JPH118418A - Persistent current switch and superconducting electromagnet device - Google Patents

Persistent current switch and superconducting electromagnet device

Info

Publication number
JPH118418A
JPH118418A JP9178966A JP17896697A JPH118418A JP H118418 A JPH118418 A JP H118418A JP 9178966 A JP9178966 A JP 9178966A JP 17896697 A JP17896697 A JP 17896697A JP H118418 A JPH118418 A JP H118418A
Authority
JP
Japan
Prior art keywords
plate
current switch
conductive path
permanent current
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9178966A
Other languages
Japanese (ja)
Inventor
Yoshitaka Saito
義孝 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP9178966A priority Critical patent/JPH118418A/en
Publication of JPH118418A publication Critical patent/JPH118418A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a compact switch with small capacity and heat content by laminating a conductive path body, where cutting is performed for constituting a non-inductive circuit and a heater plate on a lamination plate where a superconductor and a stabilizing material are alternately laminated. SOLUTION: A plurality of superconductors, consisting of a plate-shaped NdTi alloy and a plurality of stabilizing materials consisting of a CuNi alloy, are laminated alternately so that the stabilizing material is set as the outermost layer and are rolled for forming a lamination plate. For consisting a non-inductive circuit on the lamination plate, laser-trimming machining is performed for forming a conductive path body 4, and insulation treatment is performed with a resin composition. A plurality of heater plates 5 are subjected to the insulation machining by performing similar fine machining on a manganese plate. Each conductive path pattern of the conductive path body 4 and the heater plate 5 is mutually turned reversed, a current input part 7 of the conductive path body 4 and an input part 8 of the heater plate 5 are provided, a laminated object 10 is adjusted to the curvature of a superconducting electromagnet, and flexural machining is performed for forming a switch.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、医用機器、産業機
器、および理科学機器等に用いられる超電導電磁石装置
に関し、特に超電導電磁石装置に用いて好適な永久電流
スイッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting electromagnet used for medical equipment, industrial equipment, scientific equipment, and the like, and more particularly to a permanent current switch suitable for use in a superconducting electromagnet.

【0002】[0002]

【従来の技術】強磁性体の構造体にコイルを巻き回した
通常の電磁石装置に比較して強磁場を得ることが出来る
超電導電磁石は、物理化学実験、磁気浮上、MRI等、
種々の分野で重要な役割を果たしている。一定の電流で
励磁を行う場合には、超電導電磁石に永久電流スイッチ
を組み込んで超電導電磁石とし、超電導電磁石の(コイ
ルの)両端を永久電流スイッチで短絡して、超電導電磁
石を励磁電源から切り離し、永久電流モードで運転する
ことが一般的である。
2. Description of the Related Art A superconducting electromagnet capable of obtaining a strong magnetic field as compared with a normal electromagnet apparatus in which a coil is wound around a ferromagnetic structure is used for physicochemical experiments, magnetic levitation, MRI, etc.
It plays an important role in various fields. When exciting with a constant current, a permanent current switch is incorporated into the superconducting magnet to form a superconducting magnet, both ends of the superconducting magnet (coil) are short-circuited with permanent current switches, and the superconducting magnet is disconnected from the excitation power supply. It is common to operate in current mode.

【0003】熱式永久電流スイッチは、安定化材に埋め
込まれた超電導線よりなる小型コイルとヒータを組み合
わせたものである。前記超電導線を超電導電磁石に並列
接続し、ヒータ加熱により極低温容器(クライオスタッ
ト)内でも常電導状態にしておく。永久電流スイッチを
常電導状態にして、励磁電源より超電導電磁石に電力を
投入し、超電導電磁石が所定の励磁状態に至ったとき、
永久電流スイッチのヒータを切ると、永久電流スイッチ
は超電導状態に遷移し、超電導電磁石は永久電流モード
での運転にはいる。
A thermal permanent current switch is a combination of a small coil composed of a superconducting wire embedded in a stabilizer and a heater. The superconducting wire is connected in parallel to a superconducting electromagnet, and is kept in a normal conducting state even in a cryogenic vessel (cryostat) by heating with a heater. When the permanent current switch is in the normal conduction state, power is supplied from the excitation power supply to the superconducting electromagnet, and when the superconducting electromagnet reaches a predetermined excitation state,
When the heater of the persistent current switch is turned off, the persistent current switch transitions to the superconducting state, and the superconducting electromagnet enters operation in the persistent current mode.

【0004】永久電流スイッチに用いるコイルは、超電
導電磁石への磁場の影響を抑制するために、無誘導巻に
してある。また、安定化材は、超電導電磁石への電力投
入時には相応の電気抵抗が必要なので、比較的に抵抗率
が高く、熱伝導率の高いCuNi合金等の材料が用いら
れる。また、永久電流モードでの運転時の安定性を維持
するために、複数個のスイッチを並列に接続して用い、
個々の永久電流スイッチに流れる電流を少なくして用い
ることが多い。
[0004] The coil used for the permanent current switch is non-inductively wound in order to suppress the effect of the magnetic field on the superconducting electromagnet. Further, the stabilizing material requires a relatively high electric resistance when power is supplied to the superconducting electromagnet, and therefore, a material such as a CuNi alloy having a relatively high resistivity and a high thermal conductivity is used. Also, in order to maintain stability during operation in the persistent current mode, a plurality of switches are connected in parallel and used.
In many cases, the current flowing through each permanent current switch is reduced.

【0005】従来の永久電流スイッチには、ソレノイド
状のコイルを用いたものや渦巻状のコイルを用いたもの
等がある。図3に、渦巻状のコイルを用いた従来の永久
電流スイッチの一例を示す。図3(a)は、永久電流ス
イッチの平面図であり、図3(b)は、永久電流スイッ
チの側面図である。
Conventional permanent current switches include those using a solenoid-shaped coil and those using a spiral coil. FIG. 3 shows an example of a conventional permanent current switch using a spiral coil. FIG. 3A is a plan view of the permanent current switch, and FIG. 3B is a side view of the permanent current switch.

【0006】図3に示すように、従来の永久電流スイッ
チは、熱伝導の高い材料よりなる巻枠3に設けた溝31
に、超電導線1を無誘導巻線し、同時に、ヒータ線2を
埋め込んだものである。
As shown in FIG. 3, a conventional permanent current switch has a groove 31 provided on a winding frame 3 made of a material having high heat conductivity.
In addition, a superconducting wire 1 is non-inductively wound, and at the same time, a heater wire 2 is embedded.

【0007】[0007]

【発明が解決しようとする課題】永久電流スイッチは、
超電導遷移を速やかに行わせるために、液体ヘリウムに
直接浸漬する必要がある。また、永久電流スイッチのク
エンチを防止するため、クライオスタット内に永久電流
スイッチを設置する場所は限定される。すなわち、永久
電流スイッチは、液体ヘリウムの液面が下がっても、液
体ヘリウムの液面から突出することがなく、しかも、磁
場の低い場所に設置される必要がある。
SUMMARY OF THE INVENTION A permanent current switch is
It is necessary to immerse directly in liquid helium in order to make the superconducting transition prompt. Further, in order to prevent the quench of the permanent current switch, the place where the permanent current switch is installed in the cryostat is limited. That is, even if the liquid level of the liquid helium drops, the permanent current switch does not protrude from the liquid level of the liquid helium and needs to be installed in a place where the magnetic field is low.

【0008】複数個の永久電流スイッチを設置する場合
には、設置に要する空間も大きくなり、用いるクライオ
スタットの容量も大きくする必要がある。クライオスタ
ットの大容量化に伴い、液体ヘリウムの消費量も増大
し、冷却コスト、すなわち超電導電磁石装置の運転コス
トが上昇する。
[0008] When a plurality of permanent current switches are installed, the space required for installation is increased, and the capacity of a cryostat to be used must be increased. With the increase in the capacity of the cryostat, the consumption of liquid helium also increases, and the cooling cost, that is, the operating cost of the superconducting electromagnet device increases.

【0009】そこで、本発明が解決しようとする課題
は、容積が小さく、熱容量の小さい小型の永久電流スイ
ッチ、および、運転コストの低い超電導電磁石装置を提
供することである。
It is an object of the present invention to provide a small-sized permanent current switch having a small volume and a small heat capacity, and a superconducting electromagnet apparatus having a low operating cost.

【0010】[0010]

【課題を解決するための手段】本発明は、超電導体と安
定化材とを交互に積層してなる積層板に無誘導回路を構
成するように切り込みを施してなる導電路体と、ヒータ
板とを積層してなる永久電流スイッチである。
SUMMARY OF THE INVENTION The present invention is directed to a conductive path body formed by cutting a superconductor and a stabilizing material alternately to form a non-inductive circuit, and a heater plate. And a permanent current switch formed by stacking the following.

【0011】また、本発明は、前記積層板は、複数の超
電導体と、前記超電導体の数よりも1つ多い安定化材よ
りなる上記の永久電流スイッチである。
Further, the present invention is the above-mentioned permanent current switch, wherein the laminated board is composed of a plurality of superconductors and a stabilizing material which is one more than the number of the superconductors.

【0012】また、本発明は、前記ヒータ板は、板状の
抵抗体に、無誘導回路を構成するように、切り込みを施
してなる上記の永久電流スイッチである。
Further, the present invention is the above-described permanent current switch, wherein the heater plate is formed by cutting a plate-shaped resistor into a non-inductive circuit.

【0013】また、本発明は、上記の永久電流スイッチ
を備えた超電導電磁石装置である。
Further, the present invention is a superconducting electromagnet apparatus provided with the above-mentioned permanent current switch.

【0014】[0014]

【発明の実施の形態】まず、複数の板状のNbTi合金
よりなる超電導体と、それより1つ多いCuNi合金よ
りなる安定化材とを、安定化材が最外層になるように、
交互に積層して、積層体を得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a plurality of plate-shaped superconductors made of an NbTi alloy and one more stabilizing material made of a CuNi alloy are combined so that the stabilizing material becomes the outermost layer.
The layers are alternately laminated to obtain a laminate.

【0015】次いで、前記積層体に、圧延加工を施し、
薄板状の積層板を得る。次いで、前記積層板に、レーザ
ートリミング等の微細加工により、切り込みを施して導
電路体を得る。この時、隣接する導電路には、互いに逆
方向に電流が流れるようなパターンを形成するように切
り込みを施して、無誘導回路を構成せしめる。
Next, the laminate is subjected to rolling,
A thin laminate is obtained. Next, the laminate is cut by fine processing such as laser trimming to obtain a conductive path body. At this time, the adjacent conductive paths are cut so as to form patterns in which currents flow in opposite directions, thereby forming a non-inductive circuit.

【0016】また、マンガニン等の抵抗材料からなる板
に、同様の微細加工を施してヒータ板を得る。この時
も、隣接する導電路には、互いに逆方向に電流が流れる
ようなパターンを形成するように切り込みを施して、無
誘導回路を構成せしめるが、前記導電路体とは電流の入
力部の位置が異なるパターンにしておく。
A plate made of a resistance material such as manganin is subjected to similar fine processing to obtain a heater plate. Also at this time, adjacent conductive paths are cut so as to form a pattern in which current flows in opposite directions to form a non-inductive circuit. Make patterns with different positions.

【0017】上記のようにして得た、導電路体と、ヒー
タ板とを、ポリイミドフィルム等の絶縁フィルムを間に
挟みながら、交互に積層する。さらに、導電路体とヒー
タ板とを積層したものに、樹脂含浸および樹脂モールド
を施して、本発明の永久電流スイッチが得られる。
The conductive path bodies and the heater plate obtained as described above are alternately laminated with an insulating film such as a polyimide film interposed therebetween. Further, the permanent current switch of the present invention can be obtained by applying resin impregnation and resin molding to a laminate of the conductive path body and the heater plate.

【0018】本発明の永久電流スイッチは、クライオス
タットの該永久電流スイッチの設置場所の形状に合わせ
て、あるいは、超電導電磁石の外周部に合わせて、変形
させることもできる。
The permanent current switch of the present invention can be deformed according to the shape of the cryostat where the permanent current switch is installed, or according to the outer periphery of the superconducting electromagnet.

【0019】また、積層した複数の導電路体を並列接続
すれば、複数の永久電流スイッチを用いるのと同様の効
果がある。
If a plurality of stacked conductive paths are connected in parallel, the same effect as when a plurality of permanent current switches are used can be obtained.

【0020】[0020]

【実施例】以下に、本発明の実施例を、図を用いて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の永久電流スイッチの構造
を示す説明図である。図2は、無誘導回路を構成する導
電路体のパターンの1例を示す説明図である。
FIG. 1 is an explanatory diagram showing the structure of the permanent current switch of the present invention. FIG. 2 is an explanatory diagram illustrating an example of a pattern of a conductive path body that forms a non-inductive circuit.

【0022】7枚の板状のNbTi合金よりなる超電導
体と、8枚のCuNi合金よりなる安定化材とを、安定
化材が最外層になるように、交互に積層して、4枚の積
層体を得た。次いで、この積層体を圧延して、幅105
mm、長さ500mm、厚さ0.25mmの積層板を得
た。
A superconductor composed of seven plate-shaped NbTi alloys and a stabilizing material composed of eight CuNi alloys are alternately laminated so that the stabilizing material is the outermost layer, and four superconductors are formed. A laminate was obtained. Next, this laminate was rolled to a width of 105
mm, a length of 500 mm and a thickness of 0.25 mm were obtained.

【0023】次いで、図2に示すように(図は概念的に
判るように簡略化して示している)、前記積層板に、無
誘導回路を構成するように、レーザトリミング加工を施
して、導電路体4を得た。矢印11は、電流の流れ方向
を示している。導電路体の大きさは、100mm×10
0mm×0.25mmであり、導電路の幅は0.8mm、
切り込み幅は0.2mm、導電路の総延長は約10m
(100mm×2本×50列)である。また、1枚の積
層板から2枚の導電路体が得られたので、8枚の導電路
体4が得られた。次いで、導電路体4を洗浄し、樹脂組
成物を用いて絶縁処理を施した。
Next, as shown in FIG. 2 (the diagram is simplified for clarity), the laminate is subjected to laser trimming processing to form a non-inductive circuit, and the laminate is subjected to conductive trimming. Road 4 was obtained. Arrow 11 indicates the direction of current flow. The size of the conductive path is 100 mm x 10
0 mm x 0.25 mm, the width of the conductive path is 0.8 mm,
The cut width is 0.2mm and the total length of the conductive path is about 10m
(100 mm × 2 lines × 50 rows). In addition, since two conductive paths were obtained from one laminated plate, eight conductive paths 4 were obtained. Next, the conductive path body 4 was washed and subjected to an insulation treatment using a resin composition.

【0024】また、板厚0.3mmのマンガニン板に同
様の微細加工を施して、8枚のヒータ板5を得た。ヒー
タ板5にも絶縁処理を施してある。
The same fine processing was performed on a manganin plate having a thickness of 0.3 mm to obtain eight heater plates 5. The heater plate 5 is also insulated.

【0025】次いで、図1に示すように、導電路体4と
ヒータ板5とを、厚さ0.13mmのポリイミド樹脂よ
りなる絶縁フィルム6を、間に挟みながら積層し、積層
物10を得た。図1では、2枚の導電路体を示している
が、実際には、8枚の導電路体4を用いている。この
時、導電路体4の導電路のパターンと、ヒータ板の導電
路のパターンとは、互いに裏返しになるようにして、導
電路体4の電流の入力部7とヒータ板5の入力部8の位
置が異なるようにした。
Next, as shown in FIG. 1, the conductive path body 4 and the heater plate 5 are laminated with an insulating film 6 made of a polyimide resin having a thickness of 0.13 mm interposed therebetween to obtain a laminate 10. Was. Although FIG. 1 shows two conductive paths, eight conductive paths 4 are actually used. At this time, the conductive path pattern of the conductive path body 4 and the conductive path pattern of the heater plate are turned upside down so that the current input portion 7 of the conductive path body 4 and the input portion 8 of the heater plate 5 are turned over. Position was changed.

【0026】さらに、積層物10を、超電導電磁石の外
周部の曲率に合わせて、曲げ加工を施し、高分子樹脂組
成物を用いて含浸固化し、さらに、樹脂モールドを施し
て、本発明の永久電流スイッチを得た(図示せず)。前
記永久電流スイッチの厚さは6.5mmであった。
Further, the laminate 10 is bent in accordance with the curvature of the outer periphery of the superconducting electromagnet, is impregnated and solidified using a polymer resin composition, and is further subjected to a resin mold to obtain the permanent magnet of the present invention. A current switch was obtained (not shown). The thickness of the permanent current switch was 6.5 mm.

【0027】上記のようにして得た本発明の永久電流ス
イッチを、外径180mm、内径100mm、高さ15
0mm、インダクタンス2.7Hの超電導電磁石の外周
部に組み込んで(図示せず)、本発明の超電導電磁石装
置を得た。この時、8組の入力部7は、すべて並列に接
続した。
The permanent current switch of the present invention obtained as described above was used for an outer diameter of 180 mm, an inner diameter of 100 mm, and a height of 15 mm.
A superconducting electromagnet device of the present invention was obtained by incorporating the superconducting electromagnet of 0 mm and an inductance of 2.7 H into the outer periphery (not shown). At this time, the eight input units 7 were all connected in parallel.

【0028】比較例として、銅合金にNbTi合金を埋
め込んだ外径0.8mmの超電導線と、外径0.3mmの
マンガニン線を用いて、渦巻形状のコイルを有する従来
の永久電流スイッチを得た。前記実施例の永久電流スイ
ッチと同様の性能を与えるためには、5倍の容積を必要
とし、厚さは15mm、外径は160mmを要した。ま
た、熱容量も大きかった。
As a comparative example, a conventional permanent current switch having a spiral coil was obtained by using a superconducting wire having an outer diameter of 0.8 mm in which an NbTi alloy was embedded in a copper alloy and a manganin wire having an outer diameter of 0.3 mm. Was. In order to provide the same performance as the permanent current switch of the above-described embodiment, a volume five times as large, a thickness of 15 mm and an outer diameter of 160 mm were required. The heat capacity was also large.

【0029】本発明の永久電流スイッチを組み込んだ超
電導電磁石装置をクライオスタットに収納し、液体ヘリ
ウムを用いて極低温に冷却してから、100Aの永久電
流モードで運転し、時定数を測定した。本発明の永久電
流スイッチの時定数は、170年であった。
A superconducting electromagnet device incorporating the permanent current switch of the present invention was housed in a cryostat, cooled to extremely low temperature using liquid helium, and then operated in a 100 A permanent current mode to measure a time constant. The time constant of the permanent current switch of the present invention was 170 years.

【0030】また、同様にして、比較例の永久電流スイ
ッチの時定数を測定したところ、その時定数は168年
であった。
When the time constant of the permanent current switch of the comparative example was measured in the same manner, the time constant was 168 years.

【0031】上記のようにして、従来の1/5の必要容
積で済む、小型で、熱容量の小さい永久電流スイッチが
得られた。
As described above, a small-sized, small-heat-capacity permanent current switch requiring only one-fifth the required volume of the conventional one is obtained.

【0032】また、本実施例の超電導電磁石を収納した
クライオスタットは、比較例の超電導電磁石を収納した
クライオスタットよりも、大幅に小さくできたので、液
化ヘリウムの消費量も少なく、運転コストの低減もでき
た。
Further, the cryostat housing the superconducting electromagnet of this embodiment can be made much smaller than the cryostat housing the superconducting electromagnet of the comparative example, so that the consumption of liquefied helium is small and the operating cost can be reduced. Was.

【0033】[0033]

【発明の効果】本発明によれば、容積が小さく、熱容量
の小さい小型の永久電流スイッチ、および、運転コスト
の低い超電導電磁石装置が得られる。
According to the present invention, a small-sized permanent current switch having a small capacity and a small heat capacity, and a superconducting electromagnet apparatus having a low operating cost can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の永久電流スイッチの構造を示す説明
図。
FIG. 1 is an explanatory view showing the structure of a permanent current switch according to the present invention.

【図2】無誘導回路を構成する導電路体のパターンの1
例を示す説明図。
FIG. 2 shows a pattern 1 of a conductive path body constituting a non-inductive circuit.
Explanatory drawing showing an example.

【図3】渦巻状のコイルを用いた従来の永久電流スイッ
チの一例を示す説明図。
FIG. 3 is an explanatory diagram showing an example of a conventional permanent current switch using a spiral coil.

【符号の説明】[Explanation of symbols]

1 超電導線 2 ヒータ線 3 巻枠 4 導電路体 5 ヒータ板 6 絶縁フィルム 7 (導電路体の電流の)入力部 8 (ヒータ板の)入力部 10 積層物 11 矢印 31 (巻枠に設けた)溝 DESCRIPTION OF SYMBOLS 1 Superconducting wire 2 Heater wire 3 Reel 4 Conductor 5 Heater plate 6 Insulating film 7 Input part (for electric current of conductor) 8 Input part (for heater plate) 10 Laminate 11 Arrow 31 (provided on reel )groove

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導体と安定化材とを交互に積層して
なる積層板に無誘導回路を構成するように切り込みを施
してなる導電路体と、ヒータ板とを積層してなることを
特徴とする永久電流スイッチ。
1. A heater comprising: a conductive plate formed by cutting a superconductor and a stabilizing material alternately to form a non-inductive circuit; and a heater plate. Characterized permanent current switch.
【請求項2】 請求項1記載の永久電流スイッチにおい
て、前記積層板が、複数の超電導体と、前記超電導体の
数よりも1つ多い安定化材よりなることを特徴とする永
久電流スイッチ。
2. The permanent current switch according to claim 1, wherein said laminated board is composed of a plurality of superconductors and one more stabilizing material than the number of said superconductors.
【請求項3】 請求項1および2記載の永久電流スイッ
チにおいて、前記ヒータ板は、板状の抵抗体に、無誘導
回路を構成するように、切り込みを施してなることを特
徴とする永久電流スイッチ。
3. The permanent current switch according to claim 1, wherein the heater plate is formed by cutting a plate-shaped resistor into a non-inductive circuit. switch.
【請求項4】 請求項1ないし3のいずれかに記載の永
久電流スイッチを備えたことを特徴とする超電導電磁石
装置。
4. A superconducting electromagnet device comprising the permanent current switch according to claim 1.
JP9178966A 1997-06-18 1997-06-18 Persistent current switch and superconducting electromagnet device Pending JPH118418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9178966A JPH118418A (en) 1997-06-18 1997-06-18 Persistent current switch and superconducting electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9178966A JPH118418A (en) 1997-06-18 1997-06-18 Persistent current switch and superconducting electromagnet device

Publications (1)

Publication Number Publication Date
JPH118418A true JPH118418A (en) 1999-01-12

Family

ID=16057789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9178966A Pending JPH118418A (en) 1997-06-18 1997-06-18 Persistent current switch and superconducting electromagnet device

Country Status (1)

Country Link
JP (1) JPH118418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP2013016664A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Superconduction switch, superconduction magnet, and mri

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP4728007B2 (en) * 2005-02-15 2011-07-20 株式会社日立製作所 Persistent current switch using magnesium diboride and method of manufacturing the same
JP2013016664A (en) * 2011-07-05 2013-01-24 Hitachi Ltd Superconduction switch, superconduction magnet, and mri
US8855731B2 (en) 2011-07-05 2014-10-07 Hitachi, Ltd. Superconducting switch, superconducting magnet and MRI

Similar Documents

Publication Publication Date Title
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US8855731B2 (en) Superconducting switch, superconducting magnet and MRI
JP4620637B2 (en) Resistive superconducting fault current limiter
EP0139189A1 (en) A persistent current switch for high energy superconductive solenoids
US3187235A (en) Means for insulating superconducting devices
JPH07142237A (en) Superconducting magnet device
KR20150065694A (en) Superconductive coil device and production method
US3332047A (en) Composite superconductor
US4943792A (en) Superconducting switch pack
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
US4568908A (en) Compact resistor assembly
JPH118418A (en) Persistent current switch and superconducting electromagnet device
US3187236A (en) Means for insulating superconducting devices
JP6862382B2 (en) High-temperature superconducting magnet device, its operation control device and method
JP2861692B2 (en) Superconducting magnet device
JP2019096849A (en) Permanent current switch
KR20160041145A (en) Inductance Controllable Superconducting Coil And Magnet
KR102567623B1 (en) Ceramic film having function of temperature switch and superconducting coils using the same
US3644988A (en) Method of fabricating composite superconductive conductor
JP7452547B2 (en) Persistent current switch and superconducting device
JP2014192182A (en) Permanent current switch
US3504314A (en) Composite superconductive conductor
JPH02177406A (en) Thin film inductance element
JPH10116726A (en) Superconducting composite cylinder and superconducting magnet
JP2021093421A (en) Superconducting coil device