JP6862382B2 - High-temperature superconducting magnet device, its operation control device and method - Google Patents

High-temperature superconducting magnet device, its operation control device and method Download PDF

Info

Publication number
JP6862382B2
JP6862382B2 JP2018040370A JP2018040370A JP6862382B2 JP 6862382 B2 JP6862382 B2 JP 6862382B2 JP 2018040370 A JP2018040370 A JP 2018040370A JP 2018040370 A JP2018040370 A JP 2018040370A JP 6862382 B2 JP6862382 B2 JP 6862382B2
Authority
JP
Japan
Prior art keywords
temperature
temperature superconducting
superconducting
switch
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018040370A
Other languages
Japanese (ja)
Other versions
JP2019160818A (en
Inventor
貞憲 岩井
貞憲 岩井
寛史 宮崎
寛史 宮崎
圭 小柳
圭 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018040370A priority Critical patent/JP6862382B2/en
Publication of JP2019160818A publication Critical patent/JP2019160818A/en
Application granted granted Critical
Publication of JP6862382B2 publication Critical patent/JP6862382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明の実施形態は、高温超電導コイルと、この高温超電導コイルに並列に接続された超電導スイッチを備えた高温超電導磁石装置、その運転制御装置及び方法に関する。 An embodiment of the present invention relates to a high-temperature superconducting magnet device including a high-temperature superconducting coil and a superconducting switch connected in parallel to the high-temperature superconducting coil, an operation control device and a method thereof.

核磁気共鳴測定装置(NMR: Nuclear Magnetic Resonance)や磁気共鳴画像診断装置(MRI: Magnetic Resonance Imaging)等の超電導機器では、長時間にわたって発生する磁場に対しppmオーダーの極めて高い時間安定度が求められる。そのため、超電導コイルと並列に永久電流スイッチと呼ばれる電気的なスイッチを接続することがある。 Superconducting devices such as Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) require extremely high time stability on the order of ppm for magnetic fields generated over a long period of time. .. Therefore, an electric switch called a permanent current switch may be connected in parallel with the superconducting coil.

永久電流スイッチは、一般に超電導線材で作製された超電導スイッチである。この超電導スイッチは、超電導転移温度以下に冷却された状態では、原理的には電気抵抗ゼロの閉ループとなるため、電流減衰(磁場減衰)のない非常に安定した磁場を発生させることができる。 The permanent current switch is a superconducting switch generally made of a superconducting wire. In principle, this superconducting switch has a closed loop with zero electrical resistance when cooled below the superconducting transition temperature, so that a very stable magnetic field without current attenuation (magnetic field attenuation) can be generated.

このようにして運転することは、永久電流モードと呼ばれている。上記閉ループを形成するための超電導スイッチは、温度変化を利用して切り替え(オン、オフ)られる。例えば、励磁時には、超電導スイッチへの分流を防いで超電導コイル本体に電流を供給するため、ヒータ等を用いて常電導転移温度以上に加熱して超電導スイッチを高抵抗(オフ)にする方法が採られている。この場合、励磁後に閉ループを形成して定常運転に移行するためには、上記ヒータ等をオフにして冷却し、超電導スイッチを超電導状態(オン)に戻せばよい。 Operating in this way is called a permanent current mode. The superconducting switch for forming the closed loop is switched (on, off) by utilizing the temperature change. For example, at the time of excitation, in order to prevent the flow to the superconducting switch and supply the current to the superconducting coil body, a method of heating the superconducting switch to a high resistance (off) by heating it to a temperature higher than the normal conduction temperature using a heater or the like is adopted. Has been done. In this case, in order to form a closed loop after excitation and shift to steady operation, the heater or the like may be turned off and cooled, and the superconducting switch may be returned to the superconducting state (on).

なお、超電導コイルと超電導スイッチとの接続部等のように、接続部において抵抗成分Rが生じてしまうと、超電導コイルのインダクタンスLで定まる回路の時定数L/Rで電流減衰(磁場減衰)してしまう。そのため、例えば超電導素線(フィラメント)同士を、圧接やスポット溶接、熱処理等により直接接続することで、1E−10Ω乃至1E−13Ωオーダーの極めて低抵抗に接続する、いわゆる超電導接続技術が用いられている。 If a resistance component R is generated at the connection part such as the connection part between the superconducting coil and the superconducting switch, the current is attenuated (magnetic field attenuation) at the time constant L / R of the circuit determined by the inductance L of the superconducting coil. It ends up. Therefore, for example, a so-called superconducting connection technique is used in which superconducting wires (filaments) are directly connected to each other by pressure welding, spot welding, heat treatment, etc. to connect them to extremely low resistance on the order of 1E-10Ω to 1E-13Ω. There is.

このような超電導コイルに使用する超電導素線の線材としては、BiSrCaCu10-δ線材やREB7-δ線材といった酸化物高温超電導の線材(高温超電導線材)を適用することが近年、盛んに研究されている。 Examples of the superconducting wire used for such a superconducting coil include oxide high-temperature superconducting wires such as Bi 2 Sr 2 Ca 2 Cu 3 O 10-δ wire and REB 2 C 3 O 7-δ wire (high-temperature superconducting wire). ) Has been actively studied in recent years.

高温超電導線材を用いた超電導コイルでは、従来のNbTi等の低温超電導線材に比べ、20K〜50Kといった高い温度でも高い臨界電流密度を有するため、高電流密度運転によるコイルの小型化が可能となる。超電導スイッチに用いられる超電導線材についても、上記超電導コイルと同じ運転温度で設計した方が、冷却構造をより簡素化できるため、同様の高温超電導線材を用いて作製されることが好ましい。 A superconducting coil using a high-temperature superconducting wire has a high critical current density even at a high temperature of 20K to 50K as compared with a conventional low-temperature superconducting wire such as NbTi, so that the coil can be miniaturized by high-current density operation. It is preferable that the superconducting wire used for the superconducting switch is also manufactured by using the same high-temperature superconducting wire because the cooling structure can be further simplified by designing the superconducting wire at the same operating temperature as the superconducting coil.

ただし、このような高温超電導線材は、超電導層が非常に脆い酸化物の薄膜であるため、前述したような超電導接続技術が現状では確立されていない。そのため、ハンダを介した一般的なハンダ接続で接続される。このハンダ接続は、超電導接続よりも大きな抵抗成分を生じるため、電流が減衰してしまい、永久電流モードでの運転は困難となる。 However, in such a high-temperature superconducting wire, since the superconducting layer is a thin film of an oxide having a very brittle oxide, the superconducting connection technology as described above has not been established at present. Therefore, it is connected by a general solder connection via solder. Since this solder connection produces a resistance component larger than that of the superconducting connection, the current is attenuated, which makes it difficult to operate in the permanent current mode.

一方、超電導スイッチを並列に接続せずに、通常の超電導磁石のように常時電源駆動で運転する方法もあるが、電源の電流リップルにより時間安定度が悪化してしまう。 On the other hand, there is also a method in which the superconducting switches are not connected in parallel and are always driven by a power source like a normal superconducting magnet, but the time stability deteriorates due to the current ripple of the power source.

そこで、例えば特許文献1又は2は、高温超電導コイルに並列に接続された超電導スイッチと、上記高温超電導コイルに電流を供給するための電源回路と、を具備する。これらの文献では、上記超電導スイッチと直列に、上記高温超電導コイルの抵抗成分の1〜1000倍程度大きい抵抗値を有する補償抵抗体を接続する方法が提案されている。この方法によれば、上記高温超電導コイルの抵抗成分で生じる電圧降下を補償し、電源駆動でも時間的に高安定な磁場を発生させることができるとしている。 Therefore, for example, Patent Document 1 or 2 includes a superconducting switch connected in parallel to the high-temperature superconducting coil and a power supply circuit for supplying a current to the high-temperature superconducting coil. These documents propose a method of connecting a compensating resistor having a resistance value about 1 to 1000 times larger than the resistance component of the high-temperature superconducting coil in series with the superconducting switch. According to this method, it is possible to compensate for the voltage drop caused by the resistance component of the high-temperature superconducting coil and to generate a magnetic field that is highly stable in time even when driven by a power source.

特許4291560号公報Japanese Patent No. 4291560 特許4896620号公報Japanese Patent No. 4896620

しかしながら、前述した方法では、超電導スイッチ及び補償抵抗体の抵抗成分と、高温超電導コイルの抵抗成分との抵抗比で分流する電流が常時、補償抵抗体に流れることになる。そのため、電源の通電電流値を磁場発生に必要な電流値よりも増加させ、その余剰電流を電源から供給しなければならなかった。 However, in the above-mentioned method, the current divided by the resistance ratio between the resistance component of the superconducting switch and the compensating resistor and the resistance component of the high-temperature superconducting coil always flows through the compensating resistor. Therefore, it was necessary to increase the energizing current value of the power supply to be higher than the current value required for generating the magnetic field, and to supply the surplus current from the power supply.

一方、補償抵抗体を用いない場合、余剰電流の供給は不要となるものの、励磁後に超電導スイッチをオンにすると、回路の時定数L/Rで徐々に超電導スイッチに分流していく。そのため、前述した永久電流モードでの運転と同様に、高温超電導コイルへの通電電流値が減少し、電流減衰(磁場減衰)してしまうという課題があった。 On the other hand, when the compensating resistor is not used, it is not necessary to supply the surplus current, but when the superconducting switch is turned on after excitation, the current is gradually divided into the superconducting switch at the time constant L / R of the circuit. Therefore, there is a problem that the current value of the high-temperature superconducting coil is reduced and the current is attenuated (magnetic field attenuation) as in the operation in the permanent current mode described above.

超電導スイッチに分流した電流を高温超電導コイルに戻す手段としては、例えば超電導スイッチをヒータ等で常電導転移温度以上に加熱し、高抵抗状態にする方法がある。 As a means for returning the current diverted to the superconducting switch to the high-temperature superconducting coil, for example, there is a method of heating the superconducting switch to a temperature higher than the normal conduction transition temperature with a heater or the like to bring it into a high resistance state.

しかしながら、この方法では、その後、運転を再開するために超電導スイッチを再冷却しなければならず、超電導スイッチの熱容量が大きければ大きいほど、再運転するまでの待機時間が必要となってしまう課題があった。 However, this method has a problem that the superconducting switch must be recooled in order to restart the operation after that, and the larger the heat capacity of the superconducting switch, the longer the waiting time until the superconducting switch is restarted. there were.

本実施形態が解決しようとする課題は、余剰電流の供給を必要とすることなく、かつ短時間で電流減衰(磁場減衰)を補償可能な高温超電導磁石装置を提供することにある。 An object to be solved by the present embodiment is to provide a high-temperature superconducting magnet device capable of compensating for current attenuation (magnetic field attenuation) in a short time without requiring supply of excess current.

上記課題を解決するために、本実施形態に係る高温超電導磁石装置は、高温超電導コイルと、前記高温超電導コイルに接続されて電流を供給する励磁電源と、前記励磁電源と接続され、前記高温超電導コイルと並列に電気的に接続された超電導スイッチとを具備し、前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けたことを特徴とする。 In order to solve the above problems, the high-temperature superconducting magnet device according to the present embodiment is connected to a high-temperature superconducting coil, an exciting power source connected to the high-temperature superconducting coil to supply an electric current, and the exciting power source, and is connected to the high-temperature superconducting coil. It is characterized by having a superconducting switch electrically connected in parallel with the coil, and providing a temperature control unit in a section having a smaller heat capacity than the superconducting switch in the connection path between the exciting power supply and the superconducting switch. To do.

本実施形態に係る高温超電導磁石装置の運転制御装置は、高温超電導コイルと、前記高温超電導コイルに接続されて電流を供給する励磁電源と、前記励磁電源と接続され、前記高温超電導コイルに並列に電気的に接続された超電導スイッチとを具備し、前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けた高温超電導磁石装置の運転を制御する高温超電導磁石装置の運転制御装置であって、前記高温超電導コイルの発生磁場を測定する磁場測定部と、前記温度制御部が設けられている前記接続経路の区間の抵抗値に対応する温度を測定する温度測定部と、前記発生磁場が定格電流値の下限に対応する磁場に近づいた際、前記温度制御部が設けられている前記接続経路の区間の抵抗値が、前記高温超電導コイルの抵抗値よりも高くなるまで抵抗値を増加させるように制御する制御部と、を備えることを特徴とする。 The operation control device of the high-temperature superconducting magnet device according to the present embodiment is connected to the high-temperature superconducting coil, an exciting power source connected to the high-temperature superconducting coil to supply a current, and the exciting power source, and is connected in parallel with the high-temperature superconducting coil. Controls the operation of a high-temperature superconducting magnet device provided with an electrically connected superconducting switch and provided with a temperature control unit in a section having a smaller heat capacity than the superconducting switch in the connection path between the exciting power supply and the superconducting switch. The operation control device of the high-temperature superconducting magnet device, which measures the temperature corresponding to the resistance value of the section of the connection path in which the magnetic field measuring unit for measuring the generated magnetic field of the high-temperature superconducting coil and the temperature control unit are provided. When the temperature measuring unit to be measured and the generated magnetic field approach the magnetic field corresponding to the lower limit of the rated current value, the resistance value of the section of the connection path provided with the temperature control unit is the resistance of the high temperature superconducting coil. It is characterized by including a control unit that controls to increase the resistance value until it becomes higher than the value.

本実施形態に係る高温超電導磁石装置の運転制御方法は、高温超電導コイルと、前記高温超電導コイルに接続されて電流を供給する励磁電源と、前記励磁電源と接続され、前記高温超電導コイルに並列に電気的に接続された超電導スイッチとを具備し、前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けた高温超電導磁石装置の運転を制御する高温超電導磁石装置の運転制御方法であって、前記高温超電導コイルの発生磁場を測定する磁場測定工程と、前記温度制御部が設けられている前記接続経路の区間の抵抗値に対応する温度を測定する温度測定工程と、前記発生磁場が定格電流値の下限に対応する磁場に近づいた際、前記温度制御部が設けられている前記接続経路の区間の抵抗値が、前記高温超電導コイルの抵抗値よりも高くなるまで抵抗値を増加させるように制御する制御工程と、を有することを特徴とする。 The operation control method of the high-temperature superconducting magnet device according to the present embodiment includes a high-temperature superconducting coil, an exciting power source connected to the high-temperature superconducting coil to supply a current, and connected to the exciting power source in parallel with the high-temperature superconducting coil. Controls the operation of a high-temperature superconducting magnet device provided with an electrically connected superconducting switch and provided with a temperature control unit in a section having a smaller heat capacity than the superconducting switch in the connection path between the exciting power supply and the superconducting switch. This is an operation control method for a high-temperature superconducting magnet device, in which a magnetic field measuring step for measuring the generated magnetic field of the high-temperature superconducting coil and a temperature corresponding to a resistance value in a section of the connection path provided with the temperature control unit are set. When the temperature measurement step to be measured and the generated magnetic field approach the magnetic field corresponding to the lower limit of the rated current value, the resistance value of the section of the connection path provided with the temperature control unit is the resistance of the high temperature superconducting coil. It is characterized by having a control step of controlling the resistance value to be increased until it becomes higher than the value.

本実施形態によれば、余剰電流の供給を必要とすることなく、かつ短時間で電流減衰(磁場減衰)を補償可能な高温超電導磁石装置を提供することができる。 According to the present embodiment, it is possible to provide a high-temperature superconducting magnet device capable of compensating for current attenuation (magnetic field attenuation) in a short time without requiring supply of excess current.

第1実施形態の高温超電導磁石装置を示す回路図である。It is a circuit diagram which shows the high temperature superconducting magnet apparatus of 1st Embodiment. 第1実施形態の高温超電導磁石装置の接続部を示す拡大断面図である。It is an enlarged sectional view which shows the connection part of the high temperature superconducting magnet apparatus of 1st Embodiment. 第1実施形態の高温超電導磁石装置に用いられる高温超電導線の一例を示す構成図である。It is a block diagram which shows an example of the high temperature superconducting wire used for the high temperature superconducting magnet apparatus of 1st Embodiment. 第1実施形態の高温超電導磁石装置の通電パターンの一例を示すタイミングチャートである。It is a timing chart which shows an example of the energization pattern of the high temperature superconducting magnet apparatus of 1st Embodiment. 第2実施形態の高温超電導磁石装置を示す回路図である。It is a circuit diagram which shows the high temperature superconducting magnet apparatus of 2nd Embodiment. 第3実施形態の高温超電導磁石装置を示す回路図である。It is a circuit diagram which shows the high temperature superconducting magnet apparatus of 3rd Embodiment. 第3実施形態の高温超電導磁石装置の接続部を示す拡大断面図である。It is an enlarged sectional view which shows the connection part of the high temperature superconducting magnet apparatus of 3rd Embodiment. 第4実施形態を示す高温超電導磁石装置の接続部を示す拡大断面図である。It is an enlarged sectional view which shows the connection part of the high temperature superconducting magnet apparatus which shows 4th Embodiment.

以下、本実施形態に係る高温超電導磁石装置、その運転制御装置及び方法について、図面を参照して説明する。 Hereinafter, the high-temperature superconducting magnet device, its operation control device, and the method according to the present embodiment will be described with reference to the drawings.

(第1実施形態)
(構 成)
図1は第1実施形態の高温超電導磁石装置を示す回路図である。図2は第1実施形態の高温超電導磁石装置の接続部を示す拡大断面図である。図3は第1実施形態の高温超電導磁石装置に用いられる高温超電導線の一例を示す構成図である。図4は第1実施形態の高温超電導磁石装置の通電パターンの一例を示すタイミングチャートである。
(First Embodiment)
(Constitution)
FIG. 1 is a circuit diagram showing a high-temperature superconducting magnet device according to the first embodiment. FIG. 2 is an enlarged cross-sectional view showing a connection portion of the high-temperature superconducting magnet device of the first embodiment. FIG. 3 is a configuration diagram showing an example of a high-temperature superconducting wire used in the high-temperature superconducting magnet device of the first embodiment. FIG. 4 is a timing chart showing an example of the energization pattern of the high-temperature superconducting magnet device of the first embodiment.

本実施形態の高温超電導磁石装置は、図1に示すように高温超電導コイル1と、この高温超電導コイル1に常時電流を供給するための励磁電源5とが電気的に接続されている。高温超電導コイル1には、超電導スイッチ2が並列に電気的に接続されている。 In the high-temperature superconducting magnet device of the present embodiment, as shown in FIG. 1, the high-temperature superconducting coil 1 and the exciting power source 5 for constantly supplying an electric current to the high-temperature superconducting coil 1 are electrically connected. A superconducting switch 2 is electrically connected in parallel to the high-temperature superconducting coil 1.

超電導スイッチ2には、温度変化によって抵抗値を変化させるため加熱機構であるヒータ3が電気的には絶縁されているものの、熱的に接続されている。 A heater 3, which is a heating mechanism, is electrically insulated from the superconducting switch 2 in order to change the resistance value according to a temperature change, but is thermally connected to the superconducting switch 2.

超電導スイッチ2は、ヒータ3の発熱によって超電導転移温度Tc以上に昇温されることで、常電導状態(オフ)になり高抵抗を発生する。一方、超電導スイッチ2は、ヒータ3の発熱がない状態では、図示しない冷却機構としての冷凍機と熱的に接続された伝熱板によって高温超電導コイル1と同じ温度まで冷却されることで、超電導状態(オン)になり低抵抗を発生する。ここで、超電導スイッチ2は、再冷却する場合、少なくとも超電導転移温度Tc未満まで冷却され、実際には運転温度まで冷却される。 The superconducting switch 2 is brought into a normal conducting state (off) by raising the temperature to the superconducting transition temperature Tc or higher due to the heat generated by the heater 3, and high resistance is generated. On the other hand, in the state where the heater 3 does not generate heat, the superconducting switch 2 is cooled to the same temperature as the high-temperature superconducting coil 1 by a heat transfer plate thermally connected to a refrigerator as a cooling mechanism (not shown). It goes into a state (on) and generates low resistance. Here, when the superconducting switch 2 is recooled, it is cooled to at least the superconducting transition temperature Tc or less, and is actually cooled to the operating temperature.

励磁電源5と高温超電導コイル1との接続経路の一部において、励磁電源5からは、図2に示すように金,銀,銅,鉄,ステンレス鋼,アルミニウム,銅合金,鉄合金等の常電導金属、又はこの常電導金属に超電導線を貼り合せてなる電流フィーダ線11が引き出される。 In a part of the connection path between the exciting power supply 5 and the high temperature superconducting coil 1, gold, silver, copper, iron, stainless steel, aluminum, copper alloy, iron alloy, etc. are always used from the exciting power supply 5 as shown in FIG. A current feeder wire 11 formed by bonding a superconducting wire to the conductive metal or the normal conductive metal is drawn out.

励磁電源5と高温超電導コイル1との接続経路では、高温超電導コイル1との接続部12a,12bが少なくとも1箇所以上(本実施形態では2箇所)存在する。すなわち、励磁電源5と高温超電導コイル1は、接続部12a,12bを介して電気的に接続されている。これらの接続部12a,12bは、ハンダ接続や圧接、スポットウェルディング等の接続手段によって形成されて有限の接続抵抗を生じる。 In the connection path between the exciting power supply 5 and the high-temperature superconducting coil 1, there are at least one connection portion 12a and 12b with the high-temperature superconducting coil 1 (two locations in this embodiment). That is, the exciting power source 5 and the high-temperature superconducting coil 1 are electrically connected via the connecting portions 12a and 12b. These connecting portions 12a and 12b are formed by connecting means such as solder connection, pressure welding, and spot welding to generate a finite connection resistance.

また、励磁電源5と超電導スイッチ2は、接続部13a,13bを介して電気的に接続されている。励磁電源5と超電導スイッチ2との接続経路の一部の区間においても、接続部12a,12bと同様に接続部13a,13bで接続抵抗が生じる。 Further, the exciting power supply 5 and the superconducting switch 2 are electrically connected via the connecting portions 13a and 13b. Even in a part of the connection path between the exciting power supply 5 and the superconducting switch 2, a connection resistance is generated at the connection portions 13a and 13b as in the connection portions 12a and 12b.

本実施形態の高温超電導磁石装置では、図2に示すように励磁電源5から引き出された電流フィーダ線11と、超電導スイッチ2から引き出された高温超電導線21との間は、ハンダ層6を介した接続部13aによって接続されている。 In the high-temperature superconducting magnet device of the present embodiment, as shown in FIG. 2, a solder layer 6 is interposed between the current feeder wire 11 drawn from the exciting power supply 5 and the high-temperature superconducting wire 21 drawn from the superconducting switch 2. It is connected by the connecting portion 13a.

接続部13aには、抵抗値を変化させるための温度制御部としてのヒータ4が電気的に絶縁されているものの、熱的に接続された構成となっている。温度制御部であるヒータ4が設けられる一部の区間の長さは、超電導スイッチ2よりも熱容量が小さくなるように設定されている。 Although the heater 4 as a temperature control unit for changing the resistance value is electrically insulated from the connection portion 13a, it is thermally connected. The length of a part of the section where the heater 4 which is the temperature control unit is provided is set so that the heat capacity is smaller than that of the superconducting switch 2.

本実施形態では、超電導スイッチ2に設けられたヒータ3と同様に、ヒータ4の発熱がない状態では、図示しない冷凍機と熱的に接続された伝熱板によって、接続部13aが高温超電導コイル1と同じ温度まで冷却されることが好ましい。なお、図1では温度制御部としてヒータ4のみを図示しているが、その他の加熱機構の他、冷凍機と熱的に接続された伝熱板による冷却機構を含むものとする。 In the present embodiment, similarly to the heater 3 provided in the superconducting switch 2, in a state where the heater 4 does not generate heat, the connection portion 13a is a high-temperature superconducting coil by a heat transfer plate thermally connected to a refrigerator (not shown). It is preferable to cool to the same temperature as 1. Although only the heater 4 is shown as a temperature control unit in FIG. 1, it is assumed that a cooling mechanism using a heat transfer plate thermally connected to the refrigerator is included in addition to other heating mechanisms.

また、接続部13aは、ハンダ接続でなく、前述したように圧接、スポットウェルディング等の接続法によって形成してもよい。 Further, the connecting portion 13a may be formed not by soldering but by a connecting method such as pressure welding or spot welding as described above.

次に、本実施形態の運転制御系の構成について説明する。 Next, the configuration of the operation control system of the present embodiment will be described.

図1に示すように高温超電導コイル1の発生磁場は、ホール素子やNMR(Nuclear Magnetic Resonance, 核磁気共鳴)プローブ等の磁場測定部7によって測定される。ヒータ4が設けられている励磁電源5と超電導スイッチ2との接続経路の区間の温度は、抵抗温度計等の温度測定部8によって測定される。この温度測定部8によって測定される温度は、上記接続経路の区間の抵抗値に対応している。 As shown in FIG. 1, the generated magnetic field of the high-temperature superconducting coil 1 is measured by a magnetic field measuring unit 7 such as a Hall element or an NMR (Nuclear Magnetic Resonance) probe. The temperature in the section of the connection path between the exciting power source 5 provided with the heater 4 and the superconducting switch 2 is measured by a temperature measuring unit 8 such as a resistance thermometer. The temperature measured by the temperature measuring unit 8 corresponds to the resistance value in the section of the connection path.

磁場測定部7によって測定された磁場を示す磁場測定信号と、温度測定部8によって測定された温度を示す温度測定信号は、それぞれ制御部9に出力される。制御部9は、これらの信号を得てヒータ4の抵抗値を制御することで、後述するように高温超電導磁石装置の運転を制御している。 The magnetic field measurement signal indicating the magnetic field measured by the magnetic field measuring unit 7 and the temperature measuring signal indicating the temperature measured by the temperature measuring unit 8 are output to the control unit 9, respectively. The control unit 9 controls the operation of the high-temperature superconducting magnet device as described later by obtaining these signals and controlling the resistance value of the heater 4.

制御部9は、CPU(Central Processing Unit)、RAM(Random Access Memory)、記録媒体としてのROM(Read Only Memory)、I/O(Input / Output)等を備えた周知のマイクロコンピュータを中心に構成された制御装置である。 The control unit 9 is mainly composed of a well-known microcomputer equipped with a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory) as a recording medium, an I / O (Input / Output), and the like. It is a controlled device.

このうち、上記ROMは、電源を切断しても記憶内容を保持する必要のあるデータやプログラムを記憶する。上記RAMは、データを一時的に格納する。上記CPUは、上記ROMにインストールされているプログラムを実行することで各機能を実現する。 Of these, the ROM stores data and programs that need to retain the stored contents even when the power is turned off. The RAM temporarily stores data. The CPU realizes each function by executing a program installed in the ROM.

次に、図3を用いて高温超電導線21の構成を説明する。 Next, the configuration of the high-temperature superconducting wire 21 will be described with reference to FIG.

図3に示すように、高温超電導線21は、全体がテープ状に形成されている。高温超電導線21は、例えば金属製のテープ基板24の上に中間層25、及び超電導層26、さらに保護層29、さらにその両面を安定化層27で被覆された、いわゆるコーティッド・コンダクターと呼ばれる薄膜高温超電導線である。 As shown in FIG. 3, the high-temperature superconducting wire 21 is entirely formed in a tape shape. The high-temperature superconducting wire 21 is, for example, a thin film called a coated conductor in which an intermediate layer 25, a superconducting layer 26, a protective layer 29, and both sides thereof are coated with a stabilizing layer 27 on a metal tape substrate 24, for example. It is a high-temperature superconducting wire.

高温超電導線21は、必要に応じて、テープ基板24と中間層25との間に配向層28が設けられることもある。テープ基板24は、例えばステンレス鋼、ハステロイ等のニッケル合金、銀合金等の材質で形成される。 The high-temperature superconducting wire 21 may be provided with an orientation layer 28 between the tape substrate 24 and the intermediate layer 25, if necessary. The tape substrate 24 is made of a material such as stainless steel, a nickel alloy such as Hastelloy, or a silver alloy.

中間層25は、拡散防止層であり、例えば、酸化セリウム、イットリア安定化ジルコニア(YSZ:Yttria-Stabilized Zirconia)、酸化マグネシウム、酸化イットリウム、酸化イッテルビウム、バリウムジルコニア等の材質からなり、テープ基板24上に形成される。 The intermediate layer 25 is a diffusion prevention layer, and is made of, for example, cerium oxide, yttria-stabilized zirconia (YSZ: Yttria-Stabilized Zirconia), magnesium oxide, ytttrium oxide, ytterbium oxide, barium zirconia, and the like, and is formed on the tape substrate 24. Is formed in.

超電導層26は、例えば、RE123系の組成(REB7-δ等)を有する酸化物超電導体薄膜からなる。なお、「REB7-δ」の「RE」は希土類元素(例えば、ネオジム(Nd)、ガドリニウム(Gd),ホルミニウム(Ho),サマリウム(Sm)等)及びイットリウム元素の少なくともいずれかを、「B」はバリウム(Ba)を、「C」は銅(Cu)を、「O」は酸素(O)を意味している。 The superconducting layer 26 is made of, for example, an oxide superconductor thin film having a RE 123- based composition (REB 2 C 3 O 7-δ, etc.). In addition, "RE" of "REB 2 C 3 O 7-δ " is at least one of rare earth elements (for example, neodymium (Nd), gadolinium (Gd), holmium (Ho), samarium (Sm), etc.) and yttrium element. , "B" means samarium (Ba), "C" means copper (Cu), and "O" means oxygen (O).

安定化層27は、超電導層26に過剰に電気が流れた場合に超電導層26が燃焼するのを防止する目的で設けられ、例えば導電性の銅や銀等から形成される。 The stabilizing layer 27 is provided for the purpose of preventing the superconducting layer 26 from burning when excessive electricity flows through the superconducting layer 26, and is formed of, for example, conductive copper or silver.

配向層28は、テープ基板24上に中間層25を配向させて形成する目的で設けられ、酸化マグネシウム(MgO)等から形成される。なお、配向層28は、配向した基板を用いる場合には省略することができる。 The alignment layer 28 is provided for the purpose of aligning and forming the intermediate layer 25 on the tape substrate 24, and is formed of magnesium oxide (MgO) or the like. The alignment layer 28 can be omitted when an oriented substrate is used.

保護層29は、超電導層26が空気中の水分に触れて劣化するのを防止する等の目的で設けられ、銀等から形成される。なお、保護層29も超電導層26に過剰に電気が流れた場合に超電導層26が燃焼するのを防止する役割も果たす。 The protective layer 29 is provided for the purpose of preventing the superconducting layer 26 from deteriorating due to contact with moisture in the air, and is formed of silver or the like. The protective layer 29 also plays a role of preventing the superconducting layer 26 from burning when excessive electricity flows through the superconducting layer 26.

このような多層からなる高温超電導線21のテープ幅wは、例えば4〜12mm、テープ厚さは0.1〜0.2mmと非常に薄く、高温超電導線単体であれば超電導転移温度Tc以上における単位断面積あたりの抵抗値が電流フィーダ線11よりも高い特徴がある。 The tape width w of the high-temperature superconducting wire 21 composed of such a multilayer is very thin, for example, 4 to 12 mm and the tape thickness is 0.1 to 0.2 mm. The resistance value per unit cross-sectional area is higher than that of the current feeder wire 11.

なお、本実施形態では、高温超電導線21の周囲をポリイミドやポリイミドアミドのような絶縁材で被覆した絶縁被覆高温超電導線としてもよい。また、本実施形態の高温超電導線21は、必ずしも安定化層27を設けなくてもよい。 In the present embodiment, the high-temperature superconducting wire 21 may be an insulating coated high-temperature superconducting wire in which the periphery of the high-temperature superconducting wire 21 is coated with an insulating material such as polyimide or polyimideamide. Further, the high-temperature superconducting wire 21 of the present embodiment does not necessarily have to be provided with the stabilizing layer 27.

(運転制御方法)
次に、図1及び図4に示す通電パターンを用いて、本実施形態における高温超電導磁石装置の運転制御方法を説明する。
(Operation control method)
Next, the operation control method of the high-temperature superconducting magnet device in the present embodiment will be described using the energization patterns shown in FIGS. 1 and 4.

高温超電導コイル1は、図1に示す回路図においてインダクタンスLと、コイル内部で高温超電導線が発生するフラックスフロー抵抗、コイル内の高温超電導線同士の接続抵抗、及び複数のコイルからなる場合にはコイル間の接続抵抗とからなる抵抗成分Rとの和で等価的に表すことができる。 In the circuit diagram shown in FIG. 1, the high-temperature superconducting coil 1 is composed of an inductance L, a flux flow resistance in which a high-temperature superconducting wire is generated inside the coil, a connection resistance between the high-temperature superconducting wires in the coil, and a plurality of coils. It can be expressed equivalently by the sum of the connection resistance between the coils and the resistance component R composed of the coils.

まず、超電導スイッチ2がオフ(ヒータ3がオン)、接続経路のヒータ4がオフの状態で励磁電源5による高温超電導コイル1の励磁を開始する。この場合、超電導スイッチ2は、超電導転移温度Tc以上のため高抵抗となっており、励磁電源5からの電流は、ほぼ全て高温超電導コイル1側に供給され、図4に示すように定格電流値Iに達して励磁が完了する。 First, the superconducting switch 2 is turned off (the heater 3 is turned on), and the heater 4 in the connection path is turned off to start the excitation of the high-temperature superconducting coil 1 by the exciting power source 5. In this case, the superconducting switch 2 has a high resistance because the superconducting transition temperature is Tc or higher, and almost all the current from the exciting power supply 5 is supplied to the high-temperature superconducting coil 1 side, and the rated current value is as shown in FIG. When I 0 is reached, excitation is completed.

この時、超電導スイッチ2に求められるオフ時の高抵抗は、励磁速度にもよるものの、励磁時の誘導電圧L(dI/dt)による分流を制限するのに十分な高抵抗でなければならない。また、緊急時に励磁電源5を遮断した際、コイルが蓄積する磁気エネルギーを保護抵抗で消費させる緊急遮断動作の観点からは、保護抵抗よりも高い数百mΩから数十Ωオーダーの抵抗値が求められる。 At this time, the high resistance at off required for the superconducting switch 2 must be high enough to limit the diversion by the induced voltage L (dI / dt) at the time of excitation, although it depends on the exciting speed. Further, from the viewpoint of the emergency shutoff operation in which the magnetic energy accumulated in the coil is consumed by the protection resistance when the excitation power supply 5 is cut off in an emergency, a resistance value on the order of several hundred mΩ to several tens of Ω, which is higher than the protection resistance, is required. Be done.

そこで所望の抵抗値を得るには、超電導線の長さを長く設定する必要があり、超電導スイッチ2は、無誘導巻のコイルで構成されることが一般的である。 Therefore, in order to obtain a desired resistance value, it is necessary to set the length of the superconducting wire to be long, and the superconducting switch 2 is generally composed of a non-inductive winding coil.

その後、超電導スイッチ2のヒータ3がオフになり、超電導スイッチ2は冷却されて超電導状態(オン)になり運転開始となる。この時、励磁電源5の出力する電流値は一定であっても、高温超電導コイル1の抵抗成分と、その他の接続部12a,12b,13a,13bの抵抗成分の総和で計算される回路抵抗Rとによって定まる回路の時定数L/Rによって、高温超電導コイル1に流れる通電電流値Iは定格電流値Iから図4の波線の比較例で示すように徐々に減衰していく。 After that, the heater 3 of the superconducting switch 2 is turned off, the superconducting switch 2 is cooled to enter the superconducting state (on), and the operation is started. At this time, even if the current value output by the exciting power supply 5 is constant, the circuit resistance R calculated by the sum of the resistance component of the high temperature superconducting coil 1 and the resistance components of the other connecting portions 12a, 12b, 13a, 13b. Due to the time constant L / R of the circuit determined by the above, the energizing current value I flowing through the high temperature superconducting coil 1 gradually attenuates from the rated current value I 0 as shown in the wavy line comparative example of FIG.

本実施形態の運転制御方法では、通電電流値Iが定格電流値の下限に設定した電流値に近づいた際、制御部9は接続経路のヒータ4を発熱させるように制御することで、接続部13aの抵抗値を高温超電導コイル1の抵抗成分よりも高くなるように上昇させる。 In the operation control method of the present embodiment, when the energizing current value I approaches the current value set at the lower limit of the rated current value, the control unit 9 controls the heater 4 in the connection path to generate heat, thereby causing the connection unit to generate heat. The resistance value of 13a is increased so as to be higher than the resistance component of the high-temperature superconducting coil 1.

高温超電導コイル1と接続部12a,12bからなる抵抗成分Rcoilと、超電導スイッチ2と接続部13a,13bからなる抵抗成分Rsとしたとき、高温超電導コイル1に流れる通電電流値Iは、
I=I×(Rs/(Rs+Rcoil))=I×(1/(1+(Rcoil/Rs))
である。したがって、通電電流値Iは、抵抗成分Rsの上昇によって定格電流値Iに復帰する。
When the resistance component Rcoil consisting of the high-temperature superconducting coil 1 and the connecting portions 12a and 12b and the resistance component Rs consisting of the superconducting switch 2 and the connecting portions 13a and 13b are used, the energizing current value I flowing through the high-temperature superconducting coil 1 is
I = I 0 × (Rs / (Rs + Rcoil)) = I 0 × (1 / (1+ (Rcoil / Rs)))
Is. Therefore, the energizing current value I returns to the rated current value I 0 as the resistance component Rs rises.

接続経路のヒータ4の発熱は、冷却システムへの熱負荷となるため、復帰後は接続経路のヒータ4をオフにする。そして再度、通電電流値Iが定格電流値の下限に設定した電流値に近づいた際には、上記と同様のプロセスを繰り返すことで、電流減衰(磁場減衰)が補償される。 Since the heat generated by the heater 4 in the connection path becomes a heat load on the cooling system, the heater 4 in the connection path is turned off after the return. Then, when the energizing current value I approaches the current value set at the lower limit of the rated current value again, the current attenuation (magnetic field attenuation) is compensated by repeating the same process as described above.

このように制御部9は、磁場測定部7によって測定された発生磁場が定格電流値の下限に対応する磁場に近づいた際、ヒータ4が設けられている接続経路の区間の抵抗値が、高温超電導コイル1の抵抗値よりも高くなるまで抵抗値を増加させるように制御している。この場合、ヒータ4が設けられている接続経路の区間の抵抗値は、温度測定部8によって測定された温度に対応している。 In this way, when the generated magnetic field measured by the magnetic field measuring unit 7 approaches the magnetic field corresponding to the lower limit of the rated current value, the control unit 9 has a high resistance value in the section of the connection path in which the heater 4 is provided. The resistance value is controlled to be increased until it becomes higher than the resistance value of the superconducting coil 1. In this case, the resistance value in the section of the connection path provided with the heater 4 corresponds to the temperature measured by the temperature measuring unit 8.

なお、通電電流値Iは、いわゆるシャント抵抗による測定手段としてもよいが、回路抵抗Rを増加させてしまうこととなる。そのため、通電電流値Iに比例する高温超電導コイルの発生磁場は、前述したホール素子やNMR(Nuclear Magnetic Resonance, 核磁気共鳴)プローブといった磁場測定部7によってモニタし、逆算して求めることが好ましい。 The energizing current value I may be used as a measuring means using a so-called shunt resistor, but it will increase the circuit resistance R. Therefore, it is preferable that the generated magnetic field of the high-temperature superconducting coil, which is proportional to the energizing current value I, is monitored by a magnetic field measuring unit 7 such as the Hall element or an NMR (Nuclear Magnetic Resonance) probe described above, and calculated back.

(作 用)
このように構成された本実施形態において、励磁電源5と超電導スイッチ2との接続経路の一部において温度制御が可能となる。また、接続部13aの抵抗成分は、超電導スイッチ2のように緊急遮断の観点から保護抵抗よりも高い抵抗値とする必要はない。
(For use)
In the present embodiment configured as described above, temperature control is possible in a part of the connection path between the exciting power supply 5 and the superconducting switch 2. Further, the resistance component of the connection portion 13a does not need to have a resistance value higher than the protection resistance from the viewpoint of emergency cutoff unlike the superconducting switch 2.

接続経路に設置されたヒータ4が設けられる区間の長さは、超電導スイッチ2よりも熱容量が小さくなるように設定されている。そのため、超電導スイッチ2を加熱するよりも少ない加熱量で、高温超電導コイル1よりも高い抵抗成分を発生させることができるとともに、超電導スイッチ2を再冷却するよりも短時間での復帰が可能となる。 The length of the section in which the heater 4 installed in the connection path is provided is set so that the heat capacity is smaller than that of the superconducting switch 2. Therefore, it is possible to generate a resistance component higher than that of the high-temperature superconducting coil 1 with a smaller amount of heating than heating the superconducting switch 2, and it is possible to recover in a shorter time than recooling the superconducting switch 2. ..

(効 果)
本実施形態によれば、従来のように補償抵抗体を設置する必要がないため、励磁電源1から余剰電流の供給は不要となる。また、本実施形態によれば、短時間で電流減衰(磁場減衰)を補償可能な高温超電導磁石装置を提供することができる。
(Effect)
According to this embodiment, since it is not necessary to install the compensating resistor as in the conventional case, it is not necessary to supply the surplus current from the exciting power supply 1. Further, according to the present embodiment, it is possible to provide a high-temperature superconducting magnet device capable of compensating for current attenuation (magnetic field attenuation) in a short time.

なお、本実施形態では、接続部13a,13bのうち、接続部13aに温度制御部としてのヒータ4を熱的に接続した例について説明したが、これに限らず接続部13bにヒータ4を熱的に接続してもよい。この場合でも上記実施形態と同様の作用及び効果が得られる。 In the present embodiment, an example in which the heater 4 as the temperature control unit is thermally connected to the connection portion 13a among the connection portions 13a and 13b has been described, but the present invention is not limited to this, and the heater 4 is heated to the connection portion 13b. May be connected. Even in this case, the same actions and effects as those of the above embodiment can be obtained.

(第2実施形態)
(構 成)
図5は第2実施形態の高温超電導磁石装置を示す回路図である。
(Second Embodiment)
(Constitution)
FIG. 5 is a circuit diagram showing the high-temperature superconducting magnet device of the second embodiment.

なお、第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。また、図5では磁場測定部7、温度測定部8、及び制御部9を含む運転制御系の図示を省略している。 The same components as those in the first embodiment are designated by the same reference numerals, and redundant description will be omitted. Further, in FIG. 5, the illustration of the operation control system including the magnetic field measuring unit 7, the temperature measuring unit 8, and the control unit 9 is omitted.

本実施形態の高温超電導磁石装置は、第1実施形態の励磁電源5から引き出された電流フィーダ線11と、超電導スイッチ2から引き出された高温超電導線21との間にハンダ層6を介した接続部13aに温度制御部としてのヒータ4が熱的に接続された構成を以下のように替えている。 The high-temperature superconducting magnet device of the present embodiment is connected via a solder layer 6 between the current feeder wire 11 drawn from the exciting power source 5 of the first embodiment and the high-temperature superconducting wire 21 drawn from the superconducting switch 2. The configuration in which the heater 4 as the temperature control unit is thermally connected to the unit 13a is changed as follows.

図5に示すように、本実施形態の高温超電導磁石装置は、超電導スイッチ2から引き出された高温超電導線21aにおいて、抵抗を変化させるための温度制御部としてのヒータ4aが電気的に絶縁されているものの、熱的に接続された構成となっている。 As shown in FIG. 5, in the high-temperature superconducting magnet device of the present embodiment, in the high-temperature superconducting wire 21a drawn from the superconducting switch 2, the heater 4a as a temperature control unit for changing the resistance is electrically insulated. However, it has a thermally connected configuration.

なお、高温超電導線21aの構成は、図3に示す高温超電導線21と同様であるので、その説明を省略する。また、図5では温度制御部としてヒータ4aのみを図示しているが、その他の加熱機構の他、冷凍機と熱的に接続された伝熱板による冷却機構を含むものとする。 Since the configuration of the high-temperature superconducting wire 21a is the same as that of the high-temperature superconducting wire 21 shown in FIG. 3, the description thereof will be omitted. Further, although only the heater 4a is shown as the temperature control unit in FIG. 5, in addition to other heating mechanisms, a cooling mechanism by a heat transfer plate thermally connected to the refrigerator is included.

(作 用)
このように構成された本実施形態において、抵抗を変化させるための温度制御部としてのヒータ4aが設置されている励磁電源5と超電導スイッチ2との接続経路の一部の区間は、超電導スイッチ2から引き出された高温超電導線21aである。
(For use)
In the present embodiment configured as described above, a part of the connection path between the exciting power supply 5 and the superconducting switch 2 in which the heater 4a as a temperature control unit for changing the resistance is installed is the superconducting switch 2. It is a high temperature superconducting wire 21a drawn from.

そのため、ハンダによる接続部13aに温度制御部としてのヒータ4aを熱的に接続した第1実施形態と比べて、単位長さあたりの熱容量を小さくすることができる。 Therefore, the heat capacity per unit length can be reduced as compared with the first embodiment in which the heater 4a as the temperature control unit is thermally connected to the soldered connection portion 13a.

なお、本実施形態の運転制御方法は、第1実施形態と同様であるのでその説明を省略する。 Since the operation control method of the present embodiment is the same as that of the first embodiment, the description thereof will be omitted.

(効 果)
本実施形態によれば、抵抗を変化させるための温度制御部としてのヒータ4aが設置されている励磁電源5と超電導スイッチ2との接続経路の一部の区間における単位長さあたりの熱容量は、第1実施形態よりも小さくすることができる。
(Effect)
According to the present embodiment, the heat capacity per unit length in a part of the connection path between the exciting power supply 5 and the superconducting switch 2 in which the heater 4a as the temperature control unit for changing the resistance is installed is determined. It can be made smaller than that of the first embodiment.

そのため、一段と少ない加熱量で高温超電導コイル1よりも高い抵抗成分を発生させることができるとともに、より短時間での復帰が可能な高温超電導磁石装置を提供することができる。 Therefore, it is possible to provide a high-temperature superconducting magnet device capable of generating a resistance component higher than that of the high-temperature superconducting coil 1 with a much smaller amount of heating and recovering in a shorter time.

なお、本実施形態において、ヒータ4aが設置されている区間は、高温超電導線21aの長手方向に延長されてもよく、またヒータ4aを分割して複数設けてもよい。 In the present embodiment, the section in which the heater 4a is installed may be extended in the longitudinal direction of the high-temperature superconducting wire 21a, or a plurality of heaters 4a may be divided and provided.

(第3実施形態)
(構 成)
図6は第3実施形態の高温超電導磁石装置を示す回路図である。図7は第3実施形態の高温超電導磁石装置の接続部を示す拡大断面図である。
(Third Embodiment)
(Constitution)
FIG. 6 is a circuit diagram showing a high-temperature superconducting magnet device according to a third embodiment. FIG. 7 is an enlarged cross-sectional view showing a connection portion of the high-temperature superconducting magnet device of the third embodiment.

なお、第1、第2実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。また、図6では、図5と同様に磁場測定部7、温度測定部8、及び制御部9を含む運転制御系の図示を省略している。 The same configurations as those of the first and second embodiments are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIG. 6, the illustration of the operation control system including the magnetic field measuring unit 7, the temperature measuring unit 8, and the control unit 9 is omitted as in FIG.

本実施形態の高温超電導磁石装置は、第2実施形態の高温超電導線21aに替えて、図6及び図7に示すように超電導スイッチ2から引き出された高温超電導線21bと、電流フィーダ線11に電気的に接続された第2の高温超電導線32との接続部において、抵抗を変化させるための温度制御部としてヒータ4bが熱的に接続されて構成となっている。 The high-temperature superconducting magnet device of the present embodiment replaces the high-temperature superconducting wire 21a of the second embodiment with the high-temperature superconducting wire 21b drawn from the superconducting switch 2 and the current feeder wire 11 as shown in FIGS. 6 and 7. In the connection portion with the second high-temperature superconducting wire 32 electrically connected, the heater 4b is thermally connected as a temperature control unit for changing the resistance.

なお、第2の高温超電導線32の構成は、図3に示す高温超電導線21と同様であるので、その説明を省略する。また、図6では温度制御部としてヒータ4bのみを図示しているが、第1、第2実施形態と同様に、その他の加熱機構の他、冷凍機と熱的に接続された伝熱板による冷却機構を含むものとする。 Since the configuration of the second high-temperature superconducting wire 32 is the same as that of the high-temperature superconducting wire 21 shown in FIG. 3, the description thereof will be omitted. Further, although only the heater 4b is shown as the temperature control unit in FIG. 6, as in the first and second embodiments, in addition to other heating mechanisms, a heat transfer plate thermally connected to the refrigerator is used. It shall include a cooling mechanism.

(作 用)
このように構成された本実施形態において、抵抗を変化させるための温度制御部としてのヒータ4bが設置されている励磁電源5と超電導スイッチ2との接続経路の一部は、超電導スイッチ2から引き出された高温超電導線21bと、電流フィーダ線11に電気的に接続された第2の高温超電導線32との接続部である。
(For use)
In the present embodiment configured as described above, a part of the connection path between the exciting power supply 5 and the superconducting switch 2 in which the heater 4b as a temperature control unit for changing the resistance is installed is drawn from the superconducting switch 2. It is a connection portion between the high-temperature superconducting wire 21b and the second high-temperature superconducting wire 32 electrically connected to the current feeder wire 11.

これにより、本実施形態では、単位長さあたりの熱容量は第2実施形態よりも大きくなるものの、抵抗値は第2の高温超電導線32の抵抗とハンダ層との接続抵抗が追加されるため、単位長さあたりの抵抗を第2実施形態よりも高くすることができる。 As a result, in the present embodiment, the heat capacity per unit length is larger than that in the second embodiment, but the resistance value is added to the resistance of the second high-temperature superconducting wire 32 and the connection resistance between the solder layers. The resistance per unit length can be made higher than in the second embodiment.

なお、本実施形態の運転制御方法は、第1実施形態と同様であるのでその説明を省略する。 Since the operation control method of the present embodiment is the same as that of the first embodiment, the description thereof will be omitted.

(効 果)
本実施形態によれば、単位長さあたりの熱容量は第2実施形態よりも大きくなるが、単位長さあたりの抵抗は第2実施形態よりも高くすることができる。そのため、より省スペースに高温超電導コイル1よりも高い抵抗成分を発生可能な高温超電導磁石装置を提供することができる。
(Effect)
According to this embodiment, the heat capacity per unit length is larger than that of the second embodiment, but the resistance per unit length can be higher than that of the second embodiment. Therefore, it is possible to provide a high-temperature superconducting magnet device capable of generating a resistance component higher than that of the high-temperature superconducting coil 1 in a space-saving manner.

なお、本実施形態においてヒータ4bが設置されている区間は、高温超電導線21bと第2の高温超電導線32との接続部からそれぞれ高温超電導線21b,第2の高温超電導線32の長手方向に延長されてもよく、またヒータ4bを分割して複数設けてもよい。 The section in which the heater 4b is installed in the present embodiment is in the longitudinal direction of the high-temperature superconducting wire 21b and the second high-temperature superconducting wire 32 from the connection portion between the high-temperature superconducting wire 21b and the second high-temperature superconducting wire 32, respectively. It may be extended, or a plurality of heaters 4b may be divided and provided.

(第4実施形態)
(構 成)
図8は第4実施形態を示す高温超電導磁石装置の接続部を示す拡大断面図である。なお、第1〜第3実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
(Fourth Embodiment)
(Constitution)
FIG. 8 is an enlarged cross-sectional view showing a connection portion of the high-temperature superconducting magnet device showing the fourth embodiment. The same configurations as those in the first to third embodiments are designated by the same reference numerals, and redundant description will be omitted.

本実施形態の高温超電導磁石装置は、第2実施形態の超電導スイッチ2から引き出された高温超電導線21aや、第3実施形態の超電導スイッチ2から引き出された高温超電導線21bと、電流フィーダ線11に電気的に接続された第2の高温超電導線32との接続部の構成を以下のように替えている。 The high-temperature superconducting magnet device of the present embodiment includes a high-temperature superconducting wire 21a drawn from the superconducting switch 2 of the second embodiment, a high-temperature superconducting wire 21b drawn from the superconducting switch 2 of the third embodiment, and a current feeder wire 11. The configuration of the connection portion with the second high-temperature superconducting wire 32 electrically connected to is changed as follows.

図8に示すように、本実施形態の高温超電導磁石装置は、超電導スイッチ2から引き出された高温超電導線21cと、電流フィーダ線11から引き出された第2の高温超電導線32の双方に接続された第3の高温超電導線34に、抵抗を変化させるための温度制御部としてのヒータ4cが熱的に接続された構成となっている。 As shown in FIG. 8, the high-temperature superconducting magnet device of the present embodiment is connected to both the high-temperature superconducting wire 21c drawn from the superconducting switch 2 and the second high-temperature superconducting wire 32 drawn from the current feeder wire 11. A heater 4c as a temperature control unit for changing the resistance is thermally connected to the third high-temperature superconducting wire 34.

ここで、第3の高温超電導線34は、高温超電導コイル1に使用されている高温超電導線、及び超電導スイッチ2から引き出された高温超電導線21cと異なる構成となっている。具体的には、第3の高温超電導線34は、安定化層27の安定化銅が相対的に薄いか、もしくは安定化銅を有しない構成である。 Here, the third high-temperature superconducting wire 34 has a configuration different from that of the high-temperature superconducting wire used for the high-temperature superconducting coil 1 and the high-temperature superconducting wire 21c drawn from the superconducting switch 2. Specifically, the third high-temperature superconducting wire 34 has a configuration in which the stabilized copper of the stabilizing layer 27 is relatively thin or does not have the stabilized copper.

(作 用)
このように構成された本実施形態において、抵抗を変化させるための温度制御部としてのヒータ4cが設置されている励磁電源5と超電導スイッチ2との接続経路の一部は、超電導スイッチ2から引き出された高温超電導線21cと電流フィーダ線11から引き出された第2の高温超電導線32の双方に接続された第3の高温超電導線34である。
(For use)
In the present embodiment configured as described above, a part of the connection path between the exciting power source 5 and the superconducting switch 2 in which the heater 4c as a temperature control unit for changing the resistance is installed is drawn from the superconducting switch 2. It is a third high-temperature superconducting wire 34 connected to both the high-temperature superconducting wire 21c and the second high-temperature superconducting wire 32 drawn from the current feeder wire 11.

第3の高温超電導線34は、高温超電導コイル1に使用されている高温超電導線、及び前記超電導スイッチ2から引き出された高温超電導線21cよりも安定化層27の安定化銅が相対的に薄いか、又は安定化銅を有しない高温超電導線である。そのため、第2実施形態及び第3実施形態よりも単位長さあたりの熱容量をさらに小さくすることができる。 In the third high-temperature superconducting wire 34, the stabilized copper of the stabilizing layer 27 is relatively thinner than the high-temperature superconducting wire used for the high-temperature superconducting coil 1 and the high-temperature superconducting wire 21c drawn from the superconducting switch 2. Or a high-temperature superconducting wire that does not have stabilized copper. Therefore, the heat capacity per unit length can be further reduced as compared with the second embodiment and the third embodiment.

なお、本実施形態の運転制御方法は、第1実施形態と同様であるのでその説明を省略する。 Since the operation control method of the present embodiment is the same as that of the first embodiment, the description thereof will be omitted.

(効 果)
本実施形態によれば、抵抗を変化させるための温度制御部としてのヒータ4cが設置されている励磁電源5と超電導スイッチ2との接続経路の一部は、第2実施形態〜第3実施形態よりも単位長さあたりの熱容量をさらに小さくすることができる。そのため、一段と少ない加熱量で高温超電導コイル1よりも高い抵抗成分を発生させることができるとともに、より短時間での復帰が可能な高温超電導磁石装置を提供することができる。
(Effect)
According to the present embodiment, a part of the connection path between the exciting power supply 5 and the superconducting switch 2 in which the heater 4c as the temperature control unit for changing the resistance is installed is a part of the second embodiment to the third embodiment. The heat capacity per unit length can be further reduced. Therefore, it is possible to provide a high-temperature superconducting magnet device capable of generating a resistance component higher than that of the high-temperature superconducting coil 1 with a much smaller amount of heating and recovering in a shorter time.

なお、本実施形態においてヒータ4cが設置される区間は、高温超電導線21c,第2の高温超電導線32と第3の高温超電導線34との接続部からそれぞれの長手方向に延長されてもよく、またヒータ4cを分割して複数設けてもよい。 The section in which the heater 4c is installed in the present embodiment may be extended in the longitudinal direction from the connection portion between the high-temperature superconducting wire 21c, the second high-temperature superconducting wire 32, and the third high-temperature superconducting wire 34. Alternatively, a plurality of heaters 4c may be divided and provided.

(その他の実施形態)
本発明の各実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
Although each embodiment of the present invention has been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, changes, and combinations can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.

なお、第1実施形態乃至第4実施形態の説明における回路図では、高温超電導コイル1を1つのインダクタンスと1つの抵抗成分で示しているが、複数の高温超電導コイル1を直列、又は並列に電気的に接続するような高温超電導コイルにおいても適用可能である。その場合、超電導スイッチ2のオン、オフ、及び抵抗を変化させるための温度制御部は、複数設けることも可能である。 In the circuit diagram in the description of the first to fourth embodiments, the high-temperature superconducting coil 1 is shown by one inductance and one resistance component, but a plurality of high-temperature superconducting coils 1 are electrically connected in series or in parallel. It can also be applied to high-temperature superconducting coils that are specifically connected. In that case, it is possible to provide a plurality of temperature control units for turning on, off, and changing the resistance of the superconducting switch 2.

1…高温超電導コイル、2…超電導スイッチ、3…ヒータ、4,4a,4b,4c…ヒータ(温度制御部)、5…励磁電源、6…ハンダ層、7…磁場測定部、8…温度測定部、9…制御部、11…電流フィーダ線、12a,12b…接続部、13a,13b…接続部、21,21a,21b,21c…高温超電導線、24…テープ基板、25…中間層、26…超電導層、27…安定化層、28…配向層、29…保護層、32…第2の高温超電導線、34…第3の高温超電導線。 1 ... High-temperature superconducting coil, 2 ... Superconducting switch, 3 ... Heater, 4, 4a, 4b, 4c ... Heater (temperature control unit), 5 ... Exciting power supply, 6 ... Solder layer, 7 ... Magnetic current measuring unit, 8 ... Temperature measurement Unit, 9 ... Control unit, 11 ... Current feeder wire, 12a, 12b ... Connection unit, 13a, 13b ... Connection unit, 21,21a, 21b, 21c ... High-temperature superconducting wire, 24 ... Tape substrate, 25 ... Intermediate layer, 26 ... Superconducting layer, 27 ... Stabilizing layer, 28 ... Alignment layer, 29 ... Protective layer, 32 ... Second high-temperature superconducting wire, 34 ... Third high-temperature superconducting wire.

Claims (9)

高温超電導コイルと、
前記高温超電導コイルに接続されて電流を供給する励磁電源と、
前記励磁電源と接続され、前記高温超電導コイルと並列に電気的に接続された超電導スイッチとを具備し、
前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けたことを特徴とする高温超電導磁石装置。
High-temperature superconducting coil and
An exciting power supply connected to the high-temperature superconducting coil to supply current,
A superconducting switch connected to the exciting power source and electrically connected in parallel with the high-temperature superconducting coil is provided.
A high-temperature superconducting magnet device characterized in that a temperature control unit is provided in a section having a heat capacity smaller than that of the superconducting switch in a connection path between the exciting power supply and the superconducting switch.
前記温度制御部は、前記超電導スイッチよりも熱容量が小さい区間に熱的に接続されたヒータによる加熱機構と、冷凍機と熱的に接続された伝熱板による冷却機構と、を備えることを特徴とする請求項1に記載の高温超電導磁石装置。 The temperature control unit is characterized by including a heating mechanism by a heater thermally connected to a section having a heat capacity smaller than that of the superconducting switch, and a cooling mechanism by a heat transfer plate thermally connected to the refrigerator. The high-temperature superconducting magnet device according to claim 1. 前記温度制御部が設けられている前記接続経路の区間は、前記超電導スイッチから引き出された高温超電導線と、前記励磁電源から引き出された常電導金属からなる電流フィーダ線との接続部であることを特徴とする請求項1又は2に記載の高温超電導磁石装置。 The section of the connection path provided with the temperature control unit is a connection portion between the high-temperature superconducting wire drawn from the superconducting switch and the current feeder wire made of normal conductive metal drawn from the exciting power source. The high-temperature superconducting magnet device according to claim 1 or 2. 前記温度制御部が設けられている前記接続経路の区間は、前記超電導スイッチから引き出された高温超電導線であることを特徴とする請求項1又は2に記載の高温超電導磁石装置。 The high-temperature superconducting magnet device according to claim 1 or 2, wherein the section of the connection path provided with the temperature control unit is a high-temperature superconducting wire drawn from the superconducting switch. 前記温度制御部が設けられている前記接続経路の区間は、前記超電導スイッチから引き出された高温超電導線と、前記励磁電源から引き出された常電導金属からなる電流フィーダ線に電気的に接続された第2の高温超電導線との接続部であることを特徴とする請求項1又は2に記載の高温超電導磁石装置。 The section of the connection path provided with the temperature control unit was electrically connected to a high-temperature superconducting wire drawn from the superconducting switch and a current feeder wire made of a normal conducting metal drawn from the exciting power source. The high-temperature superconducting magnet device according to claim 1 or 2, wherein the high-temperature superconducting magnet device is a connection portion with a second high-temperature superconducting wire. 前記温度制御部が設けられている前記接続経路の区間は、前記超電導スイッチから引き出された前記高温超電導線と、前記励磁電源から引き出された常電導金属からなる電流フィーダ線から引き出された前記第2の高温超電導線との双方の高温超電導線に接続された第3の高温超電導線に設けられていることを特徴とする請求項5に記載の高温超電導磁石装置。 The section of the connection path provided with the temperature control unit is the first drawn from the high-temperature superconducting wire drawn from the superconducting switch and the current feeder wire made of a normal-conducting metal drawn from the exciting power source. The high-temperature superconducting magnet device according to claim 5, wherein the high-temperature superconducting magnet device is provided on a third high-temperature superconducting wire connected to both high-temperature superconducting wires of the second high-temperature superconducting wire. 前記第3の高温超電導線は、前記高温超電導コイル及び前記超電導スイッチに接続される前記高温超電導線よりも安定化銅が相対的に薄いか又は安定化銅を有しないことを特徴とする請求項6に記載の高温超電導磁石装置。 The third high-temperature superconducting wire is characterized in that the stabilized copper is relatively thinner than the high-temperature superconducting wire connected to the high-temperature superconducting coil and the superconducting switch, or has no stabilized copper. 6. The high-temperature superconducting magnet device according to 6. 高温超電導コイルと、前記高温超電導コイルに接続されて電流を供給する励磁電源と、前記励磁電源と接続され、前記高温超電導コイルに並列に電気的に接続された超電導スイッチとを具備し、前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けた高温超電導磁石装置の運転を制御する高温超電導磁石装置の運転制御装置であって、
前記高温超電導コイルの発生磁場を測定する磁場測定部と、
前記温度制御部が設けられている前記接続経路の区間の抵抗値に対応する温度を測定する温度測定部と、
前記発生磁場が定格電流値の下限に対応する磁場に近づいた際、前記温度制御部が設けられている前記接続経路の区間の抵抗値が、前記高温超電導コイルの抵抗値よりも高くなるまで抵抗値を増加させるように制御する制御部と、
を備えることを特徴とする高温超電導磁石装置の運転制御装置。
It includes a high-temperature superconducting coil, an exciting power source connected to the high-temperature superconducting coil to supply an electric current, and a superconducting switch connected to the exciting power source and electrically connected in parallel with the high-temperature superconducting coil. An operation control device for a high-temperature superconducting magnet device that controls the operation of a high-temperature superconducting magnet device provided with a temperature control unit in a section having a smaller heat capacity than the superconducting switch in the connection path between the power supply and the superconducting switch.
A magnetic field measuring unit that measures the generated magnetic field of the high-temperature superconducting coil,
A temperature measuring unit that measures the temperature corresponding to the resistance value of the section of the connection path provided with the temperature control unit, and a temperature measuring unit.
When the generated magnetic field approaches the magnetic field corresponding to the lower limit of the rated current value, the resistance value in the section of the connection path provided with the temperature control unit becomes higher than the resistance value of the high temperature superconducting coil. A control unit that controls to increase the value,
An operation control device for a high-temperature superconducting magnet device.
高温超電導コイルと、前記高温超電導コイルに接続されて電流を供給する励磁電源と、前記励磁電源と接続され、前記高温超電導コイルに並列に電気的に接続された超電導スイッチとを具備し、前記励磁電源と前記超電導スイッチとの接続経路において、前記超電導スイッチよりも熱容量が小さい区間に温度制御部を設けた高温超電導磁石装置の運転を制御する高温超電導磁石装置の運転制御方法であって、
前記高温超電導コイルの発生磁場を測定する磁場測定工程と、
前記温度制御部が設けられている前記接続経路の区間の抵抗値に対応する温度を測定する温度測定工程と、
前記発生磁場が定格電流値の下限に対応する磁場に近づいた際、前記温度制御部が設けられている前記接続経路の区間の抵抗値が、前記高温超電導コイルの抵抗値よりも高くなるまで抵抗値を増加させるように制御する制御工程と、
を有することを特徴とする高温超電導磁石装置の運転制御方法。
It includes a high-temperature superconducting coil, an exciting power source connected to the high-temperature superconducting coil to supply an electric current, and a superconducting switch connected to the exciting power source and electrically connected in parallel with the high-temperature superconducting coil. A method for controlling the operation of a high-temperature superconducting magnet device that controls the operation of a high-temperature superconducting magnet device provided with a temperature control unit in a section having a smaller heat capacity than the superconducting switch in the connection path between the power supply and the superconducting switch.
A magnetic field measurement step for measuring the generated magnetic field of the high-temperature superconducting coil, and
A temperature measurement step of measuring a temperature corresponding to a resistance value in a section of the connection path provided with the temperature control unit, and a temperature measurement step.
When the generated magnetic field approaches the magnetic field corresponding to the lower limit of the rated current value, the resistance value in the section of the connection path provided with the temperature control unit becomes higher than the resistance value of the high temperature superconducting coil. A control process that controls to increase the value,
A method for controlling the operation of a high-temperature superconducting magnet device.
JP2018040370A 2018-03-07 2018-03-07 High-temperature superconducting magnet device, its operation control device and method Active JP6862382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018040370A JP6862382B2 (en) 2018-03-07 2018-03-07 High-temperature superconducting magnet device, its operation control device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018040370A JP6862382B2 (en) 2018-03-07 2018-03-07 High-temperature superconducting magnet device, its operation control device and method

Publications (2)

Publication Number Publication Date
JP2019160818A JP2019160818A (en) 2019-09-19
JP6862382B2 true JP6862382B2 (en) 2021-04-21

Family

ID=67996604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018040370A Active JP6862382B2 (en) 2018-03-07 2018-03-07 High-temperature superconducting magnet device, its operation control device and method

Country Status (1)

Country Link
JP (1) JP6862382B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021054093A1 (en) * 2019-09-20 2021-03-25
JP7428515B2 (en) * 2019-12-23 2024-02-06 株式会社日立製作所 Persistent current switch, superconducting electromagnet device, and persistent current operation method of superconducting electromagnet device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4738948Y1 (en) * 1968-12-05 1972-11-25
JPS544836B2 (en) * 1973-09-21 1979-03-10
JPH0630299B2 (en) * 1981-12-23 1994-04-20 富士電機株式会社 Superconducting magnet device
JPS60173886A (en) * 1984-02-20 1985-09-07 Mitsubishi Electric Corp Superconductive coil device
JPS62169312A (en) * 1986-01-20 1987-07-25 Sumitomo Electric Ind Ltd Superconductive electromagnet
JPS6367708A (en) * 1986-09-09 1988-03-26 Mitsubishi Electric Corp Superconducting magnet device with emergency demagnetizing device
JPH0217808U (en) * 1988-07-22 1990-02-06
JP2659453B2 (en) * 1990-07-06 1997-09-30 三菱電機株式会社 Superconducting magnet device
JP2859953B2 (en) * 1990-11-21 1999-02-24 株式会社日立製作所 Superconducting device and permanent current switch used for the superconducting device
JPH06120573A (en) * 1992-10-05 1994-04-28 Mitsubishi Electric Corp Exciting device for superconductive coil
JPH07106644A (en) * 1993-10-06 1995-04-21 Hitachi Ltd Superconducting permanent current device
JP3737895B2 (en) * 1998-11-16 2006-01-25 株式会社神戸製鋼所 Permanent current superconducting magnet system
JP2003069093A (en) * 2001-08-29 2003-03-07 Central Japan Railway Co Perpetual current switch and superconducting magnet using it
JP2004179413A (en) * 2002-11-27 2004-06-24 Mitsubishi Electric Corp Cooling type superconducting magnet device
US8384504B2 (en) * 2006-01-06 2013-02-26 Quantum Design International, Inc. Superconducting quick switch
JP4896620B2 (en) * 2006-08-07 2012-03-14 株式会社東芝 Superconducting magnet
WO2011074092A1 (en) * 2009-12-17 2011-06-23 株式会社日立製作所 Superconducting magnet device, and method of imparting electric current into superconducting magnet
JP2013251516A (en) * 2012-06-04 2013-12-12 Hitachi Ltd Superconducting magnet device
JP6101490B2 (en) * 2012-11-30 2017-03-22 株式会社フジクラ Oxide superconducting wire connection structure and superconducting equipment
JP6086852B2 (en) * 2013-09-26 2017-03-01 株式会社フジクラ Oxide superconducting wire, connecting structure of oxide superconducting wire, connecting structure of oxide superconducting wire and electrode terminal, superconducting device including the same, and manufacturing method thereof
JP6734092B2 (en) * 2016-03-29 2020-08-05 古河電気工業株式会社 Superconducting wire connection structure

Also Published As

Publication number Publication date
JP2019160818A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JP4896620B2 (en) Superconducting magnet
JP2009522815A (en) Superconducting high-speed switch
JP2005197539A (en) Superconductivity current limiting element
JP2006313924A (en) High temperature superconducting coil, and high temperature superconducting magnet and high temperature superconducting magnet system employing it
KR20090129979A (en) Superconducting coil and superconductor used for the same
JP6862382B2 (en) High-temperature superconducting magnet device, its operation control device and method
KR20150065694A (en) Superconductive coil device and production method
JP2012238628A (en) Superconducting magnet including parallel winding wire and superconducting magnet system
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
JP2020136637A (en) High-temperature superconducting magnet device
JP3358958B2 (en) Thermal control type permanent current switch
JP2009230912A (en) Oxide superconductive current lead
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP4638983B2 (en) Superconductor and manufacturing method thereof
JP2004335160A (en) Current lead for superconductive device
JP2005150245A (en) Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP4634954B2 (en) Superconducting device
JP2020068293A (en) Superconducting magnet device
JP2021100052A (en) Permanent current switch, superconducting electromagnet device, and perpetual current operation method of superconducting electromagnet device
US20220393680A1 (en) Persistent current switch and superconducting device
JPH11340533A (en) High-temperature superconducting coil persistent current switch
JP7247080B2 (en) Superconducting coil device
JPH10247532A (en) Current lead for superconductive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150