JP2020068293A - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP2020068293A
JP2020068293A JP2018200187A JP2018200187A JP2020068293A JP 2020068293 A JP2020068293 A JP 2020068293A JP 2018200187 A JP2018200187 A JP 2018200187A JP 2018200187 A JP2018200187 A JP 2018200187A JP 2020068293 A JP2020068293 A JP 2020068293A
Authority
JP
Japan
Prior art keywords
superconducting
current switch
coil
superconducting coil
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200187A
Other languages
Japanese (ja)
Inventor
大谷 安見
Yasumi Otani
安見 大谷
貞憲 岩井
Sadanori Iwai
貞憲 岩井
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018200187A priority Critical patent/JP2020068293A/en
Publication of JP2020068293A publication Critical patent/JP2020068293A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To make it possible to secure soundness of a superconducting coil when abnormality occurs in the superconducting coil at a stationary time of supplying rated current from an excitation power supply and emergent cutoff of the current supply is performed.SOLUTION: A superconducting magnet device includes: a high-temperature superconducting coil 13 configured using a high-temperature superconducting wire; an excitation power supply 16 for supplying current to the high-temperature superconducting coil; a permanent current switch 14 that is electrically connected in parallel to the high-temperature superconducting coil, forms a closed loop 23 together with the high-temperature superconducting coil, and is configured using a high-temperature superconducting material; a minute resistance body 15 individually electrically connected in series to the permanent current switch and in parallel to the high-temperature superconducting coil; and a protective resistor 17 that is electrically connected in parallel to the excitation power supply 16 and has a resistance value set higher than that of the minute resistance body 15 and smaller than that of the permanent current switch 14 in a normal conducting state. The minute resistance body 15 is thermally connected to the permanent current switch 14.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、超電導コイルに永久電流スイッチ及び微小抵抗体が電気的に並列に接続された超電導磁石装置に関する。   The embodiment of the present invention relates to a superconducting magnet device in which a persistent current switch and a minute resistor are electrically connected in parallel to a superconducting coil.

高温超電導線材の開発により、超電導機器は、従来の金属系超電導線材を用いた機器から高温超電導線材を用いた機器に置き換わりつつある。また、超電導機器には、磁気共鳴画像診断装置(MRI)や核磁気共鳴測定装置(NMR)等のように、均一の磁場及び磁場の時間的安定性が求められる機器がある。このような機器では、例えば永久電流スイッチを使って永久電流モードにすることで、電源の時間的安定性に関係なく、高温超電導コイルに安定した磁場を発生させることが可能になる。   With the development of high-temperature superconducting wires, superconducting devices are being replaced with devices using conventional metal-based superconducting wires by devices using high-temperature superconducting wires. Further, the superconducting devices include devices such as a magnetic resonance imaging apparatus (MRI) and a nuclear magnetic resonance measuring apparatus (NMR) that require a uniform magnetic field and temporal stability of the magnetic field. In such a device, for example, a permanent current switch is used to switch to the permanent current mode, whereby a stable magnetic field can be generated in the high temperature superconducting coil regardless of the temporal stability of the power supply.

高温超電導コイルを構成する高温超電導線材では、線材自身の電気抵抗がゼロ(0)になるものの、現状では線材を接続する箇所において微小な抵抗が存在し、永久電流モードにおいても、通電電流には有限の減衰が生ずる。このため、高温超電導コイルが発生する磁場の時間的変化を低減するために、電源供給モードで磁場を発生させる必要がある。その場合、電源自体から出力される電流の時間的安定性が、そのまま発生磁場の時間的安定性に影響してしまうので、電源には出力電流に時間的変動が少ない安定性が必要になる。   In the high-temperature superconducting wire that constitutes the high-temperature superconducting coil, the electric resistance of the wire itself becomes zero (0), but at the present time, there is a minute resistance at the place where the wire is connected, and even in the permanent current mode, the energizing current is Finite damping occurs. Therefore, it is necessary to generate the magnetic field in the power supply mode in order to reduce the temporal change of the magnetic field generated by the high temperature superconducting coil. In that case, the temporal stability of the current output from the power supply itself directly affects the temporal stability of the generated magnetic field, and therefore the power supply needs to have stability with little temporal fluctuation in the output current.

電源の出力電流の時間的変動を、超電導コイルを流れる通電電流に対して伝えにくくする方法の1つとして、超電導コイルに並列な回路(後述)を設け、電源の出力電流を分流させ、この出力電流の時間的変動分を並列回路で補償(抑制)する構成が知られている。図8は、この並列回路を設けた従来の高温超電導磁石装置100を示す。   As one of the methods to make it difficult to convey the temporal fluctuation of the output current of the power supply to the energizing current flowing through the superconducting coil, a circuit (described later) is installed in parallel with the superconducting coil to shunt the output current of the power supply. A configuration is known in which a time variation of current is compensated (suppressed) by a parallel circuit. FIG. 8 shows a conventional high temperature superconducting magnet device 100 provided with this parallel circuit.

この高温超電導磁石装置100では、高温超電導線材にて構成された高温超電導コイル101に励磁電源102が電気的に接続され、高温超電導コイル101に永久電流スイッチ103及び微小抵抗体104が電気的に並列に接続され、励磁電源102に保護抵抗105が電気的に並列に接続され、永久電流スイッチ103及び微小抵抗体104が電気的に直列に接続されている。永久電流スイッチ103は高温超電導材で構成され、この永久電流スイッチ103を昇温させる昇温ヒータ106が、永久電流スイッチ103に熱的に接続されている。   In this high temperature superconducting magnet device 100, an exciting power supply 102 is electrically connected to a high temperature superconducting coil 101 made of a high temperature superconducting wire, and a persistent current switch 103 and a micro resistor 104 are electrically parallel to the high temperature superconducting coil 101. The protective resistance 105 is electrically connected in parallel to the excitation power source 102, and the permanent current switch 103 and the minute resistor 104 are electrically connected in series. The persistent current switch 103 is made of a high-temperature superconducting material, and a temperature raising heater 106 that raises the temperature of the persistent current switch 103 is thermally connected to the persistent current switch 103.

高温超電導コイル101、永久電流スイッチ103、微小抵抗体104及び昇温ヒータ106は、真空容器107内に設けられた輻射シールド108内に配置され、冷凍機109により20Kレベル以下に冷却される。また、励磁電源102及び保護抵抗105は、真空容器107外の室温領域に設置されている。尚、高温超電導コイル101には、接続抵抗などに起因する抵抗成分110が存在する。   The high temperature superconducting coil 101, the permanent current switch 103, the minute resistor 104, and the temperature raising heater 106 are arranged in a radiation shield 108 provided in a vacuum container 107, and cooled by a refrigerator 109 to a level below 20K. Further, the excitation power supply 102 and the protection resistor 105 are installed in a room temperature region outside the vacuum container 107. The high temperature superconducting coil 101 has a resistance component 110 due to a connection resistance or the like.

微小抵抗体104は、励磁電源102から高温超電導コイル101へ定格電流が供給される定常時に、この定常時の電流を自身(微小抵抗体104)に分流させたい電流値となるような抵抗値に設定される。定常時に励磁電源102からの電流が微小抵抗体104に分流することで、励磁電源102から出力される電流の時間的変動が微小抵抗体104により吸収されて、高温超電導コイル101に、電流値が一定の電流が流れる。   The micro-resistor 104 has a resistance value such that the steady-state current is supplied to the high-temperature superconducting coil 101 from the exciting power supply 102, and the steady-state current has a current value desired to be shunted to itself (the micro-resistor 104). Is set. By shunting the current from the excitation power source 102 to the minute resistor 104 in a steady state, the temporal variation of the current output from the excitation power source 102 is absorbed by the minute resistor 104, and the current value is supplied to the high temperature superconducting coil 101. A constant current flows.

定常時に遮断器111が遮断して励磁電源102が遮断された直後には、永久電源スイッチ103が臨界温度未満にあって超電導状態(ON)にあるため、高温超電導コイル101を流れる電流の大半は、保護抵抗105ではなく微小抵抗体104及び永久電流スイッチ103へ流れて、高温超電導コイル101(抵抗成分110を含む)、微小抵抗体104及び永久電流スイッチ103から形成される閉ループ112に流れる。   Immediately after the circuit breaker 111 is cut off and the exciting power supply 102 is cut off in a steady state, the permanent power switch 103 is below the critical temperature and is in the superconducting state (ON). Therefore, most of the current flowing through the high temperature superconducting coil 101 is The current flows not to the protective resistance 105 but to the minute resistor 104 and the persistent current switch 103, and then flows to the closed loop 112 formed by the high temperature superconducting coil 101 (including the resistance component 110), the minute resistor 104 and the persistent current switch 103.

一方、遮断器111による励磁電源102の遮断後速やかに昇温ヒータ106が永久電流スイッチ103を昇温して、この永久電流スイッチ103を臨界温度以上の常伝導状態(OFF)とした時点で、高温超電導コイル101を流れる電流が保護抵抗105へ導かれる。これにより、高温超電導コイル101の磁気エネルギが保護抵抗105により消費されて、高温超電導コイル101を流れる電流が減衰し、この結果、高温超電導コイル101の焼損や劣化が防止される。   On the other hand, immediately after the circuit breaker 111 shuts off the excitation power supply 102, the temperature raising heater 106 raises the temperature of the permanent current switch 103 to bring the permanent current switch 103 into the normal conduction state (OFF) above the critical temperature, The current flowing through the high temperature superconducting coil 101 is guided to the protective resistor 105. As a result, the magnetic energy of the high temperature superconducting coil 101 is consumed by the protective resistor 105, the current flowing through the high temperature superconducting coil 101 is attenuated, and as a result, burning or deterioration of the high temperature superconducting coil 101 is prevented.

特開2008−41966号公報JP, 2008-41966, A 特開2005−259826号公報JP, 2005-259826, A 特開2004−179413号公報JP, 2004-179413, A

ところで、遮断器111による励磁電源102の緊急遮断時に、ヒータ電源113が昇温ヒータ106に電流を供給してから昇温ヒータ106により永久電流スイッチ103が常伝導状態(OFF)に移行するまでの時間は、昇温ヒータ106の最大加熱量や永久電流スイッチ103の熱容量、昇温ヒータ106と永久電流スイッチ103間の伝熱特性などにより決定される。   By the way, when the exciting power supply 102 is shut off by the circuit breaker 111 in an emergency, the heater power supply 113 supplies a current to the temperature raising heater 106 until the permanent current switch 103 is switched to the normal conduction state (OFF) by the temperature raising heater 106. The time is determined by the maximum heating amount of the temperature raising heater 106, the heat capacity of the permanent current switch 103, the heat transfer characteristic between the temperature raising heater 106 and the permanent current switch 103, and the like.

しかしながら、定常時における遮断器111による励磁電源102の緊急遮断時に、永久電流スイッチ103が常伝導状態(OFF)に移行するまでの時間が長くなると、高温超電導コイル101を流れる電流が閉ループ112を流れ続けることなので、高温超電導コイル101の異常発生箇所に電流が継続して流れて、高温超電導コイル101に焼損や劣化が進行する恐れがある。   However, at the time of emergency shutoff of the exciting power supply 102 by the circuit breaker 111 in a steady state, if the time until the permanent current switch 103 shifts to the normal conduction state (OFF) becomes long, the current flowing through the high temperature superconducting coil 101 flows through the closed loop 112. Since the operation is continued, there is a risk that the current will continue to flow to the location where the abnormality has occurred in the high temperature superconducting coil 101, and the high temperature superconducting coil 101 will be burned or deteriorated.

また、昇温ヒータ106が万一故障して使用できなくなった場合にも、遮断器111による励磁電源102の緊急遮断時に高温超電導コイル101を流れる電流が閉ループ112を流れ続けることになので、高温超電導コイル101の焼損や劣化が進行する恐れがある。これを回避するために、昇温ヒータ106に対してバックアップ用のヒータを設けると、高温超電導磁石装置100の装置構成が複雑になってしまう。   In addition, even if the temperature raising heater 106 fails and cannot be used, the current flowing through the high temperature superconducting coil 101 will continue to flow through the closed loop 112 when the exciting power supply 102 is emergency shut off by the circuit breaker 111. The coil 101 may be burned or deteriorated. If a backup heater is provided for the temperature raising heater 106 in order to avoid this, the device configuration of the high temperature superconducting magnet device 100 becomes complicated.

本発明の実施形態は、上述の事情を考慮してなされたものであり、励磁電源から超電導コイルへ定格電流を供給する定常時に超電導コイルに異常が発生して電流の供給を緊急遮断した際に、超電導コイルの磁気エネルギを早期に消費して超電導コイルの健全性を確保できる超電導磁石装置を提供することを目的とする。   The embodiment of the present invention has been made in consideration of the above circumstances, and when an abnormality occurs in the superconducting coil during a steady state in which the rated current is supplied from the excitation power source to the superconducting coil and the current supply is cut off urgently. An object of the present invention is to provide a superconducting magnet device capable of consuming the magnetic energy of the superconducting coil at an early stage and ensuring the soundness of the superconducting coil.

また、本発明の実施形態は、超電導コイルが形成する磁場を長期間に亘って安定化できる超電導磁石装置を提供することを他の目的とする。   Another embodiment of the present invention is to provide a superconducting magnet device capable of stabilizing the magnetic field formed by the superconducting coil for a long period of time.

本発明の実施形態における超電導磁石装置は、超電導線材にて構成され、電流の供給により磁場を形成する超電導コイルと、前記超電導コイルへ電流を供給して前記超電導コイルを励磁する励磁電源と、前記超電導コイルに電気的に並列に接続されて前記超電導コイルと共に閉ループを形成し、超電導材にて構成された永久電流スイッチと、前記永久電流スイッチに直列に且つ前記超電導コイルに並列にそれぞれ電気的に接続され、前記励磁電源からの電流を前記超電導コイルと前記永久電流スイッチとに分流する分流比を決定する微小抵抗体と、前記励磁電源に電気的に並列に接続され、抵抗値が前記微小抵抗体よりも大きく且つ常伝導状態の前記永久電流スイッチよりも小さく設定されて、前記超電導コイルの磁気エネルギを消費可能な保護抵抗と、を有する超電導磁石装置であって、前記微小抵抗体が前記永久電流スイッチに熱的に接続されて構成されたことを特徴とするものである。   The superconducting magnet device in the embodiment of the present invention is composed of a superconducting wire, a superconducting coil that forms a magnetic field by supplying an electric current, an exciting power supply that supplies a current to the superconducting coil to excite the superconducting coil, and A superconducting coil is electrically connected in parallel to form a closed loop together with the superconducting coil, and a permanent current switch made of a superconducting material is electrically connected in series to the permanent current switch and in parallel to the superconducting coil. A minute resistor that is connected and determines a shunt ratio that divides the current from the excitation power source into the superconducting coil and the permanent current switch, and is electrically connected in parallel to the excitation power source and has a resistance value of the minute resistor. The magnetic energy of the superconducting coil can be consumed by being set larger than the body and smaller than the permanent current switch in the normal conduction state. Mamoru and resistance, a superconducting magnet apparatus having the micro-resistor is characterized in that it has been configured is thermally connected to the permanent current switch.

また、本発明の実施形態における超電導磁石装置は、超電導線材にて構成され、電流の供給により磁場を形成する超電導コイルと、前記超電導コイルへ電流を供給して前記超電導コイルを励磁する励磁電源と、前記超電導コイルに電気的に並列に接続されて前記超電導コイルと共に閉ループを形成し、前記超電導線材にて構成された永久電流スイッチと、前記永久電流スイッチに直列に且つ前記超電導コイルに並列にそれぞれ電気的に接続され、前記励磁電源からの電流を前記超電導コイルと前記永久電流スイッチとに分流する分流比を決定する微小抵抗体と、前記励磁電源に電気的に並列に接続され、抵抗値が前記微小抵抗体よりも大きく且つ常伝導状態の前記永久電流スイッチよりも小さく設定されて、前記超電導コイルの磁気エネルギを消費可能な保護抵抗と、を有する超電導磁石装置であって、超電導コイルが形成する磁場を検出する磁場センサを備え、前記微小抵抗体または前記保護抵抗は、前記励磁電源から前記超電導コイルに流れる電流の電流値が一定になるように、前記磁場センサの検出値に基づいて抵抗値を調整可能に構成されたことを特徴とするものである。   Further, the superconducting magnet device in the embodiment of the present invention is composed of a superconducting wire, a superconducting coil that forms a magnetic field by supplying an electric current, and an exciting power supply that supplies a current to the superconducting coil to excite the superconducting coil. , Electrically connected in parallel to the superconducting coil to form a closed loop together with the superconducting coil, and a permanent current switch made of the superconducting wire, in series with the permanent current switch and in parallel with the superconducting coil, respectively. A minute resistor that is electrically connected and that determines a shunt ratio that divides the current from the excitation power supply into the superconducting coil and the permanent current switch, and is electrically connected in parallel to the excitation power supply and has a resistance value of The magnetic energy of the superconducting coil is set to be larger than the minute resistor and smaller than the permanent current switch in the normal conduction state. A superconducting magnet device having a consumable protection resistor, comprising a magnetic field sensor for detecting a magnetic field formed by a superconducting coil, wherein the minute resistor or the protection resistor is a current flowing from the exciting power source to the superconducting coil. The resistance value can be adjusted based on the detection value of the magnetic field sensor so that the current value of 1 becomes constant.

本発明の実施形態によれば、励磁電源から超電導コイルへ定格電流を供給する定常時に超電導コイルに異常が発生して電流の供給を緊急遮断した際に、超電導コイルの磁気エネルギを早期に消費して超電導コイルの健全性を確保できる。また、本発明の実施形態によれば、超電導コイルが形成する磁場を長期間に亘って安定化できる。   According to the embodiment of the present invention, the magnetic energy of the superconducting coil is consumed early when an abnormality occurs in the superconducting coil during the steady state in which the rated current is supplied from the exciting power source to the superconducting coil and the current supply is cut off urgently. The soundness of the superconducting coil can be secured. Further, according to the embodiment of the present invention, the magnetic field formed by the superconducting coil can be stabilized for a long period of time.

第1実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図。The electric circuit diagram which shows the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus concerning 1st Embodiment was applied. 第2実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図。The electric circuit diagram which shows the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus concerning 2nd Embodiment was applied. 第3実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチを示す斜視図。The perspective view which shows the permanent current switch of the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus concerning 3rd Embodiment was applied. 第4実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチを示し、(A)がその斜視図、(B)が束ねて巻かれる前の高温超電導テープ線材等の斜視図。The permanent-current switch of the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus concerning 4th Embodiment is applied is shown, (A) is the perspective view, (B) is a perspective view of the high temperature superconducting tape wire rod etc. before being bundled and wound. . 第5実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチ及び微小抵抗体を示し、(A)がその斜視図、(B)が束ねて巻かれる前の高温超電導テープ線材及び常伝導金属テープ線材などの斜視図、(C)が高温超電導テープ線材等の断面図、(D)が常伝導金属テープ線材の断面図。The permanent-current switch and the microresistor of the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus according to the fifth embodiment is applied are shown, (A) is a perspective view thereof, and (B) is a high temperature superconducting tape wire before being bundled and wound. And a perspective view of the normal conductive metal tape wire, etc., (C) a cross-sectional view of the high temperature superconducting tape wire, etc., (D) a cross-sectional view of the normal metal tape wire. 第6実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図。The electric circuit diagram which shows the high temperature superconducting magnet apparatus to which the superconducting magnet apparatus concerning 6th Embodiment was applied. 図6の高温超電導磁石装置の変形形態を示す電気回路図。The electric circuit diagram which shows the modification of the high temperature superconducting magnet apparatus of FIG. 従来の高温超電導磁石装置を示す電気回路図。The electric circuit diagram which shows the conventional high temperature superconducting magnet apparatus.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1)
図1は、第1実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図である。この図1に示す超電導磁石装置としての高温超電導磁石装置10は、断熱真空槽である真空容器11と、この真空容器11内に設けられた輻射シールド12内に配置された超電導コイルとしての高温超電導コイル13、永久電流スイッチ14及び微小抵抗体15と、真空容器11外の室温領域に設置された励磁電源16及び保護抵抗17と、真空容器11に設置された冷凍機18と、を有して構成される。
Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (FIG. 1)
FIG. 1 is an electric circuit diagram showing a high temperature superconducting magnet device to which the superconducting magnet device according to the first embodiment is applied. A high temperature superconducting magnet device 10 as a superconducting magnet device shown in FIG. 1 includes a vacuum container 11 which is an adiabatic vacuum tank, and a high temperature superconducting coil which is a superconducting coil arranged in a radiation shield 12 provided in the vacuum container 11. The coil 13, the permanent current switch 14 and the minute resistor 15, the excitation power supply 16 and the protection resistor 17 installed in the room temperature region outside the vacuum container 11, and the refrigerator 18 installed in the vacuum container 11 are provided. Composed.

冷凍機18は、第1段冷却ステージ18Aにより輻射シールド12を例えば50Kレベルに冷却し、第2段冷却ステージ18Bにより伝熱板19を介して高温超電導コイル13を、伝熱板19及び20を介して永久電流スイッチ14をそれぞれ例えば20Kレベル以下に冷却する。ここで、伝熱板19は、熱伝導率の高い金属で構成される。また、伝熱板20は、伝熱板19に比べて熱抵抗の高い金属で構成される。この伝熱板20の熱抵抗は、永久電流スイッチ14の温度上昇時にこの永久電流スイッチ14から高温超電導コイル13への熱流入量が小さくなり、且つ永久電流スイッチ14の再冷却時に冷凍機18による再冷却時間が短かくなるような最適な値に設定される。   The refrigerator 18 cools the radiation shield 12 to, for example, a level of 50K by the first cooling stage 18A, and the high temperature superconducting coil 13 by the second cooling stage 18B via the heat transfer plate 19 and the heat transfer plates 19 and 20. Each of the permanent current switches 14 is cooled to, for example, a level of 20 K or less via the above. Here, the heat transfer plate 19 is made of a metal having a high thermal conductivity. The heat transfer plate 20 is made of a metal having a higher thermal resistance than the heat transfer plate 19. The heat resistance of the heat transfer plate 20 is such that the heat inflow amount from the permanent current switch 14 to the high temperature superconducting coil 13 becomes small when the temperature of the permanent current switch 14 rises, and the refrigerating machine 18 makes the permanent current switch 14 cool again. The optimum value is set so that the recooling time becomes short.

励磁電源16は、高温超電導コイル13に電流リード21を介して接続され、高温超電導コイル13へ電流を供給してこの高温超電導コイル13を励磁する。また、高温超電導コイル13は、高温超電導線材にて構成され、励磁電源16からの電流の供給により磁場を形成する。高温超電導線材としては、例えばBiSrCaCu10線材やREBaCuO線材が挙げられる。また、高温超電導コイル13には、高温超電導線材の接続抵抗などに起因する電気抵抗が抵抗成分22として存在する。 The excitation power supply 16 is connected to the high temperature superconducting coil 13 via a current lead 21, and supplies a current to the high temperature superconducting coil 13 to excite the high temperature superconducting coil 13. The high-temperature superconducting coil 13 is made of a high-temperature superconducting wire and forms a magnetic field by supplying an electric current from the exciting power supply 16. Examples of the high-temperature superconducting wire include Bi 2 Sr 2 Ca 2 Cu 3 O 10 wire and REBaCuO 7 wire. Further, in the high temperature superconducting coil 13, an electric resistance due to the connection resistance of the high temperature superconducting wire or the like exists as a resistance component 22.

永久電流スイッチ14は、高温超電導コイル13に電気的に並列に接続されて、高温超電導コイル13及び微小抵抗体15(後に詳説)と共に閉ループ23を形成する。また、この永久電流スイッチ14は高温超電導材にて構成され、好ましくは高温超電導コイル13と同様な高温超電導線材にて構成される。   The persistent current switch 14 is electrically connected to the high temperature superconducting coil 13 in parallel, and forms a closed loop 23 together with the high temperature superconducting coil 13 and the minute resistor 15 (detailed later). The permanent current switch 14 is made of a high temperature superconducting material, preferably a high temperature superconducting wire similar to the high temperature superconducting coil 13.

永久電流スイッチ14には昇温ヒータ24が、電気的には絶縁されているが、熱的に接続されている。この昇温ヒータ24は、電流リード25を介して電気的に接続されたヒータ電源26から電流が供給されることで独立してON作動し、永久電流スイッチ14を加熱して臨界温度以上に昇温させる。これにより、永久電流スイッチ14が超電導状態(ON)から常伝導状態(OFF)へ移行する。ここで、昇温ヒータ24は輻射シールド12内に配置され、ヒータ電源26は真空容器11外の室温領域に配置される。   A heating heater 24 is electrically connected to the permanent current switch 14 although it is electrically insulated. The heating heater 24 is independently turned on by supplying a current from a heater power supply 26 electrically connected through a current lead 25, heats the permanent current switch 14 and raises the temperature above a critical temperature. Let it warm. As a result, the persistent current switch 14 shifts from the superconducting state (ON) to the normal conducting state (OFF). Here, the temperature raising heater 24 is arranged inside the radiation shield 12, and the heater power supply 26 is arranged outside the vacuum container 11 in a room temperature region.

微小抵抗体15は、永久電流スイッチ14に電気的に直列に接続されると共に、高温超電導コイル13に電気的に並列に接続される。この微小抵抗体15は、励磁電源16から高温超電導コイル13へ定格電流が供給される定常時に、励磁電源16から出力される電流を高温超電導コイル13側と永久電流スイッチ14側とに分流する分流比を決定する。つまり、微小抵抗体15は、定常時に自身(微小抵抗体15)に分流させたい電流値となるような抵抗値で且つ高温超電導コイル13の抵抗成分22よりも大きな抵抗値に設定される。定常時に励磁電源16から出力される電流が微小抵抗体15に分流して流れることで、励磁電源16から出力される電流に時間的変動がある場合でも、その変動分を微小抵抗体15が吸収して、高温超電導コイル13に流れる電流の電流値を一定にする。   The minute resistor 15 is electrically connected in series to the persistent current switch 14 and electrically connected in parallel to the high temperature superconducting coil 13. The minute resistor 15 is a shunt that divides the current output from the exciting power source 16 into the high temperature superconducting coil 13 side and the permanent current switch 14 side during a steady state when the rated current is supplied from the exciting power source 16 to the high temperature superconducting coil 13. Determine the ratio. That is, the minute resistor 15 is set to have a resistance value that is a current value desired to be shunted to itself (the minute resistor 15) in a steady state and larger than the resistance component 22 of the high temperature superconducting coil 13. When the current output from the excitation power supply 16 is shunted to the minute resistor 15 in a steady state and flows, the minute resistor 15 absorbs the variation even if the current output from the excitation power source 16 changes with time. Then, the current value of the current flowing through the high temperature superconducting coil 13 is made constant.

保護抵抗17は励磁電源16、及びこの励磁電源16に電気的に直列に接続された遮断器27に電気的に並列に接続される。保護抵抗17の抵抗値は、微小抵抗体15の抵抗値よりも大きく、且つ常伝導状態(OFF)の永久電流スイッチ14の抵抗値よりも小さく設定される。これにより、定常時に高温超電導コイル13に異常が発生して遮断器27が励磁電源16を緊急遮断した際に、永久電流スイッチ14が常伝導状態(OFF)へ移行している場合には、高温超電導コイル13を流れる電流が保護抵抗17に導かれて、この保護抵抗17が高温超電導コイル13の磁気エネルギを消費する。尚、遮断器27は、真空容器11外の室温領域に配置されている。また、図1中の符号28は熱アンカーを示す。   The protection resistor 17 is electrically connected in parallel to the excitation power supply 16 and a circuit breaker 27 electrically connected in series to the excitation power supply 16. The resistance value of the protection resistor 17 is set to be larger than the resistance value of the minute resistor 15 and smaller than the resistance value of the permanent current switch 14 in the normal conduction state (OFF). As a result, when the high-temperature superconducting coil 13 is abnormally generated in a steady state and the circuit breaker 27 urgently cuts off the excitation power supply 16, when the permanent current switch 14 is in the normal conduction state (OFF), The current flowing through the superconducting coil 13 is guided to the protective resistor 17, and the protective resistor 17 consumes the magnetic energy of the high temperature superconducting coil 13. The circuit breaker 27 is arranged outside the vacuum container 11 in a room temperature region. Reference numeral 28 in FIG. 1 indicates a thermal anchor.

ところで、本第1実施形態では、微小抵抗体15は、永久電流スイッチ14に電気的に直列に接続されると共に、この永久電流スイッチ14に熱的に接続されて、微小抵抗体15に電流が流れた際の発熱が永久電流スイッチ14に伝熱されるように構成されている。つまり、遮断器27による励磁電源16の緊急遮断時には、永久電流スイッチ14が未だ超電導状態(ON)にあるので、高温超電導コイル13に流れる電流は閉ループ23を流れる。また、高温超電導コイル13に流れる電流は、定格電流に近い電流であるため、閉ループ23の微小抵抗体15に流れることで、この微小抵抗体15が発熱する。そして、微小抵抗体15の熱が永久電流スイッチ14に伝熱されることで、この永久電流スイッチ14を超電導状態(ON)から常伝導状態(OFF)へと早期に且つ迅速に移行させることが可能になる。   By the way, in the first embodiment, the minute resistor 15 is electrically connected to the permanent current switch 14 in series, and is thermally connected to the permanent current switch 14 so that a current flows to the minute resistor 15. The heat generated when flowing is transferred to the permanent current switch 14. That is, when the exciting power supply 16 is shut off by the circuit breaker 27 in an emergency, the permanent current switch 14 is still in the superconducting state (ON), so that the current flowing through the high temperature superconducting coil 13 flows through the closed loop 23. Since the current flowing through the high temperature superconducting coil 13 is close to the rated current, it flows through the minute resistor 15 in the closed loop 23, so that the minute resistor 15 generates heat. Then, the heat of the minute resistor 15 is transferred to the permanent current switch 14, so that the permanent current switch 14 can be moved from the superconducting state (ON) to the normal conducting state (OFF) early and quickly. become.

次に、高温超電導磁石装置10の作用を説明する。
高温超電導コイル13の励磁時には昇温ヒータ24がON作動して、永久電流スイッチ14は昇温されて常伝導状態(OFF)にある。この状態では、励磁電源16からの電流は永久電流スイッチ14側には分流せず、高温超電導コイル13のみへ流れて、この高温超電導コイル13が磁場を形成する。
Next, the operation of the high temperature superconducting magnet device 10 will be described.
When the high temperature superconducting coil 13 is excited, the temperature raising heater 24 is turned on, and the permanent current switch 14 is heated and is in the normal conduction state (OFF). In this state, the current from the exciting power supply 16 does not shunt to the permanent current switch 14 side but flows only to the high temperature superconducting coil 13, and the high temperature superconducting coil 13 forms a magnetic field.

高温超電導コイル13へ定格電流を流す定常時には昇温ヒータ24がOFF作動して、永久電流スイッチ14は超電導状態(ON)にある。この状態では、励磁電源16からの電流は、微小抵抗体15の抵抗値によって定められた分流比に従って、高温超電導コイル13(抵抗成分22を含む)と永久電流スイッチ14及び微小抵抗体15とへ分流して流れる。これにより、高温超電導コイル13に電流値が一定の電流が流れて、この高温超電導コイル13が安定した磁場を形成する。   During a steady state in which the rated current is supplied to the high temperature superconducting coil 13, the temperature raising heater 24 is turned off and the permanent current switch 14 is in the superconducting state (ON). In this state, the current from the excitation power source 16 is supplied to the high temperature superconducting coil 13 (including the resistance component 22), the persistent current switch 14 and the minute resistor 15 according to the shunt ratio determined by the resistance value of the minute resistor 15. It splits and flows. As a result, a current having a constant current value flows through the high temperature superconducting coil 13, and the high temperature superconducting coil 13 forms a stable magnetic field.

定常時に高温超電導コイル13に異常が発生して遮断器27が励磁電源16を緊急遮断した際には、昇温ヒータ24がON作動して永久電流スイッチ14が加熱される。ところが、この永久電流スイッチ14が加熱されて常伝導状態(OFF)になるまでは、高温超電導コイル13に流れる電流(定格電流の電流値に近い電流)は、超電導状態(ON)の永久電流スイッチ14の抵抗値が保護抵抗17よりも小さいので、高温超電導コイル13(抵抗成分22を含む)、永久電流スイッチ14及び微小抵抗体15を備えた閉ループ23を流れる。   When an abnormality occurs in the high temperature superconducting coil 13 in a steady state and the circuit breaker 27 urgently cuts off the exciting power source 16, the temperature raising heater 24 is turned on and the permanent current switch 14 is heated. However, until the permanent current switch 14 is heated to the normal conduction state (OFF), the current flowing through the high temperature superconducting coil 13 (current close to the rated current value) is the superconducting state (ON) persistent current switch. Since the resistance value of 14 is smaller than that of the protective resistance 17, the current flows through the closed loop 23 including the high temperature superconducting coil 13 (including the resistance component 22), the persistent current switch 14 and the minute resistor 15.

このとき、閉ループ23の微小抵抗体15で生じた熱が永久電流スイッチ14を加熱するので、永久電流スイッチ14が常伝導状態(OFF)へ移行するまでの時間を短縮させることが可能になる。これにより、昇温ヒータ24による加熱と相俟って、遮断器27による励磁電源16の緊急遮断時に永久電流スイッチ14が迅速に常伝導状態(OFF)になり、高温超電導コイル13を流れる電流は保護抵抗17へ早期に流れる。この保護抵抗17により永久電流スイッチ14の磁気エネルギが消費されて、高温超電導コイル13を流れる電流は減衰する。   At this time, since the heat generated by the minute resistor 15 of the closed loop 23 heats the permanent current switch 14, it is possible to shorten the time until the permanent current switch 14 shifts to the normal conduction state (OFF). As a result, in combination with the heating by the temperature raising heater 24, the permanent current switch 14 quickly becomes the normal conduction state (OFF) when the exciting power source 16 is emergency cut off by the circuit breaker 27, and the current flowing through the high temperature superconducting coil 13 is reduced. It flows to the protection resistor 17 early. The protection resistor 17 consumes the magnetic energy of the permanent current switch 14, and the current flowing through the high temperature superconducting coil 13 is attenuated.

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)及び(2)を奏する。
(1)励磁電源16から高温超電導コイル13へ定格電流を供給する定常時に高温超電導コイル13に異常が発生して励磁電源16を緊急遮断した際には、未だ臨界温度未満で超電導状態(ON)にある永久電流スイッチ14に電気的に直列接続された微小抵抗体15に定格電流に近い電流値の電流が流れて、微小抵抗体15は急速に温度が上昇して発熱する。このとき、微小抵抗体15が永久電流スイッチ14に熱的に接続されているので、この微小抵抗体15の発熱が永久電流スイッチ14に伝熱されて、永久電流スイッチ14は早期に昇温され、昇温ヒータ24による加熱と相俟って、短時間に臨界温度以上になって常伝導状態(OFF)になる。
With the above configuration, according to the first embodiment, the following effects (1) and (2) are obtained.
(1) When the high-temperature superconducting coil 13 has an abnormality during the steady state in which the rated current is supplied from the exciting power source 16 to the high-temperature superconducting coil 13 and the exciting power source 16 is urgently shut off, the superconducting state is still below the critical temperature (ON). A current having a current value close to the rated current flows through the minute resistor 15 electrically connected in series with the permanent current switch 14 at, and the temperature of the minute resistor 15 rapidly rises to generate heat. At this time, since the minute resistor 15 is thermally connected to the permanent current switch 14, the heat generated by the minute resistor 15 is transferred to the permanent current switch 14, and the temperature of the permanent current switch 14 is raised early. In combination with the heating by the temperature raising heater 24, the temperature rises above the critical temperature in a short time to enter the normal conduction state (OFF).

この常伝導状態の永久電流スイッチ14の抵抗値が保護抵抗17より大きく設定されていることから、高温超電導コイル13を流れる電流は、保護抵抗17へ迅速に流れて、この保護抵抗17により高温超電導コイル13の磁気エネルギが早期に消費されて上記電流が減衰する。この結果、高温超電導コイル13の焼損や劣化を確実に防止でき、高温超電導コイル13の健全性を確保できる。   Since the resistance value of the permanent current switch 14 in the normal conduction state is set to be larger than that of the protection resistor 17, the current flowing through the high temperature superconducting coil 13 quickly flows to the protection resistor 17, and the protection resistor 17 causes the high temperature superconducting The magnetic energy of the coil 13 is consumed early and the current is attenuated. As a result, burning and deterioration of the high temperature superconducting coil 13 can be reliably prevented, and the soundness of the high temperature superconducting coil 13 can be secured.

(2)微小抵抗体15が永久電流スイッチ14に熱的に接続されて、この微小抵抗体15により永久電流スイッチ14が昇温されるので、永久電流スイッチ14を昇温させる昇温ヒータ24が故障の場合でも対処でき、バックアップヒータが不要になって、永久電流スイッチ14の構成を簡素化できる。   (2) Since the minute resistor 15 is thermally connected to the permanent current switch 14 and the temperature of the permanent current switch 14 is raised by the minute resistor 15, the temperature raising heater 24 for raising the temperature of the permanent current switch 14 is A failure can be dealt with, a backup heater is not required, and the configuration of the permanent current switch 14 can be simplified.

(B)第2実施形態(図2)
図2は、第2実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
(B) Second embodiment (FIG. 2)
FIG. 2 is an electric circuit diagram showing a high temperature superconducting magnet device to which the superconducting magnet device according to the second embodiment is applied. In the second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態における超電導磁石装置としての高温超電導磁石装置30が第1実施形態と異なる点は、永久電流スイッチ14を昇温させる昇温ヒータ24、並びにこの昇温ヒータ24へ電流を供給する電流リード25及びヒータ電源26が省略され、永久電流スイッチ14の昇温が微小抵抗体15のみにより実施される点である。   The high-temperature superconducting magnet device 30 as the superconducting magnet device in the second embodiment is different from that of the first embodiment in that the temperature raising heater 24 that raises the temperature of the permanent current switch 14 and current is supplied to the temperature raising heater 24. The current lead 25 and the heater power supply 26 are omitted, and the temperature of the permanent current switch 14 is raised only by the minute resistor 15.

高温超電導磁石装置30における高温超電導コイル13の励磁時には、高温超電導コイル13へ供給される電流が徐々に増大するので、高温超電導コイル13のインダクタンスにより誘導電圧が発生する。このため、抵抗成分22を含む高温超電導コイル13の両端電圧が大きくなり、微小抵抗体15に大電流が流れて微小抵抗体15が発熱する。永久電流スイッチ14は、この微小抵抗体15の発熱により昇温されて常伝導状態(OFF)になり、励磁電源16からの電流は、永久電流スイッチ14側へは分流せずに高温超電導コイル13のみに流れ、高温超電導コイル13が磁場を形成する。   When the high temperature superconducting coil 13 in the high temperature superconducting magnet device 30 is excited, the current supplied to the high temperature superconducting coil 13 gradually increases, so that an induction voltage is generated by the inductance of the high temperature superconducting coil 13. Therefore, the voltage across the high-temperature superconducting coil 13 including the resistance component 22 increases, and a large current flows through the minute resistor 15 to heat the minute resistor 15. The permanent current switch 14 is heated to the normal conduction state (OFF) due to the heat generated by the minute resistor 15, and the current from the exciting power supply 16 is not shunted to the permanent current switch 14 side, but the high temperature superconducting coil 13 is shunted. Flowing in only the high temperature superconducting coil 13 forms a magnetic field.

高温超電導コイル13へ定格電流が流れる定常時には、高温超電導コイル13に誘導電圧が発生せず、また、永久電流スイッチ14は超電導状態(ON)にある。従って、励磁電源16からの電流は、微小抵抗体15の抵抗値によって定められた分流比に従って、高温超電導コイル13(抵抗成分22を含む)と永久電流スイッチ14及び微小抵抗体15とへ分流して流れる。これにより、高温超電導コイル13へ電流値が一定の電流が流れて、高温超電導コイル13が安定した磁場を形成する。   During a steady state in which the rated current flows through the high temperature superconducting coil 13, no induced voltage is generated in the high temperature superconducting coil 13, and the permanent current switch 14 is in the superconducting state (ON). Therefore, the current from the excitation power supply 16 is shunted to the high temperature superconducting coil 13 (including the resistance component 22), the persistent current switch 14 and the micro resistor 15 according to the shunt ratio determined by the resistance value of the micro resistor 15. Flowing. As a result, a current having a constant current value flows through the high temperature superconducting coil 13, and the high temperature superconducting coil 13 forms a stable magnetic field.

定常時に高温超電導コイル13に異常が発生して遮断器27が励磁電源16を緊急遮断した際には、高温超電導コイル13に流れる電流は、微小抵抗体15の抵抗値が保護抵抗17よりも小さいので、永久電流スイッチ14及び微小抵抗体15を含む閉ループ23に流れる。このとき、微小抵抗体15には、定格電流に近い大電流が流れることになるので、微小抵抗体15は発熱して永久電流スイッチ14を昇温させ、この永久電流スイッチ14を常伝導状態(OFF)とする。これにより、高温超電導コイル13に流れる電流が保護抵抗17へ流れ、この保護抵抗17により高温超電導コイル13の磁気エネルギが消費されて、高温超電導コイル13を流れる電流は減衰する。   When an abnormality occurs in the high-temperature superconducting coil 13 in a steady state and the breaker 27 urgently cuts off the exciting power supply 16, the current flowing through the high-temperature superconducting coil 13 has a resistance value of the minute resistor 15 smaller than that of the protective resistor 17. Therefore, the current flows in the closed loop 23 including the permanent current switch 14 and the minute resistor 15. At this time, since a large current close to the rated current flows through the minute resistor 15, the minute resistor 15 generates heat to raise the temperature of the permanent current switch 14, and the permanent current switch 14 is in the normal conduction state ( OFF). As a result, the current flowing through the high temperature superconducting coil 13 flows to the protective resistor 17, the protective resistor 17 consumes the magnetic energy of the high temperature superconducting coil 13, and the current flowing through the high temperature superconducting coil 13 is attenuated.

以上のように、本第2実施形態においても第1実施形態の効果(1)と同様な次の効果(3)を奏するほか、効果(4)を奏する。   As described above, also in the second embodiment, the following effect (3) similar to the effect (1) of the first embodiment is achieved, and also the effect (4) is achieved.

(3)微小抵抗体15が永久電流スイッチ14と熱的に接続され、遮断器27による励磁電源16の緊急遮断時に微小抵抗体15の発熱が永久電流スイッチ14を早期に昇温させて常伝導状態(OFF)とし、高温超電導コイル13に流れる電流を迅速に保護抵抗17へ導いて減衰させる。この結果、高温超電導コイル13の焼損や劣化を防止でき、高温超電導コイル13の健全性を確保できる。   (3) The minute resistor 15 is thermally connected to the permanent current switch 14, and when the circuit breaker 27 shuts off the excitation power supply 16 in an emergency, the heat generated by the minute resistor 15 causes the permanent current switch 14 to rise in temperature early and is normally conducted. In the state (OFF), the current flowing through the high temperature superconducting coil 13 is quickly guided to the protection resistor 17 and attenuated. As a result, burning and deterioration of the high temperature superconducting coil 13 can be prevented, and the soundness of the high temperature superconducting coil 13 can be secured.

(4)本第2実施形態によれば、第1実施形態に比べて、昇温ヒータ24、電流リード25及びヒータ電源26が省略されたことで、永久電流スイッチ14の構成を簡素化でき、高温超電導磁石装置30の取扱いの簡便性を向上させることができる。   (4) According to the second embodiment, as compared with the first embodiment, the temperature raising heater 24, the current lead 25, and the heater power supply 26 are omitted, so that the configuration of the permanent current switch 14 can be simplified, It is possible to improve the ease of handling the high temperature superconducting magnet device 30.

[C]第3実施形態(図3)
図3は、第3実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチを示す斜視図である。この第3実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 3)
FIG. 3 is a perspective view showing a permanent current switch of a high temperature superconducting magnet device to which the superconducting magnet device according to the third embodiment is applied. In the third embodiment, the same parts as those in the first embodiment will be denoted by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第3実施形態の超電導磁石装置としての高温超電導磁石装置33が第1実施形態と異なる点は、高温超電導磁石装置33の永久電流スイッチ34が、テープ形状の高温超電導テープ線材35を巻き回して高温超電導パンケーキコイル36を形成し、この高温超電導パンケーキコイル36を偶数個積層して無誘導コイルとして構成された点である。   The high temperature superconducting magnet device 33 as the superconducting magnet device of the third embodiment is different from the first embodiment in that the permanent current switch 34 of the high temperature superconducting magnet device 33 winds a tape-shaped high temperature superconducting tape wire 35. The high-temperature superconducting pancake coil 36 is formed, and an even number of the high-temperature superconducting pancake coils 36 are laminated to form a non-inductive coil.

各高温超電導テープ線材35の端部は、図3に示すように高温超電導パンケーキコイル36が2個積層された場合には、高温超電導テープ線材35の内側端部が接続板37により電気的に接続される。また、高温超電導パンケーキコイル36が偶数個積層されたことで、各高温超電導パンケーキコイル36の高温超電導テープ線材35に電流が流れたときに、対となる高温超電導パンケーキコイル36にそれぞれ生ずる磁場Bが逆向きになって相殺され、永久電流スイッチ34は、誘導電圧が発生しない無誘導コイルになる。   When two high temperature superconducting pancake coils 36 are stacked as shown in FIG. 3, the end of each high temperature superconducting tape wire 35 is electrically connected to the inner end of the high temperature superconducting tape wire 35 by the connecting plate 37. Connected. Further, by stacking an even number of high-temperature superconducting pancake coils 36, when a current flows through the high-temperature superconducting tape wire material 35 of each high-temperature superconducting pancake coil 36, the high-temperature superconducting pancake coils 36 respectively generate a pair. The magnetic field B reverses and cancels out, and the permanent current switch 34 becomes a non-inductive coil in which no induced voltage is generated.

以上のように構成されたことから、本第3実施形態の永久電流スイッチ34によれば、次の効果(5)及び(6)を奏する。
(5)永久電流スイッチ34が、高温超電導テープ線材35を巻き回して形成される高温超電導パンケーキコイル36にて構成されたので、高温超電導テープ線材35の長さを自由に設定できる。このため、永久電流スイッチ34が常伝導状態(OFF)になるときの永久電流スイッチ34の抵抗値を自由に設定できるので、永久電流スイッチ34を様々な仕様の高温超電導コイル13に適合させて設計することができる。
With the configuration described above, the persistent current switch 34 of the third embodiment has the following effects (5) and (6).
(5) Since the permanent current switch 34 is configured by the high temperature superconducting pancake coil 36 formed by winding the high temperature superconducting tape wire 35, the length of the high temperature superconducting tape wire 35 can be freely set. Therefore, since the resistance value of the permanent current switch 34 when the permanent current switch 34 is in the normal conduction state (OFF) can be freely set, the permanent current switch 34 is designed by being adapted to the high temperature superconducting coil 13 of various specifications. can do.

(6)永久電流スイッチ34が、偶数個の高温超電導パンケーキコイル36を積層して無誘導コイルに構成されたことから、永久電流スイッチ34に流れる電流値を変化させた際にも誘導電圧が発生しない。このため、永久電流スイッチ34が超電導状態(ON)になる動作と常伝導状態(OFF)になる動作とを短時間に切り替えることができる。更に、永久電流スイッチ34が無誘導コイルに構成されたことで、永久電流スイッチ34は、高温超電導コイル13に近い位置に設置された場合であっても、この高温超電導コイル13に発生する磁場から受ける力を相殺することができる。   (6) Since the permanent current switch 34 is configured as a non-inductive coil by stacking an even number of high-temperature superconducting pancake coils 36, the induced voltage remains unchanged even when the current value flowing through the permanent current switch 34 is changed. Does not occur. Therefore, the operation in which the permanent current switch 34 is in the superconducting state (ON) and the operation in which it is in the normal conduction state (OFF) can be switched in a short time. Further, since the permanent current switch 34 is configured as a non-inductive coil, the permanent current switch 34 is protected from the magnetic field generated in the high temperature superconducting coil 13 even when it is installed in a position close to the high temperature superconducting coil 13. You can offset the force you receive.

[D]第4実施形態(図4)
図4は、第4実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチを示し、(A)がその斜視図、(B)が束ねて巻かれる前の高温超電導テープ線材等の斜視図である。この第4実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 4)
FIG. 4 shows a permanent current switch of a high-temperature superconducting magnet device to which the superconducting magnet device according to the fourth embodiment is applied. (A) is a perspective view thereof, and (B) is a high-temperature superconducting tape wire rod before being bundled and wound. FIG. In the fourth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第4実施形態の超電導磁石装置としての高温超電導磁石装置40が第1実施形態と異なる点は、高温超電導磁石装置40の永久電流スイッチ41が、テープ形状の2本の高温超電導テープ線材(内側高温超電導テープ線材42、外側高温超電導テープ線材43)を、一端を接続し、絶縁テープ44を介在させて束ねて同時に巻き回した高温超電導パンケーキコイル45として構成された点である。   The high-temperature superconducting magnet device 40 as the superconducting magnet device of the fourth embodiment is different from the first embodiment in that the permanent current switch 41 of the high-temperature superconducting magnet device 40 has two tape-shaped high-temperature superconducting tape wires (inner side). The point is that the high temperature superconducting tape wire 42 and the outer high temperature superconducting tape wire 43) are connected at one end, bundled with an insulating tape 44 interposed therebetween, and wound together to form a high temperature superconducting pancake coil 45.

つまり、図4(B)に示すように、内側高温超電導テープ線材42及び外側高温超電導テープ線材43は、それぞれの一端を接続して接続端部46とし、この接続端部46を内側にし且つ絶縁テープ44を介在させて、束ねて同時にパンケーキ状に巻き回して図4(A)に示す高温超電導パンケーキコイル45を形成し、この高温超電導パンケーキコイル45を永久電流スイッチ41として構成する。   That is, as shown in FIG. 4B, one end of each of the inner high temperature superconducting tape wire 42 and the outer high temperature superconducting tape wire 43 is connected to form a connecting end 46, and the connecting end 46 is placed inside and insulated. The tape 44 is interposed, and the bundles are bundled and simultaneously wound in a pancake shape to form a high-temperature superconducting pancake coil 45 shown in FIG. 4 (A), and the high-temperature superconducting pancake coil 45 is configured as a permanent current switch 41.

この高温超電導パンケーキコイル(永久電流スイッチ41)では、内側高温超電導テープ線材42と外側高温超電導テープ線材43のそれぞれにおける接続端部46と反対の外側の端部が電極47、48になる。高温超電導パンケーキコイル45(永久電流スイッチ41)は、内側高温超電導テープ線材42と外側高温超電導テープ線材43とに逆向きに電流Iが流れることになるので、無誘導コイルとして構成される。   In this high-temperature superconducting pancake coil (permanent current switch 41), the outer ends of the inner high-temperature superconducting tape wire 42 and the outer high-temperature superconducting tape wire 43, which are opposite to the connecting ends 46, are electrodes 47, 48. The high-temperature superconducting pancake coil 45 (permanent current switch 41) is configured as a non-induction coil because the current I flows in the opposite direction to the inner high-temperature superconducting tape wire 42 and the outer high-temperature superconducting tape wire 43.

以上のように構成されたことから、本第4実施形態の永久電流スイッチ41によれば、第3実施形態の効果(5)及び(6)と同様な効果を奏するほか、次の効果(7)を奏する。   With the configuration as described above, according to the persistent current switch 41 of the fourth embodiment, in addition to the same effects as the effects (5) and (6) of the third embodiment, the following effect (7) is obtained. ) Is played.

(7)永久電流スイッチ41が一層の高温超電導パンケーキコイル45にて構成されたので、構成を簡素化できると共に、永久電流スイッチ41が複数層の高温超電導パンケーキコイルから構成される場合に比べて、微小抵抗体15または昇温ヒータ24による温度制御を容易化できる。即ち、永久電流スイッチ41が一層の高温超電導パンケーキコイル45にて構成される場合には、この高温超電導パンケーキコイル45を形成する内側高温超電導テープ線材42及び外側高温超電導テープ線材43を微小抵抗体15または昇温ヒータ24により均一に加熱することができる。このため、内側高温超電導テープ線材42及び外側高温超電導テープ線材43の温度の不均一が抑制されて、高温超電導パンケーキコイル45(永久電流スイッチ41)を容易に温度制御できる。   (7) Since the persistent current switch 41 is composed of one layer of high-temperature superconducting pancake coil 45, the configuration can be simplified and compared to the case where the persistent current switch 41 is composed of a plurality of layers of high-temperature superconducting pancake coil. Thus, the temperature control by the minute resistor 15 or the temperature raising heater 24 can be facilitated. That is, when the permanent current switch 41 is composed of one layer of the high temperature superconducting pancake coil 45, the inner high temperature superconducting tape wire 42 and the outer high temperature superconducting tape wire 43 which form the high temperature superconducting pancake coil 45 have a small resistance. It can be heated uniformly by the body 15 or the temperature raising heater 24. Therefore, the nonuniformity of the temperature of the inner high temperature superconducting tape wire 42 and the outer high temperature superconducting tape wire 43 is suppressed, and the temperature of the high temperature superconducting pancake coil 45 (permanent current switch 41) can be easily controlled.

[E]第5実施形態(図5)
図5は、第5実施形態に係る超電導磁石装置が適用された高温超電導磁石装置の永久電流スイッチ及び微小抵抗体を示し、(A)がその斜視図、(B)が束ねて巻かれる前の高温超電導テープ線材及び常伝導金属テープ線材などの斜視図、(C)が高温超電導テープ線材等の断面図、(D)が常伝導金属テープ線材の断面図である。この第5実施形態において、第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 5)
FIG. 5 shows a permanent current switch and a minute resistor of a high temperature superconducting magnet device to which the superconducting magnet device according to the fifth embodiment is applied. (A) is a perspective view thereof, and (B) is before being bundled and wound. FIG. 2 is a perspective view of a high-temperature superconducting tape wire rod, a normal-conducting metal tape wire rod, and the like, FIG. 6C is a cross-sectional view of the high-temperature superconducting tape wire rod, and FIG. In the fifth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第5実施形態の超電導磁石装置としての高温超電導磁石装置50が第1実施形態と異なる点は、高温超電導磁石装置50の永久電流スイッチ51が、微小抵抗体15の機能を備えた微小抵抗体52と一体化された点である。   The high-temperature superconducting magnet device 50 as the superconducting magnet device of the fifth embodiment is different from that of the first embodiment in that the persistent current switch 51 of the high-temperature superconducting magnet device 50 has a minute resistor having the function of the minute resistor 15. This is a point integrated with 52.

つまり、永久電流スイッチ51及び微小抵抗体52は、テープ形状の高温超電導テープ線材53と、テープ形状の常伝導金属テープ線材54とが、絶縁テープ55を介在させて束ねて同時に巻かれたパンケーキコイル56であり、高温超電導テープ線材53が永久電流スイッチ51として、常伝導金属テープ線材54が微小抵抗体52とし、それぞれ構成される。   That is, the permanent current switch 51 and the minute resistor 52 are pancakes in which a tape-shaped high-temperature superconducting tape wire 53 and a tape-shaped normal-conducting metal tape wire 54 are bundled together with an insulating tape 55 interposed therebetween and rolled together. The coil 56 is composed of the high-temperature superconducting tape wire 53 as the permanent current switch 51 and the normal-conducting metal tape wire 54 as the minute resistor 52.

具体的には、図5(B)に示すように、高温超電導テープ線材53及び常伝導金属テープ線材54は、それぞれの一端を接続して接続端部57とし、この接続端部57を内側にし且つ絶縁テープ55を介在させて、束ねて同時にパンケーキ状に巻き回して図5(A)に示すパンケーキコイル56を形成する。高温超電導テープ線材53及び常伝導金属テープ線材54の外側の一方の端部(つまり高温超電導テープ線材53の外側の端部)が永久電流スイッチ51の電極58になり、高温超電導テープ線材53及び常伝導金属テープ線材54の外側の他方の端部(つまり常伝導金属テープ線材54の外側の端部)が微小抵抗体52の端部59となる。   Specifically, as shown in FIG. 5 (B), the high-temperature superconducting tape wire rod 53 and the normal-conducting metal tape wire rod 54 are connected to each other at one end to form a connecting end 57, and the connecting end 57 is placed inside. In addition, the insulating tape 55 is interposed, and they are bundled and simultaneously wound in a pancake shape to form a pancake coil 56 shown in FIG. One end on the outside of the high-temperature superconducting tape wire 53 and the normal-conducting metal tape wire 54 (that is, the end on the outside of the high-temperature superconducting tape wire 53) becomes the electrode 58 of the permanent current switch 51, and the high-temperature superconducting tape wire 53 and the normal-conducting tape wire 53. The other outer end of the conductive metal tape wire 54 (that is, the outer end of the normal conductive metal tape wire 54) becomes the end 59 of the minute resistor 52.

更に、永久電流スイッチ51は、高温超電導テープ線材53と常伝導金属テープ線材54とに逆向きに電流Iが流れることになるので、無誘導コイルとして構成される。   Further, the permanent current switch 51 is configured as a non-inductive coil because the current I flows in the opposite direction to the high temperature superconducting tape wire rod 53 and the normal conducting metal tape wire rod 54.

また、永久電流スイッチ51を構成する高温超電導テープ線材53は、図5(C)に示すように基材60に貼着され、この基材60と共に保護層61により覆われて構成される。永久電流スイッチ51の常伝導導状態(OFF)の抵抗値は、保護層61の材質(例えば、銀(Ag)や銅(Cu)など)及び保護層61の厚さTの少なくとも1つが変更されることで調整される。また、微小抵抗体52の抵抗値は、図5(D)に示すように、常伝導金属テープ線材54の材質(例えば、銅(Cu)やステンレス鋼など)、その材質の純度、常伝導金属テープ線材54の厚さU及び常伝導金属テープ線材54の長さの少なくとも1つが変更されることで調整される。   The high-temperature superconducting tape wire 53 that constitutes the persistent current switch 51 is attached to a base material 60 as shown in FIG. 5C, and is covered with a protective layer 61 together with the base material 60. At least one of the material of the protective layer 61 (for example, silver (Ag) or copper (Cu)) and the thickness T of the protective layer 61 is changed so that the resistance value of the permanent current switch 51 in the normal conduction state (OFF) is changed. It is adjusted by As shown in FIG. 5D, the resistance value of the minute resistor 52 is determined by the material of the normal conductive metal tape wire 54 (for example, copper (Cu) or stainless steel), the purity of the material, and the normal conductive metal. It is adjusted by changing at least one of the thickness U of the tape wire rod 54 and the length of the normal conductive metal tape wire rod 54.

以上のように構成されたことから、本第5実施形態によれば、第3及び第4実施形態の効果(5)、(6)及び(7)と同様な効果を奏するほか、次の効果(8)及び(9)を奏する。   With the above configuration, according to the fifth embodiment, the same effects as the effects (5), (6), and (7) of the third and fourth embodiments are achieved, and the following effects are also provided. Play (8) and (9).

(8)微小抵抗体52を構成する常伝導金属テープ線材54が、永久電流スイッチ51を構成する高温超電導テープ線材53に、絶縁テープ55を介在させて面接触しているので、微小抵抗体52がヒータとして機能する際には、常伝導金属テープ線材54が高温超電導テープ線材53を全長に亘って均一に昇温させることができる。このため、永久電流スイッチ51及び微小抵抗体52の構成を簡素化できると共に、永久電流スイッチ51の熱容量を低減でき、永久電流スイッチ51が超電導状態(ON)になる動作と常伝導状態(OFF)になる動作とを短時間に切り替えることができる。   (8) Since the normal-conducting metal tape wire 54 that constitutes the minute resistor 52 is in surface contact with the high-temperature superconducting tape wire 53 that constitutes the permanent current switch 51 with the insulating tape 55 interposed, the minute resistor 52 is formed. When the above functions as a heater, the normal conductive metal tape wire 54 can uniformly raise the temperature of the high temperature superconducting tape wire 53 over the entire length. Therefore, the configurations of the persistent current switch 51 and the minute resistor 52 can be simplified, the heat capacity of the persistent current switch 51 can be reduced, and the operation in which the persistent current switch 51 is in the superconducting state (ON) and the normal conducting state (OFF). Can be switched in a short time.

(9)永久電流スイッチ51の常伝導状態(OFF)の抵抗値が調整可能に構成され、更に、微小抵抗体52の抵抗値が調整可能に構成されたので、様々な種類、大きさ、磁場強度の高温超電導コイル13に適合した永久電流スイッチ51及び微小抵抗体52を設計することができる。   (9) Since the resistance value of the permanent current switch 51 in the normal conduction state (OFF) is adjustable, and further, the resistance value of the minute resistor 52 is adjustable, various types, sizes, and magnetic fields can be obtained. It is possible to design the persistent current switch 51 and the minute resistor 52 that are suitable for the high temperature superconducting coil 13 of high strength.

[F]第6実施形態(図6、図7)
図6は、第6実施形態に係る超電導磁石装置が適用された高温超電導磁石装置を示す電気回路図である。また、図7は、図6の高温超電導磁石装置の変形形態を示す電気回路図である。この第6実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[F] Sixth embodiment (FIGS. 6 and 7)
FIG. 6 is an electric circuit diagram showing a high temperature superconducting magnet device to which the superconducting magnet device according to the sixth embodiment is applied. FIG. 7 is an electric circuit diagram showing a modification of the high temperature superconducting magnet device of FIG. In the sixth embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第6実施形態の超電導磁石装置としての高温超電導磁石装置65が第1実施形態と異なる点は、高温超電導コイル13が形成する磁場を検出する磁場センサ66を備え、図6に示すように、微小抵抗体15として機能する可変抵抗67の抵抗値を、磁場センサ66の検出値に基づいて、励磁電源16から高温超電導コイル13に流れる電流の電流値が一定になるように調整可能に構成した点である。または、図7に示すように、保護抵抗17に電気的に直列接続されて保護抵抗17として機能する可変抵抗68の抵抗値を、磁場センサ66の検出値に基づいて、励磁電源16から高温超電導コイル13に流れる電流の電流値が一定になるように調整可能に構成してもよい。   The high temperature superconducting magnet device 65 as the superconducting magnet device of the sixth embodiment is different from that of the first embodiment in that a magnetic field sensor 66 for detecting a magnetic field formed by the high temperature superconducting coil 13 is provided, and as shown in FIG. The resistance value of the variable resistor 67 functioning as the minute resistor 15 is configured to be adjustable based on the detection value of the magnetic field sensor 66 so that the current value of the current flowing from the exciting power supply 16 to the high temperature superconducting coil 13 becomes constant. It is a point. Alternatively, as shown in FIG. 7, the resistance value of the variable resistor 68, which is electrically connected in series to the protection resistor 17 and functions as the protection resistor 17, is set based on the detection value of the magnetic field sensor 66 from the exciting power supply 16 to the high temperature superconducting The current value of the current flowing through the coil 13 may be adjustable so as to be constant.

微小抵抗体15としての可変抵抗67または保護抵抗17としての可変抵抗68のそれぞれの抵抗値の調整は、例えば抵抗値の温度依存性を利用して、図示しないヒータによる加熱または図示しない伝熱板を介した冷凍機18による冷却によって、可変抵抗67または68を温度変化させることで実施される。また、図6及び図7内に示す微小抵抗体15、及び微小抵抗体15としての可変抵抗67は、第1実施形態と同様に永久電流スイッチ14に熱的に接続されてもよい。   The resistance value of each of the variable resistor 67 as the minute resistor 15 or the variable resistor 68 as the protective resistor 17 is adjusted by heating with a heater (not shown) or a heat transfer plate (not shown) by utilizing the temperature dependence of the resistance value, for example. It is implemented by changing the temperature of the variable resistor 67 or 68 by cooling with the refrigerator 18 via the. Further, the minute resistor 15 and the variable resistor 67 as the minute resistor 15 shown in FIGS. 6 and 7 may be thermally connected to the permanent current switch 14 as in the first embodiment.

以上のように構成されたことから、微小抵抗体15が永久電流スイッチ14に熱的に接続された場合には、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、次の効果(10)を奏する。   With the above configuration, when the minute resistor 15 is thermally connected to the permanent current switch 14, the same effects as the effects (1) and (2) of the first embodiment are achieved. The following effect (10) is achieved.

(10)高温超電導コイル13が形成する磁場が長期間に亘って様々な要因で変化する状況においても、この磁場を磁場センサ66が検出し、この検出値に基づいて、微小抵抗体15としての可変抵抗67または保護抵抗17としての可変抵抗68のそれぞれの抵抗値が調整されることで、励磁電源16から超電導コイル13に流れる電流の電流値を一定に制御できる。この結果、高温超電導コイル13が形成する磁場を長期間に亘って安定化できる。   (10) Even in a situation where the magnetic field formed by the high-temperature superconducting coil 13 changes due to various factors over a long period of time, the magnetic field sensor 66 detects this magnetic field, and based on this detected value, By adjusting the resistance value of each of the variable resistance 67 or the variable resistance 68 as the protection resistance 17, the current value of the current flowing from the excitation power supply 16 to the superconducting coil 13 can be controlled to be constant. As a result, the magnetic field formed by the high temperature superconducting coil 13 can be stabilized for a long period of time.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and those replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and its equivalent scope.

10…高温超電導磁石装置(超電導磁石装置)、13…高温超電導コイル(超電導コイル)、14…永久電流スイッチ、15…微小抵抗体、16…励磁電源、17…保護抵抗、23…閉ループ、24…昇温ヒータ、27…遮断器、30…高温超電導磁石装置(超電導磁石装置)、33…高温超電導磁石装置(超電導磁石装置)、34…永久電流スイッチ、35…高温超電導テープ線材(超電導テープ線材)、36…高温超電導パンケーキコイル(超電導パンケーキコイル)、40…高温超電導磁石装置(超電導磁石装置)、41…永久電流スイッチ、42…内側高温超電導テープ線材(内側超電導テープ線材)、43…外側高温超電導テープ線材(外側超電導テープ線材)、44…絶縁テープ、45…高温超電導パンケーキコイル(超電導パンケーキコイル)、50…高温超電導磁石装置(超電導磁石装置)、51…永久電流スイッチ、52…微小抵抗体、53…高温超電導テープ線材(超電導線材)、54…常伝導金属テープ線材(常伝導金属線材)、55…絶縁テープ、56…パンケーキコイル、57…接続端部、58…電極、59…端部、61…保護層、65…高温超電導磁石装置(超電導磁石装置)、66…磁場センサ、67、68…可変抵抗 10 ... High temperature superconducting magnet device (superconducting magnet device), 13 ... High temperature superconducting coil (superconducting coil), 14 ... Permanent current switch, 15 ... Micro resistor, 16 ... Excitation power supply, 17 ... Protecting resistance, 23 ... Closed loop, 24 ... Temperature rising heater, 27 ... Circuit breaker, 30 ... High temperature superconducting magnet device (superconducting magnet device), 33 ... High temperature superconducting magnet device (superconducting magnet device), 34 ... Permanent current switch, 35 ... High temperature superconducting tape wire (superconducting tape wire) , 36 ... High temperature superconducting pancake coil (superconducting pancake coil), 40 ... High temperature superconducting magnet device (superconducting magnet device), 41 ... Permanent current switch, 42 ... Inner high temperature superconducting tape wire (inner superconducting tape wire), 43 ... Outer side High temperature superconducting tape wire (outer superconducting tape wire), 44 ... Insulating tape, 45 ... High temperature superconducting pancake coil (superconducting tape) Cake coil), 50 ... High temperature superconducting magnet device (superconducting magnet device), 51 ... Permanent current switch, 52 ... Microresistor, 53 ... High temperature superconducting tape wire (superconducting wire), 54 ... Normal conductive metal tape wire (normal conductive metal) Wire material), 55 ... Insulating tape, 56 ... Pancake coil, 57 ... Connection end portion, 58 ... Electrode, 59 ... End portion, 61 ... Protective layer, 65 ... High temperature superconducting magnet device (superconducting magnet device), 66 ... Magnetic field sensor , 67, 68 ... Variable resistance

Claims (8)

超電導線材にて構成され、電流の供給により磁場を形成する超電導コイルと、
前記超電導コイルへ電流を供給して前記超電導コイルを励磁する励磁電源と、
前記超電導コイルに電気的に並列に接続されて前記超電導コイルと共に閉ループを形成し、超電導材にて構成された永久電流スイッチと、
前記永久電流スイッチに直列に且つ前記超電導コイルに並列にそれぞれ電気的に接続され、前記励磁電源からの電流を前記超電導コイルと前記永久電流スイッチとに分流する分流比を決定する微小抵抗体と、
前記励磁電源に電気的に並列に接続され、抵抗値が前記微小抵抗体よりも大きく且つ常伝導状態の前記永久電流スイッチよりも小さく設定されて、前記超電導コイルの磁気エネルギを消費可能な保護抵抗と、を有する超電導磁石装置であって、
前記微小抵抗体が前記永久電流スイッチに熱的に接続されて構成されたことを特徴とする超電導磁石装置。
A superconducting coil that is composed of a superconducting wire and that forms a magnetic field by supplying an electric current;
An exciting power supply for exciting the superconducting coil by supplying a current to the superconducting coil,
A persistent current switch electrically connected in parallel to the superconducting coil to form a closed loop together with the superconducting coil, and made of a superconducting material,
A minute resistor that is electrically connected in series to the permanent current switch and in parallel to the superconducting coil, respectively, and determines a shunt ratio for shunting the current from the excitation power source to the superconducting coil and the permanent current switch,
A protection resistor that is electrically connected in parallel to the excitation power source and has a resistance value that is set to be larger than that of the minute resistor and smaller than that of the permanent current switch in the normal conduction state and that can consume magnetic energy of the superconducting coil. A superconducting magnet device having:
A superconducting magnet device, wherein the minute resistor is thermally connected to the permanent current switch.
前記永久電流スイッチは、独立して作動する昇温用ヒータの加熱により昇温されて常伝導状態へ移行するよう構成されたことを特徴とする請求項1に記載の超電導磁石装置。   2. The superconducting magnet device according to claim 1, wherein the permanent current switch is configured to be heated to a normal conduction state by being heated by an independently operating temperature raising heater. 前記永久電流スイッチは、テープ形状の超電導線材がパンケーキ状に巻かれたパンケーキコイルが、偶数個積層されて無誘導コイルとして構成されたことを特徴とする請求項1または2に記載の超電導磁石装置。   The superconductivity according to claim 1 or 2, wherein the permanent current switch is configured as an inductive coil by stacking an even number of pancake coils in which a tape-shaped superconducting wire is wound in a pancake shape. Magnet device. 前記永久電流スイッチは、テープ形状の2本の超電導線材が絶縁テープを介在させて束ねて同時に巻かれたパンケーキコイルであり、2本の前記超電導線材における内側の端部が互いに接続され、外側の端部が電極になり、2本の前記超電導線材に逆向きに電流が流れることで無誘導コイルとして構成されたことを特徴とする請求項1または2に記載の超電導磁石装置。   The permanent current switch is a pancake coil in which two tape-shaped superconducting wires are bundled together with an insulating tape interposed and wound at the same time. Inner ends of the two superconducting wires are connected to each other and outside 3. The superconducting magnet device according to claim 1, wherein the superconducting magnet device is configured as an non-induction coil by forming an end portion of the electrode as an electrode and flowing a current in the opposite direction to the two superconducting wire rods. 前記永久電流スイッチ及び前記微小抵抗体は、テープ形状の超電導線材とテープ形状の常伝導金属線材とが絶縁テープを介在させて束ねて巻かれたパンケーキコイルであり、前記超電導線材が永久電流スイッチとして、前記常伝導金属線材が微小抵抗体としてそれぞれ構成され、
前記超電導線材と前記常伝導金属線材における内側の端部が互いに接続され、外側の一方の端部が前記永久電流スイッチの電極になり、外側の他方の端部が前記微小抵抗体の端部になり、
前記超電導線材と前記常伝導金属線材に逆向きに電流が流れることで、前記永久電流スイッチが無誘導コイルとして構成されたことを特徴とする請求項1または2に記載の超電導磁石装置。
The permanent current switch and the micro resistor are pancake coils in which a tape-shaped superconducting wire and a tape-shaped normal-conducting metal wire are bundled and wound with an insulating tape interposed, and the superconducting wire is a permanent current switch. As, the normal-conducting metal wire is configured as a minute resistor,
Inner ends of the superconducting wire and the normal-conducting metal wire are connected to each other, one end of the outside serves as an electrode of the permanent current switch, and the other end of the outside serves as an end of the minute resistor. Becomes
The superconducting magnet device according to claim 1 or 2, wherein the permanent current switch is configured as a non-inductive coil by causing currents to flow in opposite directions in the superconducting wire and the normal-conducting metal wire.
前記永久電流スイッチの常伝導状態の抵抗値は、超電導線材の保護層の材質及び厚さの少なくとも1つが変更されることで調整され、前記微小抵抗体の抵抗値は、常伝導金属線材の材質、純度及び厚さの少なくとも1つが変更されることで調整されよう構成されたことを特徴とする請求項5に記載の超電導磁石装置。   The resistance value in the normal conduction state of the permanent current switch is adjusted by changing at least one of the material and the thickness of the protective layer of the superconducting wire, and the resistance value of the minute resistor is the material of the normal conductive metal wire. The superconducting magnet device according to claim 5, wherein the superconducting magnet device is configured to be adjusted by changing at least one of purity and thickness. 超電導線材にて構成され、電流の供給により磁場を形成する超電導コイルと、
前記超電導コイルへ電流を供給して前記超電導コイルを励磁する励磁電源と、
前記超電導コイルに電気的に並列に接続されて前記超電導コイルと共に閉ループを形成し、前記超電導線材にて構成された永久電流スイッチと、
前記永久電流スイッチに直列に且つ前記超電導コイルに並列にそれぞれ電気的に接続され、前記励磁電源からの電流を前記超電導コイルと前記永久電流スイッチとに分流する分流比を決定する微小抵抗体と、
前記励磁電源に電気的に並列に接続され、抵抗値が前記微小抵抗体よりも大きく且つ常伝導状態の前記永久電流スイッチよりも小さく設定されて、前記超電導コイルの磁気エネルギを消費可能な保護抵抗と、を有する超電導磁石装置であって、
超電導コイルが形成する磁場を検出する磁場センサを備え、
前記微小抵抗体または前記保護抵抗は、前記励磁電源から前記超電導コイルに流れる電流の電流値が一定になるように、前記磁場センサの検出値に基づいて抵抗値を調整可能に構成されたことを特徴とする超電導磁石装置。
A superconducting coil that is composed of a superconducting wire and that forms a magnetic field by supplying an electric current;
An exciting power supply for exciting the superconducting coil by supplying a current to the superconducting coil,
A permanent current switch that is electrically connected in parallel to the superconducting coil to form a closed loop together with the superconducting coil, and that is made up of the superconducting wire.
A micro-resistor that is electrically connected in series to the permanent current switch and in parallel to the superconducting coil, respectively, and determines a shunt ratio for shunting the current from the excitation power supply to the superconducting coil and the permanent current switch,
A protective resistor that is electrically connected in parallel to the excitation power source and has a resistance value set to be larger than that of the minute resistor and smaller than that of the permanent current switch in the normal conduction state to consume magnetic energy of the superconducting coil. A superconducting magnet device having:
Equipped with a magnetic field sensor that detects the magnetic field formed by the superconducting coil,
The minute resistor or the protective resistor is configured such that the resistance value can be adjusted based on the detection value of the magnetic field sensor so that the current value of the current flowing from the excitation power supply to the superconducting coil becomes constant. Characteristic superconducting magnet device.
前記超電導コイルは、高温超電導線材にて構成された高温超電導コイルであり、前記永久電流スイッチは、高温超電導材にて構成されたことを特徴とする請求項1乃至7のいずれか1項に記載の超電導磁石装置。   The superconducting coil is a high-temperature superconducting coil made of a high-temperature superconducting wire, and the permanent current switch is made of a high-temperature superconducting material. Superconducting magnet device.
JP2018200187A 2018-10-24 2018-10-24 Superconducting magnet device Pending JP2020068293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018200187A JP2020068293A (en) 2018-10-24 2018-10-24 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200187A JP2020068293A (en) 2018-10-24 2018-10-24 Superconducting magnet device

Publications (1)

Publication Number Publication Date
JP2020068293A true JP2020068293A (en) 2020-04-30

Family

ID=70388651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200187A Pending JP2020068293A (en) 2018-10-24 2018-10-24 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP2020068293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048179A1 (en) * 2022-09-02 2024-03-07 株式会社日立製作所 Superconducting magnet device and nuclear magnetic resonance diagnosis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048179A1 (en) * 2022-09-02 2024-03-07 株式会社日立製作所 Superconducting magnet device and nuclear magnetic resonance diagnosis device

Similar Documents

Publication Publication Date Title
US9508477B2 (en) Superconducting magnet system
EP0470762B1 (en) Superconductive switch
JP4896620B2 (en) Superconducting magnet
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JP2009522815A (en) Superconducting high-speed switch
JP2011187524A (en) High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
WO2015092910A1 (en) Superconducting magnet, mri, and nmr
US8233952B2 (en) Superconducting magnet
JP4933034B2 (en) Superconducting coil protection device, NMR device and MRI device
JP2015079846A (en) Superconducting magnetic device
JPS63257203A (en) Quenching propagator for superconducting magnet
JP4719090B2 (en) High temperature superconducting coil and high temperature superconducting magnet using the same
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
JP2020068293A (en) Superconducting magnet device
JP5255425B2 (en) Electromagnet device
JP7110035B2 (en) Superconducting magnet device
JP6862382B2 (en) High-temperature superconducting magnet device, its operation control device and method
JP6452601B2 (en) Superconducting magnet and superconducting magnet device for MRI
JP2021503175A (en) Superconducting magnet assembly
JP7428515B2 (en) Persistent current switch, superconducting electromagnet device, and persistent current operation method of superconducting electromagnet device
JP2015043358A (en) Superconducting magnet device, magnetic resonance imaging device, and protection method of superconducting coil
JP2011029227A (en) Coil device, protecting apparatus and induction voltage suppressing method
JP6794146B2 (en) High-temperature superconducting magnet device
JP2016119431A (en) Superconducting magnet device
JP7313933B2 (en) Superconducting magnet device and control method for superconducting magnet device