【図9】本発明の第3の実施の形態の超電導マグネット
の回路図。
FIG. 9 is a circuit diagram of a superconducting magnet according to a third embodiment of the present invention.

【図10】本発明の第4の実施の形態の超電導マグネッ
トの回路図。
FIG. 10 is a circuit diagram of a superconducting magnet according to a fourth embodiment of the present invention.

【図11】従来例の永久電流スイッチの断面図。FIG. 11 is a sectional view of a conventional persistent current switch.

【符号の説明】[Explanation of symbols]

1 永久電流スイッチ 2 高温超電導膜 3 絶縁物基板 4 冷却板 5 ヒータ 6 端子 8 含浸ケース 9 エポキシ樹脂 10 離形部位 11 高温超電導コイル 12 冷凍機 14 真空容器 16 熱スイッチ伝熱板 17 高温超電導線 1 Permanent current switch 2 High temperature superconducting film 3 Insulator substrate 4 Cooling plate 5 heater 6 terminals 8 impregnation case 9 Epoxy resin 10 Release area 11 High temperature superconducting coil 12 refrigerator 14 Vacuum container 16 heat switch heat transfer plate 17 High temperature superconducting wire

フロントページの続き (72)発明者 桑野 勝之 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 戸坂 泰造 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 高橋 政彦 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 栗山 透 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 4M114 AA01 AA11 AA15 AA24 AA30 CC03 CC11 DA02 DA51 DB16 DB30 DB32 DB33 5G321 AA04 BA04 CB01 Continued front page    (72) Inventor Katsuyuki Kuwano             1-4, Mei Station, Nakamura-ku, Nagoya City, Aichi Prefecture               Tokai Passenger Railway Co., Ltd. (72) Inventor Taizo Tosaka             2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Office (72) Inventor Masahiko Takahashi             2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Office (72) Inventor Toru Kuriyama             2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Office F-term (reference) 4M114 AA01 AA11 AA15 AA24 AA30                       CC03 CC11 DA02 DA51 DB16                       DB30 DB32 DB33                 5G321 AA04 BA04 CB01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 絶縁物基板上に形成された超電導膜と、
スイッチ切替用の加熱手段とを具備した永久電流スイッ
チにおいて、前記絶縁物基板側に当該永久電流スイッチ
を冷却する冷却板を配設したことを特徴とする永久電流
スイッチ。
1. A superconducting film formed on an insulating substrate,
A permanent current switch comprising a switch switching heating means, wherein a cooling plate for cooling the permanent current switch is disposed on the side of the insulator substrate.
【請求項2】 請求項1記載の永久電流スイッチにおい
て、前記超電導膜が、YBCOであることを特徴とする
永久電流スイッチ。
2. The persistent current switch according to claim 1, wherein the superconducting film is YBCO.
【請求項3】 請求項1もしくは2記載の永久電流スイ
ッチにおいて、前記絶縁物基板の母材としてサファイア
もしくはYSZを用いたことを特徴とする永久電流スイ
ッチ。
3. The persistent current switch according to claim 1, wherein sapphire or YSZ is used as a base material of the insulator substrate.
【請求項4】 請求項1乃至3のいずれか記載の永久電
流スイッチを1枚もしくは複数枚積層して並列化したも
のを、エポキシ樹脂もしくはフィラー入りエポキシ樹脂
で固め、一体化したことを特徴とする永久電流スイッ
チ。
4. A permanent current switch according to claim 1, wherein one or a plurality of permanent current switches are laminated and arranged in parallel, and an epoxy resin or a filler-containing epoxy resin is solidified and integrated. Permanent current switch to.
【請求項5】 請求項4記載の永久電流スイッチにおい
て、超電導膜側を離形したことを特徴とする永久電流ス
イッチ。
5. The persistent current switch according to claim 4, wherein the superconducting film side is separated.
【請求項6】 請求項1乃至5のいずれか記載の永久電
流スイッチと、当該永久電流スイッチと電気的に接続す
る高温超電導コイルと、当該高温超電導コイルを冷却す
る冷凍機とを真空容器に収容した超電導マグネットにお
いて、前記永久電流スイッチの冷却板と前記冷凍機とを
熱的に接続させる伝熱板を配設したことを特徴とする超
電導マグネット。
6. A vacuum container contains the permanent current switch according to claim 1, a high-temperature superconducting coil electrically connected to the permanent current switch, and a refrigerator for cooling the high-temperature superconducting coil. In the superconducting magnet described above, a heat conducting plate for thermally connecting the cooling plate of the permanent current switch and the refrigerator is arranged.
【請求項7】 請求頂6記載の超電導マグネットにおい
て、前記伝熱板の材質を、アルミ、銅、銀、又はそれら
の少なくとも1つを含む合金にしたことを特徴とする超
電導マグネット。
7. The superconducting magnet according to claim 6, wherein the material of the heat transfer plate is aluminum, copper, silver or an alloy containing at least one of them.
【請求項8】 請求項7記載の超電導マグネットにおい
て、前記伝熱板が、断面積÷長さの値が0.005mm
以上、かつ体積が10cm3 以下であることを特徴とす
る超電導マグネット。
8. The superconducting magnet according to claim 7, wherein the heat transfer plate has a cross-sectional area / length value of 0.005 mm.
A superconducting magnet having the above and a volume of 10 cm 3 or less.
【請求項9】 請求項6記載の超電導マグネットにおい
て、前記永久電流スイッチの並列数、前記永久電流スイ
ッチと高温超電導コイルとを電気的に接続する超電導線
の本数又はその両者が、巻線された高温超電導テープ線
材の並列本数と同数、その整数倍もしくは整数分の1で
あることを特徴とする請求項6記載の超電導マグネッ
ト。
9. The superconducting magnet according to claim 6, wherein the number of the permanent current switches connected in parallel, the number of superconducting wires electrically connecting the permanent current switch and the high temperature superconducting coil, or both of them are wound. 7. The superconducting magnet according to claim 6, wherein the number is the same as the number of the high-temperature superconducting tape wire rods arranged in parallel, and is an integral multiple or integer fraction thereof.
JP2001341967A 2001-11-07 2001-11-07 Superconducting magnet Expired - Fee Related JP4261097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341967A JP4261097B2 (en) 2001-11-07 2001-11-07 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341967A JP4261097B2 (en) 2001-11-07 2001-11-07 Superconducting magnet

Publications (2)

Publication Number Publication Date
JP2003142744A true JP2003142744A (en) 2003-05-16
JP4261097B2 JP4261097B2 (en) 2009-04-30

Family

ID=19155908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341967A Expired - Fee Related JP4261097B2 (en) 2001-11-07 2001-11-07 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP4261097B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP2007227167A (en) * 2006-02-23 2007-09-06 Toshiba Corp Superconductive wire material, and superconductive device using the same
JP2010267822A (en) * 2009-05-14 2010-11-25 Toshiba Corp Superconducting coil device
JP2010267550A (en) * 2009-05-15 2010-11-25 Toshiba Corp High-temperature superconducting wire with mold lubricant, and superconducting coil
US8855731B2 (en) 2011-07-05 2014-10-07 Hitachi, Ltd. Superconducting switch, superconducting magnet and MRI
WO2015092910A1 (en) 2013-12-20 2015-06-25 株式会社日立製作所 Superconducting magnet, mri, and nmr
US10281539B2 (en) 2015-08-19 2019-05-07 Hitachi, Ltd. Superconducting magnet device or magnetic resonance imaging apparatus including a support member having a coefficient of thermal expansion highter than that of a columnar member
JP2019161060A (en) * 2018-03-14 2019-09-19 株式会社東芝 Superconducting magnet device
JP2019165034A (en) * 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
JP2021048365A (en) * 2019-09-20 2021-03-25 住友電気工業株式会社 Permanent current switch and superconducting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP4728007B2 (en) * 2005-02-15 2011-07-20 株式会社日立製作所 Persistent current switch using magnesium diboride and method of manufacturing the same
JP2007227167A (en) * 2006-02-23 2007-09-06 Toshiba Corp Superconductive wire material, and superconductive device using the same
JP2010267822A (en) * 2009-05-14 2010-11-25 Toshiba Corp Superconducting coil device
JP2010267550A (en) * 2009-05-15 2010-11-25 Toshiba Corp High-temperature superconducting wire with mold lubricant, and superconducting coil
US8855731B2 (en) 2011-07-05 2014-10-07 Hitachi, Ltd. Superconducting switch, superconducting magnet and MRI
WO2015092910A1 (en) 2013-12-20 2015-06-25 株式会社日立製作所 Superconducting magnet, mri, and nmr
US10121955B2 (en) 2013-12-20 2018-11-06 Hitachi, Ltd. Superconducting magnet, MRI, and NMR
US10281539B2 (en) 2015-08-19 2019-05-07 Hitachi, Ltd. Superconducting magnet device or magnetic resonance imaging apparatus including a support member having a coefficient of thermal expansion highter than that of a columnar member
JP2019161060A (en) * 2018-03-14 2019-09-19 株式会社東芝 Superconducting magnet device
JP2019165034A (en) * 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
JP2021048365A (en) * 2019-09-20 2021-03-25 住友電気工業株式会社 Permanent current switch and superconducting device
JP7280571B2 (en) 2019-09-20 2023-05-24 住友電気工業株式会社 Persistent current switch and superconducting device

Also Published As

Publication number Publication date
JP4261097B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5386550B2 (en) Superconducting switch, superconducting magnet, and MRI
US8255024B2 (en) Resistive superconducting current-limiter device with bifilar coil winding composed of HTS ribbon conductors and turn separator
JP4162710B2 (en) Current limiting device
US6777835B1 (en) Electrical power cooling technique
JPH0481355B2 (en)
JP2003142744A (en) Persistent current switch and superconductive magnet employing the same
CA2042215A1 (en) Superconductive switch for conduction cooled superconductive magnet
JPH07142237A (en) Superconducting magnet device
US8233952B2 (en) Superconducting magnet
Mizuno et al. Manufacturing of REBCO coils strongly bonded to cooling members with epoxy resin aimed at its application to Maglev
Tosaka et al. Persistent current HTS magnet cooled by cryocooler (4)-persistent current switch characteristics
JPS61113218A (en) Superconductive magnet
JP2003069093A (en) Perpetual current switch and superconducting magnet using it
JPS63196016A (en) Superconducting coil
JP2001357733A (en) High voltage insulation system
JP2000114027A (en) Superconducting coil device
JP3573972B2 (en) Superconducting magnet
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP2839792B2 (en) Thermal permanent current switch
JP2001223399A (en) High-temperature super conducting element
JP2000268700A (en) Superconducting current-limiting fuse and overcurrent control system using same
JPH06232616A (en) Loop antenna
JP3310074B2 (en) Superconducting magnet device
JP2000114029A (en) Refrigerator-cooled superconducting magnet
JP4562947B2 (en) Superconducting magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees