JPH04106809A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH04106809A
JPH04106809A JP2223975A JP22397590A JPH04106809A JP H04106809 A JPH04106809 A JP H04106809A JP 2223975 A JP2223975 A JP 2223975A JP 22397590 A JP22397590 A JP 22397590A JP H04106809 A JPH04106809 A JP H04106809A
Authority
JP
Japan
Prior art keywords
melting point
filler metal
superconducting wire
wire
brazing filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2223975A
Other languages
Japanese (ja)
Inventor
Kiyouta Suzai
京太 須齋
Itaru Inoue
井上 至
Kinya Ogawa
欽也 小川
Takuya Suzuki
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2223975A priority Critical patent/JPH04106809A/en
Publication of JPH04106809A publication Critical patent/JPH04106809A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductor which can be covered with a thin enameled insulating layer at a low cost by joining a stabilizing metal and an Nb-Ti alloy superconducting wire with a brazing filler metal whose melting point is specified. CONSTITUTION:Stabilizing metal 3 and Nb-Ti alloy superconducting wire 1 are joined with a brazing filler metal 2 whose melting point is of 320 deg.C-620 deg.C. By using Zn as the brazing filler metal 2 for example, the wire 1 is heated and joined, and thereafter, it is bake coated with formal 4 at 300 deg.C. The melting point of Zn is 420 deg.C and higher than the temperature at which the formal 4 is bake coated on the wire 1, so that the brazing filler metal 2 is not molten and therefore, their joinability is good. If the temperature exceeds 620 deg.C, the characteristics of Nb-Ti alloy superconducting wire 1 are deteriorated by heat at the time of joining with the barzing filler metal. It is thereby possible to apply enameled insulation at a low cost and thin the insulating covering layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は安定化金属と超電導線とをろう材を用いて接合
する超電導導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting conductor in which a stabilizing metal and a superconducting wire are joined using a brazing material.

〔従来の技術とその課題〕[Conventional technology and its issues]

MRrなどに用いるNbTi 、Nb5Sn超電導導体
としては、低温安定化、補強コスト低減、導体としての
単長の増加、Cu比の大きい導体の安定製造等の理由に
より、安定化金属と超電導線9を別々に製造しておき、
両者をろう材を用いて接合する構造の超電導導体が使用
されている。
For NbTi and Nb5Sn superconducting conductors used in MRr, etc., the stabilizing metal and the superconducting wire 9 are separated for reasons such as low-temperature stabilization, reduction of reinforcement cost, increase in unit length as a conductor, and stable production of conductors with a large Cu ratio. Manufactured in
A superconducting conductor with a structure in which both are joined using a brazing material is used.

従来このろう材としてはS n30〜50wt%残部P
bからなる半田が用いられていた。
Conventionally, this brazing filler metal contains Sn30-50wt% balance P
Solder consisting of B was used.

しかしながらこの従来の半田は融点が183℃〜220
℃と低いために、接合後の絶縁被覆として、の絶縁を行
っているため、絶縁層の増大による超電導導体全体の電
流密度の低下、マグネットへの巻線時のターン数のバラ
ツキによる磁場均一度の低下更には製造コストの増大等
の問題があった。
However, this conventional solder has a melting point of 183°C to 220°C.
Because the temperature is low, insulation is used as an insulating coating after bonding, which reduces the current density of the entire superconducting conductor due to the increase in the insulating layer, and the magnetic field uniformity due to variations in the number of turns when winding around the magnet. Furthermore, there were problems such as a decrease in the amount of water and an increase in manufacturing costs.

このため、安定化金属と超電導線とを接合した構造の超
電導導体としては絶縁層が薄(、かつ安価なエナメル絶
縁被覆が可能な導体の開発が強く望まれている。
For this reason, there is a strong desire to develop a superconducting conductor with a structure in which a stabilizing metal and a superconducting wire are bonded, which has a thin insulating layer (and which can be coated with an inexpensive enamel insulating layer).

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる状況に鑑み、鋭意検討の結果開発された
もので、請求項1の発明は、安定化金属とNb−Ti合
金超電導線とをろう材を用いて接合する構造の超電導導
体において、融点が320℃〜620℃のろう材を用い
ることを特徴とする超電導導体であり、請求項2の発明
は、安定化金属とNb3Sn化合物超電導線とをろう材
を用いて接合する構造の超電導導体において、融点が3
20’C以上のろう材を用いることを特徴とする超電導
導体である。
The present invention was developed as a result of intensive studies in view of the above situation, and the invention of claim 1 provides a superconducting conductor having a structure in which a stabilizing metal and a Nb-Ti alloy superconducting wire are joined using a brazing material, A superconducting conductor characterized in that a brazing material having a melting point of 320° C. to 620° C. is used, and the invention according to claim 2 is a superconducting conductor having a structure in which a stabilizing metal and a Nb3Sn compound superconducting wire are joined using a brazing material. , the melting point is 3
This is a superconducting conductor characterized by using a brazing material having a temperature of 20'C or higher.

(作用〕 本発明は通常のエナメル絶縁被覆の処理温度である28
0℃〜300℃よりも融点の高いろう材を用いることに
より、絶縁層が薄<シかも安価なエナメル絶縁被覆の超
電導導体を開発したものである。
(Function) The present invention has a processing temperature of 28
By using a brazing filler metal with a melting point higher than 0°C to 300°C, we have developed a superconducting conductor with an enamel insulation coating that has a thin and inexpensive insulation layer.

第1発明において、ろう材の融点を320℃〜620℃
と限定したのは、融点が320℃未満ではエナメル絶縁
被覆の際ろう材が溶融してしまうためであり、620℃
を超えるとろう材との接合時にNbTi合金超電導線が
熱により特性が劣化するためである。
In the first invention, the melting point of the brazing material is 320°C to 620°C.
The reason for this limitation was that if the melting point was less than 320°C, the filler metal would melt during the enamel insulation coating;
This is because, if the temperature exceeds 100%, the properties of the NbTi alloy superconducting wire will deteriorate due to heat when joining with the brazing material.

第2発明においてろう材の融点を320℃以上として下
限のみで上限を限定しなかったのは、Nb。
In the second invention, the melting point of the brazing filler metal is set to 320° C. or higher, and the upper limit is not limited only to the lower limit.

Sn化合物超電導線の場合はNb−Ti合金超電導線の
場合のような熱による特性劣化を招かないからである。
This is because the Sn compound superconducting wire does not suffer from characteristic deterioration due to heat, unlike the Nb-Ti alloy superconducting wire.

また本発明における超電導線としては、NbTi合金、
N b 3 S n化合物等の合金系あるいは化合物系
の多芯構造のモノリスklA(即ち撚線前の素線)、成
形撚線等が用いられる。
Further, as the superconducting wire in the present invention, NbTi alloy,
An alloy-based or compound-based multicore structure monolith klA (that is, a strand before twisting), a formed stranded wire, or the like is used.

〔実施例〕〔Example〕

以下本発明を実施例により更に詳細に説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例1 第1図(イ)に示すように厚さ2.00圓幅4.OOm
のNb−Ti合金超電導線1を厚さ4.00mm、幅8
.OO剣 閣の安定化源3に埋め込み、ろう材2としてZnを用い
て加熱接合させた。しかる後ホルマール4を300℃で
焼付被覆した。Znの融点は420℃であり、ホルマー
ルの焼付被覆温度よりも高いためろう材2の溶融はなく
接合性は良好であった。
Example 1 As shown in FIG. 1(a), the thickness is 2.00 mm and the width is 4.0 mm. OOm
Nb-Ti alloy superconducting wire 1 with a thickness of 4.00 mm and a width of 8
.. It was embedded in the stabilizing source 3 of OO Kenkaku, and heat-bonded using Zn as the brazing material 2. Thereafter, Formal 4 was baked and coated at 300°C. The melting point of Zn was 420° C., which was higher than the baking coating temperature of formal, so the brazing filler metal 2 did not melt and the bondability was good.

比較例1 比較として、250℃1285℃,310℃の各温度に
融点を調整したPb−Sn合金をろう材として用いて実
施例と同一の超電導導体を製作して、実施例1と同様に
ホルマールを焼付被覆したが、いずれの場合もろう材が
溶融し接合不良であった。
Comparative Example 1 For comparison, the same superconducting conductor as in Example was manufactured using a Pb-Sn alloy whose melting point was adjusted to 250°C, 1285°C, and 310°C as a brazing material, and the same superconducting conductor as in Example 1 was formalized. However, in both cases, the filler metal melted and the joints were defective.

実施例2 融点を605℃に調整した銀ろうを用いて実施例1と同
一の超電導導体を製作して、実施例1と同様にホルマー
ルを焼付被覆した。
Example 2 The same superconducting conductor as in Example 1 was manufactured using silver solder whose melting point was adjusted to 605° C., and formal was baked and coated in the same manner as in Example 1.

比較例2 また比較として、625℃、635℃の各温度に融点を
調整した銀ろうを用いて実施例1と同一の超電導導体を
製作して実施例1と同様にホルマールを焼付被覆した。
Comparative Example 2 As a comparison, the same superconducting conductor as in Example 1 was manufactured using silver solder whose melting point was adjusted to 625° C. and 635° C., and formal was baked and coated in the same manner as in Example 1.

従来例 更に比較として、200℃に融点を調整したPb−Sn
合金を用いて実施例1と同一の超電導導体を製作して、
その後のカプトンテープ巻により絶縁被覆した。
Conventional example For comparison, Pb-Sn whose melting point was adjusted to 200°C
The same superconducting conductor as in Example 1 was manufactured using the alloy,
The insulation was then covered with Kapton tape.

斯くの如くして得られた実施例1〜2、比較例2、従来
例の超電導導体について液体He  (4,2’K)中
にて5Tの磁場をかけた状態で電流を徐々に増加させて
通電し、抵抗がIQ−II ΩΩに達した時の臨界tf
L密度Jcを長さ1mの短尺品について測定した。その
結果を第1表に示す。また絶縁被覆に要したコストも第
1表に併記した。
For the superconducting conductors of Examples 1 and 2, Comparative Example 2, and Conventional Example obtained in this way, the current was gradually increased in liquid He (4,2'K) with a magnetic field of 5 T applied. When the resistance reaches IQ-II ΩΩ, the critical tf
L density Jc was measured for a short product with a length of 1 m. The results are shown in Table 1. The cost required for the insulation coating is also listed in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明によれば安価な絶縁であるエナメ
ル絶縁が可能であり、また絶縁被覆層を薄くできるため
導体全体としての臨界電流密度J。
As described above, according to the present invention, enamel insulation, which is an inexpensive insulation, is possible, and the insulation coating layer can be made thinner, so that the critical current density J of the entire conductor can be reduced.

を向上させることができ、工業上顕著な効果を奏するも
のである。
can be improved, and has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による超電導導体の一例を示す構造図で
ある。 l・・・超電導線、  2・・・ろう材、3・・・安定
化銅、  4・・・ホルマール。
FIG. 1 is a structural diagram showing an example of a superconducting conductor according to the present invention. 1... Superconducting wire, 2... Brazing metal, 3... Stabilized copper, 4... Formal.

Claims (1)

【特許請求の範囲】 1)安定化金属とNb−Ti合金超電導線とをろう材を
用いて接合する構造の超電導導体において、融点が32
0℃〜620℃のろう材を用いることを特徴とする超電
導導体。 2)安定化金属とNb_3Sn化合物超電導線とをろう
材を用いて接合する構造の超電導導体において、融点が
320℃以上のろう材を用いることを特徴とする超電導
導体。
[Claims] 1) A superconducting conductor having a structure in which a stabilizing metal and a Nb-Ti alloy superconducting wire are joined using a brazing material, the melting point of which is 32.
A superconducting conductor characterized by using a brazing material having a temperature of 0°C to 620°C. 2) A superconducting conductor having a structure in which a stabilizing metal and a Nb_3Sn compound superconducting wire are joined using a brazing material, characterized in that a brazing material having a melting point of 320° C. or higher is used.
JP2223975A 1990-08-24 1990-08-24 Superconductor Pending JPH04106809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2223975A JPH04106809A (en) 1990-08-24 1990-08-24 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2223975A JPH04106809A (en) 1990-08-24 1990-08-24 Superconductor

Publications (1)

Publication Number Publication Date
JPH04106809A true JPH04106809A (en) 1992-04-08

Family

ID=16806612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2223975A Pending JPH04106809A (en) 1990-08-24 1990-08-24 Superconductor

Country Status (1)

Country Link
JP (1) JPH04106809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120291A1 (en) * 2005-05-13 2006-11-16 Luvata Oy Method for producing a superconductive element
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
JP2008060074A (en) * 2006-08-02 2008-03-13 Furukawa Electric Co Ltd:The Composite superconducting wire material, its manufacturing method, and superconducting cable
WO2008085955A2 (en) 2007-01-09 2008-07-17 Oxford Superconducting Technology Soldered superconductor with hard insulation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120291A1 (en) * 2005-05-13 2006-11-16 Luvata Oy Method for producing a superconductive element
US9318685B2 (en) 2005-05-13 2016-04-19 Luvata Espoo Oy Method for producing a superconductive element
WO2008015941A1 (en) * 2006-08-02 2008-02-07 The Furukawa Electric Co., Ltd. Composite superconducting wire rod, method for manufacturing composite superconducting wire rod, and superconducting cable
JP2008060074A (en) * 2006-08-02 2008-03-13 Furukawa Electric Co Ltd:The Composite superconducting wire material, its manufacturing method, and superconducting cable
US8188010B2 (en) 2006-08-02 2012-05-29 The Furukawa Electric Co., Ltd. Composite superconductive wire-material, manufacturing method of composite superconductive wire-material, and superconductive cable
WO2008085955A2 (en) 2007-01-09 2008-07-17 Oxford Superconducting Technology Soldered superconductor with hard insulation
EP2118941A2 (en) * 2007-01-09 2009-11-18 Oxford Superconducting Technology Soldered superconductor with hard insulation
EP2118941A4 (en) * 2007-01-09 2013-05-29 Oxford Superconducting Technology Soldered superconductor with hard insulation

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JP3309390B2 (en) High-temperature superconducting conductor winding
EP2118941A2 (en) Soldered superconductor with hard insulation
JP3836299B2 (en) Connecting method of oxide superconductor
JPS60136109A (en) Superconductive conductor and method of producing same
JP4213290B2 (en) Method for producing stabilized composite superconducting wire
JP2003086265A (en) Connection part of superconducting line and its connecting method
JPH0213814B2 (en)
JPH04106809A (en) Superconductor
EP0132982B1 (en) Superconductor for pulsed magnet
JP3489525B2 (en) Superconducting wire and method of manufacturing the same
JPH0997637A (en) Joint part of oxide superconductor and metal terminal, and its forming method
JPH031469A (en) Connecting method for superconductive wire and compound superconductive wire
CN111009798A (en) Multi-core iron-based superconducting joint and preparation method thereof
JPH05335145A (en) Superconducting current lead
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
KR101742097B1 (en) ceramic wire and splice connecting method of the same
JPS6381709A (en) Superconductor
JP4713756B2 (en) Oxide superconducting cable connection and connection method
JP2699732B2 (en) Superconducting conductor and stabilizing material used therefor
JP3879183B2 (en) Superconducting composite material and method of manufacturing superconducting composite material
JPH0313687B2 (en)
JP3324288B2 (en) Method for producing Al-stabilized Nb-Ti superconductor
JPH09115635A (en) Connecting method for oxide superconducting wire
JPS61211967A (en) Connection of superconductor