JP2021093421A - Superconducting coil device - Google Patents

Superconducting coil device Download PDF

Info

Publication number
JP2021093421A
JP2021093421A JP2019222177A JP2019222177A JP2021093421A JP 2021093421 A JP2021093421 A JP 2021093421A JP 2019222177 A JP2019222177 A JP 2019222177A JP 2019222177 A JP2019222177 A JP 2019222177A JP 2021093421 A JP2021093421 A JP 2021093421A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
detour
coil device
winding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019222177A
Other languages
Japanese (ja)
Other versions
JP7247080B2 (en
Inventor
達郎 宇都
Tatsuro Uto
達郎 宇都
貞憲 岩井
Sadanori Iwai
貞憲 岩井
寛史 宮崎
Hiroshi Miyazaki
寛史 宮崎
圭 小柳
Kei Koyanagi
圭 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019222177A priority Critical patent/JP7247080B2/en
Publication of JP2021093421A publication Critical patent/JP2021093421A/en
Application granted granted Critical
Publication of JP7247080B2 publication Critical patent/JP7247080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

To provide a superconducting coil device capable of preventing quench of a superconducting wire or a thermal runaway of a superconducting coil.SOLUTION: In a superconducting coil device 100, a superconducting coil 10 is formed by having: a winding member 11 comprising a pair of side surfaces 15 along a radial direction so as to be formed by overlapping a superconductive wire with winding; a bypass 12 electrically connecting both the superconducting wirings provided to one side surface 15 of the winding member and having a different turn to a radial direction of the winding member 11; and a heat exchanger plate 13 conducted and provided in a state of being electrically insulated to the bypass. A plurality of the superconducting coils is laminated in a winding axial direction.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、超電導線材の巻回により形成された超電導コイルが、巻回軸方向に複数個を積層された超電導コイル装置に関する。 An embodiment of the present invention relates to a superconducting coil device in which a plurality of superconducting coils formed by winding a superconducting wire are laminated in the winding axis direction.

超電導線材には、超電導状態を維持可能な電流、温度及び磁場の範囲、いわゆる臨界電流、臨界温度及び臨界磁場が存在する。従って、超電導線材は、電気抵抗がほぼゼロといえども無限に電流が流せるわけではなく、いずれかの臨界値を超えると、常電導状態への転移現象、即ちクエンチが発生する。このようなクエンチによる常電導転移領域のジュール発熱は、瞬時に超電導コイルを熱暴走させ、最悪の場合には焼損に至らせる危険性があるため、クエンチに対する保護技術が不可欠である。 The superconducting wire has a range of current, temperature and magnetic field capable of maintaining the superconducting state, that is, a so-called critical current, a critical temperature and a critical magnetic field. Therefore, even if the electric resistance of the superconducting wire is almost zero, the current cannot flow infinitely, and when any of the critical values is exceeded, a transition phenomenon to the normal conducting state, that is, quenching occurs. Joule heat generation in the normal conduction transition region due to such quenching has a risk of causing thermal runaway of the superconducting coil in an instant and, in the worst case, burning, so protection technology against quenching is indispensable.

クエンチ保護に関する従来技術としては、例えば超電導コイルと並列に保護抵抗を接続する方法がある。この方法は、常電導状態に転移することで発生するコイル電圧やコイル温度の上昇を検出し、これをトリガーとして励磁電源を遮断するものである。遮断後には超電導コイルと保護抵抗との閉回路になるため、室温部に配置した保護抵抗のジュール発熱で超電導コイルの蓄積エネルギーが消費され、コイルに流れる電流を減衰させることができる。 As a conventional technique for quench protection, for example, there is a method of connecting a protection resistor in parallel with a superconducting coil. In this method, an increase in the coil voltage or coil temperature generated by the transition to the normal conduction state is detected, and this is used as a trigger to shut off the exciting power supply. Since the circuit of the superconducting coil and the protection resistor is closed after the interruption, the stored energy of the superconducting coil is consumed by the Joule heat generation of the protection resistor arranged at room temperature, and the current flowing through the coil can be attenuated.

このような超電導コイルに使用される超電導線材としては、例えばBi2Sr2Ca2Cu3O10+x線材やRE1B2C3O7線材といった高温超電導線材がある。この高温超電導線材を用いた超電導コイルでは、従来のNbTiなどの低温超電導線材に比べ、20K〜50Kといった高い温度でも高い臨界電流密度を有するため、高温での高電流密度運転が可能になる。 Examples of the superconducting wire used in such a superconducting coil include high-temperature superconducting wires such as Bi2Sr2Ca2Cu3O10 + x wire and RE1B2C3O7 wire. Since the superconducting coil using this high-temperature superconducting wire has a high critical current density even at a high temperature of 20K to 50K as compared with the conventional low-temperature superconducting wire such as NbTi, high-current density operation at a high temperature becomes possible.

しかしながら、高電流密度運転時にクエンチが生じた場合、高温超電導線材は、20K〜50Kの温度範囲では、低温超電導線材を使った超電導コイルの運転温度よりも比熱が大きいために常電導転移領域の拡大が遅く、また、高電流密度運転をすると発熱密度も高くなる。このため、前記従来技術のクエンチ保護方法では、コイル電圧やコイル温度の上昇を検知する前に局所的に熱暴走が発生して、超電導コイルが焼損してしまう。 However, when quenching occurs during high current density operation, the high-temperature superconducting wire has a larger specific heat than the operating temperature of the superconducting coil using the low-temperature superconducting wire in the temperature range of 20K to 50K, so that the normal conduction transition region expands. Is slow, and the heat generation density also increases when high current density operation is performed. Therefore, in the quench protection method of the prior art, thermal runaway occurs locally before detecting an increase in the coil voltage or the coil temperature, and the superconducting coil is burnt out.

超電導コイル内部の異なるターンの超電導線材同士をターン間で短絡させるようにすれば、常電導転移した部分に流れる電流を異なるターンの超電導線材に迂回させることができる。電流が常電導部分を迂回することで、常電導転移領域での局所的な発熱及び熱暴走を抑制することが可能になる。具体的には、超電導コイルのコイル径方向に沿った巻線部材の側面に、超電導線材と電気的に接続された迂回路を設けることにより、この迂回路を介して異なるターンの超電導線材同士を短絡させる技術が開示されている。 By short-circuiting the superconducting wires of different turns inside the superconducting coil between turns, the current flowing through the portion of the superconducting transition can be diverted to the superconducting wires of different turns. By bypassing the normal conduction portion, the current can suppress local heat generation and thermal runaway in the normal conduction transition region. Specifically, by providing a detour that is electrically connected to the superconducting wire on the side surface of the winding member along the coil radial direction of the superconducting coil, the superconducting wires of different turns can be connected to each other through this detour. The technique of short-circuiting is disclosed.

特開2017−103352号公報JP-A-2017-103352

しかしながら、上記開示技術では、超電導コイルを流れる電流の一部が迂回路へ転流した際に、迂回路でエネルギーが消費されて熱を発生し、超電導コイルの温度を上昇させて超電導線材にクエンチを引き起こす恐れがある。超電導コイルが複数個積層されてなる超電導コイル装置においても同様であり、各超電導コイルの迂回路で発生する熱を速やかに取り除く必要がある。 However, in the above disclosed technology, when a part of the current flowing through the superconducting coil is transferred to the detour, energy is consumed in the detour to generate heat, and the temperature of the superconducting coil is raised to quench the superconducting wire. May cause. The same applies to a superconducting coil device in which a plurality of superconducting coils are stacked, and it is necessary to quickly remove heat generated in a detour of each superconducting coil.

本発明の実施形態は、上述の事情を考慮してなされたものであり、超電導線材のクエンチまたは超電導コイルの熱暴走を防止できる超電導コイル装置を提供することを目的とする。 An embodiment of the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a superconducting coil device capable of preventing quenching of a superconducting wire or thermal runaway of a superconducting coil.

本発明の実施形態における超電導コイル装置は、超電導線材が巻回により重ね合わされることで形成されて径方向に沿う一対の側面を備えた巻線部材と、前記巻線部材の片方の前記側面に設けられて異なるターンの前記超電導線材同士を前記巻線部材の径方向に電気的に接続する迂回路と、前記迂回路に電気的に絶縁された状態で接して設けられた伝熱板と、を有してなる超電導コイルが、この超電導コイルの巻回軸方向に複数個積層されて構成されたことを特徴とするものである。 The superconducting coil device according to the embodiment of the present invention has a winding member formed by laminating superconducting wire members by winding and having a pair of side surfaces along the radial direction, and one side surface of the winding member. A detour that is provided and electrically connects the superconducting wires of different turns in the radial direction of the winding member, and a heat transfer plate that is provided in contact with the detour in an electrically insulated state. It is characterized in that a plurality of superconducting coils having the above are laminated in the winding axis direction of the superconducting coil.

本発明の実施形態によれば、超電導線材のクエンチまたは超電導コイルの熱暴走を防止できる。 According to the embodiment of the present invention, quenching of the superconducting wire or thermal runaway of the superconducting coil can be prevented.

第1実施形態に係る超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device according to the first embodiment. 図1の超電導コイル装置を構成する超電導コイルを示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil constituting the superconducting coil device of FIG. 図2の超電導コイルを示す概略斜視図。The schematic perspective view which shows the superconducting coil of FIG. 図3の超電導コイルの平面図。The plan view of the superconducting coil of FIG. 図3のV−V線に沿う断面図。FIG. 3 is a cross-sectional view taken along the line VV of FIG. 図2〜図5の超電導コイルの巻線部材を形成する高温超電導線材(薄膜線材)の構成を示す斜視図。2 is a perspective view showing a configuration of a high-temperature superconducting wire (thin film wire) forming a winding member of the superconducting coil of FIGS. 2 to 5. 図2の一部を拡大して示す断面図。FIG. 2 is an enlarged cross-sectional view showing a part of FIG. 2. 図2及び図7の迂回路を構成する導電性樹脂を示す断面図。FIG. 2 is a cross-sectional view showing a conductive resin constituting the detour of FIGS. 2 and 7. 図1の第1実施形態における第1変形形態の超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device according to a first modification according to the first embodiment of FIG. 図1の第1実施形態における第2変形形態の超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device of a second modified form according to the first embodiment of FIG. 図1の第1実施形態における第3変形形態の超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device according to a third modification according to the first embodiment of FIG. 図1の第1実施形態における第4変形形態の超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device according to a fourth modification according to the first embodiment of FIG. 図12の第4変形形態における他の例の超電導コイル装置を示す部分断面図。FIG. 2 is a partial cross-sectional view showing a superconducting coil device of another example in the fourth modified form of FIG. 第2実施形態に係る超電導コイル装置を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a superconducting coil device according to a second embodiment. 図14の超電導コイル装置を構成する超電導コイルを示す部分断面図。FIG. 6 is a partial cross-sectional view showing a superconducting coil constituting the superconducting coil device of FIG.

以下、本発明を実施するための形態を、図面に基づき説明する。
[A]第1実施形態(図1〜図13)
図1は、第1実施形態に係る超電導コイル装置を示す部分断面図である。この図1に示す超電導コイル装置100は、図2〜図5に示す超電導コイル10が、この超電導コイル10の巻回軸O(図3、図5)の方向に複数個を積層されて構成された積層超電導コイルである。超電導コイル10は、特に図2及び図5に示すように、巻線部材11、迂回路12及び伝熱板13を有して構成される。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First Embodiment (FIGS. 1 to 13)
FIG. 1 is a partial cross-sectional view showing a superconducting coil device according to the first embodiment. The superconducting coil device 100 shown in FIG. 1 is configured by stacking a plurality of superconducting coils 10 shown in FIGS. 2 to 5 in the direction of the winding shaft O (FIGS. 3 and 5) of the superconducting coil 10. It is a laminated superconducting coil. As shown in FIGS. 2 and 5, the superconducting coil 10 includes a winding member 11, a detour circuit 12, and a heat transfer plate 13.

このうちの巻線部材11は、図6に示す高温超電導線材である薄膜線材20から形成される。ここで、高温超電導線材は一般に、薄膜状の層が積層されたテープ形状の薄膜線材20を構成している。この薄膜線材20は、例えばレアメタル酸化物(RE酸化物)からなる後述の超電導層25を含むREBCO線材などの線材である。 Of these, the winding member 11 is formed of the thin film wire rod 20 which is the high-temperature superconducting wire rod shown in FIG. Here, the high-temperature superconducting wire generally constitutes a tape-shaped thin film wire 20 in which thin film-like layers are laminated. The thin film wire rod 20 is, for example, a wire rod such as a REBCO wire rod including a superconducting layer 25 described later, which is made of a rare metal oxide (RE oxide).

つまり、薄膜線材20は、例えば、ニッケル基合金、ステンレスまたは銅などの高強度の金属材質である基板22と、この基板22の上に形成される中間層24と、この中間層24を基板22の表面に配向させるマグネシウムなどからなる配向層23と、中間層24の上に形成されるレアメタル酸化物からなる超電導層25と、銀、金または白金などで組成される保護層26と、銅またはアルミニウムなどの良伝導性金属である安定化層21と、を有して構成される。 That is, in the thin film wire rod 20, for example, a substrate 22 which is a high-strength metal material such as a nickel-based alloy, stainless steel, or copper, an intermediate layer 24 formed on the substrate 22, and the intermediate layer 24 are formed on the substrate 22. An alignment layer 23 made of magnesium or the like, a superconducting layer 25 made of a rare metal oxide formed on the intermediate layer 24, a protective layer 26 made of silver, gold, platinum, etc., and copper or copper or It is composed of a stabilizing layer 21 which is a good conductive metal such as aluminum.

中間層24は、基板22と超電導層25の熱収縮の際に起因する熱歪みを防止する。保護層26は、超電導層25に含まれる酸素が超電導層25から拡散することを防止して超電導層25を保護する。安定化層21は、超電導層25への過剰な通電電流の迂回経路となって熱暴走を防止する。但し、薄膜線材20を構成する各層の種類及び数はこれに限定されるものではなく、必要に応じて多くても少なくてもよい。 The intermediate layer 24 prevents thermal strain caused by thermal shrinkage between the substrate 22 and the superconducting layer 25. The protective layer 26 protects the superconducting layer 25 by preventing oxygen contained in the superconducting layer 25 from diffusing from the superconducting layer 25. The stabilizing layer 21 serves as a bypass path for an excessive energizing current to the superconducting layer 25 to prevent thermal runaway. However, the type and number of each layer constituting the thin film wire rod 20 is not limited to this, and may be increased or decreased as necessary.

図2及び図5に示す超電導コイル10は、薄膜線材20が巻枠14に巻回されることにより、超電導コイル10の巻回軸Oを貫通する空間を有するパンケーキ状の巻線部材11を形成することにより得られる。薄膜線材20を同心円状に巻回してパンケーキ状に形成されたコイルをパンケーキコイルと呼称する。 The superconducting coil 10 shown in FIGS. 2 and 5 is a pancake-shaped winding member 11 having a space penetrating the winding shaft O of the superconducting coil 10 by winding the thin film wire 20 around the winding frame 14. Obtained by forming. A coil formed in a pancake shape by winding the thin film wire 20 concentrically is called a pancake coil.

巻線部材11は、薄膜線材20が巻回により重ね合されることで形成されて、径方向に沿う一対の側面15を有する。また、超電導コイル10において隣接する別のターンの薄膜線材20との間隙のことをコイルターン隙間と称する。図7に示すように、この薄膜線材20のコイルターン隙間には、隣接する薄膜線材20のターン間を絶縁するために、絶縁性部材16が挿入される。この絶縁性部材16としては、例えばポリイミド等により形成された絶縁性のテープが好適に用いられる。テープ状の絶縁性部材16は、薄膜線材20と共巻することによりコイルターン隙間に挿入される。 The winding member 11 is formed by superimposing the thin film wire rods 20 by winding, and has a pair of side surfaces 15 along the radial direction. Further, the gap between the superconducting coil 10 and the thin film wire rod 20 of another adjacent turn is referred to as a coil turn gap. As shown in FIG. 7, an insulating member 16 is inserted into the coil turn gap of the thin film wire 20 in order to insulate between the turns of the adjacent thin film wire 20. As the insulating member 16, for example, an insulating tape formed of polyimide or the like is preferably used. The tape-shaped insulating member 16 is inserted into the coil turn gap by co-winding with the thin film wire rod 20.

また、超電導コイル10は、エポキシ樹脂などの粘着性を有する絶縁材料で含浸されることもある。この粘着性の絶縁材料で含浸されることにより、超電導コイル10内の隣接する薄膜線材20と絶縁性部材16とが固着されて、超電導コイル10の熱伝導度及び機械的強度を向上させることが可能になる。なお、エポキシ樹脂などの粘着性を有する絶縁材料も、コイルターン隙間に挿入されることで絶縁性部材16として機能し得るが、コイルターン隙間の確実な絶縁のためには、テープ状の絶縁性部材16を用いて確実にコイルターン隙間を絶縁することが好ましい。 Further, the superconducting coil 10 may be impregnated with an adhesive insulating material such as an epoxy resin. By impregnating with this adhesive insulating material, the adjacent thin film wire 20 in the superconducting coil 10 and the insulating member 16 are fixed to each other, and the thermal conductivity and mechanical strength of the superconducting coil 10 can be improved. It will be possible. An adhesive material such as epoxy resin can also function as an insulating member 16 by being inserted into the coil turn gap, but tape-shaped insulating material is required for reliable insulation of the coil turn gap. It is preferable to use the member 16 to reliably insulate the coil turn gap.

超電導コイル10は、図2、図5及び図7に示すように、巻線部材11の片方の側面15に、超電導コイル10内の異なるターンの薄膜線材20同士を径方向に電気的に接続する迂回路12を備える。この迂回路12の材料は、通常運転時における超電導コイル10の抵抗よりも大きく、且つ超電導コイル10の常電導転移時の抵抗よりも小さい抵抗の材料が選択される。例えば、迂回路12の材料は、銅、ステンレス、アルミもしくはインジウムなどの常電導金属、半導体、導電性プラスチック、セラミックス材、導電性樹脂または超電導材料などである。また、グラファイト、炭素繊維または炭素繊維複合材などのカーボン材料なども迂回路12の材料として好適に用いられる。 As shown in FIGS. 2, 5 and 7, the superconducting coil 10 electrically connects the thin film wires 20 of different turns in the superconducting coil 10 to one side surface 15 of the winding member 11 in the radial direction. A detour 12 is provided. As the material of the detour circuit 12, a material having a resistance larger than the resistance of the superconducting coil 10 during normal operation and smaller than the resistance of the superconducting coil 10 at the time of normal conduction transition is selected. For example, the material of the detour 12 is an ordinary conductive metal such as copper, stainless steel, aluminum or indium, a semiconductor, a conductive plastic, a ceramic material, a conductive resin or a superconducting material. Further, a carbon material such as graphite, carbon fiber or a carbon fiber composite material is also preferably used as a material for the detour 12.

これらの迂回路12の材料は、板材または箔などにして圧着またはハンダ接続などにより電気的に巻線部材11に接続される。また、迂回路12の材料を、巻線部材11の片方の側面15にメッキまたは塗布して迂回路12を形成してもよい。特にメッキにより迂回路12を形成すると、迂回路12を薄くすることができ、超電導コイル10の自由な変形を阻害しない。 The material of these detours 12 is made into a plate material, foil, or the like, and is electrically connected to the winding member 11 by crimping or soldering. Further, the material of the detour circuit 12 may be plated or applied to one side surface 15 of the winding member 11 to form the detour circuit 12. In particular, when the detour circuit 12 is formed by plating, the detour circuit 12 can be made thin and does not hinder the free deformation of the superconducting coil 10.

また、迂回路12は、図8に示すような導電性樹脂17を塗布して形成してもよい。この導電性樹脂17は例えば、導電性を持たない樹脂28に導電性粉末18を混入させたものを用いてもよい。この場合は、導電性樹脂17に配合される導電性粉末18の割合や種類を変更することにより、導電性樹脂17の体積抵抗率を容易に調整することが可能になる。 Further, the detour circuit 12 may be formed by applying a conductive resin 17 as shown in FIG. As the conductive resin 17, for example, a resin 28 having no conductivity mixed with a conductive powder 18 may be used. In this case, the volume resistivity of the conductive resin 17 can be easily adjusted by changing the ratio and the type of the conductive powder 18 blended in the conductive resin 17.

導電性粉末18としては、例えばカーボンブラック、炭素繊維またはグラファイトなどのカーボン系の粉末が用いられる。この導電性粉末18には、金属微粒子、金属酸化物、金属繊維またはウィスカーなどの金属系の粉末が用いられてもよい。また、微粒子または合成繊維を金属コートすることで導電性粉末18としてもよい。更に、巻線部材11の側面15の径方向または周方向の位置ごとに異なる組成の導電性樹脂17を塗布して、迂回路12を形成してもよい。 As the conductive powder 18, a carbon-based powder such as carbon black, carbon fiber, or graphite is used. As the conductive powder 18, a metal-based powder such as metal fine particles, metal oxides, metal fibers or whiskers may be used. Further, the conductive powder 18 may be obtained by metal-coating fine particles or synthetic fibers. Further, the detour circuit 12 may be formed by applying a conductive resin 17 having a different composition depending on the position of the side surface 15 of the winding member 11 in the radial direction or the circumferential direction.

図2及び図5に示すように、超電導コイル10では、迂回路12と、この迂回路12が設けられていない巻線部材11の側面15に絶縁板19が設けられている。この絶縁板19は、超電導コイル装置100における各超電導コイル10の巻線部材11及び迂回路12を、積層されて隣り合う他の超電導コイル10から絶縁する。この絶縁板19としては、エポキシ樹脂や繊維強化プラスチックなどが好適に用いられる。 As shown in FIGS. 2 and 5, in the superconducting coil 10, an insulating plate 19 is provided on a detour circuit 12 and a side surface 15 of a winding member 11 on which the detour circuit 12 is not provided. The insulating plate 19 insulates the winding member 11 and the detour circuit 12 of each superconducting coil 10 in the superconducting coil device 100 from other superconducting coils 10 which are laminated and adjacent to each other. Epoxy resin, fiber reinforced plastic, or the like is preferably used as the insulating plate 19.

上記迂回路12を設けることで、超電導コイル10に熱暴走の発生等を抑制できる効果について述べる。薄膜線材20は、超電導状態に維持可能な通電電流の限界である臨界電流に近づくにつれて、徐々に外部磁場が侵入し、局所的に超電導状態が破壊された部分が常電導転移する。この常電導転移した部分を常電導箇所30と称する。この局所的な常電導転移に伴うフラックスフロー抵抗は、ジュール損失による発熱を発生するため、超電導コイル10の温度上昇などでフラックスフロー抵抗が増大すると、超電導コイル10に熱暴走を誘引し、または薄膜線材20にクエンチを誘引する。 The effect of suppressing the occurrence of thermal runaway or the like in the superconducting coil 10 by providing the detour circuit 12 will be described. As the thin film wire 20 approaches the critical current, which is the limit of the energizing current that can be maintained in the superconducting state, an external magnetic field gradually invades, and the portion where the superconducting state is locally destroyed undergoes a normal conduction transition. The portion where the normal conduction is transferred is referred to as a normal conduction portion 30. The flux flow resistance associated with this local normal conduction transition generates heat due to Joule loss. Therefore, when the flux flow resistance increases due to a temperature rise of the superconducting coil 10, thermal runaway is induced in the superconducting coil 10 or a thin film is formed. Attract quench to the wire rod 20.

そこで、迂回路12を設けることで、薄膜線材20の一部で常電導転移による局所的なフラックスフロー抵抗が発生したとき、巻線部材11を周方向に流れていた通電電流Iの一部Iaは、迂回路12を経て、隣接する他のターンの薄膜線材20に径方向に沿って迂回する。このとき、巻線部材11を周方向に流れる通電電流は、IからI−Iaに減少する。迂回路12の抵抗をRa、フラックスフロー抵抗をRとすると、巻線部材11の径方向に迂回する電流Iaは、R/(R+Ra)に比例する。従って、フラックスフロー抵抗の増大に伴い、より多くの通電電流が迂回路12に迂回することになる。この電流の迂回によって、局所的に常電導状態に転移した常電導箇所30に多量の通電電流Iが流れることを未然に防止でき、超電導コイル10の熱暴走、または薄膜線材20のクエンチの発生が抑制される。 Therefore, by providing the detour circuit 12, when a local flux flow resistance is generated in a part of the thin film wire rod 20 due to the normal conduction transition, a part Ia of the energizing current I flowing in the circumferential direction through the winding member 11 Detours along the radial direction to the thin film wire rod 20 of another adjacent turn via the detour circuit 12. At this time, the energizing current flowing in the winding member 11 in the circumferential direction decreases from I to I-Ia. Assuming that the resistance of the detour circuit 12 is Ra and the flux flow resistance is R, the current Ia that detours in the radial direction of the winding member 11 is proportional to R / (R + Ra). Therefore, as the flux flow resistance increases, more energizing current will be bypassed to the bypass circuit 12. By bypassing this current, it is possible to prevent a large amount of current I from flowing to the normal conduction portion 30 that has locally transitioned to the normal conduction state, and thermal runaway of the superconducting coil 10 or quenching of the thin film wire 20 occurs. It is suppressed.

なお、巻線部材11の異なるターンの薄膜線材20同士を、迂回路12により電気的に接続すると、フラックスフロー抵抗が発生したときだけでなく、超電導コイル10を非通電状態から定格電流値まで励磁する際にも、誘導電圧により、電源から供給される通電電流Iの一部I’が、迂回路12を経て他のターンの薄膜線材20に迂回してしまう。励磁完了後は誘導電圧が発生しないため、迂回路12に流れた電流I’は巻線部材11の周方向に徐々に流れることとなるが、超電導コイル10は設計した磁場の値に到達するまでに時間を要することになる。迂回路12の抵抗を低くすればする程より多くの電流が励磁中に迂回してしまい、励磁時間が不要に長くなってしまう。 When the thin film wires 20 of different turns of the winding member 11 are electrically connected by the detour circuit 12, not only when the flux flow resistance is generated, but also the superconducting coil 10 is excited from the non-energized state to the rated current value. At that time, a part of the energizing current I'supplied from the power source is diverted to the thin film wire 20 of another turn through the detour circuit 12 due to the induced voltage. Since the induced voltage is not generated after the excitation is completed, the current I'flowing through the detour 12 gradually flows in the circumferential direction of the winding member 11, but the superconducting coil 10 reaches the designed magnetic field value. Will take time. The lower the resistance of the detour circuit 12, the more current will be diverted during excitation, and the excitation time will be unnecessarily long.

従って、迂回路12の抵抗Raは、フラックスフロー抵抗の発生時に十分な量の電流が迂回路12へ転流できる程度に小さな抵抗で、且つ超電導コイル10を非通電状態から定格電流値まで励磁する際に励磁時間が不要に長くならないほどに大きな抵抗となるように設定されることが好ましい。 Therefore, the resistor Ra of the detour circuit 12 is a resistor small enough to allow a sufficient amount of current to flow to the detour circuit 12 when a flux flow resistance is generated, and excites the superconducting coil 10 from the non-energized state to the rated current value. It is preferable that the resistance is set so that the excitation time does not become unnecessarily long.

ところで、薄膜線材20が全長にわたり常電導転移したときの、超電導コイル10の全長にわたるフラックスフロー抵抗をRとし、迂回路12の抵抗Raを例えばRa=R/10とした場合、抵抗比R/(R+Ra)がR/(R+Ra)=10/11=0.9となるので、このR/(R+Ra)に比例する迂回路12を流れる電流は通電電流の約90%になる。このときのフラックスフロー抵抗Rでの発熱は、通電電流をIとして、R×{I×(1/11)}=(1/121)RIとなり、迂回路12の発熱は、(R/10)×{I×(10/11)}=(10/121)RIとなる。つまり、迂回路12の発熱が、巻線部材11で生じる発熱の10倍大きな値となる。 By the way, when the flux flow resistance over the entire length of the superconducting coil 10 is R and the resistance Ra of the detour circuit 12 is, for example, Ra = R / 10, when the thin film wire 20 undergoes a normal conduction transition over the entire length, the resistivity ratio R / ( Since R + Ra) becomes R / (R + Ra) = 10/11 = 0.9, the current flowing through the detour 12 proportional to this R / (R + Ra) is about 90% of the energizing current. The heat generated by the flux flow resistor R at this time is R × {I × (1/11)} 2 = (1/121) RI 2 , where I is the energizing current, and the heat generated by the detour 12 is (R /). 10) × {I × (10/11)} 2 = (10/121) RI 2 . That is, the heat generated by the detour circuit 12 is 10 times larger than the heat generated by the winding member 11.

上述の迂回路12の発熱を取り除くために、図2及び図5に示すように、超電導コイル10では伝熱板13が、迂回路12に電気的に絶縁された状態で接するように設けられている。好ましくは、迂回路12と伝熱板13とが絶縁板19により電気的に絶縁されている。伝熱板13は、図示しない冷凍機に熱的に直接、もしくは他の伝熱部材を介して間接的に接続されて、伝導冷却により、超電導コイル10で発生した熱(迂回路12で発生した熱を含む)を取り除く。 In order to remove the heat generated by the detour circuit 12, the heat transfer plate 13 is provided in the superconducting coil 10 so as to be in contact with the detour circuit 12 in an electrically insulated state, as shown in FIGS. 2 and 5. There is. Preferably, the detour 12 and the heat transfer plate 13 are electrically insulated by the insulating plate 19. The heat transfer plate 13 is thermally directly connected to a refrigerator (not shown) or indirectly via another heat transfer member, and the heat generated in the superconducting coil 10 (generated in the detour 12) due to conduction cooling. Remove heat).

伝熱板13の材料としては熱伝導率が高い物質が好ましく、アルミニウム(例えば高純度アルミニウム)、銅(例えば無酸素銅)のいずれかの金属が好適に用いられる。これらの材料は、板材または箔などにして、迂回路12または絶縁板19に接着される。伝熱板13は、図3及び図4に示すように、超電導コイル10の周方向に分割され、または超電導コイル10の径方向に分割されて複数配置されていてもよい。 As the material of the heat transfer plate 13, a material having high thermal conductivity is preferable, and any metal of aluminum (for example, high-purity aluminum) and copper (for example, oxygen-free copper) is preferably used. These materials are bonded to the detour 12 or the insulating plate 19 in the form of a plate or foil. As shown in FIGS. 3 and 4, the heat transfer plates 13 may be divided in the circumferential direction of the superconducting coil 10 or may be divided in the radial direction of the superconducting coil 10 and arranged in plurality.

迂回路12を含む巻線部材11と伝熱板13とを電気的に絶縁する方法としては、エポキシ樹脂等のように電気的に絶縁性の高い接着剤を用いて、迂回路12に伝熱板13を接着する。また、上述のように迂回路12と伝熱板13との間に挿入される絶縁板19としては、繊維強化プラスチック等が好適に用いられる。このように迂回路12と伝熱板13との間に絶縁板19が挿入される場合、迂回路12、絶縁板19、伝熱板13を互いにエポキシ樹脂等の絶縁性の高い接着剤で接着することで、迂回路12と伝熱板13とを熱的に接続しつつ、電気的な絶縁性を向上させることが可能になる。 As a method of electrically insulating the winding member 11 including the detour circuit 12 and the heat transfer plate 13, heat is transferred to the detour circuit 12 by using an adhesive having high electrical insulation such as epoxy resin. The plate 13 is glued. Further, as the insulating plate 19 inserted between the detour circuit 12 and the heat transfer plate 13 as described above, fiber reinforced plastic or the like is preferably used. When the insulating plate 19 is inserted between the detour circuit 12 and the heat transfer plate 13 in this way, the detour circuit 12, the insulating plate 19, and the heat transfer plate 13 are bonded to each other with a highly insulating adhesive such as epoxy resin. By doing so, it becomes possible to improve the electrical insulation while thermally connecting the detour circuit 12 and the heat transfer plate 13.

上述のように構成された超電導コイル10は、この超電導コイル10の巻回軸O方向に複数個を積層されて、図1に示す超電導コイル装置100が構成される。この超電導コイル装置100では、超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13が、巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19と対向するように積層されている。 A plurality of superconducting coils 10 configured as described above are laminated in the winding axis O direction of the superconducting coil 10, and the superconducting coil device 100 shown in FIG. 1 is configured. In the superconducting coil device 100, the superconducting coil 10 has a heat transfer plate 13 on the side surface 15 side of the winding member 11 on which the detour 12 is provided, and the superconducting coil 10 is not provided with the detour 12 on the winding member 11. It is laminated so as to face the insulating plate 19 on the side surface 15 side of the above.

以上のように構成されたことから、本第1実施形態によれば、次の効果(1)及び(2)を奏する。
(1)図1、図2及び図7に示すように、超電導コイル装置100を構成する超電導コイル10は、薄膜線材20が巻回により重ね合されてなる巻線部材11の片方の側面15に迂回路12が設けられ、この迂回路12に伝熱板13が接して構成されている。従って、超電導コイル10の常電導転移時に薄膜線材20を流れる通電電流Iの一部Iaが迂回路12に流れて、この迂回路12が発熱した場合でも、迂回路12は、この迂回路12に接して設けられた伝熱板13を介して、冷凍機(不図示)により伝導冷却されて直接冷却される。この結果、迂回路12の温度上昇を抑制することができるので、薄膜線材20のクエンチの発生または超電導コイル10の熱暴走の発生等を未然に防止できる。
Since it is configured as described above, according to the first embodiment, the following effects (1) and (2) are obtained.
(1) As shown in FIGS. 1, 2 and 7, the superconducting coil 10 constituting the superconducting coil device 100 is mounted on one side surface 15 of a winding member 11 formed by laminating thin film wires 20 by winding. A detour circuit 12 is provided, and the heat transfer plate 13 is in contact with the detour circuit 12. Therefore, even if a part of the energizing current Ia flowing through the thin film wire 20 during the normal conduction transition of the superconducting coil 10 flows through the detour circuit 12 and the detour circuit 12 generates heat, the detour circuit 12 stays in the detour circuit 12. It is conducted and cooled by a refrigerator (not shown) through a heat transfer plate 13 provided in contact with the heat transfer plate 13, and is directly cooled. As a result, the temperature rise of the detour circuit 12 can be suppressed, so that the occurrence of quenching of the thin film wire rod 20 or the occurrence of thermal runaway of the superconducting coil 10 can be prevented.

(2)図1に示す超電導コイル装置100では、超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13が、隣り合う超電導コイル10の巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19と対向するように積層されている。このため、超電導コイル装置100では、各超電導コイル10の伝熱板13が、超電導コイル装置100の積層方向(超電導コイル10の巻回軸Oと同方向)に沿って等間隔に並ぶことになるので、超電導コイル装置10の温度を、その積層方向に均一に保持することができる。 (2) In the superconducting coil device 100 shown in FIG. 1, in the superconducting coil 10, the heat transfer plate 13 on the side surface 15 side of the winding member 11 where the detour 12 is provided is the winding of the superconducting coil 10 adjacent to each other. The members 11 are laminated so as to face the insulating plate 19 on the side surface 15 side on which the detour 12 is not provided. Therefore, in the superconducting coil device 100, the heat transfer plates 13 of each superconducting coil 10 are arranged at equal intervals along the stacking direction of the superconducting coil device 100 (the same direction as the winding shaft O of the superconducting coil 10). Therefore, the temperature of the superconducting coil device 10 can be uniformly maintained in the stacking direction.

次に、第1実施形態の変形形態を、図9〜図13を用いて以下に述べる。
図9に、第1実施形態の第1変形形態における超電導コイル装置101を示す。この超電導コイル装置101では、隣り合う超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13同士が対向し、且つ巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19同士が対向するように積層されている。そしてこの対向する伝熱板13は、共有化して1枚の伝熱板13とすることもできる。
Next, a modified form of the first embodiment will be described below with reference to FIGS. 9 to 13.
FIG. 9 shows the superconducting coil device 101 according to the first modification of the first embodiment. In the superconducting coil device 101, the adjacent superconducting coils 10 face each other with the heat transfer plates 13 on the side surface 15 side of the winding member 11 on which the detour 12 is provided, and the detour 12 in the winding member 11 is opposed to each other. The insulating plates 19 on the side surface 15 side on the side where is not provided are laminated so as to face each other. The heat transfer plates 13 facing each other can be shared into a single heat transfer plate 13.

従って、この第1実施形態の超電導コイル装置101においても、第1実施形態の超電導コイル装置100の効果(1)と同様な効果を奏するほか、次の効果(3)を奏する。 Therefore, the superconducting coil device 101 of the first embodiment also has the same effect as the effect (1) of the superconducting coil device 100 of the first embodiment, and also has the following effect (3).

(3)超電導コイル装置101における隣り合う超電導コイル10では、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13同士が対向して積層されているので、この伝熱板13同士が対向する隣り合う超電導コイル10において、伝熱板13を共有化して1枚の伝熱板とすることで、必要な伝熱板13の枚数を減少させることができる。 (3) In the adjacent superconducting coils 10 in the superconducting coil device 101, the heat transfer plates 13 on the side surface 15 side of the winding member 11 where the detour 12 is provided are laminated so as to face each other. In the adjacent superconducting coils 10 in which the heat plates 13 face each other, the number of required heat transfer plates 13 can be reduced by sharing the heat transfer plates 13 into one heat transfer plate.

図10に、第1実施形態の第2変形形態における超電導コイル装置102を示す。この超電導コイル装置102では、超電導コイル10が偶数枚積層され、その積層方向(超電導コイル10の巻回軸Oと同方向)中央位置で隣り合う超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13同士が対向するように配置され、それ以外の位置での超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13が、隣り合う超電導コイル10の巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19と対向するように配置されている。 FIG. 10 shows the superconducting coil device 102 in the second modified form of the first embodiment. In this superconducting coil device 102, an even number of superconducting coils 10 are laminated, and the superconducting coils 10 adjacent to each other at the center position in the stacking direction (the same direction as the winding axis O of the superconducting coil 10) are detours 12 in the winding member 11. The heat transfer plates 13 on the side surface 15 side on which the is provided are arranged so as to face each other, and the superconducting coil 10 at other positions is the side surface 15 on the winding member 11 where the detour 12 is provided. The heat transfer plate 13 on the side is arranged so as to face the insulating plate 19 on the side surface 15 side on which the detour 12 is not provided in the winding member 11 of the adjacent superconducting coils 10.

図11に、第1実施形態の第3変形形態における超電導コイル装置103を示す。この超電導コイル装置103では、超電導コイル10が偶数枚積層され、その積層方向(超電導コイル10の巻回軸Oと同方向)中央位置で隣り合う超電導コイル10は、巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19同士が対向するように配置され、それ以外の位置での超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13が、隣り合う超電導コイル10の巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19と対向するように配置されている。 FIG. 11 shows the superconducting coil device 103 in the third modified form of the first embodiment. In this superconducting coil device 103, an even number of superconducting coils 10 are laminated, and the superconducting coils 10 adjacent to each other at the center position in the stacking direction (the same direction as the winding axis O of the superconducting coil 10) are detours 12 in the winding member 11. The insulating plates 19 on the side surface 15 side on which the is not provided are arranged so as to face each other, and the superconducting coil 10 at other positions is the side surface 15 on the winding member 11 on which the detour 12 is provided. The heat transfer plate 13 on the side is arranged so as to face the insulating plate 19 on the side surface 15 side on which the detour 12 is not provided in the winding member 11 of the adjacent superconducting coils 10.

従って、上述の第2変形形態の超電導コイル装置102によれば、第1実施形態及び第1変形形態の効果(1)及び(3)と同様な効果を奏し、第3変形形態の超電導コイル装置103によれば、第1実施形態及び第1変形形態の効果(1)と同様な効果を奏するほか、これらの超電導コイル装置102及び103は、次の効果(4)を奏する。 Therefore, according to the superconducting coil device 102 of the second modified form described above, the effects similar to the effects (1) and (3) of the first embodiment and the first modified form are obtained, and the superconducting coil device of the third modified form is obtained. According to 103, the superconducting coil devices 102 and 103 have the same effect as the effect (1) of the first embodiment and the first modified form, and the superconducting coil devices 102 and 103 have the following effect (4).

(4)超電導コイル装置102、103は、その積層方向中央位置を通り且つその積層方向に対する垂直な平面を境に、超電導コイル10が超電導コイル装置102、103の積層方向に対称に配置されている。このため、例えば、超電導コイル装置100(図1)のように超電導コイル10が上記平面を境に非対称な配置の場合と比べて、発生する磁場を、超電導コイル装置102、103の積層方向に対称に形成することができる。 (4) In the superconducting coil devices 102 and 103, the superconducting coils 10 are arranged symmetrically in the stacking direction of the superconducting coil devices 102 and 103 with a plane passing through the central position in the stacking direction and perpendicular to the stacking direction as a boundary. .. Therefore, as compared with the case where the superconducting coil 10 is asymmetrically arranged with the plane as a boundary as in the superconducting coil device 100 (FIG. 1), the generated magnetic field is symmetrical in the stacking direction of the superconducting coil devices 102 and 103. Can be formed into.

図12に、第1実施形態の第4変形形態における超電導コイル装置104を示し、図13に、第4変形形態における他の例の超電導コイル装置105を示す。図12に示す超電導コイル装置104では、隣り合う超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13同士が対向し、且つ巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19同士が対向するように積層されて配置される共に、隣り合う超電導コイル10間の隙間のうちで伝熱板13が設けられていない側の絶縁板19同士が対向する隙間に、均熱板31が電気的に絶縁された状態で介装されている。 FIG. 12 shows the superconducting coil device 104 in the fourth modified form of the first embodiment, and FIG. 13 shows the superconducting coil device 105 of another example in the fourth modified form. In the superconducting coil device 104 shown in FIG. 12, the adjacent superconducting coils 10 have the heat transfer plates 13 on the side surface 15 side of the winding member 11 on which the detour 12 is provided facing each other, and the winding member 11 has a heat transfer plate 13 facing each other. Insulating plates 19 on the side surface 15 side on which the detour circuit 12 is not provided are laminated and arranged so as to face each other, and the heat transfer plate 13 is provided in the gap between the adjacent superconducting coils 10. A heat soaking plate 31 is interposed in a gap where the insulating plates 19 on the non-existing side face each other in a state of being electrically insulated.

また、図13に示す超電導コイル装置105では、超電導コイル10は、巻線部材11における迂回路12が設けられた方の側面15側の伝熱板13が、隣り合う超電導コイル10の巻線部材11における迂回路12が設けられていない方の側面15側の絶縁板19と対向するように積層されて配置されると共に、超電導コイル装置105の積層方向の端部に配置された超電導コイル10に、均熱板31が電気的に絶縁された状態で設けられている。 Further, in the superconducting coil device 105 shown in FIG. 13, in the superconducting coil 10, the heat transfer plate 13 on the side surface 15 side of the winding member 11 where the detour 12 is provided is adjacent to the winding member of the superconducting coil 10. In the superconducting coil 10 which is arranged so as to face the insulating plate 19 on the side surface 15 side on the side where the detour 12 is not provided, and which is arranged at the end of the superconducting coil device 105 in the stacking direction. , The soaking plate 31 is provided in a state of being electrically insulated.

均熱板31の材料としては、伝熱板13と同様にアルミニウムや銅などの熱伝導率が高い金属が好的に用いられる。均熱板31は通常、冷凍機等の超電導コイル10の外部の機器に電気的に接続されておらず、超電導コイル10内の温度を均一に保つ機能を果たすが、均熱板31を冷凍機等の外部機器に接続することで、伝熱板13と同様に超電導コイル10で発生した熱を取り除く機能を与えてもよい。また、均熱板31は、超電導コイル10の周方向または径方向に分割されて設置されてもよい。更に、均熱板31の厚さを調整することで、超電導コイル10における積層方向の間隔を調整することが可能になる。 As the material of the heat soaking plate 31, a metal having a high thermal conductivity such as aluminum or copper is preferably used as in the heat transfer plate 13. Normally, the heat equalizing plate 31 is not electrically connected to an external device of the superconducting coil 10 such as a refrigerator, and fulfills a function of keeping the temperature inside the superconducting coil 10 uniform. By connecting to an external device such as the above, a function of removing heat generated by the superconducting coil 10 may be provided as in the heat transfer plate 13. Further, the heat equalizing plate 31 may be divided and installed in the circumferential direction or the radial direction of the superconducting coil 10. Further, by adjusting the thickness of the heat equalizing plate 31, it is possible to adjust the spacing in the stacking direction in the superconducting coil 10.

以上のように構成されたことから、第4実施形態の超電導コイル装置104によれば、第1実施形態及び第1変形形態の効果(1)及び(3)と同様な効果を奏し、第4実施形態の他の例の超電導コイル装置105によれば、第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、これらの超電導コイル装置104及び105は、次の効果(5)を奏する。 Since it is configured as described above, according to the superconducting coil device 104 of the fourth embodiment, the effects (1) and (3) of the first embodiment and the first modified form are exhibited, and the fourth embodiment has the same effect. According to the superconducting coil device 105 of another example of the embodiment, the effects similar to the effects (1) and (2) of the first embodiment are obtained, and these superconducting coil devices 104 and 105 have the following effects ( Play 5).

(5)超電導コイル装置104では、隣り合う超電導コイル10間の隙間のうちで伝熱板13が設けられていない方の絶縁板19が対向する隙間に均熱板31が設けられたので、超電導コイル装置104の積層方向における端部以外の内側に配置された超電導コイル10の温度を均一化できる。また、超電導コイル装置105では、この超電導コイル装置105の積層方向の端部に位置する超電導コイル10に均熱板31が設けられたので、超電導コイル装置105の積層方向における端部の超電導コイル10の温度を均一化できる。 (5) In the superconducting coil device 104, the heat equalizing plate 31 is provided in the gap between the adjacent superconducting coils 10 where the insulating plate 19 on which the heat transfer plate 13 is not provided faces, and thus the superconducting plate 31 is provided. The temperature of the superconducting coil 10 arranged inside other than the end portion in the stacking direction of the coil device 104 can be made uniform. Further, in the superconducting coil device 105, since the heat equalizing plate 31 is provided on the superconducting coil 10 located at the end of the superconducting coil device 105 in the stacking direction, the superconducting coil 10 at the end of the superconducting coil device 105 in the stacking direction. The temperature can be made uniform.

なお、超電導コイル装置100〜105は、迂回路12を備えた複数の超電導コイル10を積層してなるが、迂回路12を持たない超電導コイルを含んでいてもよい。つまり、超電導コイル装置100〜105のうちで、臨界電流が高い部分では迂回路12を持たない超電導コイルとすることで、超電導コイル装置100〜105を非通電状態から定格電流値まで励磁する際に、誘導電圧により、電源から供給される通電電流Iの一部I’が迂回路12を経て他のターンの薄膜線材20へ迂回する電気量を低減でき、設計した磁場の値に到達するまでの時間を短縮させることができる。 The superconducting coil devices 100 to 105 are formed by stacking a plurality of superconducting coils 10 having a detour circuit 12, but may include a superconducting coil having no detour circuit 12. That is, when the superconducting coil devices 100 to 105 are excited from the non-energized state to the rated current value by using the superconducting coil having no detour 12 in the portion where the critical current is high among the superconducting coil devices 100 to 105. , The induced voltage can reduce the amount of electricity that a part of the energizing current I supplied from the power supply detours to the thin film wire 20 of another turn through the detour circuit 12 until it reaches the designed magnetic field value. The time can be shortened.

[B]第2実施形態(図14、図15)
図14は、第2実施形態に係る超電導コイル装置を示す部分断面図である。また、図15は、図14の超電導コイル装置を構成する超電導コイルを示す部分断面図である。この第2実施形態において第1実施形態と同様な部分については、第1実施形態と同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second embodiment (FIGS. 14 and 15)
FIG. 14 is a partial cross-sectional view showing the superconducting coil device according to the second embodiment. Further, FIG. 15 is a partial cross-sectional view showing a superconducting coil constituting the superconducting coil device of FIG. In this second embodiment, the same parts as those in the first embodiment are designated by the same reference numerals as those in the first embodiment to simplify or omit the description.

本第2実施形態の超電導コイル装置200が第1実施形態と異なる点は、超電導コイル40がその巻回軸O方向に複数個を積層されることで超電導コイル装置200が構成され、超電導コイル40では、巻線部材11における一対の側面15のうちの両方の側面15に迂回路12が設けられ、これらの迂回路12に電気的に絶縁された状態で伝熱板13が接して設けられた点である。 The difference between the superconducting coil device 200 of the second embodiment and the first embodiment is that a plurality of superconducting coils 40 are laminated in the winding axis O direction to form the superconducting coil device 200, and the superconducting coil 40 is formed. Then, detours 12 are provided on both side surfaces 15 of the pair of side surfaces 15 of the winding member 11, and the heat transfer plate 13 is provided in contact with these detours 12 in a state of being electrically insulated. It is a point.

ここで、超電導コイル装置200は、巻線部材11の両方の側面15に迂回路12が設けられた超電導コイル40のみにより構成される場合に限らず、巻線部材11の片方の側面15に迂回路12が設けられた超電導コイル10(図2)や、迂回路12が存在しない超電導コイルを含むものでもよい。 Here, the superconducting coil device 200 is not limited to the case where the superconducting coil device 200 is composed of only the superconducting coil 40 in which the detour circuit 12 is provided on both side surfaces 15 of the winding member 11, and the superconducting coil device 200 is detoured to one side surface 15 of the winding member 11. It may include a superconducting coil 10 (FIG. 2) provided with a path 12 and a superconducting coil in which a detour 12 does not exist.

以上のように構成されたことから、本第2実施形態によれば、次の効果(6)及び(7)を奏する。
(6)超電導コイル装置200を構成する超電導コイル40では、迂回路12が巻線部材11の一対の側面のうちの両方の側面15に設けられているので、超電導コイル40の常電導転移時に、巻線部材11を形成する薄膜線材20に流れる通電電流の一部I´を迂回路12に確実に流すことができる。更に、超電導コイル40では、各迂回路12に接して伝熱板13がそれぞれ設けられているので、超電導コイル40の常電導転移時に発熱する迂回路12の熱を、伝熱板13を経て冷凍機により直接冷却でき、このため迂回路12の温度上昇を確実に抑制できる。これらのことから、超電導コイル40の熱暴走の発生、または薄膜線材20のクエンチの発生を未然に防止できる。
Since it is configured as described above, according to the second embodiment, the following effects (6) and (7) are obtained.
(6) In the superconducting coil 40 constituting the superconducting coil device 200, since the detour circuit 12 is provided on both side surfaces 15 of the pair of side surfaces of the winding member 11, when the superconducting coil 40 undergoes a normal conduction transition, A part of the energizing current I'flowing through the thin film wire rod 20 forming the winding member 11 can be reliably passed through the detour circuit 12. Further, in the superconducting coil 40, since the heat transfer plate 13 is provided in contact with each detour circuit 12, the heat of the detour circuit 12 that generates heat at the time of the normal conduction transition of the superconducting coil 40 is frozen through the heat transfer plate 13. It can be cooled directly by the machine, so that the temperature rise of the detour 12 can be surely suppressed. From these facts, it is possible to prevent the occurrence of thermal runaway of the superconducting coil 40 or the occurrence of quenching of the thin film wire rod 20.

(7)超電導コイル40では、迂回路12が巻線部材11の両方の側面15に設けられたので、この超電導コイル40が複数個積層された超電導コイル装置200は、その積層方向中央位置を通り且つ積層方向に対し垂直な平面を境に対称な構成になる。従って、超電導コイル装置200が発生する磁場を、超電導コイル装置200の積層方向に対称に形成することができる。 (7) In the superconducting coil 40, since the detour 12 is provided on both side surfaces 15 of the winding member 11, the superconducting coil device 200 in which a plurality of the superconducting coils 40 are laminated passes through the central position in the stacking direction. Moreover, the configuration is symmetric with respect to the plane perpendicular to the stacking direction. Therefore, the magnetic field generated by the superconducting coil device 200 can be formed symmetrically in the stacking direction of the superconducting coil device 200.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention, and their replacements and changes can be made. Is included in the scope and gist of the invention, and is also included in the invention described in the claims and the equivalent scope thereof.

例えば、前記第1及び第2実施形態では、超電導コイル10、40の巻線部材11を形成する薄膜線材20は高温超電導線材の場合を述べたが、低温超電導線材であってもよい。また、超電導コイル10、40は、巻線部材11が所謂パンケーキ形状の場合を述べたが、巻線部材11が非円形形状であるレーストラック型、鞍型、楕円型にそれぞれ形成されたものでもよい。 For example, in the first and second embodiments, the thin film wire 20 forming the winding member 11 of the superconducting coils 10 and 40 has been described in the case of a high-temperature superconducting wire, but it may be a low-temperature superconducting wire. Further, the superconducting coils 10 and 40 have been described in the case where the winding member 11 has a so-called pancake shape, but the winding member 11 is formed into a racetrack type, a saddle type, and an elliptical shape having a non-circular shape, respectively. It may be.

10…超電導コイル、11…巻線部材、12…迂回路、13…伝熱板、15…側面、17…導電性樹脂、20…薄膜線材(高温超電導線材)、31…均熱板、40…超電導コイル、100…超電導コイル装置、101、102、103、104、105…超電導コイル装置、200…超電導コイル装置、O…巻回軸 10 ... Superconducting coil, 11 ... Winding member, 12 ... Detour, 13 ... Heat transfer plate, 15 ... Side, 17 ... Conductive resin, 20 ... Thin film wire (high temperature superconducting wire), 31 ... Soaking plate, 40 ... Superconducting coil, 100 ... Superconducting coil device, 101, 102, 103, 104, 105 ... Superconducting coil device, 200 ... Superconducting coil device, O ... Winding shaft

Claims (9)

超電導線材が巻回により重ね合わされることで形成されて径方向に沿う一対の側面を備えた巻線部材と、前記巻線部材の片方の前記側面に設けられて異なるターンの前記超電導線材同士を前記巻線部材の径方向に電気的に接続する迂回路と、前記迂回路に電気的に絶縁された状態で接して設けられた伝熱板と、を有してなる超電導コイルが、この超電導コイルの巻回軸方向に複数個積層されて構成されたことを特徴とする超電導コイル装置。 A winding member formed by overlapping superconducting wires by winding and having a pair of side surfaces along the radial direction, and the superconducting wires provided on one side of the winding member and having different turns. The superconducting coil comprising a detour that is electrically connected in the radial direction of the winding member and a heat transfer plate that is provided in contact with the detour in an electrically insulated state is the superconducting coil. A superconducting coil device characterized in that a plurality of coils are stacked in the winding axis direction. 前記超電導コイルは、迂回路が設けられた方の側面が、隣り合う前記超電導コイルの前記迂回路が設けられていない方の側面と対向するように積層されたことを特徴とする請求項1に記載の超電導コイル装置。 The first aspect of the superconducting coil is characterized in that the side surface of the superconducting coil provided with the detour is laminated so as to face the side surface of the adjacent superconducting coil not provided with the detour. The superconducting coil device described. 前記超電導コイルは、迂回路が設けられた方の側面同士が対向し、且つ前記迂回路が設けられていない方の側面同士が対向するように積層されたことを特徴とする請求項1に記載の超電導コイル装置。 The first aspect of claim 1, wherein the superconducting coils are laminated so that the side surfaces on which the detour is provided face each other and the side surfaces on which the detour is not provided face each other. Superconducting coil device. 前記超電導コイルが偶数枚積層され、その積層方向中央位置で隣り合う2枚の前記超電導コイルは、迂回路が設けられた方の側面同士が、または前記迂回路が設けられていない方の側面同士がそれぞれ対向するように配置され、
それ以外の位置での前記超電導コイルは、前記迂回路が設けられた方の側面が、隣り合う前記超電導コイルの前記迂回路が設けられていない方の側面と対向するように配置されたことを特徴とする請求項1に記載の超電導コイル装置。
An even number of the superconducting coils are stacked, and the two superconducting coils adjacent to each other at the center position in the stacking direction are provided on the side surfaces where the detour is provided or on the side surfaces where the detour is not provided. Are arranged so that they face each other,
The superconducting coil at other positions is arranged so that the side surface on which the detour is provided faces the side surface of the adjacent superconducting coil on which the detour is not provided. The superconducting coil device according to claim 1.
隣り合う前記超電導コイル間の間隙のうちで伝熱板が設けられていない側の前記間隙に、または積層方向の端部に配置された前記超電導コイルに、均熱板が電気的に絶縁された状態で設けられたことを特徴とする請求項1乃至4のいずれか1項に記載の超電導コイル装置。 The soaking plate was electrically insulated in the gap between the adjacent superconducting coils on the side where the heat transfer plate was not provided, or in the superconducting coil arranged at the end in the stacking direction. The superconducting coil device according to any one of claims 1 to 4, wherein the superconducting coil device is provided in a state. 超電導線材が巻回により重ね合わされることで形成されて径方向に沿う一対の側面を備えた巻線部材と、前記巻線部材の両方の前記側面に設けられて異なるターンの前記超電導線材同士を前記巻線部材の径方向に電気的に接続する迂回路と、前記迂回路に電気的に絶縁された状態で接して設けられた伝熱板と、を有してなる超電導コイルが、この超電導コイルの巻回軸方向に複数個積層されて構成されたことを特徴とする超電導コイル装置。 A winding member formed by superimposing superconducting wires by winding and having a pair of side surfaces along the radial direction, and the superconducting wires provided on both side surfaces of the winding member and having different turns. The superconducting coil comprising a detour that is electrically connected in the radial direction of the winding member and a heat transfer plate that is provided in contact with the detour in an electrically insulated state is the superconducting coil. A superconducting coil device characterized in that a plurality of coils are stacked in the winding axis direction. 隣り合う前記超電導コイルでは、対向する伝熱板が共有化されたことを特徴とする請求項1乃至6のいずれか1項に記載の超電導コイル装置。 The superconducting coil device according to any one of claims 1 to 6, wherein the heat transfer plates facing each other are shared in the adjacent superconducting coils. 前記迂回路が、導電性樹脂からなることを特徴とする請求項1乃至7のいずれか1項に記載の超電導コイル装置。 The superconducting coil device according to any one of claims 1 to 7, wherein the detour is made of a conductive resin. 前記伝熱板が、無酸素銅と高純度アルミニウムのいずれかからなることを特徴とする請求項1乃至8のいずれか1項に記載の超電導コイル装置。 The superconducting coil device according to any one of claims 1 to 8, wherein the heat transfer plate is made of either oxygen-free copper or high-purity aluminum.
JP2019222177A 2019-12-09 2019-12-09 Superconducting coil device Active JP7247080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019222177A JP7247080B2 (en) 2019-12-09 2019-12-09 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019222177A JP7247080B2 (en) 2019-12-09 2019-12-09 Superconducting coil device

Publications (2)

Publication Number Publication Date
JP2021093421A true JP2021093421A (en) 2021-06-17
JP7247080B2 JP7247080B2 (en) 2023-03-28

Family

ID=76312663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222177A Active JP7247080B2 (en) 2019-12-09 2019-12-09 Superconducting coil device

Country Status (1)

Country Link
JP (1) JP7247080B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022543A (en) * 2012-07-18 2014-02-03 Toshiba Corp Superconducting coil and superconducting coil device
WO2017061563A1 (en) * 2015-10-08 2017-04-13 古河電気工業株式会社 Superconducting coil
JP2017103352A (en) * 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2018101465A (en) * 2016-12-19 2018-06-28 株式会社東芝 Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device
JP2021535622A (en) * 2018-10-15 2021-12-16 トカマク エナジー リミテッド High temperature superconductor magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022543A (en) * 2012-07-18 2014-02-03 Toshiba Corp Superconducting coil and superconducting coil device
WO2017061563A1 (en) * 2015-10-08 2017-04-13 古河電気工業株式会社 Superconducting coil
JP2017103352A (en) * 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2018101465A (en) * 2016-12-19 2018-06-28 株式会社東芝 Superconducting coil, method for manufacturing superconducting coil, and superconducting coil device
JP2021535622A (en) * 2018-10-15 2021-12-16 トカマク エナジー リミテッド High temperature superconductor magnet

Also Published As

Publication number Publication date
JP7247080B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
US11967458B2 (en) Superconducting coil and superconducting coil device
JP4620637B2 (en) Resistive superconducting fault current limiter
WO2017057064A1 (en) High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil
JP6666274B2 (en) High temperature superconducting permanent current switch and high temperature superconducting magnet device
JP6490851B2 (en) Superconducting coil and superconducting coil device
JP6786375B2 (en) Superconducting coil, manufacturing method of superconducting coil and superconducting coil device
JP5022279B2 (en) Oxide superconducting current lead
JP6353674B2 (en) High temperature superconducting magnet device and high temperature superconducting magnet demagnetizing method
JP2001093721A (en) High-temperature superconducting magnet
JP7247080B2 (en) Superconducting coil device
JP7222622B2 (en) Superconducting coil and superconducting coil device
JP2020136637A (en) High-temperature superconducting magnet device
JP6862382B2 (en) High-temperature superconducting magnet device, its operation control device and method
JP2009230912A (en) Oxide superconductive current lead
JP5969418B2 (en) Permanent current switch
JP6871117B2 (en) High-temperature superconducting coil device and high-temperature superconducting magnet device
JP2000114027A (en) Superconducting coil device
JP7404187B2 (en) Superconducting coils and superconducting coil devices
JP6794146B2 (en) High-temperature superconducting magnet device
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JP2023044839A (en) Superconducting coil and superconducting coil device
JP4634954B2 (en) Superconducting device
JP2022174411A (en) Superconducting coil and method for manufacturing superconducting coil
JP2021015833A (en) Superconducting coil and superconducting coil unit
JP2013207088A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7247080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150