JPH11185847A - Bonding structure of oxidic superconductive wire and its connection method - Google Patents

Bonding structure of oxidic superconductive wire and its connection method

Info

Publication number
JPH11185847A
JPH11185847A JP9349791A JP34979197A JPH11185847A JP H11185847 A JPH11185847 A JP H11185847A JP 9349791 A JP9349791 A JP 9349791A JP 34979197 A JP34979197 A JP 34979197A JP H11185847 A JPH11185847 A JP H11185847A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
heat treatment
cut surface
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9349791A
Other languages
Japanese (ja)
Inventor
Naohiro Futaki
直洋 二木
Atsushi Kume
篤 久米
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9349791A priority Critical patent/JPH11185847A/en
Publication of JPH11185847A publication Critical patent/JPH11185847A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To secure superconductive connection at a connection part of an oxidic superconductive wire. SOLUTION: In an oxidic superconductive wire 1 formed by covering multiple superconductive cores 2 with a sheath 3 formed from Ag or the like, its connecting part 1A is so formed that each of its cut surfaces is formed by setting the cut angle so as to intersect with the axis of the oxidic superconductive wire at not more than 20 deg. and the cut surfaces are tightly fitted together in a condition in which the axes of the oxidic superconductive wires generally correspond with each other, a coating material 9 is placed around the connection part near the cut surfaces, and crystals of the superconductive cores 2 are formed in a state in which they have grown throughout the both sides of the cut surfaces by means of heat treatment or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導線材
の接合構造およびその接続方法に係り、超電導ケーブ
ル、マグネット、電流リード線等に利用される技術に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining structure of an oxide superconducting wire and a method of connecting the same, and relates to a technique used for a superconducting cable, a magnet, a current lead wire and the like.

【0002】[0002]

【従来の技術】従来、酸化物超電導線材1は、図3に示
すように、複数の超電導コア2が銀などからなるシース
3により覆われて形成され、該酸化物超電導線材1をパ
イプ状のフォーマ等に対して複数層巻回することにより
例えば超電導ケーブルが形成される。超電導コア2に利
用される酸化物超電導物質としては、Bi2Sr2Ca1
Cu2x(Bi系2212相),Bi2Sr2Ca2Cu3
y(Bi系2223相),Bi1.6Pb0.4Sr2Ca2
Cu3x,Tl2Ba2Ca2Cu3y ,等の組成を持つ
ものが利用されている。そのうち、Bi系、特に、Bi
系2223相酸化物超電導物質が、超電導コア2に適用
されている。
2. Description of the Related Art Conventionally, an oxide superconducting wire 1 is formed by covering a plurality of superconducting cores 2 with a sheath 3 made of silver or the like as shown in FIG. By winding a plurality of layers around a former or the like, for example, a superconducting cable is formed. The oxide superconducting material used for the superconducting core 2 is Bi 2 Sr 2 Ca 1
Cu 2 O x (Bi-based 2212 phase), Bi 2 Sr 2 Ca 2 Cu 3
O y (Bi 2223 phase), Bi 1.6 Pb 0.4 Sr 2 Ca 2
Those having a composition such as Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y are used. Among them, Bi type, especially Bi
A system 2223 phase oxide superconducting material has been applied to the superconducting core 2.

【0003】一方、図4(a)に示すように、酸化物超
電導線材(単心線)4として、1本の超電導コア5が、
シース6により覆われて形成されたものも同様に利用さ
れている。以下、このような単心線5における接続方法
について、図4ないし図5に基づいて説明する。 〔接続面露出:S1〕接続端部4Aにおいて、図4
(b)に示すように、シース6の一部分を接続長さだけ
剥ぎ取り、超電導コア5の接続面5Bを露出させる。 〔接続面接触:S2〕図4(c)に示すように、超電導
コア5の接続面5Bどうしを接触させる。 〔プレス工程:S3〕その後、1軸プレス等により、圧
着処理を行い、図4(d)に示すように、超電導コア5
どうしおよびシース6どうしを接続し、接続部4Bを形
成する。 〔熱処理工程:S4〕接続部4Bに対して、842℃,
150時間,酸素分圧10%等の処理条件により、熱処
理を行う。
On the other hand, as shown in FIG. 4 (a), one superconducting core 5 is used as an oxide superconducting wire (single core wire) 4.
The one covered by the sheath 6 is also used. Hereinafter, a connection method using such a single core wire 5 will be described with reference to FIGS. [Connection Surface Exposure: S1] At the connection end 4A, FIG.
As shown in (b), a part of the sheath 6 is peeled off by the connection length, and the connection surface 5B of the superconducting core 5 is exposed. [Connection Surface Contact: S2] As shown in FIG. 4C, the connection surfaces 5B of the superconducting core 5 are brought into contact with each other. [Pressing step: S3] Thereafter, pressure bonding is performed by a uniaxial press or the like, and as shown in FIG.
The connection between the members and the sheath 6 is made to form a connection portion 4B. [Heat treatment step: S4] 842 ° C.
The heat treatment is performed under processing conditions such as 150 hours and an oxygen partial pressure of 10%.

【0004】[0004]

【発明が解決しようとする課題】しかし、図3に示すよ
うな、酸化物超電導線材(多心線)1であると、上述の
ような単心線の接続方法を適応できず、複数の超電導コ
アどうしを接続することが難しいため、酸化物超電導線
材の接続部分で常電導接続となってしまう可能性がある
という問題があった。
However, when the oxide superconducting wire (multi-core wire) 1 as shown in FIG. 3 is used, the above-described method for connecting a single core wire cannot be applied, and a plurality of superconducting wires are not applicable. Since it is difficult to connect the cores to each other, there is a problem that the connection portion of the oxide superconducting wire may become a normal conducting connection.

【0005】本発明は、上記の事情に鑑みてなされたも
ので、以下の目的を達成しようとするものである。 酸化物超電導線材の接続部分において超電導接続を確
保すること。 超電導コアにおける接続面積の拡大を図ること。 接続面の両側に亘って酸化物超電導物質の結晶が成長
した状態として接合すること。
The present invention has been made in view of the above circumstances, and aims to achieve the following objects. Superconducting connection must be ensured at the connecting portion of the oxide superconducting wire. To increase the connection area in the superconducting core. Bonding in a state where crystals of the oxide superconducting material have grown over both sides of the connection surface.

【0006】[0006]

【課題を解決するための手段】複数の超電導コアがAg
等からなるシースにより覆われて形成された酸化物超電
導線材において、その接続部が、酸化物超電導線材の軸
線と切断角度を20度以下として交わるよう位置して切
断面が形成されて、該切断面どうしが酸化物超電導線材
の軸線を略重なるように密着状態とされ、切断面付近の
接続部の周囲に被覆材が配されて、熱処理等により、超
電導コアの結晶が切断面の両側に亘って成長した状態と
して形成される。被覆材がシースと同一材質とされ、か
つ被覆材とシースとが一体とされる。前記切断面がそれ
ぞれ鏡面状の平滑面等として滑らかに形成される。複数
の超電導コアがAg等からなるシースにより覆われて形
成された酸化物超電導線材の接続方法において、該酸化
物超電導線材の接続端部において、接続端部の表面に対
して剥離材等による表面処理を行う前処理工程と、酸化
物超電導線材の端面における超電導コアを、ハンダ等の
密閉材により密閉する密閉工程と、該密閉材の外側を、
接続端部を補強するために、エポキシ系樹脂等からなる
補強材により、後述の切断面位置を含むようにシースの
表面まで一体として覆う接続端部補強工程と、接続端部
を、酸化物超電導線材の軸線に対して設定された切断角
度により交差する切断面位置によって規定される切断面
において切断する切断工程と、補強剤を除去し、切断面
を接触状態として2本の酸化物超電導線材の軸線が略重
なり合うように位置する接続面接触工程と、該切断面位
置を含むような酸化物超電導線材の長さ方向の接続部の
表面に位置してシースと同一材質からなる被覆材により
接続部の表面を覆う被覆工程と、接続部に加圧処理を行
う加圧工程と、接続部に対して、酸化物超電導物質の部
分溶融可能温度程度に設定される温度条件によって熱処
理を行う熱処理工程とを有する。前記切断工程におい
て、酸化物超電導線材の軸線と切断面とのなす切断角度
が20度以下の範囲とされ、かつ、切断時における荷重
条件が5g以下とされることが好ましい。熱処理工程に
おいて、850℃〜875℃の範囲で0.5時間〜1時
間程度行う高温熱処理と、820℃〜840℃の範囲で
20時間〜100時間程度行う低温熱処理とを有し、酸
素濃度条件が、7%〜20%の範囲の熱処理雰囲気とさ
れることが好ましい。被覆材の厚みが、0.2mm以下
とされることが好ましく、より好ましくは0.1mm以
下とされる。
A plurality of superconducting cores are made of Ag.
In the oxide superconducting wire formed by being covered with a sheath made of the above, a cut surface is formed such that a connection portion thereof intersects with the axis of the oxide superconducting wire at a cutting angle of 20 degrees or less, and the cut surface is formed. The surfaces are brought into close contact with each other so as to substantially overlap the axis of the oxide superconducting wire, and a coating material is disposed around the connection portion near the cut surface, and the crystal of the superconducting core is spread on both sides of the cut surface by heat treatment or the like. It is formed as a grown state. The covering material is made of the same material as the sheath, and the covering material and the sheath are integrated. Each of the cut surfaces is smoothly formed as a mirror-like smooth surface. In a method for connecting an oxide superconducting wire formed by covering a plurality of superconducting cores with a sheath made of Ag or the like, the surface of the connecting end of the oxide superconducting wire is separated from the surface of the connection end by a release material or the like. A pretreatment step of performing the treatment, a sealing step of sealing the superconducting core on the end face of the oxide superconducting wire with a sealing material such as solder, and the outside of the sealing material,
In order to reinforce the connection end, a connection end reinforcement step of integrally covering up to the surface of the sheath so as to include a cut surface position to be described later with a reinforcing material made of an epoxy resin or the like; A cutting step of cutting at a cutting plane defined by a cutting plane position intersecting with a cutting angle set with respect to an axis of the wire, removing a reinforcing agent, and bringing the cut planes into contact with each other to form two oxide superconducting wires; A connecting surface contacting step in which the axes are positioned so as to substantially overlap with each other, and a connecting portion formed of the same material as the sheath and located on the surface of the connecting portion in the longitudinal direction of the oxide superconducting wire including the cut surface position A coating process for covering the surface of the substrate, a pressurizing process for applying a pressure treatment to the connection portion, and a heat treatment step for performing a heat treatment on the connection portion under a temperature condition set to a temperature at which the oxide superconducting material can be partially melted. With the door. In the cutting step, it is preferable that the cutting angle between the axis of the oxide superconducting wire and the cut surface is in a range of 20 degrees or less, and the load condition at the time of cutting is 5 g or less. The heat treatment step includes a high-temperature heat treatment performed in a range of 850 ° C. to 875 ° C. for about 0.5 hours to 1 hour, and a low-temperature heat treatment performed in a range of 820 ° C. to 840 ° C. for about 20 hours to 100 hours. Is preferably a heat treatment atmosphere in the range of 7% to 20%. The thickness of the coating material is preferably set to 0.2 mm or less, more preferably 0.1 mm or less.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る酸化物超電導
線材の接合構造およびその接続方法の一実施形態を、図
面に基づいて説明する。図1において、符号1は酸化物
超電導線材、2は超電導コア、3はシース、7は密閉
材、8は補強材、9は被覆材である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a joining structure of an oxide superconducting wire and a method of connecting the same according to the present invention. In FIG. 1, reference numeral 1 denotes an oxide superconducting wire, 2 denotes a superconducting core, 3 denotes a sheath, 7 denotes a sealing material, 8 denotes a reinforcing material, and 9 denotes a covering material.

【0008】酸化物超電導線材1は、図3に示すものと
同様に、複数の超電導コア2がAg等のシース材からな
るシース3により覆われて形成されたものとされ、図1
に示すように、その接続部1Aが、酸化物超電導線材1
の端部(接続端部)1Bに設定される。酸化物超電導導
体1は、例えば、幅0.5mm〜5mm程度、厚さ0.
05mm〜0.7mm程度の範囲のテープ状のものとさ
れ、例えば、幅4.0mm、厚さ0.20mmとされ
る。超電導コア2がBi2Sr2Ca1Cu2x (Bi2
212相),Bi2Sr2Ca2Cu3y(Bi2223
相),Bi1.6Pb0.4Sr2Ca2Cu3x,Tl2Ba2
Ca2Cu3y,などで示される組成を持つものとさ
れ、例えば、Bi系2223相のBi系酸化物超電導材
料が選択される。シース3は、Ag,Pt,Au等の貴
金属あるいはそれらの合金からなるものとされ、例え
ば、Agとされる。接続部1Aには、図1(d)に示す
ように、該酸化物超電導線材1の軸線Lと切断角度θを
20度以下として交わるよう位置して切断面Sが形成さ
れて、2本の酸化物超電導線材1の切断面Sどうしが酸
化物超電導線材1の軸線Lを略重なるように密着状態と
され、切断面S付近の接続部1Aの周囲に被覆材9が配
されて、熱処理等により、超電導コア2の結晶が切断面
Sの両側に亘って成長した状態として形成されてなるも
のとされる。被覆材9がシース3と同一材質とされ、か
つ被覆材9とシース3とが一体とされる。
An oxide superconducting wire 1 is formed by covering a plurality of superconducting cores 2 with a sheath 3 made of a sheath material such as Ag, as shown in FIG.
As shown in the figure, the connecting portion 1A is made of an oxide superconducting wire 1
(Connection end) 1B. The oxide superconducting conductor 1 has, for example, a width of about 0.5 mm to 5 mm and a thickness of about 0.5 mm.
It is in the form of a tape in the range of about 05 mm to 0.7 mm, for example, 4.0 mm in width and 0.20 mm in thickness. The superconducting core 2 is made of Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi 2
212 phase), Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi 2223
Phase), Bi 1.6 Pb 0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2
It has a composition represented by Ca 2 Cu 3 O y , etc., and for example, a Bi-based 2223 phase Bi-based oxide superconducting material is selected. The sheath 3 is made of a noble metal such as Ag, Pt, or Au or an alloy thereof, and is made of, for example, Ag. As shown in FIG. 1D, a cut surface S is formed at the connecting portion 1A so as to intersect with the axis L of the oxide superconducting wire 1 at a cutting angle θ of 20 degrees or less. The cut surfaces S of the oxide superconducting wire 1 are brought into close contact with each other so as to substantially overlap the axis L of the oxide superconducting wire 1, and a coating material 9 is disposed around the connection portion 1A near the cut surface S, and heat treatment is performed. Thereby, the crystal of superconducting core 2 is formed in a state of growing over both sides of cut surface S. The covering material 9 is made of the same material as the sheath 3, and the covering material 9 and the sheath 3 are integrated.

【0009】以下、このような酸化物超電導線材におけ
る接続方法について、図2に基づいて説明する。
Hereinafter, a connection method for such an oxide superconducting wire will be described with reference to FIG.

【0010】〔前処理工程:S10〕酸化物超電導線材
1の接続端部1Bにおいて、図1(a)に示すように、
接続端部1Bの表面に対して希硝酸等による表面洗浄お
よび、シリコングリース等の剥離材により表面処理を行
い、剥離材による表面処理を行う。 〔密閉工程:S11〕酸化物超電導線材1の端面1Cに
おいて、図1(b)に示すように、超電導コア2を密閉
するために、ハンダ等の密閉材7により密閉する。 〔接続端部補強工程:S12〕密閉材7の外側を、接続
端部1Bを補強するために、エポキシ系樹脂等からなる
補強材8により、後述の切断面位置Cを含むようにシー
ス3の表面まで一体として覆う。 〔接続面接触工程:S13〕接続端部1Bを、図1
(b)に示すように、酸化物超電導線材1の軸線Lに対
して設定された切断角度θにより交差する切断面Sによ
って規定される切断面位置Cにおいて切断する。ここ
で、酸化物超電導線材1の軸線と切断面Sとのなす切断
角度θが20度以下の範囲とされ、かつ、切断時におけ
る荷重条件が5g以下とされる。前記切断面Sがそれぞ
れ鏡面状に滑らかに形成されるよう例えばダイヤモンド
カッターにより切断する。 〔接続面接触工程:S14〕接続端部1Bから補強剤8
を除去し、2本の酸化物超電導線材1の切断面Sを接触
状態として、該2本の酸化物超電導線材1の軸線Lが略
重なり合うように位置する。 〔被覆工程:S15〕図1(c)に示すように、切断面
位置Cを含むような酸化物超電導線材1の長さ方向の接
続部1Aの表面に位置してシース3と同一材質の例えば
Agからなる被覆材9により接続部1Aの表面を覆う。
被覆材9の厚みが、0.1mm以下とされる。 〔加圧工程:S16〕被覆材により覆った接続部1Aに
1軸プレス等により加圧処理を行う。 〔熱処理工程:S17〕接続部1Aに対して、酸化物超
電導物質の部分溶融可能温度825℃〜855℃の範囲
に設定される温度条件によって熱処理を行う。この際、
850℃〜875℃の範囲で0.5時間〜1時間程度行
う高温熱処理と、820℃〜840℃の範囲で20時間
〜100時間程度行う低温熱処理とを有し、高温熱処理
および低温熱処理のいずれにおいても、酸素濃度条件
が、7%〜20%の範囲の熱処理雰囲気とされる。ここ
で、850℃よりも温度が高い条件で長時間の熱処理を
加えるとBi2223相が分解してしまい、820℃程
度では接合部分の反応速度が遅く、良好な接続が得られ
ない。そこで、上記のように温度条件の範囲を設定し、
短時間の高温熱処理により、接合部分を溶融体で接続し
た後に、結晶成長をうながす低温熱処理をほどこす。 〔後処理:S18〕接続部1Aにおける被覆材9とシー
ス2との平滑化のための表面処理等の後処理を施す。
[Pretreatment step: S10] At the connection end 1B of the oxide superconducting wire 1, as shown in FIG.
The surface of the connection end 1B is subjected to surface cleaning with diluted nitric acid or the like, and surface treatment with a release material such as silicon grease, and surface treatment with a release material. [Sealing Step: S11] At the end face 1C of the oxide superconducting wire 1, as shown in FIG. 1 (b), the superconducting core 2 is sealed with a sealing material 7 such as solder. [Connection End Reinforcing Step: S12] In order to reinforce the connection end 1B, the outside of the sealing material 7 is reinforced with a reinforcing material 8 made of an epoxy resin or the like so as to include a cut surface position C described later. Cover as far as the surface. [Connection surface contact step: S13] Connect the connection end 1B to FIG.
As shown in (b), the oxide superconducting wire 1 is cut at a cutting plane position C defined by a cutting plane S that intersects with an axis L of the oxide superconducting wire 1 at a cutting angle θ. Here, the cutting angle θ between the axis of the oxide superconducting wire 1 and the cut surface S is set to a range of 20 degrees or less, and the load condition at the time of cutting is set to 5 g or less. The cut surface S is cut by, for example, a diamond cutter so that each of the cut surfaces S is smoothly formed into a mirror surface. [Connection surface contact step: S14] Reinforcing agent 8 from connection end 1B
Is removed, and the cut surfaces S of the two oxide superconducting wires 1 are brought into contact with each other, and the two oxide superconducting wires 1 are positioned so that the axes L thereof substantially overlap with each other. [Covering Step: S15] As shown in FIG. 1C, for example, the same material as that of the sheath 3 is located on the surface of the connecting portion 1A in the longitudinal direction of the oxide superconducting wire 1 including the cut surface position C. The surface of the connection portion 1A is covered with the covering material 9 made of Ag.
The thickness of the coating material 9 is set to 0.1 mm or less. [Pressing process: S16] The connecting portion 1A covered with the covering material is subjected to a pressing process by a uniaxial press or the like. [Heat Treatment Step: S17] Heat treatment is performed on the connection portion 1A under a temperature condition set in a range of 825 ° C. to 855 ° C. at which the oxide superconducting material can be partially melted. On this occasion,
It has a high-temperature heat treatment performed in the range of 850 ° C. to 875 ° C. for about 0.5 hours to 1 hour, and a low-temperature heat treatment performed in the range of 820 ° C. to 840 ° C. for about 20 hours to 100 hours. Also, the heat treatment atmosphere is set so that the oxygen concentration condition is in the range of 7% to 20%. Here, if heat treatment is performed for a long time at a temperature higher than 850 ° C., the Bi2223 phase is decomposed, and at about 820 ° C., the reaction speed of the bonding portion is low, and good connection cannot be obtained. Therefore, the range of the temperature condition is set as described above,
After the joining portions are connected by a melt by a high-temperature heat treatment for a short time, a low-temperature heat treatment that encourages crystal growth is given. [Post-processing: S18] Post-processing such as surface treatment for smoothing the coating material 9 and the sheath 2 at the connection portion 1A is performed.

【0011】上述のような接続方法において、切断端部
1Bを補強材8により補強し、かつ、切断時の荷重を5
g以下に抑えたので、切断に際して接続端部1Bの内部
構造に与える影響を抑えることができる。切断角度θを
20度以下に設定したので、切断面Sの面積を増大する
ことができ、その結果、接続する酸化物超電導線材1の
超電導コア2どうしを殆ど接触状態として接続すること
が可能となる。熱処理工程S17において、処理温度を
Bi系2223相酸化物超電導物質の部分溶融可能温度
に設定することにより、切断面Sの両側に亘って結晶を
成長させることができ、接続部1A以外の酸化物超電導
線材1と略同等の臨界電流値を得ることができる。
In the connection method as described above, the cut end 1B is reinforced by the reinforcing member 8 and the load at the time of cutting is reduced by 5%.
g or less, it is possible to suppress the influence on the internal structure of the connection end 1B at the time of cutting. Since the cutting angle θ is set to 20 degrees or less, the area of the cut surface S can be increased, and as a result, the superconducting cores 2 of the oxide superconducting wires 1 to be connected can be connected almost in a contact state. Become. In the heat treatment step S17, by setting the processing temperature to a temperature at which the Bi-based 2223 phase oxide superconducting material can be partially melted, crystals can be grown on both sides of the cut surface S, and the oxide other than the connection portion 1A can be grown. A critical current value substantially equal to that of superconducting wire 1 can be obtained.

【0012】[0012]

【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

【0013】(実施例)Bi2Sr2Ca2Cu3y (B
i2223相)で示される組成を持つ超電導コアが複数
シース内部に配される幅4.0mm、厚さ0.2mmの
酸化物超電導線材において、その接続端部の表面に対し
て希硝酸による表面洗浄およびシリコングリース等の剥
離材による表面処理を行った後、ハンダにより接続端部
の密閉を行い、エポキシ系樹脂等からなる補強材により
接続端部を補強した。該接続端部を、酸化物超電導線材
1の軸線Lに対して設定された切断角度θ=20゜に設
定された切断面位置においてダイヤモンドカッターによ
り切断し切断面を形成した。接続端部から補強剤を除去
し、2本の酸化物超電導線材の切断面を接触状態とし
て、該2本の酸化物超電導線材の軸線が略重なり合うよ
うに位置し、厚みが0.1mmのAgからなる被覆材に
より、切断面を含むような酸化物超電導線材の長さ方向
の接続部の表面に位置して接続部の表面を覆い、CIP
(冷間静水圧プレス)により加圧処理を行う。次いで、
850℃の温度条件で0.5時間の時間条件として行う
高温熱処理と、825℃の温度条件で100時間の時間
条件として行う低温熱処理とを行い、かつ、高温熱処理
および低温熱処理のいずれにおいても、酸素濃度条件
が、8%の酸素濃度雰囲気として熱処理を行って酸化物
超電導線材を得た。
(Example) Bi 2 Sr 2 Ca 2 Cu 3 O y (B
i2223 phase) In a superconducting wire having a width of 4.0 mm and a thickness of 0.2 mm in which a plurality of superconducting cores having a composition represented by the formula After performing surface treatment with a release material such as silicon grease, the connection end was sealed with solder, and the connection end was reinforced with a reinforcing material such as an epoxy resin. The connection end was cut by a diamond cutter at a cutting plane position set at a cutting angle θ = 20 ° set with respect to the axis L of the oxide superconducting wire 1 to form a cut plane. The reinforcing agent is removed from the connection end, the cut surfaces of the two oxide superconducting wires are brought into contact with each other, and the two oxide superconducting wires are positioned so that their axes are substantially overlapped with each other and have a thickness of 0.1 mm. And covering the surface of the connection portion at the surface of the connection portion in the longitudinal direction of the oxide superconducting wire including the cut surface by the coating material comprising CIP.
Pressurization is performed by (cold isostatic press). Then
High-temperature heat treatment performed at a temperature condition of 850 ° C. as a time condition of 0.5 hour, and low-temperature heat treatment performed at a temperature condition of 825 ° C. as a time condition of 100 hours, and in both the high-temperature heat treatment and the low-temperature heat treatment, Heat treatment was performed in an oxygen concentration atmosphere with an oxygen concentration of 8% to obtain an oxide superconducting wire.

【0014】(比較例1)上記実施例において、切断角
度θを30゜として同様にして接続部を接続して酸化物
超電導線材を得た。 (比較例2)上記実施例における接続部分のない酸化物
超電導線材を作製した。
(Comparative Example 1) In the above embodiment, the cutting angle θ was set to 30 °, and the connecting portions were connected in the same manner to obtain an oxide superconducting wire. (Comparative Example 2) An oxide superconducting wire having no connection portion in the above example was produced.

【0015】上記実施例で得られた酸化物超電導線材
と、比較例1および比較例2で得られた酸化物超電導線
材において、以下の条件で測定実験を行った。 外部磁場:0T 温度:77K 実施例における酸化物超電導線材の臨界電流値:9.8
A 比較例1における酸化物超電導線材の臨界電流値:6.
5A 比較例2における酸化物超電導線材の臨界電流値:10
A この結果、接続部を有する酸化物超電導線材において
は、切断角度θが20度以下の場合には、接続部を有し
ない酸化物超電導線材に比べて、臨界電流値が95%と
略同等の値をとることが測定された。
Measurement experiments were performed on the oxide superconducting wire obtained in the above example and the oxide superconducting wires obtained in Comparative Examples 1 and 2 under the following conditions. External magnetic field: 0T Temperature: 77K Critical current value of the oxide superconducting wire in the example: 9.8
A. Critical current value of oxide superconducting wire in Comparative Example 1:
5A Critical current value of oxide superconducting wire in Comparative Example 2: 10
A As a result, in the oxide superconducting wire having the connection portion, when the cutting angle θ is 20 degrees or less, the critical current value is substantially equal to 95% as compared with the oxide superconducting wire having no connection portion. Taking a value was measured.

【0016】[0016]

【発明の効果】本発明の酸化物超電導線材の接合構造お
よびその接続方法によれば、以下の効果を奏する。 (1)切断角度θを20度以下に設定したので、切断面
の面積を増大することができ、その結果、接続する酸化
物超電導線材の超電導コアどうしを殆ど接触状態として
接続することが可能となるために、超電導コアの接続面
積の拡大を図ることができる。 (2)熱処理工程において、処理温度を酸化物超電導物
質の部分溶融可能温度程度に設定することにより、接続
面の両側に亘って酸化物超電導物質の結晶が成長した状
態とすることができる。 (3)上記および、切断端部補強材により補強し、か
つ、切断時の荷重を5g以下に抑えたので、切断に際し
て接続端部の内部構造に与える影響が抑えられて、更
に、熱処理により、切断面の両側に亘って結晶を成長さ
せたために、酸化物超電導線材の接続部分において超電
導コアの接続を確保することができ、その結果、接続部
以外の酸化物超電導線材と略同等の臨界電流値を得るこ
とができる。
According to the joining structure of the oxide superconducting wire and the method of connecting the same according to the present invention, the following effects can be obtained. (1) Since the cutting angle θ is set to 20 degrees or less, the area of the cut surface can be increased, and as a result, the superconducting cores of the oxide superconducting wires to be connected can be connected almost in a contact state. Therefore, the connection area of the superconducting core can be increased. (2) In the heat treatment step, by setting the processing temperature to a temperature at which the oxide superconducting material can be partially melted, it is possible to make a crystal of the oxide superconducting material grow on both sides of the connection surface. (3) Since the above and the cut end reinforcing material are reinforced and the load at the time of cutting is suppressed to 5 g or less, the influence on the internal structure of the connection end at the time of cutting is suppressed. Since the crystal is grown on both sides of the cut surface, the connection of the superconducting core can be secured at the connection portion of the oxide superconducting wire, and as a result, the critical current is substantially equal to that of the oxide superconducting wire other than the connection portion. Value can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る酸化物超電導線材の接合構造お
よびその接続方法の一実施形態における作業手順を示す
側断面図である。
FIG. 1 is a side cross-sectional view showing a working procedure in an embodiment of a bonding structure of an oxide superconducting wire and a connection method thereof according to the present invention.

【図2】 本発明に係る酸化物超電導線材の接合構造お
よびその接続方法の一実施形態における作業手順を示す
フローチャートである。
FIG. 2 is a flowchart showing an operation procedure in an embodiment of a joining structure of an oxide superconducting wire and a connecting method thereof according to the present invention.

【図3】 従来の酸化物超電導線材(多心線)を示す斜
視図である。
FIG. 3 is a perspective view showing a conventional oxide superconducting wire (multi-core wire).

【図4】 従来の酸化物超電導線材(単身線)の接続方
法における作業手順を示す側断面図である。
FIG. 4 is a side sectional view showing an operation procedure in a conventional method for connecting an oxide superconducting wire (single body wire).

【図5】 従来の酸化物超電導線材(単身線)の接続方
法における作業手順を示すフローチャートである。
FIG. 5 is a flowchart showing an operation procedure in a conventional method of connecting an oxide superconducting wire (single body wire).

【符号の説明】[Explanation of symbols]

1…酸化物超電導線材,1A…接続部,1B…接続端
部,1C…端面,2…超電導コア,3…シース,7…密
閉材,8…補強材,9…被覆材,C…切断面位置,S…
切断面,θ…切断角度
DESCRIPTION OF SYMBOLS 1 ... Oxide superconducting wire, 1A ... Connection part, 1B ... Connection end, 1C ... End face, 2 ... Superconducting core, 3 ... Sheath, 7 ... Sealing material, 8 ... Reinforcement material, 9 ... Coating material, C ... Cut surface Position, S ...
Cutting surface, θ ... cutting angle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の超電導コアがシースにより覆われ
て形成された酸化物超電導線材どうしの接合構造におい
て、その接続部が、酸化物超電導線材の軸線と切断角度
を20度以下として交わるよう位置して切断面が形成さ
れて、該切断面どうしが両酸化物超電導線材の軸線を略
重ねるように密着状態とされ、切断面付近の接続部の周
囲に被覆材が配されて、熱処理等により、超電導コアの
結晶が切断面の両側に亘って成長した状態として接合さ
れたことを特徴とする酸化物超電導線材の接合構造。
In a bonding structure of an oxide superconducting wire formed by covering a plurality of superconducting cores with a sheath, a position where a connecting portion intersects an axis of the oxide superconducting wire at a cutting angle of 20 degrees or less. A cut surface is formed, and the cut surfaces are brought into close contact with each other so that the axes of both oxide superconducting wires are substantially overlapped with each other. A coating material is disposed around a connection portion near the cut surface, and heat treatment is performed. And a bonding structure of the oxide superconducting wire, wherein the crystal of the superconducting core is bonded so as to grow on both sides of the cut surface.
【請求項2】 前記切断面が鏡面状の平滑面とされるこ
とを特徴とする請求項1記載の酸化物超電導線材の接合
構造。
2. The joint structure for an oxide superconducting wire according to claim 1, wherein the cut surface is a mirror-like smooth surface.
【請求項3】 複数の超電導コアがシースにより覆われ
て形成された酸化物超電導線材の接続方法において、該
酸化物超電導線材の接続端部において、接続端部の表面
に対して剥離材等による表面処理を行う前処理工程と、
酸化物超電導線材の端面における超電導コアを、密閉材
により密閉する密閉工程と、該密閉材の外側を、接続端
部を補強するために、補強材により、後述の切断面位置
を含むようにシースの表面まで一体として覆う接続端部
補強工程と、接続端部を、酸化物超電導線材の軸線に対
して設定された切断角度により交差する切断面位置によ
って規定される切断面によって、切断面と酸化物超電導
線材の軸線とのなす切断角度が20度以下で切断する切
断工程と、補強剤を除去し、切断面を接触状態として2
本の酸化物超電導線材の軸線が略重なり合うように位置
する接続面接触工程と、該切断面位置を含むような酸化
物超電導線材の長さ方向の接続部の表面に位置してシー
スと同材質からなる被覆材により接続部の表面を覆う被
覆工程と、該接続部に対して、酸化物超電導物質の部分
溶融可能温度に設定される温度条件によって熱処理を行
う熱処理工程とを有することを特徴とする酸化物超電導
線材の接続方法。
3. A method for connecting an oxide superconducting wire formed by covering a plurality of superconducting cores with a sheath, wherein the connecting end of the oxide superconducting wire is separated from the surface of the connecting end by a release material or the like. A pretreatment step of performing a surface treatment;
A sealing step of sealing the superconducting core at the end face of the oxide superconducting wire with a sealing material, and a sheath for reinforcing the outside of the sealing material with a reinforcing material to include a cut surface position to be described later with a reinforcing material. The connection end portion is reinforced by a step of reinforcing the connection end portion, which covers the entire surface of the oxide superconducting wire, and the cut end surface is oxidized by a cut surface defined by a cut surface position intersecting with the axis of the oxide superconducting wire at a cutting angle set. A cutting step in which the cutting angle between the object superconducting wire and the axis line is 20 degrees or less, and removing the reinforcing agent, leaving the cut surface in a contact state, 2
A connecting surface contacting step in which the axes of the oxide superconducting wire of the present invention are positioned so as to substantially overlap with each other, and the same material as the sheath which is located on the surface of the connecting portion in the longitudinal direction of the oxide superconducting wire including the cut surface position A coating step of covering the surface of the connection part with a coating material comprising: and a heat treatment step of performing a heat treatment on the connection part under a temperature condition set to a temperature at which partial melting of the oxide superconducting substance is possible. Method of connecting oxide superconducting wires.
【請求項4】前記熱処理工程において、850℃〜87
5℃の範囲で0.5時間〜1時間程度行う高温熱処理
と、820℃〜840℃の範囲で20時間〜100時間
程度行う低温熱処理とを有し、7%〜20%の範囲の酸
素濃度雰囲気で熱処理することを特徴とする請求項3記
載の酸化物超電導線材の接続方法。
4. The method according to claim 1, wherein in the heat treatment step, 850 ° C. to 87 ° C.
It has a high-temperature heat treatment performed in the range of 5 ° C. for about 0.5 hours to 1 hour and a low-temperature heat treatment performed in the range of 820 ° C. to 840 ° C. for about 20 hours to 100 hours, and has an oxygen concentration of 7% to 20%. The method for connecting an oxide superconducting wire according to claim 3, wherein the heat treatment is performed in an atmosphere.
JP9349791A 1997-12-18 1997-12-18 Bonding structure of oxidic superconductive wire and its connection method Withdrawn JPH11185847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9349791A JPH11185847A (en) 1997-12-18 1997-12-18 Bonding structure of oxidic superconductive wire and its connection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9349791A JPH11185847A (en) 1997-12-18 1997-12-18 Bonding structure of oxidic superconductive wire and its connection method

Publications (1)

Publication Number Publication Date
JPH11185847A true JPH11185847A (en) 1999-07-09

Family

ID=18406147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9349791A Withdrawn JPH11185847A (en) 1997-12-18 1997-12-18 Bonding structure of oxidic superconductive wire and its connection method

Country Status (1)

Country Link
JP (1) JPH11185847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
CN104036914A (en) * 2014-05-22 2014-09-10 中国科学院电工研究所 Manufacturing method for high-temperature superconductivity strip connector of high-temperature superconductivity double-pancake coils

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228797A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Permanent current switch using magnesium diboride and its manufacturing method
JP4728007B2 (en) * 2005-02-15 2011-07-20 株式会社日立製作所 Persistent current switch using magnesium diboride and method of manufacturing the same
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
CN104036914A (en) * 2014-05-22 2014-09-10 中国科学院电工研究所 Manufacturing method for high-temperature superconductivity strip connector of high-temperature superconductivity double-pancake coils

Similar Documents

Publication Publication Date Title
EP3174072A1 (en) Connection structure body for oxide superconducting wire material and method for manufacturing same
US5358929A (en) Method of joining superconducting wire using oxide high-temperature superconductor
RU2738320C1 (en) Superconducting joint using detached rebco
US5949131A (en) Junction between wires employing oxide superconductors and joining method therefor
WO2013165001A1 (en) Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
JPH11185847A (en) Bonding structure of oxidic superconductive wire and its connection method
CN110326062A (en) The connection structure of superconducting wire
JP3489525B2 (en) Superconducting wire and method of manufacturing the same
JPH0361991B2 (en)
JPH1116618A (en) Method for connecting superconductive wire
EP0806801B1 (en) Superconducting joint between Nb3Sn tape and NbTi wire for use in superconducting magnets
JPH065342A (en) Superconducting wire connecting method
JP2523524B2 (en) Superconducting wire manufacturing method
US11777269B2 (en) Connection body of high-temperature superconducting wire materials and connecting method
JPH04106809A (en) Superconductor
KR910007506B1 (en) Method of semiconductor device
JPH0376101A (en) Joint of superconductive conductor
JP2549684B2 (en) Oxide-based superconducting wire connection method
JP4713756B2 (en) Oxide superconducting cable connection and connection method
EP0303311A1 (en) Method of manufacturing an electrically conductive contact
JPS61264609A (en) Manufacture externally reinforced compound superconductor
JPS6035796B2 (en) How to connect superconducting wires
JPH04292879A (en) Junction method of superconductive wire
JPH04292876A (en) Junction method of superconductive wire
JPS59177878A (en) Method of connecting superconductive wire

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301